JP6727344B2 - 硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ - Google Patents

硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ Download PDF

Info

Publication number
JP6727344B2
JP6727344B2 JP2018564456A JP2018564456A JP6727344B2 JP 6727344 B2 JP6727344 B2 JP 6727344B2 JP 2018564456 A JP2018564456 A JP 2018564456A JP 2018564456 A JP2018564456 A JP 2018564456A JP 6727344 B2 JP6727344 B2 JP 6727344B2
Authority
JP
Japan
Prior art keywords
group
compound
general formula
curable composition
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018564456A
Other languages
English (en)
Other versions
JPWO2018139186A1 (ja
Inventor
純一 伊藤
純一 伊藤
明夫 水野
明夫 水野
金子 祐士
祐士 金子
貴規 田口
貴規 田口
浜田 大輔
大輔 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2018139186A1 publication Critical patent/JPWO2018139186A1/ja
Application granted granted Critical
Publication of JP6727344B2 publication Critical patent/JP6727344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • C08F2/40Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Hydrogenated Pyridines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)

Description

本発明は、硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、及び赤外線センサに関する。
従来から、カーボンブラック等の遮光性を有する粒子を含有する硬化性組成物が知られている。
上記のような遮光性を有する粒子を含有する硬化性組成物は、種々の用途に用いられ、例えば液晶表示装置及び固体撮像素子等が有する硬化膜の製造に用いられてきた。
より具体的には、液晶表示装置、及び、固体撮像素子に用いられるカラーフィルタには着色画素間の光を遮蔽し、コントラストを向上させる等の目的で、ガラス基板上にブラックマトリクスと呼ばれる硬化膜が用いられている。
また、固体撮像素子では、ノイズ発生防止、及び、画質の向上等を目的として硬化膜が用いられている。現在、携帯電話及びPDA(Personal Digital Assistant)等の電子機器の携帯端末には、小型で薄型な固体撮像装置が搭載されている。このような固体撮像装置は、一般に、CCD(Charge Coupled Device)イメージセンサー及びCMOS(Complementary Metal−Oxide Semiconductor)イメージセンサー等の固体撮像素子と、固体撮像素子上に被写体像を形成するためのレンズと、を備えている。
このような硬化性組成物として、特許文献1には、少なくとも黒色顔料、バインダ樹脂、光重合性モノマー、光重合開始剤及び溶剤を含有する黒色感光性樹脂組成物であって、光重合開始剤として特定構造のフルオレン系オキシムエステル化合物を含有する黒色感光性樹脂組成物を開示している。上記特許文献1では、硬化性組成物をより高感度とするため、光露光後の光重合性モノマーのラジカル重合過程において連鎖移動剤として働く多官能チオール化合物を硬化性組成物中に添加してもよい旨を記載しており、また、線幅5μm以下のブラックマトリックスパターンを精度よく形成するため、重合禁止剤を硬化性組成物中に添加してよい旨を記載している。
特開2014−182253号公報
本発明者らは、特許文献1に記載された硬化性組成物、及び、上記硬化性組成物をパターン状に露光した後、現像により得られる硬化膜について種々の検討を実施した。その結果、上記硬化性組成物は、保存安定性が必ずしも昨今要求されるレベルに達しておらず、更なる改善が必要であることを明らかとした。また、上記硬化性組成物を用いて露光及び現像を実施した場合には、未露光部に残渣が発生し易く、更なる改善が必要であることを明らかとした。更に、上記硬化膜については、パターン形状が必ずしも昨今要求されるレベルに達しておらず、具体的には、露光時に照射光が到達しにくい深部でのアンダーカットの発生及び線幅の太りが確認され、更なる改善が必要であることを明らかとした。
そこで、本発明は、保存安定性に優れ、未露光部における残渣の発生が抑制され、且つ、優れたパターン形状を有する硬化膜を得ることができる硬化性組成物を提供することを課題とする。
また、本発明は、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、及び赤外線センサを提供することも課題とする。
本発明者らは、上記課題を達成すべく鋭意検討した結果、硬化性化合物が重合抑制能を有する基とチオール基とを有する化合物を含有することにより上記課題が解決できることを見出し、本発明を完成させた。
すなわち、以下の構成により上記目的を達成することができることを見出した。
[1] 重合抑制能を有する基とチオール基とを有する化合物と、
重合性化合物と、
光重合開始剤と、
着色剤とを含有する硬化性組成物。
[2] 上記重合抑制能を有する基とチオール基とを有する化合物において、下記式(1)で表される数値R1が1〜50%である、[1]記載の硬化性組成物。
式(1): R1=[重合抑制能を有する基の数/(チオール基の数+重合抑制能を有する基の数)]×100
[3] 上記重合抑制能を有する基とチオール基とを有する化合物において、上記式(1)で表される数値R1が3〜30%である、[2]記載の硬化性組成物。
[4] 上記重合抑制能を有する基とチオール基とを有する化合物において、上記式(1)で表される数値R1が8〜15%である、[2]記載の硬化性組成物。
[5] 上記光重合開始剤の含有量が、上記重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で1〜100倍である、[1]〜[4]のいずれかに記載の硬化性組成物。
[6] 上記重合抑制能を有する基とチオール基とを有する化合物の含有量が、全固形分に対して0.01〜3質量%である、[1]〜[5]のいずれかに記載の硬化性組成物。
[7] 上記重合抑制能を有する基が、フェノール系化合物及び後述する一般式(IH−2)で表される化合物からなる群より選ばれるいずれかの化合物から誘導される1価の基である、[1]〜[6]のいずれかに記載の硬化性組成物。
[8] 上記重合抑制能を有する基とチオール基とを有する化合物が、後述する一般式(1)で表される化合物である、[1]〜[7]のいずれかに記載の硬化性組成物。
ただし、上記一般式(1)で表される化合物において、下記式(3)で表される数値R3及び下記式(4)で表される数値R4は、いずれも0%超の数である。
式(3):R3=[Qの数/(チオール基の数+Qの数)]×100
式(4):R4=[チオール基の数/(チオール基の数+Qの数)]×100
[9] 更に、重合抑制能を有する基を有さないチオール化合物を含有する、[1]〜[8]のいずれかに記載の硬化性組成物。
[10] 重合抑制能を有する基とチオール基とを有する化合物。
[11] 上記重合抑制能を有する基が、フェノール系化合物及び後述する一般式(IH−2)で表される化合物からなる群より選ばれるいずれかの化合物から誘導される1価の基である、[10]に記載の化合物。
[12] 後述する一般式(1)で表される、[10]又は[11]に記載の化合物。
ただし、上記一般式(1)で表される化合物において、下記式(3)で表される数値R3及び下記式(4)で表される数値R4は、いずれも0%超の数である。
式(3):R3=[Qの数/(チオール基の数+Qの数)]×100
式(4):R4=[チオール基の数/(チオール基の数+Qの数)]×100
[13] [1]〜[9]のいずれかに記載の硬化性組成物を硬化して得られる、硬化膜。
[14] [1]〜[9]のいずれかに記載の硬化性組成物を用いて硬化性組成物層を形成する、硬化性組成物層形成工程と、
上記硬化性組成物層をパターン状に露光する、露光工程と、
未露光部を現像除去して硬化膜を形成する、現像工程と、を含有する硬化膜の製造方法。
[15] [14]に記載の硬化膜の製造方法を含有する、カラーフィルタの製造方法。
[16] [13]に記載の硬化膜をカラーフィルタとして含有する、固体撮像素子。
[17] [13]に記載の硬化膜をカラーフィルタとして含有する、赤外線センサ。
本発明によれば、保存安定性に優れ、未露光部における残渣の発生が抑制され、且つ、優れたパターン形状を有する硬化膜を得ることができる硬化性組成物を提供することができる。
また、本発明によれば、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、及び赤外線センサを提供することができる。
固体撮像装置の構成例を示す概略断面図である。 図1の撮像部を拡大して示す概略断面図である。 赤外線センサの構成例を示す概略断面図である。 アンダーカット幅(μm)の測定評価を説明する断面模式図である。 太り幅(μm)の測定評価を説明する断面模式図である。
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を含有しないものと共に置換基を含有するものをも包含するものである。例えば、「アルキル基」とは、置換基を含有しないアルキル基(無置換アルキル基)のみならず、置換基を含有するアルキル基(置換アルキル基)をも包含する。
本明細書における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、及びエキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme ultraviolet lithography光)、X線、並びに電子線等を意味する。また本明細書において「光」とは、活性光線及び放射線を意味する。本明細書における「露光」とは、特に断らない限り、水銀灯、及びエキシマレーザーに代表される遠紫外線、X線、並びにEUV光等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
本明細書において、「(メタ)アクリレート」はアクリレート及びメタアクリレートを表す。本明細書において、「(メタ)アクリル」はアクリル及びメタアクリルを表す。本明細書において、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルを表す。本明細書において、「(メタ)アクリルアミド」は、アクリルアミド及びメタアクリルアミドを表す。本明細書において、「(メタ)アリル」は、アリル及びメタアリルを表す。
本明細書において、「単量体」と「モノマー」とは同義である。単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書中において、重合性化合物とは、重合性基を含有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性基とは、重合反応に関与する基をいう。
[硬化性組成物]
本発明の硬化性組成物は、重合抑制能を有する基とチオール基とを有する化合物と、重合性化合物と、光重合開始剤と、着色剤とを含有する。
本発明の硬化性組成物は、上記構成により、保存安定性に優れ、未露光部における残渣の発生が抑制され、且つ、優れたパターン形状を有する硬化膜を得る(以下、優れた保存安定性、未露光部における残渣発生の抑制、アンダーカットの抑制、及び/又は太りの抑制についての効果を、「本発明の効果」ともいう。)ことができる。
以下、特許文献1に記載される硬化性組成物と本発明の硬化性組成物との構成上の差異を比較しながら、本発明の硬化性組成物が本発明の効果を奏する上で推測される機序について説明する。
昨今、カラーフィルタ、及び/又は、固体撮像素子等に用いる硬化膜には、より高い遮光性が求められている。このため、上記硬化膜を形成するための硬化性組成物中には、着色剤等の遮光性を有する材料が多量に配合されるが、一方で、上記のような硬化性組成物は、露光時に、組成物中を光が透過しにくいため、光が到達しにくい深部ほど硬化が不十分となることがある。この結果、得られるパターンには、アンダーカットが生じやすい。
今般、本発明者らは、特許文献1に記載される硬化性組成物について検討を行ったところ、上記多官能チオール化合物は、露光後のラジカル重合過程において連鎖移動剤として働くことにより、光が到達しにくい深部でのラジカル重合反応を生起させ、上記アンダーカットを抑制することに寄与していることを確認している。しかし、一方で、上記多官能チオール化合物は、光が到達しにくい深部方向のみならず、他方向にも拡散するため、パターンの幅が所望の幅よりも太る(いわゆる「太り」)原因となっていることを知見した。つまり、例えば、硬化性組成物を用いて支持体上に硬化性組成物層を形成し、パターン状に露光して現像した場合には、水平方向(支持体に平行な方向)にも連鎖移動が生じ、パターンの幅が太ってしまうことを明らかとした。特に、硬化性組成物層の表面は、露光の光照射量が豊富であるため、水平方向(支持体に平行な方向)へのラジカル重合が顕著に生じることを確認している。
更に、上記多官能チオール化合物は、露光時に生じたラジカルだけでなく、熱により生じたラジカルも連鎖移動させる。このため、上記多官能チオール化合物を含有する硬化性組成物は、保存安定性(保存下での熱安定性)に劣る傾向がある。また、上記多官能チオール化合物を含有する硬化性組成物を用いた硬化性組成物層は、露光前に任意で実施されるプリベーク工程(露光前の加熱工程)の際に、熱により生じたラジカルの拡散により未露光部分も硬化し易くなり、現像残渣が発生しやすいことを確認している。
他方、上述した太り及び現像残渣の発生を抑制し、且つ、保存安定性を向上させるため、重合禁止剤を併用した場合には、重合禁止剤の量が多いときには、保存安定性及び太りの問題を解消できるものの、アンダーカット及び現像残渣の発生が抑制できないことが確認された。逆に、重合禁止剤の量が少ないときには、上述した上記多官能チオール化合物に起因した種々の問題点を抑制できない。
本発明者らは、今般、硬化性組成物中に、重合抑制能を有する基とチオール基とを有する化合物(以下、「本発明の化合物」とも称する)を含有することにより、上記特許文献1の問題点を克服した。
本発明の化合物の特徴点は、一分子中に、連鎖移動剤として寄与するチオール基と、重合禁止剤として寄与する重合抑制能を有する基と、を有する点にある。多官能チオール基と重合禁止剤とをそれぞれ含有する特許文献1の硬化性組成物は、多官能チオール基の濃度が高い領域に必ずしも重合禁止剤が十分な量で存在しているとはいえず、つまり、熱による不必要なラジカル重合を抑制できない。一方、本発明の化合物を含有する硬化性組成物は、上記の構造的特徴により熱によるラジカル重合の抑制が可能であり、言い換えると、保存安定性に優れ、また、現像残渣の発生が抑制される。
更に、本発明の硬化性組成物は、アンダーカットの抑制と太りの抑制を両立することも確認されている。特に後述するように、重合抑制能を有する基とチオール基とを有する化合物において、[重合抑制能を有する基の数/(チオール基の数+重合抑制能を有する基の数)]×100が1〜50%、好ましくは3〜30%、より好ましくは8〜15%である場合には、太りを抑制しつつ、アンダーカットを顕著に抑制できる。
以下、本発明の硬化性組成物が含有する各種成分について詳述する。
〔重合抑制能を有する基とチオール基とを有する化合物〕
硬化性組成物は、重合抑制能を有する基とチオール基とを有する化合物を含有する。本明細書において重合抑制能を有する基とチオール基とを有する化合物とは、同一分子内に重合抑制能を有する基とチオール基(すなわち−SHで表される基)を含有するものを意図する。
重合抑制能を有する基は、重合抑制能を有していればその構造は特に限定されないが、例えば、公知の重合禁止剤(例えば、ラジカル重合禁止剤)を誘導化して1価の基としたものが挙げられる。上記誘導化の方法としては、例えば、重合禁止剤中に含まれる水素原子を1つ引き抜いて1価の基とする方法が挙げられる。ここで、重合禁止剤とは重合開始剤又は重合性単量体に生成したラジカルが成長反応を起こす前にそのラジカルをトラップする能力を持つ化合物であり、重合を阻害する働きを持つものをいう。
重合禁止剤としては、特に限定されないが、例えば、フェノール系化合物(フェノール系重合禁止剤)、チオエーテル系重合禁止剤、アミン系重合禁止剤、亜リン酸エステル系重合禁止剤、ニトロソ系重合禁止剤、及び、N−オキシル系化合物が挙げられる。より具体的には、下記に示す化合物等が挙げられる。下記に示す重合禁止剤中の任意の水素原子を引き抜くことにより、重合抑制能を有する基が誘導される。
また、重合禁止剤として、より具体的には、下記に示す一般式(IH−1)で表される化合物及び一般式(IH−2)で表される化合物も挙げられる。
一般式(IH−1)中、R〜Rは、それぞれ独立して、水素原子、または、置換基を表す。置換基としては、例えば、アルキル基、アルケニル基、ヒドロキシ基、ベンジル基、アミノ基、アリール基、アルコキシ基、カルボキシ基、アルコキシカルボニル基、又はアシル基が挙げられる。R〜Rはそれぞれ連結して環を形成してもよい。ただし、一般式(IH−1)のR〜Rのうちいずれかの水素原子、又は置換基が有する水素原子が引き抜かれることで重合抑制能を有する基が形成される。なかでも、一般式(IH−1)のR〜Rのいずれか1つが水素原子を表し、この水素原子が引き抜かれて重合抑制能を有する基が形成されることが好ましい。また、R〜Rで表される置換基(例えば、アルキル基、アルケニル基、ベンジル基、アミノ基、アリール基、アルコキシ基、アルコキシカルボニル基及びアシル基)は、さらに、置換基(好ましくは、後述する置換基W)が置換していてもよい。
一般式(IH−1)中のR〜Rとしては、水素原子、炭素数1〜5のアルキル基(例えば、エチル基及びtert−ブチル基等)、炭素数1〜5のアルコキシ基(例えば、メトキシ基及びエトキシ基等)、炭素数2〜4のアルケニル基(例えば、ビニル基等)、フェニル基、又はベンジル基が好ましい。
なかでも、R及びRの少なくとも一方は、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、炭素数2〜4のアルケニル基、フェニル基及びベンジル基から選ばれるいずれかの基であることが好ましい。また、R〜Rは、水素原子であることが好ましく、Rの水素原子が引き抜かれて重合抑制能を有する基が形成されることが好ましい。
以下、一般式(IH−1)で表される化合物としては、特に限定されないが、例えば下記に示すものが挙げられる。なお、下記化合物中、*印の位置の炭素原子上の水素原子が引き抜かれることが好ましい。
一般式(IH−2)中、Wは、アルキレン基を表す。アルキレン基に含まれる炭素数は特に制限されないが、4〜5が好ましい。なお、一般式(IH−2)で表される化合物においては、WとN(窒素原子)とを含む5員環又は6員環が形成されることが好ましい。Wで表されるアルキレン基は、置換基(好ましくは、後述する置換基Wであり、より好ましくはアルキル基)を有していてもよい。
一般式(IH−2)で表される化合物としては、下記一般式(IH−2−1)で表される化合物が好ましい。
一般式(IH−2−1)中、R11〜R16は、それぞれ独立して、水素原子、ハロゲン原子、又は1価の有機基を表すか、或いは、R11及びR12、R13及びR14、R15及びR16はこれらが結合する炭素と共に1個のカルボニル基を形成してもよい。ただし、一般式(IH−2−1)のR11〜R16のいずれか1つは水素原子を表し、この水素原子が引き抜かれることで重合抑制能を有する基が形成される。
上記1価の有機基としては、アルキル基、ヒドロキシ基、−NR1718(R17及びR18は、それぞれ独立して、水素原子、又はアルキル基を表す。)、アリール基、アルコキシ基、カルボキシ基、アリールオキシ基、−O(C=O)R19、−NH(C=O)R20(R19及びR20は、それぞれ独立して水素原子、アルキル基、又はアリール基を表す。)、カルバモイル基、シアノ基、又はマレイミド基を表す。また、R11〜R16で表されるアルキル基、アミノ基、アリール基、アルコキシ基、カルボキシ基、アリールオキシ基、カルバモイル基、及びマレイミド基には、置換基(好ましくは、後述する置換基W)が置換していてもよい。
一般式(IH−2−1)中のR11〜R16としては、水素原子、ヒドロキシ基、−NR1718(R17及びR18は、それぞれ独立して、水素原子、又は炭素数1〜6のアルキル基を表す。)、炭素数1〜5のアルキル基(例えば、メチル基及びエチル基等)、炭素数6〜10のアリール基、炭素数1〜5のアルコキシ基(例えば、メトキシ基及びエトキシ基等)、炭素数6〜10のアリールオキシ基、−O(C=O)R19、−NH(C=O)R20(R19及びR20は、それぞれ独立して、水素原子、炭素数1〜5のアルキル基、若しくは炭素数6〜10のアリール基を表す。)を表すか、又は、R11及びR12、R13及びR14、若しくはR15及びR16がこれらが結合する炭素と共に1個のカルボニル基を形成していることが好ましい。
なかでも、R11〜R16は、水素原子であることが好ましく(つまり、一般式(IH−2−1)で表される化合物は、2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカルであることが好ましい)、R13又はR14の水素原子が引き抜かれて重合抑制能を有する基が形成されることが好ましい。
重合抑制能を有する基としては、なかでも、本発明の効果により優れる点で、フェノール系化合物(好ましくは一般式(IH−1)で表される化合物)及び一般式(IH−2)で表される化合物からなる群より選ばれるいずれかの化合物から誘導される1価の基が好ましく、フェノール系化合物及び一般式(IH−2−1)で表される化合物からなる群より選ばれる化合物から誘導される1価の基がより好ましく、フェノール系化合物から誘導される1価の基又は2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル基が更に好ましく、一般式(IH−1)で表される化合物から誘導される1価の基が特に好ましく、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が最も好ましい。
重合抑制能を有する基とチオール基とを有する化合物は、本発明の効果により優れる点(特に、アンダーカットが顕著に抑制される点)で、下記式(1)で表される数値R1が1〜50%であることが好ましく、3〜30%であることがより好ましく、8〜15%であることが更に好ましい。
式(1): R1=[重合抑制能を有する基の数/(チオール基の数+重合抑制能を有する基の数)]×100
ここで「チオール基の数」及び「重合抑制能を有する基の数」とは、それぞれ「平均数」を意味し、R1はNMR(nuclear magnetic resonance)により測定されたピークの面積比(積分強度比)に基づいて算出することができる。
重合抑制能を有する基とチオール基とを有する化合物は、分子量500以上が好ましく、具体的には、分子量500〜5000が好ましく、500〜3000がより好ましい。
重合抑制能を有する基とチオール基とを有する化合物は、本発明の効果により優れる観点から、下記一般式(1X)で表される化合物であることが好ましい。
(一般式(1X)で表される化合物)

一般式(1X)
一般式(1X)中、nは2以上の整数を表し、3〜6が好ましく、4がより好ましい。Aはn価の基を表し、Rは水素原子又は下記一般式(2X)で表される1価の基を表す。ただし、一般式(1X)で表される化合物は、上述した式(1)で表される数値R1が0%超であり、かつ、下記式(2)で表される数値R2が0%超である。

一般式(2X)
一般式(2X)中、Lは、2価の連結基を表し、Qは、上述した重合抑制能を有する基を表し、*は硫黄原子との結合部位を表す。なお、一般式(2X)中、L及びQが複数存在する場合には、複数のL及び複数のQはそれぞれ同一であっても異なっていてもよい。
式(2): R2=[チオール基の数/(チオール基の数+重合抑制能を有する基の数)]×100
一般式(1X)中、nは2以上の整数を表し、Aはn価の基を表す。
なかでも、一般式(1X)で表される化合物としては、下記一般式(3X)で表される化合物が好ましい。
T−(Z−S−R) 一般式(3X)
一般式(3X)中、n及びRは上述した一般式(1X)中のn及びRと同義である。
Tは、n価の基(nは2以上の整数)を表す。Tは、例えば、炭素原子、珪素原子、硫黄原子、酸素原子、窒素原子、炭素原子−酸素原子−炭素原子からなる基、炭素原子−酸素原子−炭素原子−酸素原子−炭素原子からなる基、n価の脂肪族炭化水素環、n価の芳香族炭化水素環、又は、n価の複素環であることが好ましい。なお、「炭素原子−酸素原子−炭素原子からなる基」とは、後述する一般式(Y13)のWが1、及びLaが酸素原子の場合を意味し、「炭素原子−酸素原子−炭素原子−酸素原子−炭素原子からなる基」とは、後述する一般式(Y13)のWが2、及びLaが酸素原子の場合を意味する。
上記脂肪族炭化水素環に含まれる炭素数は、3〜15が好ましく、3〜10がより好ましく、5〜10が更に好ましい。
上記芳香族炭化水素環に含まれる炭素数は、6〜18が好ましく、6〜14がより好ましく、6〜10が更に好ましい。
上記複素環としては、少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5〜7員環であることが好ましく、5〜6員環がより好ましい。
Tとしては、例えば、下記一般式(Y1)〜(Y14)で表される基が挙げられる。なお、各一般式中、*は、Zで表される2価の連結基との結合位置を表す。
なお、上述したTが「炭素原子」であるとはTが下記一般式(Y6)で表される基であることを意味し、上述したTが「珪素原子」であるとはTが下記一般式(Y10)で表される基であることを意味し、上述したTが「硫黄原子」であるとはTが下記一般式(Y8)で表される基であることを意味し、上述したTが「酸素原子」であるとはTが下記一般式(Y9)で表される基であることを意味し、上述したTが「窒素原子」であるとはTが下記一般式(Y11)で表される基であることを意味する。
また、上述した「n価の脂肪族炭化水素環」とは、例えば、下記一般式(Y12)で表される基等であり、「n価の芳香族炭化水素環」とは、例えば、下記一般式(Y7)で表される基等であり、「n価の複素環」とは、例えば、下記一般式(Y3)〜(Y5)で表される基等である。
また、一般式(Y13)で表される基において、Cは炭素原子又は珪素原子を表し、Wは1〜4を表す。また、Lは2価の連結基であれば特に限定されない。2価の連結基としては、例えば、−O−、−S−、−NR−、−CO−、アルキレン基(環状、分岐鎖状、及び直鎖状のいずれであってもよい)、アルケニレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基、又は、これらを組み合わせてなる2価の基が挙げられる。Rは、例えば、水素原子、アルキル基(好ましくは、炭素数1〜10の直鎖状又は分岐鎖状のアルキル基)、ハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、及びアリール基(好ましくは炭素数6〜20のアリール基)が挙げられる。
また、一般式(Y14)で表される基において、Cは炭素原子又は珪素原子を表し、Rは置換基(例えば、アルキル基)を表す。
一般式(3X)中、Zは、2価の連結基を表す。複数のZはそれぞれ同一であっても異なっていてもよい。
Zは、特に限定されないが、例えば、−O−、−S−、−NR−、−CO−、アルキレン基(環状、分岐鎖状、及び直鎖状のいずれであってもよい)、アルケニレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基、又は、これらを組み合わせてなる2価の基が挙げられる。Rは、例えば、水素原子、アルキル基(好ましくは、炭素数1〜10の直鎖状又は分岐鎖状のアルキル基)、ハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、及びアリール基(好ましくは炭素数6〜20のアリール基)が挙げられる。
一般式(1X)及び一般式(3X)中、nは、2以上の整数であれば特に限定されない。また、その上限は特に限定されないが、15以下の整数であることが好ましい。なかでも、本発明の効果がより優れる点及び現像性の点から、2〜10が好ましく、2〜6がより好ましく、3〜6が更に好ましく、4が特に好ましい。
一般式(2X)中、Lは、2価の連結基を表す。
Lは、特に限定されないが、アルキレン基、アリーレン基、エーテル基、エステル基、チオエステル基、アミド基、ウレタン基、及びウレア基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた連結基を表す。
で表されるアルキレン基中の炭素数は特に制限されないが、本発明の効果がより優れる点で、1〜10が好ましく、1〜6がより好ましい。アルキレン基としては、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。また、アルキレン基には、置換基(好ましくは、後述する置換基W(アルキル基以外もの))が置換していてもよい。
上記アルキレン基としては、例えば、−CH−、−CHCH−、−nCHCHCH−、−iCHCHCH−、−nCHCHCHCH−、及び−nCHCHCHCHCHCH−等が挙げられる。
Lで表されるアリーレン基中の炭素数は特に制限されないが、本発明の効果がより優れる点で、6〜30が好ましく、6〜18がより好ましい。アリール基は、単環構造であっても、2つ以上の環が縮環した縮環構造(縮合環構造)であってもよい。また、アリーレン基には、置換基(好ましくは、後述する置換基W)が置換していてもよい。
上記アリーレン基としては、例えば、ベンゼン、ナフタレン、アントラセン、ピレン、フェナントレン及びフルオレン等から水素原子を2つ引き抜いて2価としたもの、並びにビフェニルレン等が挙げられ、フェニレン基又はナフチレン基が好ましく、フェニレン基がより好ましい。
なかでも、Lは、1個の−CH2−又は隣接している2個以上の−CH2−がそれぞれ独立してエーテル基、エステル基、又はアミド基に置き換えられてもよい炭素数1〜10のアルキレン基が好ましい。
上記式(2)で表される数値R2は、なかでも、本発明の効果がより優れる点で、50〜99%であることが好ましく、70〜97%であることがより好ましく、85〜92%であることが更に好ましい。
重合抑制能を有する基とチオール基とを有する化合物としては、特に限定されないが、例えば、下記化合物が挙げられる。下記化合物において、Rは水素原子及び一般式(2X)で表される1価の基からなる群より選ばれるいずれかを表し、上記式(1)で表される数値R1及び上記式(2)で表される数値R2はいずれも0%超である。
重合抑制能を有する基とチオール基とを有する化合物は、なかでも、本発明の効果により優れる観点から、下記一般式(1)で表される化合物が好ましい。
(一般式(1)で表される化合物)
以下、一般式(1)で表される化合物について詳述する。
一般式(1)中、mは、0、1又は2を表す。
一般式(1)中、複数存在するLは、それぞれ独立に、アルキレン基、アリーレン基、エーテル基、エステル基、チオエステル基、アミド基、ウレタン基、及びウレア基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた連結基を表す。
で表されるアルキレン基中の炭素数は特に制限されないが、本発明の効果がより優れる点で、1〜10が好ましく、1〜6がより好ましく、1〜3が更に好ましい。アルキレン基としては、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。また、アルキレン基には、置換基(好ましくは、後述する置換基W(アルキル基以外もの))が置換していてもよい。
上記アルキレン基としては、例えば、−CH−、−CHCH−、−nCHCHCH−、−iCHCHCH−、−nCHCHCHCH−、及び−nCHCHCHCHCHCH−等が挙げられる。
で表されるアリーレン基中の炭素数は特に制限されないが、本発明の効果がより優れる点で、6〜30が好ましく、6〜18がより好ましい。アリール基は、単環構造であっても、2つ以上の環が縮環した縮環構造(縮合環構造)であってもよい。また、アリーレン基には、置換基(好ましくは、後述する置換基W)が置換していてもよい。
上記アリーレン基としては、例えば、ベンゼン、ナフタレン、アントラセン、ピレン、フェナントレン及びフルオレン等から水素原子を2つ引き抜いて2価としたもの、並びにビフェニルレン等が挙げられ、フェニレン基又はナフチレン基が好ましく、フェニレン基がより好ましい。
なかでも、Lとしては、アルキレン基が好ましく、その炭素数は、1〜10が好ましく、1〜6がより好ましく、1〜3が更に好ましい。
一般式(1)中、複数存在するQは、それぞれ独立に、水素原子又は一般式(2)で表される基を表す。なお、下記一般式(2)中、*は硫黄原子との結合部位を表す。
一般式(2)中、Lは、アルキレン基、アリーレン基、エーテル基、エステル基、チオエステル基、アミド基、ウレタン基、及びウレア基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた連結基を表す。Lで表されるアルキレン基及びアリーレン基の定義及び好適態様は、上述した一般式(2X)中のLと同様である。
なかでも、Lとしては、1個の−CH2−又は隣接している2個以上の−CH2−がそれぞれ独立してエーテル基、エステル基、又はアミド基に置き換えられてもよい炭素数1〜10のアルキレン基が好ましい。
は、フェノール系化合物(好ましくは、一般式(IH−1)で表される化合物から誘導される1価の基)及び下記一般式(IH−2)で表される化合物(好ましくは、2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル)からなる群より選ばれるいずれかの化合物から誘導される1価の基である。なお、Qで表される上記1価の基は、上述した重合抑制能を有する基と同義であり、またその好適態様についても同様である。
一般式(1)中、L及びQが複数存在する場合には、複数のL及び複数のQはそれぞれ同一であっても異なっていてもよい。
また、一般式(1)において、下記式(3)で表される数値R3及び下記式(4)で表される数値R4が、いずれも0%超の数である。
式(3):R3=[Qの数/(チオール基の数+Qの数)]×100
式(4):R4=[チオール基の数/(チオール基の数+Qの数)]×100
上記式(3)で表される数値R3は、なかでも、本発明の効果がより優れる点で、1〜50%であることが好ましく、3〜30%であることがより好ましく、8〜15%であることが更に好ましい。
上記式(4)で表される数値R4は、なかでも、本発明の効果がより優れる点で、50〜99%であることが好ましく、70〜97%であることがより好ましく、85〜92%であることが更に好ましい。
ここで「チオール基の数」とは、一般式(1)において、Qが水素原子である場合に形成されるSH基の数を意図し、「Qの数」とは、一般式(1)において、Qが一般式(2)で表される場合(一般式(2):−L−Q)のQの数を意図する。また、「チオール基の数」及び「Qの数」は、それぞれ「平均数」を意味する。
上記数値R3およびR4は、NMRにより測定されたピークの面積比(積分強度比)に基づいて算出することができる。
以下、一般式(2)で表される基の具体例を示すが、これに限定されない。なお、*は硫黄原子との結合部位を表す。
本明細書における置換基Wについて記載する。
置換基Wとしては、例えば、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、及び、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、及び、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(−B(OH))、ホスファト基(−OPO(OH))、スルファト基(−OSOH)、及び、その他の公知の置換基が挙げられる。
また、置換基Wは、更に置換基Wで置換されていてもよい。例えば、アルキル基にハロゲン原子が置換していてもよい。
一般式(1)で表される化合物は、公知の方法で合成することができる。
一般式(1)で表される化合物としては、例えば、以下が例示されるがこれに限定されない。
なお、上述した重合抑制能を有する基とチオール基とを有する化合物は、公知の方法により合成することができる。
硬化性組成物中における重合抑制能を有する基とチオール基とを有する化合物の含有量は特に制限されないが、硬化性組成物の全固形分に対して、例えば0.01〜6質量%であり、本発明の効果がより優れる点から、0.01〜3質量%が好ましく、0.2〜2.5質量%がより好ましく、0.6〜1.3質量%が更に好ましい。
なお、重合抑制能を有する基とチオール基とを有する化合物は1種を単独で用いても、2種以上を併用してもよい。2種以上を併用する場合には、その合計が上記範囲内であることが好ましい。
また、硬化性組成物は、上述した重合抑制能を有する基とチオール基とを有する化合物に、更に重合抑制能を有する基を有さないチオール化合物を含有してもよい。
〔重合性化合物〕
硬化性組成物は、重合性化合物を含有する。
重合性化合物の含有量としては、硬化性組成物の全固形分に対して、1〜40質量%が好ましい。
重合性化合物の含有量が、1〜40質量%だと、硬化性組成物はより優れた露光感度を有する。なお、重合性化合物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合性化合物を併用する場合は、その合計量が上記範囲内であることが好ましい。
重合性化合物は、エチレン性不飽和結合を含有する基を1個以上含有する化合物が好ましく、2個以上含有する化合物がより好ましく、3個以上含有することが更に好ましく、5個以上含有することが特に好ましい。上限は、たとえば、15個以下である。エチレン性不飽和結合を含有する基としては、例えば、ビニル基、(メタ)アリル基、及び、(メタ)アクリロイル基等が挙げられる。
重合性化合物は、例えば、モノマー、プレポリマー、オリゴマー、及び、これらの混合物、並びに、これらの多量体等の化学的形態のいずれであってもよく、モノマーが好ましい。
重合性化合物の分子量は、100〜3000が好ましく、250〜1500がより好ましい。
重合性化合物は、3〜15官能の(メタ)アクリレート化合物であることが好ましく、3〜6官能の(メタ)アクリレート化合物であることがより好ましい。
モノマー、プレポリマーの例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)又はそのエステル類、アミド類、並びにこれらの多量体が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、及び不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類、並びにこれらの多量体である。また、ヒドロキシ基、アミノ基、メルカプト基等の求核性置換基を含有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能イソシアネート類又はエポキシ類との付加反応物、及び、上記不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基、エポキシ基等の親電子性置換基を含有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、又は、チオール類との反応物、ハロゲン基又はトシルオキシ基等の脱離性置換基を含有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、又は、チオール類との反応物も好適である。また、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。
これらの具体的な化合物としては、特開2009−288705号公報の段落0095〜0108に記載されている化合物を本発明においても好適に用いることができる。
重合性化合物は、エチレン性不飽和結合を含有する基を1個以上含有する、常圧下で100℃以上の沸点を持つ化合物も好ましい。例えば、特開2013−29760号公報の段落0227、特開2008−292970号公報の段落0254〜0257に記載の化合物を参酌でき、この内容は本願明細書に組み込まれる。
重合性化合物は、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D−330、PET−30;日本化薬社製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D−320;日本化薬社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D−310;日本化薬社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬社製、A−DPH−12E;新中村化学社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、NKエステルA−TMMT(ペンタエリスリトールテトラアクリレート、新中村化学社製)、及び、KAYARAD RP−1040(日本化薬社製)等を使用することもできる。
以下に好ましい重合性化合物の態様を示す。
重合性化合物は、カルボン酸基、スルホン酸基、及び、リン酸基等の酸基を有していてもよい。酸基を含有する重合性化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせた重合性化合物がより好ましく、更に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成社製の、アロニックスTO−2349、M−305、M−510、及び、M−520等が挙げられる。
酸基を含有する重合性化合物の酸価は、好ましくは0.1〜40mgKOH/gであり、より好ましくは5〜30mgKOH/gである。重合性化合物の酸価が0.1mgKOH/g以上であれば、現像溶解特性が良好であり、40mgKOH/g以下であれば、製造及び/又は取扱い上、有利である。更には、光重合性能が良好で、硬化性に優れる。
重合性化合物は、カプロラクトン構造を含有する化合物も好ましい態様である。
カプロラクトン構造を含有する化合物としては、特開2016−35068号公報の段落0364〜0382の記載を参照することができる。
また、重合性化合物としては、特公昭48−41708号公報、特開昭51−37193号公報、特公平2−32293号公報、及び特公平2−16765号公報に記載されたウレタンアクリレート類;特公昭58−49860号公報、特公昭56−17654号公報、特公昭62−39417号公報、及び特公昭62−39418号公報に記載されたエチレンオキサイド系骨格を含有するウレタン化合物類;も好適である。また、特開昭63−277653号公報、特開昭63−260909号公報、及び特開平1−105238号公報に記載された、分子内にアミノ構造及び/又はスルフィド構造を含有する付加重合性化合物類を用いることによって、感光スピードに優れた硬化性組成物を得ることができる。
市販品としては、ウレタンオリゴマーUAS−10、UAB−140(山陽国策パルプ社製)、UA−7200(新中村化学社製)、DPHA−40H(日本化薬社製)、UA−306H、UA−306T、UA−306I、AH−600、T−600、及び、AI−600(共栄社製)等が挙げられる。
また、重合性化合物は、SP(Solubility Parameter:溶解パラメータ)値が、9.50以上であることが好ましく、10.40以上であることがより好ましく、10.60以上であることが更に好ましい。
なお、本明細書においてSP値は、特に断らない限り、Hoy法によって求める(H.L.Hoy Journal of Painting,1970,Vol.42,76−118)。また、SP値については単位を省略して示しているが、その単位はcal1/2cm−3/2である。
また、硬化性組成物は、現像残渣改善の観点から、カルド骨格を含有する重合性化合物を含有することも好ましい。
このようなカルド骨格を含有する重合性化合物としては、限定されないが、例えば、オンコートEXシリーズ(長瀬産業社製)及びオグソール(大阪ガスケミカル社製)等が挙げられる。
〔光重合開始剤〕
硬化性組成物は、光重合開始剤を含有する。
光重合開始剤としては、重合性化合物の重合を開始することができれば特に制限されず、公知の光重合開始剤を用いることができる。光重合開始剤としては、例えば、紫外線領域から可視光線領域に対して感光性を有するものが好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、重合性化合物の種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、光重合開始剤は、約300nm〜800nm(330nm〜500nmがより好ましい。)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。
光重合開始剤の含有量としては、硬化性組成物の全固形分に対して、1〜15質量%が好ましい。上記範囲内であれば、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
光重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。光重合開始剤を2種以上併用する場合には、その合計量が上記範囲内であることが好ましい。
また、光重合開始剤の含有量は、例えば、重合抑制能を有する基とチオール基とを有する化合物の含有量に対して質量比で1〜100倍が好ましく、本発明の効果がより優れる点から、2.5〜35倍がより好ましく、2.5〜25倍が更に好ましい。
光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を含有するもの、オキサジアゾール骨格を含有するもの、等)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、及び、ヒドロキシアセトフェノン等が挙げられる。
上記トリアジン骨格を含有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載の化合物、米国特許第4212976号明細書記載の化合物、等が挙げられる。
また、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン−ベンゼン−鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、並びに3−アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
なかでも、トリハロメチルトリアジン化合物、α−アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾフェノン化合物、又はアセトフェノン化合物がより好ましく、トリハロメチルトリアジン化合物、α−アミノケトン化合物、オキシム化合物、トリアリルイミダゾールダイマー、及びベンゾフェノン化合物からなる群より選ばれる少なくとも一種の化合物が更に好ましい。
特に、硬化性組成物を遮光膜の作製に使用する場合には、微細なパターンをシャープな形状で形成する必要があるため、硬化性と共に未露光部に残渣がなく現像されることが重要である。このような観点からは、光重合開始剤としてはオキシム化合物を使用することが特に好ましい。特に、微細なパターンを形成する場合、硬化用露光にステッパー露光を用いるが、この露光機はハロゲンにより損傷される場合があり、光重合開始剤の添加量も低く抑える必要がある。これらの点を考慮すれば、微細パターンを形成するには、光重合開始剤としては、オキシム化合物を用いるのが特に好ましい。
光重合開始剤の具体例としては、例えば、特開2013−29760号公報の段落0265〜0268を参酌することができ、この内容は本願明細書に組み込まれる。
光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10−291969号公報に記載のアミノアセトフェノン系開始剤、及び特許第4225898号公報に記載のアシルホスフィン系開始剤も用いることができる。
ヒドロキシアセトフェノン化合物としては、IRGACURE−184、DAROCUR−1173、IRGACURE−500、IRGACURE−2959、及びIRGACURE−127(商品名:いずれもBASF社製)を用いることができる。
アミノアセトフェノン化合物としては、市販品であるIRGACURE−907、IRGACURE−369、又はIRGACURE−379EG(商品名:いずれもBASF社製)を用いることができる。アミノアセトフェノン化合物としては、365nm又は405nm等の長波光源に吸収波長がマッチングされた特開2009−191179公報に記載の化合物も用いることができる。
アシルホスフィン化合物としては、市販品であるIRGACURE−819、又はDAROCUR−TPO(商品名:いずれもBASF社製)を用いることができる。
<オキシム化合物>
光重合開始剤として、より好ましくはオキシム化合物(オキシム系開始剤)が挙げられる。
光重合開始剤としてオキシム化合物を含有する硬化性組成物は、より優れた露光感度を有する。また、オキシム化合物は高感度で重合効率が高く、着色剤濃度によらず硬化性組成物層を硬化でき、着色剤の濃度を高く設計しやすいため好ましい。
オキシム化合物の具体例としては、特開2001−233842号公報記載の化合物、特開2000−80068号公報記載の化合物、又は特開2006−342166号公報記載の化合物が挙げられる。
オキシム化合物としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オン等が挙げられる。
また、J.C.S.Perkin II(1979年)pp.1653−1660、J.C.S.Perkin II(1979年)pp.156−162、Journalof Photopolymer Science and Technology(1995年)pp.202−232、特開2000−66385号公報、特開2000−80068号公報、特表2004−534797号公報、及び特開2006−342166号公報に記載の化合物等も挙げられる。
市販品ではIRGACURE−OXE01(BASF社製)、IRGACURE−OXE02(BASF社製)、IRGACURE−OXE03(BASF社製)、又はIRGACURE−OXE04(BASF社製)も好適に用いられる。また、TR−PBG−304(常州強力電子新材料有限公司製)、アデカアークルズNCI−831及びアデカアークルズNCI−930(ADEKA社製)、又はN−1919(カルバゾール・オキシムエステル骨格含有光開始剤(ADEKA社製)も用いることができる。
また上記以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009−519904号公報に記載の化合物;ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物;色素部位にニトロ基が導入された特開2010−15025号公報及び米国特許公開2009−292039号記載の化合物;国際公開特許2009−131189号公報に記載のケトオキシム化合物;トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物;405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009−221114号公報記載の化合物;等を用いてもよい。
好ましくは、例えば、特開2013−29760号公報の段落0274〜0275を参酌することができ、この内容は本願明細書に組み込まれる。
具体的には、オキシム化合物としては、下記一般式(OX−1)で表される化合物が好ましい。なお、オキシム化合物のN−O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
一般式(OX−1)中、R及びBはそれぞれ独立に1価の置換基を表し、Aは2価の有機基を表し、Arはアリール基を表す。
一般式(OX−1)中、Rで表される1価の置換基としては、1価の非金属原子団であることが好ましい。
1価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、及び、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、及び、アリール基等が挙げられる。
一般式(OX−1)中、Bで表される1価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
一般式(OX−1)中、Aで表される2価の有機基としては、炭素数1〜12のアルキレン基、シクロアルキレン基、又は、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
光重合開始剤として、フッ素原子を含有するオキシム化合物を用いることもできる。フッ素原子を含有するオキシム化合物の具体例としては、特開2010−262028号公報記載の化合物;特表2014−500852号公報記載の化合物24、36〜40;特開2013−164471号公報記載の化合物(C−3);等が挙げられる。この内容は本明細書に組み込まれる。
光重合開始剤として、下記一般式(1)〜(4)で表される化合物を用いることもできる。
一般式(1)において、R及びRは、それぞれ独立に、炭素数1〜20のアルキル基、炭素数4〜20の脂環式炭化水素基、炭素数6〜30のアリール基、又は、炭素数7〜30のアリールアルキル基を表し、R及びRがフェニル基の場合、フェニル基同士が結合してフルオレン基を形成してもよく、R及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
一般式(2)において、R、R、R及びRは、一般式(1)におけるR、R、R及びRと同義であり、Rは、−R、−OR、−SR、−COR、−CONR、−NRCOR、−OCOR、−COOR、−SCOR、−OCSR、−COSR、−CSOR、−CN、ハロゲン原子又はヒドロキシ基を表し、Rは、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0〜4の整数を表す。
一般式(3)において、Rは、炭素数1〜20のアルキル基、炭素数4〜20の脂環式炭化水素基、炭素数6〜30のアリール基、又は、炭素数7〜30のアリールアルキル基を表し、R及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
一般式(4)において、R、R及びRは、一般式(3)におけるR、R及びRと同義であり、Rは、−R、−OR、−SR、−COR、−CONR、−NRCOR、−OCOR、−COOR、−SCOR、−OCSR、−COSR、−CSOR、−CN、ハロゲン原子又はヒドロキシ基を表し、Rは、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0〜4の整数を表す。
上記一般式(1)及び一般式(2)において、R及びRは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、シクロヘキシル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はキシリル基が好ましい。Rは炭素数1〜6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
上記一般式(3)及び(4)において、Rは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、シクロヘキシル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はキシリル基が好ましい。Rは炭素数1〜6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
一般式(1)及び一般式(2)で表される化合物の具体例としては、例えば、特開2014−137466号公報の段落0076〜0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれる。
硬化性組成物に好ましく使用されるオキシム化合物の具体例を以下に示す。
オキシム化合物は、350nm〜500nmの波長領域に極大吸収波長を有するものが好ましく、360nm〜480nmの波長領域に極大吸収波長を有するものがより好ましく、365nm及び405nmの吸光度が高いものが更に好ましい。
オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000〜300,000であることが好ましく、2,000〜300,000であることがより好ましく、5,000〜200,000であることが更に好ましい。
化合物のモル吸光係数は、公知の方法を用いることができるが、例えば、紫外可視分光光度計(Varian社製Cary−5 spctrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
〔着色剤〕
硬化性組成物は着色剤を含有する。
着色剤は、顔料、及び染料からなる群から選択される少なくとも1種である。
着色剤の含有量は、硬化性組成物の全固形分に対して55質量%以上であることが好ましく、60質量%以上であることがより好ましい。
着色剤の含有量が55質量%以上であると、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
なお、着色剤の含有量の上限値は特に制限されないが、一般に、硬化性組成物の全固形分に対して、80質量%以下が好ましい。着色剤の含有量が上限値以下だと、硬化性組成物はより優れた塗布性を有する。
<顔料>
顔料としては、特に制限されず、公知の無機顔料及び/又は有機顔料を用いることができる。
(無機顔料)
上記無機顔料としては、特に制限されず、公知の無機顔料を用いることができる。
無機顔料としては、例えば、亜鉛華、鉛白、リトポン、酸化チタン、酸化クロム、酸化鉄、沈降性硫酸バリウム及びバライト粉、鉛丹、酸化鉄赤、黄鉛、亜鉛黄(亜鉛黄1種、亜鉛黄2種)、ウルトラマリン青、プロシア青(フェロシアン化鉄カリ)ジルコングレー、プラセオジムイエロー、クロムチタンイエロー、クロムグリーン、ピーコック、ビクトリアグリーン、紺青(プルシアンブルーとは無関係)、バナジウムジルコニウム青、クロム錫ピンク、陶試紅、サーモンピンク等が挙げられる。また、黒色の無機顔料としては、Co、Cr、Cu、Mn,Ru、Fe、Ni、Sn、Ti、及びAgからなる群より選ばれた1種又は2種以上の金属元素を含む金属酸化物、金属窒素物が挙げられる。
無機顔料としては、含有量が少なくとも、高い光学濃度を有する硬化膜を形成することができる硬化性組成物が得られる点で、カーボンブラック、チタンブラック、及び金属顔料等(以下、「黒色顔料」ともいう。)が好ましい。金属顔料としては、例えば、Nb、V、Co、Cr、Cu、Mn、Ru、Fe、Ni、Sn、Ti、及びAgからなる群より選ばれる1種又は2種以上の金属元素を含む金属酸化物又は金属窒素物が挙げられる。
無機顔料としては、窒化チタン、酸窒化チタン、窒化ニオブ、窒化バナジウム、銀、又は錫を含有する金属顔料、並びに、銀及び錫を含有する金属顔料からなる群から選択される少なくとも1種を含有することが好ましく、窒化チタン、酸窒化チタン、窒化ニオブ、及び窒化バナジウムからなる群から選択される少なくとも1種を含有することがより好ましい。
なお、無機顔料としては、カーボンブラックを用いることもできる。カーボンブラックの具体例としては、市販品である、C.I.ピグメントブラック 7等の無機顔料が挙げられるがこれらに限定されるものではない。
硬化性組成物には、黒色顔料として記載した顔料以外で赤外線吸収性を有する顔料を用いることもできる。
赤外線吸収性を有する顔料としては、タングステン化合物、及び金属ホウ化物等が好ましく、なかでも、赤外領域の波長における遮光性に優れる点から、タングステン化合物が好ましい。タングステン化合物は、露光による硬化効率に関わる光重合開始剤の光吸収波長領域と、可視光領域の透光性に優れる観点から好ましい。
これらの顔料は、2種以上併用してもよく、また、後述する染料と併用してもよい。色味を調整するため、及び、所望の波長領域の遮光性を高めるため、例えば、黒色、又は赤外線遮光性を有する顔料に、赤色、緑色、黄色、オレンジ色、紫色、及びブルー等の有彩色顔料若しくは後述する染料を混ぜる態様が挙げられる。黒色、又は赤外線遮光性を有する顔料に、赤色顔料若しくは染料、又は、紫色顔料若しくは染料を混合することが好ましく、黒色、又は赤外線遮光性を有する顔料に赤色顔料を混合することがより好ましい。
更に、後述する近赤外線吸収剤、赤外線吸収剤を加えてもよい。
黒色顔料は、チタンブラック及び/又は酸窒化ニオブを含有することが好ましい。チタンブラックとは、チタン原子を含有する黒色粒子である。好ましくは低次酸化チタン、酸窒化チタン又は窒化チタン等である。チタンブラック粒子は、分散性向上、凝集性抑制等の目的で必要に応じ、表面を修飾することが可能である。酸化珪素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化マグネシウム、又は、酸化ジルコニウムで被覆することが可能であり、また、特開2007−302836号公報に表されるような撥水性物質での処理も可能である。
チタンブラックは、典型的には、チタンブラック粒子であり、個々の粒子の一次粒子径及び平均一次粒子径のいずれもが小さいものであることが好ましい。酸窒化ニオブも同様である。
具体的には、平均一次粒子径で10nm〜45nmの範囲のものが好ましい。
なお、顔料の平均一次粒子径は、透過型電子顕微鏡(Transmission Electron Microscope、TEM)を用いて測定できる。透過型電子顕微鏡としては、例えば、日立ハイテクノロジーズ社製の透過型顕微鏡HT7700を用いることができる。
透過型電子顕微鏡を用いて得た粒子像の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2を粒子径とした。この方法で100個の粒子の粒子径を測定し、その算術平均値を平均粒子径として、顔料の平均一次粒子径とした。
チタンブラック及び酸窒化ニオブの比表面積は特に制限されないが、チタンブラック及び酸窒化ニオブを撥水化剤で表面処理した後の撥水性が所定の性能となるために、BET(Brunauer, Emmett, Teller)法にて測定した値が5m2/g以上150m2/g以下であることが好ましく、20m2/g以上120m2/g以下であることがより好ましい。
チタンブラックの市販品の例としては、チタンブラック10S、12S、13R、13M、13M−C、13R、13R−N、13M−T(商品名、三菱マテリアル(株)製)、ティラック(Tilack)D(商品名、赤穂化成(株)製)、窒化チタン50nm(商品名、和光純薬(株)製)等が挙げられる。
着色剤として、酸窒化チタン、窒化チタン又は酸窒化ニオブを使用することが好ましく、得られる硬化膜の耐湿性がより優れるという理由から、窒化チタン又は酸窒化ニオブがより好ましく、酸窒化ニオブが更に好ましい。これは、これらの着色剤が疎水性であるためと考えられる。
更に、チタンブラックを、チタンブラック及びSi原子を含む被分散体として含有することも好ましい。 この形態において、チタンブラックは、硬化性組成物中において被分散体として含有されるものであり、被分散体中のSi原子とTi原子との含有比(Si/Ti)が質量換算で0.05以上が好ましく、0.05〜0.5がより好ましく、0.07〜0.4が更に好ましい。
ここで、上記被分散体は、チタンブラックが一次粒子の状態であるもの、凝集体(二次粒子)の状態であるものの双方を包含する。
被分散体の含有比(Si/Ti)を変更する(例えば、0.05以上とする)ためには、以下のような手段を用いることができる。
先ず、酸化チタンとシリカ粒子とを分散機を用いて分散することにより分散物を得て、この分散物を高温(例えば、850〜1000℃)にて還元処理することにより、チタンブラック粒子を主成分とし、SiとTiとを含有する被分散体を得ることができる。上記還元処理は、アンモニア等の還元性ガスの雰囲気下で行うこともできる。
酸化チタンとしては、TTO−51N(商品名、石原産業製)等が挙げられる。
シリカ粒子の市販品としては、AEROSIL(登録商標)90、130、150、200、255、300、380(商品名、エボニック製)等が挙げられる。
酸化チタンとシリカ粒子との分散は、分散剤を用いてもよい。分散剤としては、後述する分散剤の欄で説明するものが挙げられる。
上記の分散は溶剤中で行ってもよい。溶剤としては、水、有機溶剤が挙げられる。後述する有機溶剤の欄で説明するものが挙げられる。
含有比(Si/Ti)が、例えば、0.05以上等に調整されたチタンブラックは、例えば、特開2008−266045公報の段落〔0005〕及び段落〔0016〕〜〔0021〕に記載の方法により作製することができる。
チタンブラック及びSi原子を含む被分散体中のSi原子とTi原子との含有比(Si/Ti)を好適な範囲(例えば0.05以上)に調整することで、この被分散体を含む硬化性組成物を用いて硬化膜を形成した際に、硬化膜の形成領域外における硬化性組成物由来の残渣物が低減される。なお、残渣物は、チタンブラック粒子、樹脂成分等の硬化性組成物に由来する成分を含むものである。
残渣物が低減される理由は未だ明確ではないが、上記のような被分散体は小粒子径となる傾向があり(例えば、粒子径が30nm以下)、更に、この被分散体のSi原子が含まれる成分が増すことにより、膜全体の下地との吸着性が低減される。これが、硬化膜の形成における未硬化の硬化性組成物(特に、チタンブラック)の現像除去性の向上に寄与すると推測される。
チタンブラックは、紫外光から赤外光までの広範囲に亘る波長領域の光に対する遮光性に優れることから、上記したチタンブラック及びSi原子を含む被分散体(好ましくは含有比(Si/Ti)が質量換算で0.05以上であるもの)を用いて形成された硬化膜は優れた遮光性を発揮する。
なお、被分散体中のSi原子とTi原子との含有比(Si/Ti)は、例えば、特開2013−249417号公報の段落0033に記載の方法(1−1)又は方法(1−2)を用いて測定できる。
硬化性組成物を硬化して得られた硬化膜に含有される被分散体について、その被分散体中のSi原子とTi原子との含有比(Si/Ti)が0.05以上か否かを判断するには、特開2013−249417号公報の段落0035に記載の方法(2)を用いることができる。
チタンブラック及びSi原子を含む被分散体において、チタンブラックは、上記したものを使用できる。
この被分散体においては、チタンブラックと共に、分散性、着色性等を調整する目的で、Cu、Fe、Mn、V、Ni等の複合酸化物、酸化コバルト、酸化鉄、カーボンブラック、アニリンブラック等からなる黒色顔料を、1種又は2種以上組み合わせて用いてもよい。この場合、全被分散体中の50質量%以上をチタンブラックからなる被分散体が占めることが好ましい。
この被分散体においては、遮光性の調整等を目的として、本発明の効果を損なわない限りにおいて、チタンブラックと共に、他の着色剤(有機顔料及び/又は染料等)を所望により併用してもよい。
以下、被分散体にSi原子を導入する際に用いられる材料について述べる。被分散体にSi原子を導入する際には、シリカ等のSi含有物質を用いればよい。
用いうるシリカとしては、沈降シリカ、フュームドシリカ、コロイダルシリカ、合成シリカ等を挙げることができ、これらを適宜選択して使用すればよい。
更に、シリカ粒子の粒子径が硬化膜を形成した際に膜厚よりも小さい粒子径であると遮光性がより優れるため、シリカ粒子として微粒子タイプのシリカを用いることが好ましい。なお、微粒子タイプのシリカの例としては、例えば、特開2013−249417号公報の段落0039に記載のシリカが挙げられ、これらの内容は本明細書に組み込まれる。
また、顔料としては、タングステン化合物、金属ホウ化物も使用できる。
以下に、タングステン化合物、及び金属ホウ化物について詳述する。
硬化性組成物には、タングステン化合物、及び/又は金属ホウ化物を使用できる。
タングステン化合物、及び金属ホウ化物は、赤外線(波長が約800〜1200nmの光)に対しては吸収が高く(すなわち、赤外線に対する遮光性(遮蔽性)が高く)、可視光に対しては吸収が低い赤外線遮蔽材である。このため、硬化性組成物は、タングステン化合物、及び/又は金属ホウ化物を含有することで、赤外領域における遮光性が高く、可視光領域における透光性が高いパターンを形成できる。
タングステン化合物、及び金属ホウ化物は、画像形成に用いられる、高圧水銀灯、KrF、ArF等の露光に用いられる可視域より短波の光に対しても吸収が小さい。このため、上述した重合性化合物及び光重合開始剤、並びに後述するアルカリ可溶性樹脂と組み合わされることにより、優れたパターンが得られるとともに、パターン形成において、現像残渣をより抑制できる。
タングステン化合物としては、酸化タングステン系化合物、ホウ化タングステン系化合物、硫化タングステン系化合物等を挙げることができ、下記一般式(組成式)(I)で表される酸化タングステン系化合物が好ましい。
・・・(I)
Mは金属、Wはタングステン、Oは酸素を表す。
0.001≦x/y≦1.1
2.2≦z/y≦3.0
Mの金属としては、例えば、アルカリ金属、アルカリ土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Sn、Pb、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi等が挙げられるが、アルカリ金属であることが好ましい。Mの金属は1種でも2種以上でもよい。
Mはアルカリ金属であることが好ましく、Rb又はCsであることがより好ましく、Csであることが更に好ましい。
x/yが0.001以上であることにより、赤外線を十分に遮蔽することができ、1.1以下であることにより、タングステン化合物中に不純物相が生成されることをより確実に回避することできる。
z/yが2.2以上であることにより、材料としての化学的安定性をより向上させることができ、3.0以下であることにより赤外線を十分に遮蔽することができる。
上記一般式(I)で表される酸化タングステン系化合物の具体例としては、Cs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WO等を挙げることができ、Cs0.33WO又はRb0.33WOであることが好ましく、Cs0.33WOであることがより好ましい。
タングステン化合物は微粒子であることが好ましい。タングステン微粒子の平均一次粒子径は、800nm以下であることが好ましく、400nm以下であることがより好ましく、200nm以下であることが更に好ましい。平均一次粒子径がこのような範囲であることによって、タングステン微粒子が光散乱によって可視光を遮断しにくくなることから、可視光領域における透光性をより確実にすることができる。光散乱を回避する観点からは、平均一次粒子径は小さいほど好ましいが、製造時における取り扱い容易性等の理由から、タングステン微粒子の平均一次粒子径は、通常、1nm以上である。
タングステン化合物は2種以上を使用することが可能である。
タングステン化合物は市販品として入手可能であるが、タングステン化合物が、例えば酸化タングステン系化合物である場合、酸化タングステン系化合物は、タングステン化合物を不活性ガス雰囲気又は還元性ガス雰囲気中で熱処理する方法により得ることができる(特許第4096205号公報を参照)。
酸化タングステン系化合物は、例えば、住友金属鉱山株式会社製のYMF−02等のタングステン微粒子の分散物としても、入手可能である。
金属ホウ化物としては、ホウ化ランタン(LaB)、ホウ化プラセオジウム(PrB)、ホウ化ネオジウム(NdB)、ホウ化セリウム(CeB)、ホウ化イットリウム(YB)、ホウ化チタン(TiB)、ホウ化ジルコニウム(ZrB)、ホウ化ハフニウム(HfB)、ホウ化バナジウム(VB)、ホウ化タンタル(TaB)、ホウ化クロム(CrB、CrB)、ホウ化モリブデン(MoB、Mo、MoB)、ホウ化タングステン(W)等の1種又は2種以上を挙げることができ、ホウ化ランタン(LaB)であることが好ましい。
金属ホウ化物は微粒子であることが好ましい。金属ホウ化物微粒子の平均一次粒子径は、800nm以下であることが好ましく、300nm以下であることがより好ましく、100nm以下であることが更に好ましい。平均一次粒子径がこのような範囲であることによって、金属ホウ化物微粒子が光散乱によって可視光を遮断しにくくなることから、可視光領域における透光性をより確実にすることができる。光散乱を回避する観点からは、平均一次粒子径は小さいほど好ましいが、製造時における取り扱い容易性等の理由から、金属ホウ化物微粒子の平均一次粒子径は、通常、1nm以上である。
金属ホウ化物は2種以上を使用することが可能である。
金属ホウ化物は市販品として入手可能であり、例えば、住友金属鉱山株式会社製のKHF−7等の金属ホウ化物微粒子の分散物としても、入手可能である。
(チタン窒化物含有粒子)
無機顔料としては、チタン窒化物含有粒子を用いることもできる。チタン窒化物含有粒子の製造には、通常、気相反応法が用いられ、具体的には電気炉法及び熱プラズマ法等が挙げられる。これらの製法の中でも、不純物の混入が少ない点、粒子径が揃いやすい点、及び、生産性が高い点等の理由から、熱プラズマ法が好ましい。
熱プラズマの発生方法としては、直流アーク放電、多相アーク放電、高周波(RF)プラズマ、及び、ハイブリッドプラズマ等が挙げられ、電極からの不純物の混入が少ない高周波プラズマが好ましい。熱プラズマ法によるチタン窒化物含有微粒子の具体的な製造方法としては、例えば、チタン粉末を高周波熱プラズマにより蒸発させ、窒素をキャリアガスとして装置内に導入し、冷却過程にてチタン粉末を窒化させ、チタン窒化物含有粒子を合成する方法等が挙げられる。なお、熱プラズマ法は、上記に限定されるものではない。
チタン窒化物含有粒子の製造方法としては、特に限定されないが、国際公開第2010/147098号の段落<0037>〜<0089>に記載の製造方法を参照することができる。例えば、国際公開第2010/147098号のAg粉末に代えて、後述するFeを含む成分及び/又はSiを含む成分を用いて、これとチタン粉末材料(チタン粒子)とを混合したものを原料として、硬化性組成物に含まれるチタン窒化物含有粒子を製造することができる。
チタン窒化物含有粒子の製造に使用するチタン粉末材料(チタン粒子)は、高純度のものであることが好ましい。チタン粉末材料は、特に限定されないが、チタン元素の純度が99.99%以上であるものが好ましく、99.999%以上のものがより好ましく用いられる。
チタン窒化物含有粒子の製造に使用するチタン粉末材料(チタン粒子)は、チタン原子以外の原子を含有する場合がある。チタン粉末材料に含まれ得る他の原子としては、例えばFe原子及びSi原子等が挙げられる。
チタン粉末材料がFe原子を含有する場合には、Fe原子の含有量は、チタン粉末材料の全質量に対して、0.001質量%超であることが好ましい。
チタン粉末材料がSi原子を含有する場合には、Si原子の含有量が、チタン粉末材料全質量に対して、0.002質量%超0.3質量%未満であることが好ましく、0.01〜0.15質量%であることがより好ましく、0.02〜0.1質量%であることが更に好ましい。Si原子の含有量が0.002質量%超であることで、硬化膜のパターニング性がより向上する。Si原子の含有量が0.3質量%未満であることで、得られるチタン窒化物含有粒子の最表層の極性がより安定化する。これにより、チタン窒化物含有粒子を分散させる際にチタン窒化物含有粒子への分散剤の吸着性が良化して、チタン窒化物含有粒子の未分散物が低減することで、パーティクル発生を抑制する効果があると考えられる。
チタン窒化物含有粒子の製造に使用するチタン粉末材料(チタン粒子)中の水分は、チタン粉末材料の全質量に対して、1質量%未満であることが好ましく、0.1質量%未満であることがより好ましく、実質的に含まないことが更に好ましい。
チタン窒化物含有粒子は、熱プラズマ法を用いて得ることにより、CuKα線をX線源とした場合の(200)面に由来するピークの回折角2θ(詳細は後述する)を、42.6°超43.5°以下の範囲に調整することが容易になる。
チタン窒化物含有粒子にFe原子を含有させる方法としては、特に限定されず、例えば、上述したチタン窒化物含有粒子の原料として用いられるチタン粒子(チタン粉末)を得る段階において、Fe原子を導入する方法等が挙げられる。より詳細には、クロール法等によりチタンを製造する際に、反応容器としてステンレス鋼(SUS)等のFe原子を含有する材料から構成されるものを用いたり、チタンを破砕する際のプレス機及び粉砕機の材料としてFe原子を含有するものを用いたりすることによって、チタン粒子の表面にFe原子を付着させることができる。
チタン窒化物含有粒子の製造において熱プラズマ法を用いる場合には、原料であるチタン粒子の他に、Fe粒子、Fe酸化物等の成分を添加して、これらを熱プラズマ法によって窒化することによって、チタン窒化物含有粒子にFe原子を含有させることができる。
チタン窒化物含有粒子中に含まれるFe原子は、イオン、金属化合物(錯化合物も含む)、金属間化合物、合金、酸化物、複合酸化物、窒化物、酸窒化物、硫化物及び酸硫化物等、いずれの形態で含まれていてもよい。チタン窒化物含有粒子中に含まれるFe原子は、結晶格子間位置の不純物として存在してもよいし、結晶粒界にアモルファス状態で不純物として存在してもよい。
チタン窒化物含有粒子中におけるFe原子の含有量は、チタン窒化物含有粒子全質量に対して、0.001質量%超0.4質量%未満であることが好ましい。なかでも、0.01〜0.2質量%であることがより好ましく、0.02〜0.1質量%であることが更に好ましい。チタン窒化物含有粒子中におけるFe原子の含有量は、ICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)発光分光分析法により測定ことができる。
チタン窒化物含有粒子は、更にSi原子(ケイ素原子)を含有することが好ましい。これにより、硬化膜のパターニング性がより向上する。Si原子を含有することによりパターニング性が向上する理由としては、上述したFe原子と同様と考えられる。
チタン窒化物含有粒子中におけるSi原子の含有量は、チタン窒化物含有粒子全質量に対して、0.002質量%超0.3質量%未満であることが好ましく、0.01〜0.15質量%であることがより好ましく、0.02〜0.1質量%であることが更に好ましい。チタン窒化物含有粒子中におけるSi原子の含有量は、上述したFe原子と同様の方法によって測定ことができる。
チタン窒化物含有粒子にSi原子を含有させる方法としては、特に限定されず、例えば、上述したチタン窒化物含有粒子の原料として用いられるチタン粒子(チタン粉末)を得る段階において、Si原子を導入する方法等が挙げられる。より詳細には、クロール法等によりチタンを製造する際に、反応容器としてSi原子を含有する材料から構成されるものを用いたり、チタンを破砕する際のプレス機及び粉砕機の材料としてSi原子を含有するものを用いたりすることによって、チタン粒子の表面にSi原子を付着させることができる。
チタン窒化物含有粒子の製造において熱プラズマ法を用いる場合には、原料であるチタン粒子の他に、Si粒子、Si酸化物等の成分を添加して、これらを熱プラズマ法によって窒化することによって、チタン窒化物含有粒子にSi原子を含有させることができる。
チタン窒化物含有粒子中に含まれるSi原子は、イオン、金属化合物(錯化合物も含む)、金属間化合物、合金、酸化物、複合酸化物、窒化物、酸窒化物、硫化物及び酸硫化物等、いずれの形態で含まれていてもよい。チタン窒化物含有粒子中に含まれるSi原子は、結晶格子間位置の不純物として存在していてもよいし、結晶粒界にアモルファス状態で不純物として存在していてもよい。
チタン窒化物含有粒子中のチタン原子(Ti原子)の含有量は、チタン窒化物含有粒子の全質量に対して、10〜85質量%であることが好ましく、15〜75質量%であることがより好ましく、20〜70質量%であることが更に好ましい。チタン窒化物含有粒子中のTi原子の含有量は、ICP発光分光分析法により測定できる。
チタン窒化物含有粒子中の窒素原子(N原子)の含有量は、チタン窒化物含有粒子の全質量に対して、3〜60質量%であることが好ましく、5〜50質量%であることがより好ましく、10〜40質量%であることが更に好ましい。窒素原子の含有量は不活性ガス融解−熱伝導度法により分析することができる。
チタン窒化物含有粒子は主成分としてチタン窒化物(TiN)を含み、通常、その合成時に酸素が混入する場合、及び、粒子径が小さい場合等に顕著になるが、粒子表面の酸化等により、一部酸素原子を含有してもよい。
チタン窒化物含有粒子中の酸素原子の含有量は、チタン窒化物含有粒子の全質量に対して、1〜40質量%であることが好ましく、1〜35質量%であることがより好ましく、5〜30質量%であることが更に好ましい。酸素原子の含有量は、不活性ガス融解−赤外線吸収法により分析することができる。
分散安定性及び遮光性の観点から、チタン窒化物含有粒子の比表面積は5〜100m/gが好ましく、10〜60m/gがより好ましい。比表面積はBET(Brunauer,Emmett,Teller)法により求めることができる。
チタン窒化物含有粒子は、チタン窒化物粒子と金属微粒子からなる複合微粒子であってもよい。
複合微粒子とは、チタン窒化物粒子と金属微粒子が複合化しているか、高度に分散した状態にある粒子のことをいう。ここで、「複合化している」とは、チタン窒化物と金属の両成分によって粒子が構成されていることを意味し、「高度に分散した状態」とは、チタン窒化物粒子と金属粒子がそれぞれ個別で存在し、かつ少量成分の粒子が凝集せず均一、一様に分散していることを意味する。
金属微粒子としては特に限定されず、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、カルシウム、チタン、ビスマス、アンチモン及び鉛、並びにこれらの合金、から選ばれる少なくとも一種が挙げられる。中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム及びイリジウム、並びにこれらの合金から選ばれる少なくとも1種であることが好ましく、銅、銀、金、白金及び錫、並びにこれらの合金から選ばれる少なくとも一種であることがより好ましい。耐湿性により優れる観点から、銀であることが好ましい。
チタン窒化物含有粒子における金属微粒子の含有量としては、チタン窒化物含有粒子の全質量に対して5〜50質量%であることが好ましく、10〜30質量%であることがより好ましい。
・チタン窒化物含有粒子のピーク回折角2θ
チタン窒化物含有粒子は、CuKα線をX線源とした場合の(200)面に由来するピークの回折角2θが42.6°超43.5°以下であることが好ましい。このような特徴をもつチタン窒化物含有粒子を含有する硬化性組成物を用いて得られる硬化膜(例えば、ブラックマトリクス等)は、高いOD(optical density)値を達成することが可能となる。
CuKα線をX線源としてチタン化合物のX線回折スペクトルを測定した場合において、最も強度の強いピークとしてTiNは(200)面に由来するピークが2θ=42.5°近傍に、TiOは(200)面に由来するピークが2θ=43.4°近傍にみられる。一方、最も強度の強いピークではないがアナターゼ型TiOは(200)面に由来するピークは2θ=48.1°近傍に、ルチル型TiOは(200)面に由来するピークは2θ=39.2°近傍に観測される。よって、酸素原子を多く含有する結晶状態であるほどピーク位置は42.5°に対して高角度側にシフトする。
チタン窒化物含有粒子の(200)面に由来するピークの回折角2θは、粒子の経時安定性の観点から、42.6°超43.5°未満であることが好ましく、更に、製造時のプロセスマージンが優れる観点から、42.7°以上43.5°未満がより好ましく、更に、粒子性能の再現性が優れる観点から、42.7°以上43.4°未満が更に好ましい。副成分として酸化チタンTiOを含有する場合、最も強度の強いピークとしてアナターゼ型TiO(101)に由来するピークが2θ=25.3°近傍に、ルチル型TiO(110)に由来するピークが2θ=27.4°近傍に見られる。しかし、TiOは白色でありブラックマトリクスの遮光性を低下させる要因となるため、ピークとして観察されない程度に低減されていることが好ましい。
X線回折ピークの半値幅よりチタン窒化物含有粒子を構成する結晶子サイズを求めることができ、シェラーの式を用いて算出される。
結晶子サイズは、20nm以上であることが好ましく、20〜50nmであることがより好ましい。結晶子サイズが20nm以上のチタン窒化物含有粒子を用いてブラックマトリクスを形成することにより、硬化膜の透過光はそのピーク波長が475nm以下であるような青色から青紫色を呈し、高い遮光性と紫外線感度を併せ持つブラックマトリクスを得ることができる。結晶子サイズが20nm以上であることで、活性の有する粒子表面が粒子体積に対して占める割合が小さくなり良好なバランスとなり、チタン窒化物含有粒子の耐熱性及び/又は耐久性がより優れたものとなる。
(原子Aを含有する金属窒化物含有粒子)
また、無機顔料としては、金属窒化物含有粒子であって、原子Aを含有する金属窒化物含有粒子を用いることもできる。
上記金属窒化物含有粒子中の金属としては、例えばNb、V、Cr、Y、Zr、Nb、Hf、Ta、W、及びRe等が挙げられ、上記硬化性組成物がより優れた本発明の効果を有する点で、Nb、又はVがより好ましい。
上記原子Aとしては、例えば、B、Al、Si、Mn、Fe、Ni、及びAg等が挙げられる。
金属窒化物含有粒子が、上記原子Aを含有する場合、その含有量としては特に制限されないが、金属窒化物含有粒子中における原子Aの含有量が、0.00005〜10質量%が好ましい。
上記原子Aを含有する金属窒化物含有粒子の製造方法としては、特に制限されず、公知の方法を用いることができる。
金属窒化物含有粒子の製造には、通常、気相反応法が用いられ、具体的には電気炉法及び熱プラズマ法等が挙げられる。これらの製法の中でも、不純物の混入が少ない点、粒子径が揃いやすい点、及び、生産性が高い点等の理由から、熱プラズマ法が好ましい。
熱プラズマ法による金属窒化物含有粒子の具体的な製造方法としては、例えば、金属微粒子製造装置(後述する「黒色複合微粒子製造装置」と同様の装置)を用いるものが挙げられる。金属微粒子製造装置は、例えば、熱プラズマを発生させるプラズマトーチ、金属原料粉末をプラズマトーチ内へ供給する材料供給装置、冷却機能を含有するチャンバ、生成された金属微粒子を分級するサイクロン、及び金属微粒子を回収する回収部によって構成される。
なお、本明細書において、金属微粒子とは、金属元素を含有する一次粒子径が20nm〜40μmの粒子を意図する。
(有機顔料)
有機顔料としては、例えば、カラーインデックス(C.I.)ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等、
C.I.ピグメントオレンジ 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等、
C.I.ピグメントレッド 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等、
C.I.ピグメントグリーン 7,10,36,37,58,59等、
C.I.ピグメントバイオレット 1,19,23,27,32,37,42等、及び
C.I.ピグメントブルー 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等、
が挙げられる。なお、顔料は1種を単独で用いても、2種以上を併用してもよい。
<染料>
染料としては、例えば特開昭64−90403号公報、特開昭64−91102号公報、特開平1−94301号公報、特開平6−11614号公報、特登2592207号、米国特許4808501号明細書、米国特許5667920号明細書、米国特許505950号明細書、特開平5−333207号公報、特開平6−35183号公報、特開平6−51115号公報、特開平6−194828号公報等に開示されている色素を使用できる。化学構造として区分すると、ピラゾールアゾ化合物、ピロメテン化合物、アニリノアゾ化合物、トリフェニルメタン化合物、アントラキノン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、ピロロピラゾールアゾメチン化合物等を使用できる。染料としては色素多量体を用いてもよい。色素多量体としては、特開2011−213925号公報、特開2013−041097号公報に記載されている化合物が挙げられる。分子内に重合性を有する重合性染料を用いてもよく、市販品としては、例えば、和光純薬株式会社製RDWシリーズが挙げられる。
<赤外線吸収剤>
着色剤は、更に赤外線吸収剤を含有してもよい。
赤外線吸収剤は、赤外領域(好ましくは、波長650〜1300nm)の波長領域に吸収を有する化合物を意味する。赤外線吸収剤は、波長675〜900nmの波長領域に極大吸収波長を有する化合物が好ましい。
このような分光特性を有する着色剤としては、例えば、ピロロピロール化合物、銅化合物、シアニン化合物、フタロシアニン化合物、イミニウム化合物、チオール錯体系化合物、遷移金属酸化物系化合物、スクアリリウム化合物、ナフタロシアニン化合物、クオテリレン化合物、ジチオール金属錯体系化合物、クロコニウム化合物等が挙げられる。
フタロシアニン化合物、ナフタロシアニン化合物、イミニウム化合物、シアニン化合物、スクアリリウム化合物及びクロコニウム化合物は、特開2010−111750号公報の段落0010〜0081に開示の化合物を使用してもよく、この内容は本明細書に組み込まれる。シアニン化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本明細書に組み込まれる。
上記分光特性を有する着色剤として、特開平07−164729号公報の段落0004〜0016に開示の化合物及び/又は特開2002−146254号公報の段落0027〜0062に開示の化合物、特開2011−164583号公報の段落0034〜0067に開示のCu及び/又はPを含む酸化物の結晶子からなり数平均凝集粒子径が5〜200nmである近赤外線吸収粒子を使用することもできる。
波長675〜900nmの波長領域に極大吸収波長を有する化合物としては、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、及びナフタロシアニン化合物からなる群から選択される少なくとも1種が好ましい。
赤外線吸収剤は、25℃の水に1質量%以上溶解する化合物であることが好ましく、25℃の水に10質量%以上溶解する化合物がより好ましい。このような化合物を用いることで、耐溶剤性が良化する。
ピロロピロール化合物は、特開2010−222557号公報の段落0049〜0062を参酌でき、この内容は本明細書に組み込まれる。シアニン化合物及びスクアリリウム化合物は、国際公開2014/088063号公報の段落0022〜0063、国際公開2014/030628号公報の段落0053〜0118、特開2014−59550号公報の段落0028〜0074、国際公開2012/169447号公報の段落0013〜0091、特開2015−176046号公報の段落0019〜0033、特開2014−63144号公報の段落0053〜0099、特開2014−52431号公報の段落0085〜0150、特開2014−44301号公報の段落0076〜0124、特開2012−8532号公報の段落0045〜0078、特開2015−172102号公報の段落0027〜0067、特開2015−172004号公報の段落0029〜0067、特開2015−40895号公報の段落0029〜0085、特開2014−126642号公報の段落0022〜0036、特開2014−148567号公報の段落0011〜0017、特開2015−157893号公報の段落0010〜0025、特開2014−095007号公報の段落0013〜0026、特開2014−80487号公報の段落0013〜0047、及び特開2013−227403号公報の段落0007〜0028等を参酌でき、この内容は本明細書に組み込まれる。
赤外線吸収剤は、下記一般式1〜3で表される化合物からなる群から選択される少なくとも1種が好ましい。
一般式1

一般式1中、A1及びA2は、それぞれ独立に、アリール基、ヘテロアリール基又は下記一般式1−Aで表される基を表す。
一般式1−A

一般式1−A中、Z1Aは、含窒素複素環を形成する非金属原子団を表し、R2Aは、アルキル基、アルケニル基、又はアラルキル基を表し、dは、0、又は1を表し、波線は連結手を表す。
一般式2

一般式2中、R1a及びR1bは、それぞれ独立に、アルキル基、アリール基、又はヘテロアリール基を表し、
2〜R5は、それぞれ独立に、水素原子、又は置換基を表し、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよく、
6、及びR7は、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、−BRAB、又は金属原子を表し、RA、及びRBは、それぞれ独立に、水素原子、又は置換基を表し、
6は、R1a、又はR3と、共有結合、又は配位結合していてもよく、R7は、R1b、又はR5と、共有結合、又は配位結合していてもよい。
一般式3

一般式3中、Z1、及びZ2は、それぞれ独立に、縮環してもよい5員、又は6員の含窒素複素環を形成する非金属原子団であり、
101、及びR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基、又はアリール基を表し、
1は、奇数個のメチンからなるメチン鎖を表し、
a、及びbは、それぞれ独立に、0、又は1であり、
aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
<顔料誘導体>
硬化性組成物は、顔料誘導体を含有してもよい。顔料誘導体は、有機顔料の一部分を、酸性基、塩基性基又はフタルイミドメチル基で置換した構造を有する化合物が好ましい。顔料誘導体としては、着色剤の分散性及び分散安定性の観点から、酸性基又は塩基性基を有する顔料誘導体が好ましい。特に好ましくは、塩基性基を有する顔料誘導体である。後述する樹脂(分散剤)と、顔料誘導体との組み合わせは、分散剤が酸性分散剤で、顔料誘導体が塩基性基を有する組み合わせが好ましい。
顔料誘導体を構成するための有機顔料としては、ジケトピロロピロール系顔料、アゾ系顔料、フタロシアニン系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、及び、金属錯体系顔料等が挙げられる。
顔料誘導体が有する酸性基としては、スルホン酸基、又は、カルボン酸基若しくはその塩が好ましく、カルボン酸基又はスルホン酸基がより好ましく、スルホン酸基が更に好ましい。顔料誘導体が有する塩基性基としては、アミノ基が好ましく、三級アミノ基がより好ましい。
硬化性組成物が顔料誘導体を含有する場合、顔料誘導体の含有量は、顔料の質量に対し、1〜30質量%が好ましく、3〜20質量%がより好ましい。顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
〔任意成分〕
<溶剤>
硬化性組成物は、溶剤を含有することが好ましい。溶剤としては、水、及び有機溶剤が挙げられる。硬化性組成物は有機溶剤を含有することが好ましい。
硬化性組成物が溶剤を含有する場合、硬化性組成物の固形分は10〜40質量%が好ましい。硬化性組成物の固形分が下限値以上だと、粘度が低く塗布性が良化する。さらに、反応性の高い化合物の濃度が低くなることから経時安定性が良化する。また、硬化性組成物の固形分が上限値以下だと、粘度が程度に保たれ塗布性が良化する。さらに、比重の重い着色剤が沈降しにくくなり、経時安定性が良化する。
(有機溶剤)
硬化性組成物が有機溶剤を含有する場合、有機溶剤の含有量としては、硬化性組成物の全質量に対し、60〜90質量%が好ましい。
なお、有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、その合計量が上記範囲となることが好ましい。
有機溶剤としては、特に制限されないが、例えば、アセトン、メチルエチルケトン、シクロヘキサン、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、シクロペンタノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3−メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3−メトキシプロピルアセテート、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、酢酸エチル、酢酸ブチル、乳酸メチル、及び乳酸エチル等が挙げられる。
2種以上の有機溶剤を含有する場合には、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、及びプロピレングリコールモノメチルエーテルアセテートからなる群から選択される2種以上で構成されることが好ましい。
(水)
硬化性組成物は、水を含有してもよい。水は、意図的に添加されるものであってもよいし、硬化性組成物に含まれる各成分を添加することで不可避的に硬化性組成物中に含有されるものであってもよい。
水の含有量は、硬化性組成物の全質量に対して、0.01〜1質量%が好ましい。水の含有量が上記範囲内にあると、硬化膜を作製した際にピンホールの発生が抑制され、更に、硬化膜の耐湿性が向上する。
<分散剤>
硬化性組成物は、分散剤を含有することが好ましい。分散剤は、着色剤の分散性向上に寄与する。本明細書において、分散剤と、後述するバインダー樹脂とは、異なる成分である。
硬化性組成物が、分散剤を含有する場合、分散剤の含有量としては、硬化性組成物の全固形分に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、5質量%以上が更に好ましく、11質量%以上が特に好ましく、17質量%以上が最も好ましく、50質量%以下が好ましく、30質量%以下がより好ましく、22質量%以下が更に好ましい。
分散剤の含有量が、17質量%以上であると、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
分散剤は、1種を単独で用いても、2種以上を併用してもよい。分散剤を2種以上併用する場合は、合計量が上記範囲内であることが好ましい。
分散剤としては、例えば、公知の顔料分散剤を適宜選択して用いることができる。なかでも、高分子化合物が好ましい。
分散剤としては、高分子分散剤(例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物)、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、及び、顔料誘導体等を挙げることができる。
高分子化合物は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、及びブロック型高分子に分類することができる。
(高分子化合物)
高分子化合物は、着色剤(例えば、無機顔料)の被分散体の表面に吸着し、被分散体の再凝集を防止するように作用する。そのため、顔料表面へのアンカー部位を含有する、末端変性型高分子、グラフト型高分子、及び、ブロック型高分子が好ましい。
高分子化合物は、グラフト鎖を含有する構造単位を含有することが好ましい。なお、本明細書において、「構造単位」とは「繰り返し単位」と同義である。
このようなグラフト鎖を含有する構造単位を含有する高分子化合物は、グラフト鎖によって溶剤との親和性を有するために、黒色顔料等の着色剤の分散性、及び、経時後の分散安定性(経時安定性)に優れるものである。また、グラフト鎖の存在により、グラフト鎖を含有する構造単位を含有する高分子化合物は重合性化合物又はその他の併用可能な樹脂等との親和性を有する。結果として、アルカリ現像で残渣を生じにくくなる。
グラフト鎖が長くなると立体反発効果が高くなり黒色顔料等の分散性は向上する。一方、グラフト鎖が長すぎると黒色顔料等の着色顔料への吸着力が低下して、黒色顔料等の分散性は低下する傾向となる。このため、グラフト鎖は、水素原子を除いた原子数が40〜10000であるものが好ましく、水素原子を除いた原子数が50〜2000であるものがより好ましく、水素原子を除いた原子数が60〜500であるものが更に好ましい。
ここで、グラフト鎖とは、共重合体の主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。
グラフト鎖は、ポリマー構造を含有することが好ましく、このようなポリマー構造としては、例えば、ポリ(メタ)アクリレート構造(例えば、ポリ(メタ)アクリル構造)、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、及び、ポリエーテル構造等を挙げることができる。
グラフト鎖と溶剤との相互作用性を向上させ、それにより黒色顔料等の分散性を高めるために、グラフト鎖は、ポリエステル構造、ポリエーテル構造及びポリ(メタ)アクリレート構造からなる群から選ばれた少なくとも1種を含有するグラフト鎖であることが好ましく、ポリエステル構造又はポリエーテル構造の少なくともいずれかを含有するグラフト鎖であることがより好ましい。
このようなグラフト鎖を含有するマクロモノマーとしては、特に限定されないが、反応性二重結合性基を含有するマクロモノマーを好適に使用することができる。
高分子化合物が含有するグラフト鎖を含有する構造単位に対応し、高分子化合物の合成に好適に用いられる市販のマクロモノマーとしては、AA−6(商品名、東亞合成社製)、AA−10(商品名、東亞合成社製)、AB−6(商品名、東亞合成社製)、AS−6(商品名、東亞合成社製)、AN−6(商品名、東亞合成社製)、AW−6(商品名、東亞合成社製)、AA−714(商品名、東亞合成社製)、AY−707(商品名、東亞合成社製)、AY−714(商品名、東亞合成社製)、AK−5(商品名、東亞合成社製)、AK−30(商品名、東亞合成社製)、AK−32(商品名、東亞合成社製)、ブレンマーPP−100(商品名、日油社製)、ブレンマーPP−500(商品名、日油社製)、ブレンマーPP−800(商品名、日油社製)、ブレンマーPP−1000(商品名、日油社製)、ブレンマー55−PET−800(商品名、日油社製)、ブレンマーPME−4000(商品名、日油社製)、ブレンマーPSE−400(商品名、日油社製)、ブレンマーPSE−1300(商品名、日油社製)、ブレンマー43PAPE−600B(商品名、日油社製)等が用いられる。このなかでも、好ましくは、AA−6(商品名、東亞合成社製)、AA−10(商品名、東亞合成社製)、AB−6(商品名、東亞合成社製)、AS−6(商品名、東亞合成社製)、AN−6(商品名、東亞合成社製)、及び、ブレンマーPME−4000(商品名、日油社製)等が用いられる。
分散剤は、ポリアクリル酸メチル、ポリメタクリル酸メチル及び環状又は鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含有することが好ましい。より好ましくは、分散剤は、ポリアクリル酸メチル、ポリメタクリル酸メチル及び鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含有する。更に好ましくは、分散剤は、ポリアクリル酸メチル構造、ポリメタクリル酸メチル構造、ポリカプロラクトン構造及びポリバレロラクトン構造からなる群より選択される少なくとも1種の構造を含有する。分散剤は、一の分散剤中に上記構造を単独で含有するものであってもよいし、一の分散剤中にこれらの構造を複数含有するものであってもよい。
ここで、ポリカプロラクトン構造とは、ε−カプロラクトンを開環した構造を繰り返し単位として含有するものをいう。ポリバレロラクトン構造とは、δ−バレロラクトンを開環した構造を繰り返し単位として含有するものをいう。
ポリカプロラクトン構造を含有する分散剤の具体例としては、下記一般式(1)及び下記一般式(2)におけるj及びkが5であるものが挙げられる。また、ポリバレロラクトン構造を含有する分散剤の具体例としては、下記一般式(1)及び下記一般式(2)におけるj及びkが4であるものが挙げられる。
ポリアクリル酸メチル構造を含有する分散剤の具体例としては、下記一般式(4)におけるXが水素原子であり、Rがメチル基であるものが挙げられる。また、ポリメタクリル酸メチル構造を含有する分散剤の具体例としては、下記一般式(4)におけるXがメチル基であり、Rがメチル基であるものが挙げられる。
・グラフト鎖を含有する構造単位
高分子化合物は、グラフト鎖を含有する構造単位として、下記一般式(1)〜一般式(4)のいずれかで表される構造単位を含有することが好ましく、下記一般式(1A)、下記一般式(2A)、下記一般式(3A)、下記一般式(3B)、及び下記(4)のいずれかで表される構造単位を含有することがより好ましい。
一般式(1)〜一般式(4)において、W、W、W、及びWはそれぞれ独立に酸素原子又はNHを表す。W、W、W、及びWは酸素原子であることが好ましい。
一般式(1)〜一般式(4)において、X、X、X、X、及びXは、それぞれ独立に、水素原子又は1価の有機基を表す。X、X、X、X、及びXとしては、合成上の制約の観点からは、それぞれ独立に、水素原子又は炭素数1〜12のアルキル基であることが好ましく、それぞれ独立に、水素原子又はメチル基であることがより好ましく、メチル基が更に好ましい。
一般式(1)〜一般式(4)において、Y、Y、Y、及びYは、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Y、Y、Y、及びYで表される2価の連結基として、具体的には、下記の(Y−1)〜(Y−21)の連結基等が例として挙げられる。下記に示した構造において、A、Bはそれぞれ結合部位を意味する。下記に示した構造のうち、合成の簡便性から、(Y−2)又は(Y−13)であることがより好ましい。
一般式(1)〜一般式(4)において、Z、Z、Z、及びZは、それぞれ独立に1価の有機基を表す。有機基の構造は、特に限定されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、及びアミノ基等が挙げられる。これらの中でも、Z、Z、Z、及びZで表される有機基としては、特に分散性向上の観点から、立体反発効果を含有するものが好ましく、それぞれ独立に炭素数5から24のアルキル基又はアルコキシ基がより好ましく、その中でも、特にそれぞれ独立に炭素数5から24の分岐アルキル基、炭素数5から24の環状アルキル基、又は、炭素数5から24のアルコキシ基が更に好ましい。なお、アルコキシ基中に含まれるアルキル基は、直鎖状、分岐鎖状、及び、環状のいずれでもよい。
一般式(1)〜一般式(4)において、n、m、p、及びqは、それぞれ独立に、1から500の整数である。
一般式(1)及び一般式(2)において、j及びkは、それぞれ独立に、2〜8の整数を表す。一般式(1)及び一般式(2)におけるj及びkは、硬化性組成物の経時安定性及び現像性の観点から、4〜6の整数が好ましく、5が最も好ましい。
一般式(3)中、Rは分岐又は直鎖のアルキレン基を表し、炭素数1〜10のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましい。pが2〜500のとき、複数存在するRは互いに同じであっても異なっていてもよい。
一般式(4)中、Rは水素原子又は1価の有機基を表し、この1価の有機基としては特に構造上限定はされない。Rとして好ましくは、水素原子、アルキル基、アリール基、又は、ヘテロアリール基が挙げられ、より好ましくは、水素原子、又はアルキル基である。Rがアルキル基である場合、アルキル基としては、炭素数1〜20の直鎖状アルキル基、炭素数3〜20の分岐鎖状アルキル基、又は炭素数5〜20の環状アルキル基が好ましく、炭素数1〜20の直鎖状アルキル基がより好ましく、炭素数1〜6の直鎖状アルキル基が更に好ましい。一般式(4)において、qが2〜500のとき、グラフト共重合体中に複数存在するX及びRは互いに同じであっても異なっていてもよい。
高分子化合物は、構造が異なる、2種以上のグラフト鎖を含有する構造単位を含有することができる。即ち、高分子化合物の分子中に、互いに構造の異なる一般式(1)〜一般式(4)で示される構造単位を含んでいてもよく、一般式(1)〜一般式(4)においてn、m、p、及びqがそれぞれ2以上の整数を表す場合、一般式(1)及び一般式(2)においては、側鎖中にj及びkが互いに異なる構造を含んでいてもよく、一般式(3)及び一般式(4)においては、分子内に複数存在するR、R及びXは互いに同じであっても異なっていてもよい。
一般式(1)で表される構造単位としては、硬化性組成物の経時安定性及び現像性の観点から、下記一般式(1A)で表される構造単位であることがより好ましい。
一般式(2)で表される構造単位としては、硬化性組成物の経時安定性及び現像性の観点から、下記一般式(2A)で表される構造単位であることがより好ましい。
一般式(1A)中、X、Y、Z及びnは、一般式(1)におけるX、Y、Z及びnと同義であり、好ましい範囲も同様である。一般式(2A)中、X、Y、Z及びmは、一般式(2)におけるX、Y、Z及びmと同義であり、好ましい範囲も同様である。
一般式(3)で表される構造単位としては、硬化性組成物の経時安定性及び現像性の観点から、下記一般式(3A)又は一般式(3B)で表される構造単位であることがより好ましい。
一般式(3A)又は(3B)中、X、Y、Z及びpは、一般式(3)におけるX、Y、Z及びpと同義であり、好ましい範囲も同様である。
高分子化合物は、グラフト鎖を含有する構造単位として、一般式(1A)で表される構造単位を含有することがより好ましい。
高分子化合物において、グラフト鎖を含有する構造単位(例えば、上記一般式(1)〜一般式(4)で表される構造単位)は、質量換算で、高分子化合物の総質量に対し2〜90%の範囲で含まれることが好ましく、5〜30%の範囲で含まれることがより好ましい。グラフト鎖を含有する構造単位がこの範囲内で含まれると、黒色顔料の分散性が高く、硬化膜を形成する際の現像性が良好である。
・疎水性構造単位
また、高分子化合物は、グラフト鎖を含有する構造単位とは異なる(すなわち、グラフト鎖を含有する構造単位には相当しない)疎水性構造単位を含有することが好ましい。ただし、本明細書において、疎水性構造単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない構造単位である。
疎水性構造単位は、好ましくは、ClogP値が1.2以上の化合物(モノマー)に由来する(対応する)構造単位であり、より好ましくは、ClogP値が1.2〜8の化合物に由来する構造単位である。これにより、本発明の効果をより確実に発現することができる。
ClogP値は、Daylight Chemical Information System, Inc.から入手できるプログラム“CLOGP”で計算された値である。このプログラムは、Hansch, Leoのフラグメントアプローチ(下記文献参照)により算出される“計算logP”の値を提供する。フラグメントアプローチは化合物の化学構造に基づいており、化学構造を部分構造(フラグメント)に分割し、そのフラグメントに対して割り当てられたlogP寄与分を合計することにより化合物のlogP値を推算している。その詳細は以下の文献に記載されている。本明細書では、ClogP値は、プログラムCLOGP v4.82により計算した値を意図する。
A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281−1306, 1993.
logPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある有機化合物が油(一般的には1−オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、以下の式で示される。
logP=log(Coil/Cwater)
式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増すことを意味し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
高分子化合物は、疎水性構造単位として、下記一般式(i)〜(iii)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。
一般式(i)〜(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
、R、及びRは、好ましくは水素原子、又は炭素数が1〜3のアルキル基であり、より好ましくは水素原子又はメチル基である。R及びRは、水素原子であることが更に好ましい。
Xは、酸素原子(−O−)又はイミノ基(−NH−)を表し、酸素原子であることが好ましい。
Lは、単結合又は2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ基(−NR31−、ここでR31は脂肪族基、芳香族基又は複素環基)、カルボニル基(−CO−)、及び、これらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基は不飽和脂肪族基であっても飽和脂肪族基であってもよいが、飽和脂肪族基であることが好ましい。脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基等が挙げられる。
2価の芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基等が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基、又は、複素環基が挙げられる。
Lは、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、−(OCHCH−で表され、nは、2以上の整数が好ましく、2〜10の整数であることがより好ましい。
Zとしては、脂肪族基(例えば、アルキル基、置換アルキル基、不飽和アルキル基、置換不飽和アルキル基、)、芳香族基(例えば、アリール基、置換アリール基、アリーレン基、置換アリーレン基)、複素環基、又は、これらの組み合わせが挙げられる。これらの基には、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ基(−NR31−、ここでR31は脂肪族基、芳香族基又は複素環基)、又は、カルボニル基(−CO−)が含まれていてもよい。
脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基には、更に環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基、ビフェニル基、及び、4−シクロヘキシルフェニル基等が含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、及び、ビシクロ[3.2.1]オクタン環等)等の2環式炭化水素環、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、及び、トリシクロ[4.3.1.12,5]ウンデカン環等の3環式炭化水素環、並びに、テトラシクロ[4.4.0.12,5.17,10]ドデカン、及び、パーヒドロ−1,4−メタノ−5,8−メタノナフタレン環等の4環式炭化水素環等が挙げられる。架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、及び、パーヒドロフェナレン環等の5〜8員シクロアルカン環が複数個縮合した縮合環も含まれる。
脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。
芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。また、芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、芳香族基は、置換基として酸基を有さない。
複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、複素環基は、置換基として酸基を有さない。
上記一般式(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、Z、又はL−Zを表す。ここでL及びZは、上記におけるものと同義である。R、R、及びRとしては、水素原子、又は炭素数が1〜3のアルキル基が好ましく、水素原子がより好ましい。
上記一般式(i)で表される単量体として、R、R、及びRが水素原子又はメチル基であって、Lが単結合又はアルキレン基もしくはオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
上記一般式(ii)で表される単量体として、Rが水素原子又はメチル基であって、Lがアルキレン基であって、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。上記一般式(iii)で表される単量体として、R、R、及びRが水素原子又はメチル基であって、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
一般式(i)〜(iii)で表される代表的な化合物の例としては、アクリル酸エステル類、メタクリル酸エステル類、及び、スチレン類等から選ばれるラジカル重合性化合物が挙げられる。
なお、一般式(i)〜(iii)で表される代表的な化合物の例としては、特開2013−249417号公報の段落0089〜0093に記載の化合物を参照でき、これらの内容は本明細書に組み込まれる。
高分子化合物において、疎水性構造単位は、質量換算で、高分子化合物の総質量に対し10〜90%の範囲で含まれることが好ましく、20〜80%の範囲で含まれることがより好ましい。含有量が上記範囲において十分なパターン形成が得られる。
・着色剤と相互作用を形成しうる官能基
高分子化合物は、黒色顔料等の着色剤と相互作用を形成しうる官能基を導入することができる。ここで、高分子化合物は、黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する構造単位を更に含有することが好ましい。
この黒色顔料等の着色剤と相互作用を形成しうる官能基としては、例えば、酸基、塩基性基、配位性基、及び、反応性を有する官能基等が挙げられる。
高分子化合物が、酸基、塩基性基、配位性基、又は、反応性を有する官能基を含有する場合、それぞれ、酸基を含有する構造単位、塩基性基を含有する構造単位、配位性基を含有する構造単位、又は、反応性を有する構造単位を含有することが好ましい。
特に、高分子化合物が、更に、酸基として、カルボン酸基等のアルカリ可溶性基を含有することで、高分子化合物に、アルカリ現像によるパターン形成のための現像性を付与することができる。
すなわち、高分子化合物にアルカリ可溶性基を導入することで、硬化性組成物は、黒色顔料等の着色剤の分散に寄与する分散剤としての高分子化合物がアルカリ可溶性を含有することになる。このような高分子化合物を含有する硬化性組成物は、露光部の遮光性に優れたものとなり、且つ、未露光部のアルカリ現像性が向上される。
また、高分子化合物が酸基を含有する構造単位を含有することにより、高分子化合物が溶剤となじみやすくなり、塗布性も向上する傾向となる。
これは、酸基を含有する構造単位における酸基が黒色顔料等の着色剤と相互作用しやすく、高分子化合物が黒色顔料等の着色剤を安定的に分散すると共に、黒色顔料等の着色剤を分散する高分子化合物の粘度が低くなっており、高分子化合物自体も安定的に分散されやすいためであると推測される。
ただし、酸基としてのアルカリ可溶性基を含有する構造単位は、上記のグラフト鎖を含有する構造単位と同一の構造単位であっても、異なる構造単位であってもよいが、酸基としてのアルカリ可溶性基を含有する構造単位は、上記の疎水性構造単位とは異なる構造単位である(すなわち、上記の疎水性構造単位には相当しない)。
黒色顔料等の着色剤と相互作用を形成しうる官能基である酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、又は、フェノール性水酸基等が挙げられ、好ましくは、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種であり、より好ましいものは、黒色顔料等の着色剤への吸着力が良好で、且つ、着色剤の分散性が高い点で、カルボン酸基である。
すなわち、高分子化合物は、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種を含有する構造単位を更に含有することが好ましい。
高分子化合物は、酸基を含有する構造単位を1種又は2種以上有してもよい。
高分子化合物は、酸基を含有する構造単位を含有してもしなくてもよいが、含有する場合、酸基を含有する構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは5〜80%であり、より好ましくは、アルカリ現像による画像強度のダメージ抑制という観点から、10〜60%である。
黒色顔料等の着色剤と相互作用を形成しうる官能基である塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含有するヘテロ環、及び、アミド基等があり、好ましいものは、黒色顔料等の着色剤への吸着力が良好で、且つ、着色剤の分散性が高い点で、第3級アミノ基である。高分子化合物は、これらの塩基性基を1種或いは2種以上、含有することができる。
高分子化合物は、塩基性基を含有する構造単位を含有してもしなくてもよいが、含有する場合、塩基性基を含有する構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは0.01〜50%であり、より好ましくは、現像性阻害抑制という観点から、0.01〜30%である。
黒色顔料等の着色剤と相互作用を形成しうる官能基である配位性基、及び反応性を有する官能基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物、及び、酸塩化物等が挙げられる。好ましいものは、黒色顔料等の着色剤への吸着力が良好で、着色剤の分散性が高い点で、アセチルアセトキシ基である。高分子化合物は、これらの基を1種又は2種以上有してもよい。
高分子化合物は、配位性基を含有する構造単位、又は、反応性を有する官能基を含有する構造単位を含有してもしなくてもよいが、含有する場合、これらの構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは10〜80%であり、より好ましくは、現像性阻害抑制という観点から、20〜60%である。
高分子化合物が、グラフト鎖以外に、黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する場合、上記の各種の黒色顔料等の着色剤と相互作用を形成しうる官能基を含有していればよく、これらの官能基がどのように導入されているかは特に限定はされないが、高分子化合物は、下記一般式(iv)〜(vi)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。
一般式(iv)〜一般式(vi)中、R11、R12、及びR13は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
一般式(iv)〜一般式(vi)中、R11、R12、及びR13は、好ましくは、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基であり、より好ましくは、それぞれ独立に水素原子又はメチル基である。一般式(iv)中、R12及びR13は、それぞれ水素原子であることが特に好ましい。
一般式(iv)中のXは、酸素原子(−O−)又はイミノ基(−NH−)を表し、酸素原子であることが好ましい。
一般式(v)中のYは、メチン基又は窒素原子を表す。
一般式(iv)〜一般式(v)中のLは、単結合又は2価の連結基を表す。2価の連結基の例としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、及び置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、及び置換アリーレン基)、2価の複素環基、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ結合(−NR31’−、ここでR31’は脂肪族基、芳香族基又は複素環基)、カルボニル結合(−CO−)、及び、これらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。脂肪族基は、置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、芳香族基及び複素環基が挙げられる。
2価の芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシ基、脂肪族基、芳香族基及び複素環基が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環のうち1つ以上が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。
は、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、−(OCHCH−で表され、nは、2以上の整数が好ましく、2〜10の整数であることがより好ましい。
一般式(iv)〜一般式(vi)中、Zは、グラフト鎖以外に黒色顔料等の着色剤と相互作用を形成しうる官能基を表し、カルボン酸基、及び、第3級アミノ基であることが好ましく、カルボン酸基であることがより好ましい。
一般式(vi)中、R14、R15、及びR16は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、−Z、又はL−Zを表す。ここでL及びZは、上記におけるL及びZと同義であり、好ましい例も同様である。R14、R15、及びR16としては、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基が好ましく、水素原子がより好ましい。
一般式(iv)で表される単量体として、R11、R12、及びR13がそれぞれ独立に水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
一般式(v)で表される単量体として、R11が水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。
一般式(vi)で表される単量体として、R14、R15、及びR16がそれぞれ独立に水素原子又はメチル基であって、Lが単結合又はアルキレン基であって、Zがカルボン酸基である化合物が好ましい。
以下に、一般式(iv)〜一般式(vi)で表される単量体(化合物)の代表的な例を示す。
単量体の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合及び水酸基を含有する化合物(例えば、メタクリル酸2−ヒドロキシエチル)とコハク酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とテトラヒドロキシフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物と無水トリメリット酸との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4−ビニル安息香酸、ビニルフェノール、及び、4−ヒドロキシフェニルメタクリルアミド等が挙げられる。
黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する構造単位の含有量は、黒色顔料等の着色剤との相互作用、経時安定性、及び現像液への浸透性の観点から、高分子化合物の全質量に対して、0.05〜90質量%が好ましく、1.0〜80質量%がより好ましく、10〜70質量%が更に好ましい。
・その他の構造単位
更に、高分子化合物は、画像強度等の諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、グラフト鎖を含有する構造単位、疎水性構造単位、及び、黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する構造単位とは異なる、種々の機能を有する他の構造単位(例えば、分散物に用いられる分散媒との親和性を有する官能基等を含有する構造単位)を更に有していてもよい。
このような、他の構造単位としては、例えば、アクリロニトリル類、及び、メタクリロニトリル類等から選ばれるラジカル重合性化合物に由来の構造単位が挙げられる。
高分子化合物は、これらの他の構造単位を1種或いは2種以上用いることができ、その含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは0〜80%であり、より好ましくは、10〜60%である。含有量が上記範囲において、十分なパターン形成性が維持される。
・高分子化合物の物性
高分子化合物の酸価は、0〜250mgKOH/gの範囲であることが好ましく、より好ましくは10〜200mgKOH/gの範囲であり、更に好ましくは20〜120mgKOH/gの範囲である。
高分子化合物の酸価が250mgKOH/g以下であれば、硬化膜を形成する際の現像時におけるパターン剥離がより効果的に抑えられる。高分子化合物の酸価が10mgKOH/g以上であればアルカリ現像性がより良好となる。高分子化合物の酸価が20mgKOH/g以上であれば、黒色顔料等の着色剤の沈降をより抑制でき、粗大粒子数をより少なくすることができ、硬化性組成物の経時安定性をより向上できる。
高分子化合物の酸価は、例えば、高分子化合物中における酸基の平均含有量から算出することができる。また、高分子化合物の構成成分である酸基を含有する構造単位の含有量を変化させることで所望の酸価を有する樹脂を得ることができる。
高分子化合物の重量平均分子量は、硬化膜を形成する際において、現像時のパターン剥離抑制と現像性の観点から、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)法によるポリスチレン換算値として、4,000〜300,000であることが好ましく、5,000〜200,000であることがより好ましく、6,000〜100,000であることが更に好ましく、10,000〜50,000であることが特に好ましい。
GPC法は、HLC−8020GPC(東ソー製)を用い、カラムとしてTSKgel SuperHZM−H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
高分子化合物は、公知の方法に基づいて合成でき、高分子化合物を合成する際に用いられる溶剤としては、例えば、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2−メトキシエチルアセテート、1−メトキシ−2−プロパノール、1−メトキシ−2−プロピルアセテート、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、トルエン、酢酸エチル、乳酸メチル、及び、乳酸エチル等が挙げられる。これらの溶剤は単独で用いても2種以上混合して用いてもよい。
高分子化合物の具体例としては、楠木化成社製「DA−7301」、BYKChemie社製「Disperbyk−101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110(酸基を含有する共重合物)、111(リン酸系分散剤)、130(ポリアミド)、161、162、163、164、165、166、170、190(高分子共重合物)」、「BYK−P104、P105(高分子量不飽和ポリカルボン酸)」、EFKA社製「EFKA4047、4050〜4010〜4165(ポリウレタン系)、EFKA4330〜4340(ブロック共重合体)、4400〜4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファインテクノ社製「アジスパーPB821、PB822、PB880、PB881」、共栄社化学社製「フローレンTG−710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成社製「ディスパロンKS−860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA−703−50、DA−705、DA−725」、花王社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN−B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL−18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、日本ルーブリゾール製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、12000、17000、20000、27000(末端部に機能部を含有する高分子)、24000、28000、32000、38500(グラフト共重合体)」、日光ケミカルズ社製「ニッコールT106(ポリオキシエチレンソルビタンモノオレアート)、MYS−IEX(ポリオキシエチレンモノステアレート)」、川研ファインケミカル製 ヒノアクトT−8000E等、信越化学工業製 オルガノシロキサンポリマーKP341、裕商製「W001:カチオン系界面活性剤」、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、「W004、W005、W017」等のアニオン系界面活性剤、森下産業製「EFKA−46、EFKA−47、EFKA−47EA、EFKAポリマー100、EFKAポリマー400、EFKAポリマー401、EFKAポリマー450」、サンノプコ製「ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100」等の高分子分散剤、ADEKA製「アデカプルロニックL31、F38、L42、L44、L61、L64、F68、L72、P95、F77、P84、F87、P94、L101、P103、F108、L121、P−123」、及び三洋化成製「イオネット(商品名)S−20」等が挙げられる。また、アクリベースFFS−6752、アクリベースFFS−187、アクリキュア−RD−F8、及び、サイクロマーPを用いることもできる。
また、両性樹脂の市販品としては、例えば、ビックケミー社製のDISPERBYK−130、DISPERBYK−140、DISPERBYK−142、DISPERBYK−145、DISPERBYK−180、DISPERBYK−187、DISPERBYK−191、DISPERBYK−2001、DISPERBYK−2010、DISPERBYK−2012、DISPERBYK−2025、BYK−9076、味の素ファインテクノ社製のアジスパーPB821、アジスパーPB822、及び、アジスパーPB881等が挙げられる。
これらの高分子化合物は、1種を単独で用いても、2種以上を併用してもよい。
なお、高分子化合物の具体例の例としては、特開2013−249417号公報の段落0127〜0129に記載の高分子化合物を参照でき、これらの内容は本明細書に組み込まれる。
また、分散剤としては、上記の高分子化合物以外に、特開2010−106268号公報の段落0037〜0115(対応するUS2011/0124824の段落0075〜0133)のグラフト共重合体が使用でき、これらの内容は本明細書に組み込まれる。
また、上記以外にも、特開2011−153283号公報の段落0028〜0084(対応するUS2011/0279759の段落0075〜0133)の酸性基が連結基を介して結合してなる側鎖構造を含有する構成成分を含有する高分子化合物が使用でき、これらの内容は本明細書に組み込まれる。
<バインダー樹脂>
硬化性組成物は、バインダー樹脂を含有することが好ましい。
バインダー樹脂の含有量は、硬化性組成物の全固形分に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.9質量%以上が更に好ましく、1.9質量%以上が特に好ましく、30質量%以下が好ましく、25質量%以下がより好ましく、18質量%以下が更に好ましく、10質量%以下が特に好ましい。
バインダー樹脂の含有量が、1.9〜10質量%だと、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
バインダー樹脂は、1種を単独で用いても、2種以上を併用してもよい。バインダー樹脂を2種以上併用する場合は、その合計量が上記範囲内であることが好ましい。
バインダー樹脂としては、線状有機ポリマーを用いることが好ましい。このような線状有機ポリマーとしては、公知のものを任意に使用することができる。好ましくは、水現像又は弱アルカリ水現像を可能とするために、水又は弱アルカリ水に可溶性又は膨潤性である線状有機ポリマーが選択される。なかでも、バインダー樹脂としては、アルカリ可溶性樹脂(アルカリ可溶性を促進する基を含有する樹脂)が特に好ましい。
バインダー樹脂としては、線状有機ポリマーであって、分子(好ましくは、(メタ)アクリル系共重合体、又は、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基を含有するアルカリ可溶性樹脂の中から適宜選択することができる。耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、(メタ)アクリル系樹脂、(メタ)アクリルアミド系樹脂、(メタ)アクリル/(メタ)アクリルアミド共重合体、エポキシ系樹脂及びポリイミド系樹脂が好ましく、現像性制御の観点からは、(メタ)アクリル系樹脂、(メタ)アクリルアミド系樹脂、(メタ)アクリル/(メタ)アクリルアミド共重合体又はポリイミド系樹脂がより好ましい。
アルカリ可溶性を促進する基(以下、酸基ともいう)としては、例えば、カルボン酸基、リン酸基、スルホン酸基、及び、フェノール性水酸基等が挙げられる。なかでも、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものが好ましく、(メタ)アクリル酸由来の構造単位を含有するアルカリ可溶性樹脂がより好ましいものとして挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。
バインダー樹脂としては、例えば、側鎖にカルボン酸基を含有するラジカル重合体が挙げられる。側鎖にカルボン酸基を含有するラジカル重合体としては、例えば、特開昭59−44615号、特公昭54−34327号、特公昭58−12577号、特公昭54−25957号、特開昭54−92723号、特開昭59−53836号、及び、特開昭59−71048号に記載されているものが挙げられる。側鎖にカルボン酸基を含有するラジカル重合体としては、カルボン酸基を含有するモノマーを単独又は共重合させた樹脂、酸無水物を含有するモノマーを単独又は共重合させて得た酸無水物ユニットを、加水分解、ハーフエステル化又はハーフアミド化させた樹脂、及び、エポキシ樹脂を不飽和モノカルボン酸及び酸無水物で変性させたエポキシアクリレート等が挙げられる。
カルボン酸基を含有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、及び、4−カルボキシルスチレン等が挙げられる。また、側鎖にカルボン酸基を含有する酸性セルロース誘導体も例として挙げられる。
酸無水物を含有するモノマーとしては、無水マレイン酸等が挙げられる。この他に水酸基を含有する重合体に環状酸無水物を付加させたもの等が有用である。
また、酸基を含有するアセタール変性ポリビニルアルコール系バインダー樹脂が、欧州特許第993966号、欧州特許第1204000号、及び、特開2001−318463号等の各公報に記載されている。酸基を含有するアセタール変性ポリビニルアルコール系バインダー樹脂は、膜強度、及び、現像性のバランスに優れており、好適である。
更に、水溶性線状有機ポリマーとして、ポリビニルピロリドン、又はポリエチレンオキサイド等が有用である。また、硬化皮膜の強度を上げるために、アルコール可溶性ナイロン、及び、2,2−ビス−(4−ヒドロキシフェニル)−プロパンとエピクロロヒドリンとの反応物であるポリエーテル等も有用である。
また、国際公開第2008/123097号に記載のポリイミド樹脂も有用である。
特に、これらの中でも、〔ベンジル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体、及び〔アリル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体は、膜強度、感度、及び、現像性のバランスに優れており、好適である。
市販品としては、例えばアクリベースFF−187、FF−426(藤倉化成社製)、アクリキュア−RD−F8(日本触媒)、及び、ダイセルオルネクス製サイクロマーP(ACA)230AA等が挙げられる。
バインダー樹脂の製造には、例えば、公知のラジカル重合法による方法を適用することができる。ラジカル重合法でバインダー樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、並びに、溶剤の種類等々の重合条件は、当業者において容易に設定可能である。
バインダー樹脂として、グラフト鎖を含有する構造単位と、酸基(アルカリ可溶性基)を含有する構造単位と、を含有するポリマーを使用することも好ましい。
グラフト鎖を含有する構造単位の定義は、上記の分散剤が含有するグラフト鎖を含有する構造単位と同義であり、また好適範囲も同様である。
酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、又は、フェノール性水酸基等があり、好ましくは、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種であり、より好ましいものは、カルボン酸基である。
(酸基を含有する構造単位)
酸基を含有する構造単位としては、下記式(vii)〜式(ix)で表される単量体に由来の構造単位から選択された1種以上の構造単位が好ましい。
一般式(vii)及び一般式(viii)中、R21、R22、及びR23は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
一般式(vii)及び一般式(viii)中、R21、R22、及びR23は、好ましくは、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基であり、より好ましくは、それぞれ独立に水素原子又はメチル基である。一般式(vii)中、R21及びR23は、それぞれ水素原子であることが特に好ましい。
一般式(vii)中のXは、酸素原子(−O−)又はイミノ基(−NH−)を表し、酸素原子であることが好ましい。
一般式(viii)中のYは、メチン基又は窒素原子を表す。
一般式(vii)及び一般式(viii)中のLは、単結合又は2価の連結基を表す。2価の連結基の例としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、及び置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、及び置換アリーレン基)、2価の複素環基、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ結合(−NR41’−、ここでR41’は脂肪族基、芳香族基又は複素環基)、カルボニル結合(−CO−)、及び、これらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、芳香族基及び複素環基が挙げられる。
2価の芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。また、芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシ基、脂肪族基、芳香族基及び複素環基が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環のうち1つ以上が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R42、ここでR42は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。
は、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。また、Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、−(OCHCH−で表され、nは、2以上の整数が好ましく、2〜10の整数であることがより好ましい。
一般式(vii)〜一般式(ix)中、Zは、酸基を表し、カルボン酸基であることが好ましい。
一般式(ix)中、R24、R25、及びR26は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、−Z、又はL−Zを表す。ここでL及びZは、上記におけるL及びZと同義であり、好ましい例も同様である。R24、R25、及びR26としては、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基が好ましく、水素原子がより好ましい。
一般式(vii)で表される単量体として、R21、R22、及びR23がそれぞれ独立に水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
また、一般式(viii)で表される単量体として、R21が水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。
更に、一般式(ix)で表される単量体として、R24、R25、及びR26がそれぞれ独立に水素原子又はメチル基であって、Zがカルボン酸基である化合物が好ましい。
上記バインダー樹脂は、上記のグラフト鎖を含有する構造単位を含有する分散剤と同様の方法により合成することができ、また、その好ましい酸価、重量平均分子量も同じである。
上記バインダー樹脂は、酸基を含有する構造単位を1種又は2種以上有してもよい。
酸基を含有する構造単位の含有量は、質量換算で、上記バインダー樹脂の総質量に対して、好ましくは5〜95%であり、より好ましくは、アルカリ現像による画像強度のダメージ抑制という観点から、10〜90%である。
<界面活性剤>
硬化性組成物は、界面活性剤を含有することが好ましい。界面活性剤は、硬化性組成物の塗布性向上に寄与する。
硬化性組成物が、界面活性剤を含有する場合、界面活性剤の含有量としては、硬化性組成物の全質量に対して、0.001〜2.0質量%が好ましく、0.005〜1.0質量%がより好ましい。
界面活性剤は、1種を単独で用いても、2種以上を併用してもよい。界面活性剤を2種以上併用する場合は、合計量が上記範囲内であることが好ましい。
界面活性剤としては、例えば、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及びシリコーン系界面活性剤等が挙げられる。
例えば、硬化性組成物がフッ素系界面活性剤を含有することで、硬化性組成物の液特性(特に、流動性)がより向上する。即ち、フッ素系界面活性剤を含有する硬化性組成物を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚さムラの小さい均一厚の膜形成をより好適に行える点で有効である。
フッ素系界面活性剤中のフッ素含有率は、3〜40質量%が好適であり、より好ましくは5〜30質量%であり、更に好ましくは7〜25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性及び/又は省液性の点で効果的であり、硬化性組成物中における溶解性も良好である。
フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS−382、同SC−101、同SC−103、同SC−104、同SC−105、同SC−1068、同SC−381、同SC−383、同S−393、同KH−40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011−89090号公報に記載の化合物が挙げられる。また、下記一般式で表される化合物(F−1)もフッ素系界面活性剤として挙げられる。なお、化合物(F−1)において、一般式中(A)及び(B)で表される構造単位はそれぞれ62モル%、38モル%である。一般式(B)で表される構造単位中、aは、b、cは、それぞれ、a+c=14、b=17の関係を満たす。なお、下記化合物の重量平均分子量は、例えば15311である。
ノニオン系界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1)、ソルスパース20000(日本ルーブリゾール(株))等が挙げられる。また、竹本油脂(株)製のパイオニンD−6112−W、和光純薬工業社製の、NCW−101、NCW−1001、NCW−1002を使用することもできる。
カチオン系界面活性剤として具体的には、フタロシアニン誘導体(商品名:EFKA−745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。
アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)製)等が挙げられる。
シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング(株)製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」,「トーレシリコーンSH21PA」,「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF−4440」、「TSF−4300」、「TSF−4445」、「TSF−4460」、「TSF−4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」等が挙げられる。
<シランカップリング剤>
シランカップリング剤とは、分子中に加水分解性基とそれ以外の官能基とを含有する化合物である。なお、アルコキシ基等の加水分解性基は、珪素原子に結合している。
加水分解性基とは、珪素原子に直結し、加水分解反応及び/又は縮合反応によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基、及びアルケニルオキシ基が挙げられる。加水分解性基が炭素原子を含有する場合、その炭素数は6以下であることが好ましく、4以下であることがより好ましい。特に、炭素数4以下のアルコキシ基又は炭素数4以下のアルケニルオキシ基が好ましい。
基板上に硬化膜を形成する場合、シランカップリング剤は基板と硬化膜間の密着性を向上させるため、フッ素原子及び珪素原子(ただし、加水分解性基が結合した珪素原子は除く)を含まないことが好ましく、フッ素原子、珪素原子(ただし、加水分解性基が結合した珪素原子は除く)、珪素原子で置換されたアルキレン基、炭素数8以上の直鎖アルキル基、及び、炭素数3以上の分鎖アルキル基は含まないことが望ましい。
シランカップリング剤は、以下の一般式(Z)で表される基を含有することが好ましい。*は結合位置を表す。
一般式(Z) *−Si−(RZ1
一般式(Z)中、RZ1は加水分解性基を表し、その定義は上記のとおりである。
シランカップリング剤は、(メタ)アクリロイルオキシ基、エポキシ基、及び、オキセタニル基からなる群から選択される1種以上の硬化性官能基を含有することが好ましい。硬化性官能基は、直接、珪素原子に結合してもよく、連結基を介して珪素原子に結合していてもよい。
なお、上記シランカップリング剤に含まれる硬化性官能基の好適態様としては、ラジカル重合性基も挙げられる。
シランカップリング剤の分子量は特に制限されず、取り扱い性の点から、100〜1000の場合が多く、270以上が好ましく、270〜1000がより好ましい。
シランカップリング剤の好適態様の一つとしては、一般式(W)で表されるシランカップリング剤Xが挙げられる。
一般式(W) RZ2−Lz−Si−(RZ1
z1は、加水分解性基を表し、定義は上記のとおりである。
z2は、硬化性官能基を表し、定義は上記のとおりであり、好適範囲も上記のとおりである。
Lzは、単結合又は2価の連結基を表す。Lzが2価の連結基を表す場合、2価の連結基としては、ハロゲン原子が置換していてもよいアルキレン基、ハロゲン原子が置換していてもよいアリーレン基、−NR12−、−CONR12−、−CO−、−CO−、SONR12−、−O−、−S−、−SO−、又は、これらの組み合わせが挙げられる。なかでも、炭素数2〜10のハロゲン原子が置換していてもよいアルキレン基及び炭素数6〜12のハロゲン原子が置換していてもよいアリーレン基からなる群から選択される少なくとも1種、又は、これらの基と−NR12−、−CONR12−、−CO−、−CO−、SONR12−、−O−、−S−、及びSO−からなる群から選択される少なくとも1種の基との組み合わせからなる基が好ましく、炭素数2〜10のハロゲン原子が置換していてもよいアルキレン基、−CO−、−O−、−CO−、−CONR12−、又は、これらの基の組み合わせからなる基がより好ましい。ここで、上記R12は、水素原子又はメチル基を表す。
シランカップリング剤Xとしては、N−β−アミノエチル−γ−アミノプロピル−メチルジメトキシシラン(信越化学工業社製、商品名 KBM−602)、N−β−アミノエチル−γ−アミノプロピル−トリメトキシシラン(信越化学工業社製、商品名 KBM−603)、N−β−アミノエチル−γ−アミノプロピル−トリエトキシシラン(信越化学工業社製、商品名 KBE−602)、γ−アミノプロピル−トリメトキシシラン(信越化学工業社製、商品名 KBM−903)、γ−アミノプロピル−トリエトキシシラン(信越化学工業社製、商品名 KBE−903)、3−メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、商品名 KBM−503)、及び、グリシドキシオクチルトリメトキシシラン(信越化学工業社製、商品名 KBM−4803)等が挙げられる。
シランカップリング剤の他の好適態様としては、分子内に少なくとも珪素原子と窒素原子と硬化性官能基とを有し、かつ、珪素原子に結合した加水分解性基を含有するシランカップリング剤Yが挙げられる。
このシランカップリング剤Yは、分子内に少なくとも1つの珪素原子を有すればよく、珪素原子は、以下の原子、置換基と結合できる。それらは同じ原子、置換基であっても異なっていてもよい。結合しうる原子、置換基は、水素原子、ハロゲン原子、水酸基、炭素数1から20のアルキル基、アルケニル基、アルキニル基、アリール基、アルキル基及び/又はアリール基で置換可能なアミノ基、シリル基、炭素数1から20のアルコキシ基、アリーロキシ基等が挙げられる。これらの置換基は更に、シリル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、チオアルコキシ基、アルキル基及び/又はアリール基で置換可能なアミノ基、ハロゲン原子、スルホンアミド基、アルコキシカルボニル基、アミド基、ウレア基、アンモニウム基、アルキルアンモニウム基、カルボン酸基、又はその塩、スルホ基、又はその塩等で置換されていてもよい。
なお、珪素原子には少なくとも一つの加水分解性基が結合している。加水分解性基の定義は、上記のとおりである。
シランカップリング剤Yには、一般式(Z)で表される基が含まれていてもよい。
シランカップリング剤Yは、分子内に窒素原子を少なくとも1つ以上有し、窒素原子は、2級アミノ基或いは3級アミノ基の形態で存在することが好ましく、即ち、窒素原子は置換基として少なくとも1つの有機基を含有することが好ましい。なお、アミノ基の構造としては、含窒素ヘテロ環の部分構造の形態で分子内に存在してもよく、アニリン等置換アミノ基として存在していてもよい。
ここで、有機基としては、アルキル基、アルケニル基、アルキニル基、アリール基、又は、これらの組み合わせ等が挙げられる。これらは更に置換基を有してもよく、導入可能な置換基としては、シリル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、チオアルコキシ基、アミノ基、ハロゲン原子、スルホンアミド基、アルコキシカルボニル基、カルボニルオキシ基、アミド基、ウレア基、アルキレンオキシ基、アンモニウム基、アルキルアンモニウム基、カルボン酸基、又はその塩、スルホ基等が挙げられる。
また、窒素原子は、任意の有機連結基を介して硬化性官能基と結合していることが好ましい。好ましい有機連結基としては、上記の窒素原子及びそれに結合する有機基に導入可能な置換基を挙げることができる。
シランカップリング剤Yに含まれる硬化性官能基の定義は、上記のとおりであり、好適範囲も上記のとおりである。
シランカップリング剤Yには、硬化性官能基は一分子中に少なくとも一つ以上有していればよいが、硬化性官能基を2以上含有する態様をとることも可能であり、感度、安定性の観点からは、硬化性官能基を2〜20含有することが好ましく、4〜15含有することがより好ましく、更に好ましくは分子内に硬化性官能基を6〜10含有する態様である。
シランカップリング剤X及びシランカップリング剤Yの分子量は特に制限されないが、上記の範囲(270以上が好ましい)が挙げられる。
硬化性組成物中におけるシランカップリング剤の含有量は、硬化性組成物中の全固形分に対して、0.1〜10質量%が好ましく、0.5〜8質量%がより好ましく、1.0〜6質量%が更に好ましい。
硬化性組成物は、シランカップリング剤を1種単独で含んでいてもよく、2種以上を含んでいてもよい。硬化性組成物がシランカップリング剤を2種以上含有する場合は、その合計が上記範囲内であればよい。
<紫外線吸収剤>
硬化性組成物は、紫外線吸収剤を含有してもよい。これにより、硬化膜のパターンの形状をより優れた(精細な)ものにすることができる。
紫外線吸収剤としては、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系、及びトリアジン系の紫外線吸収剤を使用することができる。これらの具体例としては、特開2012−068418号公報の段落0137〜0142(対応するUS2012/0068292の段落0251〜0254)の化合物が使用でき、これらの内容が援用でき、本明細書に組み込まれる。
他にジエチルアミノ−フェニルスルホニル系紫外線吸収剤(大東化学社製、商品名:UV−503)等も好適に用いられる。
紫外線吸収剤としては、特開2012−32556号公報の段落0134〜0148に例示される化合物が挙げられる。
紫外線吸収剤の含有量は、硬化性組成物の全固形分に対して、0.001〜15質量%が好ましく、0.01〜10質量%がより好ましく、0.1〜5質量%が更に好ましい。
[硬化性組成物の製造方法]
硬化性組成物の製造方法は特に制限されないが、以下の混合工程を含有することが好ましい。さらに、静置工程及び/又はろ過工程を含有することがより好ましい。以下では、各工程について好適態様を詳述する。
<混合工程>
混合工程は、上記成分を公知の混合方法(例えば、攪拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、及び湿式分散機)により混合し、硬化性組成物を得る工程である。混合工程においては、硬化性組成物を構成する各成分を一括配合してもよいし、各成分を有機溶剤に溶解又は分散した後に逐次配合してもよい。また、配合する際の投入順序及び作業条件は、特に制限されない。又、混合工程は、分散液を作製する工程を含有してもよい。
(分散液を作製する工程)
分散液を作製する工程は、着色剤と、分散剤と、溶剤とを混合し、着色剤を上記の方法により分散させて、分散液を作製する工程である。作製した分散液に、その余の成分を混合し、硬化性組成物を製造することができる。
上記分散液を作製する工程において、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断及びキャビテーション等が挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化及び超音波分散等が挙げられる。また、「分散技術大全、株式会社情報機構発行、2005年7月15日」及び「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」に記載のプロセス及び分散機を好適に使用することができる。
また、上記分散液を作製する工程においては、ソルトミリング工程による顔料の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器及び処理条件等は、例えば、特開2015−194521号及び特開2012−046629号に記載のものを使用することができる。
また、硬化性組成物の製造方法は、熱プラズマ法によって上記着色剤を得る工程を含有することが好ましい。着色剤を得る工程は、上記の各成分を混合する前に実施される。
<静置工程>
上記着色剤は、混合工程、又は分散液を作製する工程に供される前に、以下の静置工程を経てもよい。
静置工程とは、熱プラズマ法によって得られた着色剤を、その製造後に大気に暴露せず、酸素濃度が制御された密閉容器内において、所定時間(好ましくは12〜72時間、より好ましくは12〜48時間、更に好ましくは12〜24時間)静置する工程である。この際、密閉容器内における水分の含有量が制御されているとより好ましい。
この際、密閉容器内における酸素(O)濃度及び水分の含有量は、それぞれ100質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、1質量ppm以下であることが更に好ましい。
密閉容器内における酸素(O)濃度及び水分の含有量は、密閉容器内に供給する不活性ガス中の酸素濃度及び水分量を調整することによって行うことができる。不活性ガスとしては、窒素ガス及びアルゴンガスが好ましく用いられ、この中でも窒素ガスを用いることがより好ましい。
上記静置工程を経ると、着色剤の表面及び結晶粒界が安定となる。これにより、硬化性組成物を硬化して得られる硬化膜のピンホールの発生を抑制できる。
<ろ過工程>
ろ過工程は、上記混合工程により製造された硬化性組成物をフィルタでろ過する工程である。ろ過工程では、硬化性組成物から異物を除去及び/又は欠陥を低減することができる。
フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(polytetrafluoroethylene:ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含有する)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含有する)、ナイロンが好ましい。
フィルタの孔径は、0.1〜7.0μm程度が適しており、好ましくは0.2〜2.5μm程度、より好ましくは0.2〜1.5μm程度、更に好ましくは0.3〜0.7μmである。この範囲とすることにより、顔料のろ過詰まりを抑えつつ、顔料に含まれる不純物及び凝集物等、微細な異物を確実に除去することが可能となる。
フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、大きい方が好ましい。また、上記の範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
第2のフィルタは、上記の第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2〜10.0μm程度が適しており、好ましくは0.2〜7.0μm程度、より好ましくは0.3〜6.0μm程度である。
〔容器〕
硬化性組成物は、使用時まで一時的に容器内に保管してもよい。硬化性組成物を保管するための容器としては特に制限されず、公知の容器を用いることができる。
硬化性組成物を保管する容器としては、容器内のクリーン度が高く、不純物の溶出が少ないものが好ましい。例えば、半導体用途向けに市販されている用途のものを使用してもよい。
使用可能な容器としては、具体的には、アイセロ化学社(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに限定されない。
例えば、容器内壁が6種の樹脂で6層構造に構成された多層ボトル、又は、容器内壁が6種の樹脂で7層構造に構成された多層ボトルを使用することも好ましい。これらの容器としては、例えば、特開2015−123351号公報に記載の容器が挙げられる。
[硬化膜]
硬化膜は、上記硬化性組成物を硬化して得られる。硬化膜には、着色剤が含まれる。硬化膜は、遮光膜として好適に用いられ、具体的にはイメージセンサの受光部周辺部分の遮光として好適に用いられる。
硬化膜がイメージセンサの受光部周辺部分の遮光膜として使用された場合、下記の態様であることが好ましい。
遮光膜の膜厚としては特に限定はないが、遮光膜がより優れた本発明の効果を有する点で、乾燥後の膜厚で、0.2〜50μmが好ましく、0.3〜10μmがより好ましく、0.3〜5μmが更に好ましい。
遮光膜のサイズ(センサ受光部周辺に設けられた遮光膜の一辺の長さ)としては、遮光膜がより優れた本発明の効果を有する点で、0.001〜10mmが好ましく、0.05〜7mmがより好ましく、0.1〜3.5mmが更に好ましい。
〔硬化膜の製造方法〕
次に、硬化膜の製造方法について説明する。
以下、製造方法を工程ごとに詳述する。
硬化膜の製造方法は、以下の硬化性組成物層形成工程、露光工程、及び現像工程を含有することが好ましい。
硬化性組成物層形成工程:硬化性組成物を用いて硬化性組成物層を形成する工程。
露光工程:上記硬化性組成物層を、パターン状に露光する工程。
現像工程:露光後の硬化性組成物層を現像して(言い換えると、未露光部を現像除去して)硬化膜を形成する工程。
具体的には、硬化性組成物を、直接又は他の層を介して基板上に塗布して、硬化性組成物層を形成し(硬化性組成物層形成工程)、所定のマスクパターンを介して露光し、光照射された塗布膜部分だけを硬化させ(露光工程)、現像液で現像することによって(現像工程)、硬化膜を製造することができる。
以下、上記各工程について説明する。
<硬化性組成物層形成工程>
硬化性組成物層形成工程は、支持体(以下「基板」ともいう。)上に、硬化性組成物層を形成する工程である。なかでも、支持体上に、硬化性組成物を塗布して、硬化性組成物層を形成する塗布工程が好ましく、支持体上に硬化性組成物を直接塗布して、支持体上に硬化性組成物層を形成する、塗布工程がより好ましい。
基板としては、例えば、液晶表示装置等に用いられる無アルカリガラス、ソーダガラス、パイレックス(登録商標)ガラス、石英ガラス、及びこれらに透明導電膜を付着させたもの、固体撮像素子等に用いられる光電変換素子基板(例えば、シリコン基板等)、CCD基板、並びに、CMOS基板等が挙げられる。
また、これらの基板上には、必要により、上部の層との密着改良、物質の拡散防止、又は、基板表面の平坦化のために下塗り層を設けてもよい。
基板上への硬化性組成物の塗布方法としては、スリット塗布、インクジェット法、回転塗布、流延塗布、ロール塗布、及びスクリーン印刷法等の各種の塗布方法を適用することができる。
なお、固体撮像素子用のブラックマトリクスを含有するカラーフィルタを製造する際には、硬化性組成物の塗布膜厚としては、解像性の観点から、0.35〜1.5μmが好ましく、0.40〜1.0μmがより好ましい。
基板上に塗布された硬化性組成物は、通常、70〜110℃で2〜4分間程度の条件下で乾燥する。これにより、硬化性組成物層を形成できる。
<露光工程>
露光工程は、硬化性組成物層形成工程において形成された硬化性組成物層(塗布膜)を、マスクを介して露光し、光照射された塗布膜部分だけを硬化させる工程である。
露光は、活性光線又は放射線の照射により行うことが好ましく、特に、g線、h線、及びi線等の紫外線が好ましく用いられる。なお、光源としては、高圧水銀灯が好ましい。露光量としては特に制限されないが、200〜1500mJ/cmが好ましく、200〜1000mJ/cmがより好ましく、200〜500mJ/cmが更に好ましい。露光量が上記範囲内であると、硬化膜の製造方法は、より優れた安定性及び生産性を有する。
また、解像性向上の観点から固体撮像素子用の遮光膜形成では、i線ステッパーによる露光が好ましい。
<現像工程>
現像工程は、露光された硬化性組成物層を現像する工程である。現像工程によって、未露光部が現像除去され、パターン状の硬化膜を得ることができる。
硬化膜の製造方法は、現像工程と、下記の洗浄工程と、を含有することが好ましい。現像工程においては、アルカリ現像処理(現像工程)を行い、露光工程における光未照射部分をアルカリ水溶液に溶出させる。これにより、光硬化した部分(光照射された塗布膜部分)だけが残る。
現像液としては、固体撮像素子用のブラックマトリクスを含有する遮光性カラーフィルタを作製する場合には、下地の回路等にダメージを起さない、有機アルカリ現像液が好ましい。現像温度としては通常20〜30℃であり、現像時間は20〜90秒である。
アルカリ性の水溶液としては、例えば、無機系現像液及び有機系現像液が挙げられる。無機系現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、又はメタ硅酸ナトリウムを、濃度が0.001〜10質量%、好ましくは0.01〜1質量%となるように溶解したアルカリ性水溶液が挙げられる。有機系現像液としては、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、又は1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン等のアルカリ性化合物を、濃度が0.001〜10質量%、好ましくは0.01〜1質量%となるように溶解したアルカリ性水溶液が挙げられる。アルカリ性水溶液には、例えばメタノール、及びエタノール等の水溶性有機溶剤及び/又は界面活性剤等を適量添加することもできる。なお、現像方法としては、例えば、パドル現像方法及びシャワー現像方法等を用いることができる。
<洗浄工程>
洗浄工程は、現像された硬化性組成物層を純水等によって洗浄(リンス)する工程である。洗浄方法としては特に制限されず、公知の洗浄方法を用いることができる。
なお、硬化膜の製造方法は、上記現像工程の後に、硬化膜を加熱するポストベーク工程及び/又は硬化膜を全面露光する硬化工程を含有してもよい。
[固体撮像装置、及び、固体撮像素子]
本発明の実施形態に係る固体撮像装置、及び、固体撮像素子は、上記硬化膜を含有する。固体撮像素子が硬化膜を含有する形態としては特に制限されず、例えば、基板上に、固体撮像素子(CCDイメージセンサ、CMOSイメージセンサ等)の受光エリアを構成する複数のフォトダイオード及びポリシリコン等からなる受光素子を有し、支持体の受光素子形成面側(例えば、受光部以外の部分及び/又は色調整用画素等)又は形成面の反対側に本発明の硬化膜を備えて構成したものが挙げられる。
固体撮像装置は、上記固体撮像素子を含有する。
固体撮像装置、及び、固体撮像素子の構成例を図1〜図2を参照して説明する。なお、図1〜図2では、各部を明確にするため、各構成の厚み及び/又は幅の比率は実際と関係なく一部誇張して表示している。
図1に示すように、固体撮像装置100は、矩形状の固体撮像素子101と、固体撮像素子101の上方に保持され、この固体撮像素子101を封止する透明なカバーガラス103とを備えている。更に、このカバーガラス103上には、スペーサー104を介してレンズ層111が重ねて設けられている。レンズ層111は、支持体113とレンズ材112とで構成されている。レンズ層111は、支持体113とレンズ材112とが一体成形された構成でもよい。レンズ層111の周縁領域に迷光が入射すると光の拡散によりレンズ材112での集光の効果が弱くなり、撮像部102に届く光が低減する。また、迷光によるノイズの発生も生じる。そのため、このレンズ層111の周縁領域は、遮光膜114が設けられて遮光されている。本発明の実施形態に係る硬化膜は上記遮光膜114としても用いることができる。
固体撮像素子101は、その受光面となる撮像部102において結像した光学像を光電変換して、画像信号として出力する。この固体撮像素子101は、2枚の基板を積層した積層基板105を備えている。積層基板105は、同サイズの矩形状のチップ基板106及び回路基板107からなり、チップ基板106の裏面に回路基板107が積層されている。
チップ基板106として用いられる基板の材料としては特に制限されず、公知の材料を用いることができる。
チップ基板106の表面中央部には、撮像部102が設けられている。また、撮像部102の周縁領域に迷光が入射すると、この周縁領域内の回路から暗電流(ノイズ)が発生するため、この周縁領域は、遮光膜115が設けられて遮光されている。本発明の実施形態に係る硬化膜は遮光膜115として用いることもできる。
チップ基板106の表面縁部には、複数の電極パッド108が設けられている。電極パッド108は、チップ基板106の表面に設けられた図示しない信号線(ボンディングワイヤでも可)を介して、撮像部102に電気的に接続されている。
回路基板107の裏面には、各電極パッド108の略下方位置にそれぞれ外部接続端子109が設けられている。各外部接続端子109は、積層基板105を垂直に貫通する貫通電極110を介して、それぞれ電極パッド108に接続されている。また、各外部接続端子109は、図示しない配線を介して、固体撮像素子101の駆動を制御する制御回路、及び固体撮像素子101から出力される撮像信号に画像処理を施す画像処理回路等に接続されている。
図2に示すように、撮像部102は、受光素子201、カラーフィルタ202、マイクロレンズ203等の基板204上に設けられた各部から構成される。カラーフィルタ202は、青色画素205b、赤色画素205r、緑色画素205g、及びブラックマトリクス205bmを有している。本発明の実施形態に係る硬化膜は、ブラックマトリクス205bmとして用いることもできる。
基板204の材料としては、前述のチップ基板106と同様の材料を用いることができる。基板204の表層にはpウェル層206が形成されている。このpウェル層206内には、n型層からなり光電変換により信号電荷を生成して蓄積する受光素子201が正方格子状に配列形成されている。
受光素子201の一方の側方には、pウェル層206の表層の読み出しゲート部207を介して、n型層からなる垂直転送路208が形成されている。また、受光素子201の他方の側方には、p型層からなる素子分離領域209を介して、隣接画素に属する垂直転送路208が形成されている。読み出しゲート部207は、受光素子201に蓄積された信号電荷を垂直転送路208に読み出すためのチャネル領域である。
基板204の表面上には、ONO(Oxide−Nitride−Oxide)膜からなるゲート絶縁膜210が形成されている。このゲート絶縁膜210上には、垂直転送路208、読み出しゲート部207、及び素子分離領域209の略直上を覆うように、ポリシリコン又はアモルファスシリコンからなる垂直転送電極211が形成されている。垂直転送電極211は、垂直転送路208を駆動して電荷転送を行わせる駆動電極と、読み出しゲート部207を駆動して信号電荷読み出しを行わせる読み出し電極として機能する。信号電荷は、垂直転送路208から図示しない水平転送路及び出力部(フローティングディフュージョンアンプ)に順に転送された後、電圧信号として出力される。
垂直転送電極211上には、その表面を覆うように遮光膜212が形成されている。遮光膜212は、受光素子201の直上位置に開口部を有し、それ以外の領域を遮光している。本発明の実施形態に係る硬化膜は、遮光膜212として用いることもできる。
遮光膜212上には、BPSG(borophospho silicate glass)からなる絶縁膜213、P−SiNからなる絶縁膜(パシベーション膜)214、透明樹脂等からなる平坦化膜215からなる透明な中間層が設けられている。カラーフィルタ202は、中間層上に形成されている。
[ブラックマトリクス]
ブラックマトリクスは、本発明の実施形態に係る硬化膜を含有する。ブラックマトリクスは、カラーフィルタ、固体撮像素子、及び、液晶表示装置に含有されることがある。
ブラックマトリクスとしては、上記で既に説明したもの;液晶表示装置等の表示装置の周縁部に設けられた黒色の縁;赤、青、及び、緑の画素間の格子状、及び/又は、ストライプ状の黒色の部分;TFT(thin film transistor)の遮光のためのドット状、及び/又は、線状の黒色パターン;等が挙げられる。このブラックマトリクスの定義については、例えば、菅野泰平著、「液晶ディスプレイ製造装置用語辞典」、第2版、日刊工業新聞社、1996年、p.64に記載がある。
ブラックマトリクスは表示コントラストを向上させるため、また薄膜トランジスタ(TFT)を用いたアクティブマトリックス駆動方式の液晶表示装置の場合には光の電流リークによる画質低下を防止するため、高い遮光性(光学濃度ODで3以上)を有することが好ましい。
ブラックマトリクスの製造方法としては特に制限されないが、上記の硬化膜の製造方法と同様の方法により製造することができる。具体的には、基板に硬化性組成物を塗布して、硬化性組成物層を形成し、露光、及び、現像してパターン状の硬化膜(ブラックマトリクス)を製造することができる。なお、ブラックマトリクスとして用いられる硬化膜の膜厚としては、0.1〜4.0μmが好ましい。
上記基板の材料としては、特に制限されないが、可視光(波長:400〜800nm)に対して80%以上の透過率を有することが好ましい。このような材料としては、具体的には、例えば、ソーダライムガラス、無アルカリガラス、石英ガラス、及び、ホウケイ酸ガラス等のガラス;ポリエステル系樹脂、及び、ポリオレフィン系樹脂等のプラスチック;等が挙げられ、耐薬品性、及び、耐熱性の観点から、無アルカリガラス、又は、石英ガラス等が好ましい。
[カラーフィルタ]
本発明の実施形態に係るカラーフィルタは、硬化膜を含有する。
カラーフィルタが硬化膜を含有する形態としては、特に制限されないが、基板と、上記ブラックマトリクスと、を備えるカラーフィルタが挙げられる。すなわち、基板上に形成された上記ブラックマトリクスの開口部に形成された赤色、緑色、及び、青色の着色画素と、を備えるカラーフィルタが例示できる。
ブラックマトリクス(硬化膜)を含有するカラーフィルタは、上述した本発明の硬化性組成物を用いて製造することができ、例えば、以下の方法により製造することができる。
まず、基板上に形成されたパターン状のブラックマトリクスの開口部に、カラーフィルタの各着色画素に対応する顔料を含有した樹脂組成物の塗膜(樹脂組成物層)を形成する。なお、各色用樹脂組成物としては特に制限されず、公知の樹脂組成物を用いることができるが、本発明の実施形態に係る硬化性組成物を用いることが好ましい。
次に、樹脂組成物層に対して、ブラックマトリクスの開口部に対応したパターンを有するフォトマスクを介して露光する。次いで、現像処理により未露光部を除去した後、ベークすることでブラックマトリクスの開口部に着色画素を形成することができる。一連の操作を、例えば、赤色、緑色、及び、青色顔料を含有した各色用樹脂組成物を用いて行うことにより、赤色、緑色、及び、青色画素を有するカラーフィルタを製造することができる。
[液晶表示装置]
本発明の実施形態に係る液晶表示装置は、硬化膜を含有する。液晶表示装置が硬化膜を含有する形態としては特に制限されないが、すでに説明したブラックマトリクス(硬化膜)を含有するカラーフィルタを含有する形態が挙げられる。
本実施形態に係る液晶表示装置としては、例えば、対向して配置された一対の基板と、それらの基板の間に封入されている液晶化合物とを備える形態が挙げられる。上記基板としては、ブラックマトリクス用の基板として既に説明したとおりである。
上記液晶表示装置の具体的な形態としては、例えば、使用者側から、偏光板/基板/カラーフィルタ/透明電極層/配向膜/液晶層/配向膜/透明電極層/TFT(Thin Film Transistor)素子/基板/偏光板/バックライトユニットをこの順に含有する積層体が挙げられる。
なお、本発明の実施形態に係る液晶表示装置としては、上記に制限されず、例えば「電子ディスプレイデバイス(佐々木 昭夫著、(株)工業調査会 1990年発行)」、「ディスプレイデバイス(伊吹 順章著、産業図書(株)平成元年発行)」等に記載されている液晶表示装置が挙げられる。また、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、(株)工業調査会 1994年発行)」に記載されている液晶表示装置が挙げられる。
[赤外線センサ]
本発明の実施形態に係る赤外線センサは、上記硬化膜を含有する。
上記実施態様に係る赤外線センサについて、図3を用いて説明する。図3に示す赤外線センサ300において、符号310は、固体撮像素子を示す。
固体撮像素子310上に設けられている撮像領域は、赤外線吸収フィルタ311と本発明の実施形態に係るカラーフィルタ312とを組み合せて構成されている。
赤外線吸収フィルタ311は、可視光領域の光(例えば、波長400〜700nmの光)を透過し、赤外領域の光(例えば、波長800〜1300nmの光、好ましくは波長900〜1200nmの光、より好ましくは波長900〜1000nmの光)を遮蔽する膜であり、着色剤として赤外線吸収剤(赤外線吸収剤の形態としては既に説明したとおりである。)を含有する、本発明の実施形態に係る硬化膜を用いることができる。
カラーフィルタ312は、可視光領域における特定波長の光を透過及び吸収する画素が形成されたカラーフィルタであって、例えば、赤色(R)、緑色(G)、青色(B)の画素が形成されたカラーフィルタ等が用いられ、その形態は既に説明したとおりである。赤外線透過フィルタ313と固体撮像素子310との間には、赤外線透過フィルタ313を透過した波長の光を透過させることができる樹脂膜314(例えば、透明樹脂膜等)が配置されている。
赤外線透過フィルタ313は、可視光遮蔽性を有し、かつ、特定波長の赤外線を透過させるフィルタであって、可視光領域の光を吸収する着色剤(例えば、ペリレン化合物、及び/又は、ビスベンゾフラノン化合物等)と、赤外線吸収剤(例えば、ピロロピロール化合物、フタロシアニン化合物、ナフタロシアニン化合物、及び、ポリメチン化合物等)と、を含有する、本発明の実施形態に係る硬化膜を用いることができる。赤外線透過フィルタ313は、例えば、波長400〜830nmの光を遮光し、波長900〜1300nmの光を透過させることが好ましい。
カラーフィルタ312及び赤外線透過フィルタ313の入射光hν側には、マイクロレンズ315が配置されている。マイクロレンズ315を覆うように平坦化膜316が形成されている。
図3に示す実施形態では、樹脂膜314が配置されているが、樹脂膜314に代えて赤外線透過フィルタ313を形成してもよい。すなわち、固体撮像素子310上に、赤外線透過フィルタ313を形成してもよい。
図3に示す実施形態では、カラーフィルタ312の膜厚と、赤外線透過フィルタ313の膜厚が同一であるが、両者の膜厚は異なっていてもよい。
図3に示す実施形態では、カラーフィルタ312が、赤外線吸収フィルタ311よりも入射光hν側に設けられているが、赤外線吸収フィルタ311と、カラーフィルタ312との順序を入れ替えて、赤外線吸収フィルタ311を、カラーフィルタ312よりも入射光hν側に設けてもよい。
図3に示す実施形態では、赤外線吸収フィルタ311とカラーフィルタ312は隣接して積層しているが、両フィルタは必ずしも隣接している必要はなく、間に他の層が設けられていてもよい。
この赤外線センサによれば、画像情報を同時に取り込むことができるため、動きを検知する対象を認識したモーションセンシング等が可能である。更には、距離情報を取得できるため、3D情報を含んだ画像の撮影等も可能である。
次に、上記赤外線センサを適用した固体撮像装置について説明する。
上記固体撮像装置は、レンズ光学系と、固体撮像素子と、赤外発光ダイオード等を含有する。なお、固体撮像装置の各構成については、特開2011−233983号公報の段落0032〜0036を参酌することができ、この内容は本願明細書に組み込まれる。
また、上記硬化膜は、パーソナルコンピュータ、タブレット、携帯電話、スマートフォン、及び、デジタルカメラ等のポータブル機器;プリンタ複合機、及び、スキャナ等のOA(Office Automation)機器;監視カメラ、バーコードリーダ、現金自動預け払い機(ATM:automated teller machine)、ハイスピードカメラ、及び、顔画像認証を使用した本人認証機能を有する機器等の産業用機器;車載用カメラ機器;内視鏡、カプセル内視鏡、及び、カテーテル等の医療用カメラ機器;生体センサ、バイオセンサ、軍事偵察用カメラ、立体地図用カメラ、気象及び海洋観測カメラ、陸地資源探査カメラ、並びに、宇宙の天文及び深宇宙ターゲット用の探査カメラ等の宇宙用機器;等に使用される光学フィルタ及びモジュールの遮光部材及び遮光膜、更には反射防止部材及び反射防止膜に好適である。
上記硬化膜は、マイクロLED(Light Emitting Diode)及びマイクロOLED(Organic Light Emitting Diode)等の用途にも用いることができる。上記硬化膜は、マイクロLED及びマイクロOLEDに使用される光学フィルタ及び光学フィルムのほか、遮光機能又は反射防止機能を付与する部材に対して好適である。
マイクロLED及びマイクロOLEDの例としては、特表2015−500562号及び特表2014−533890に記載されたものが挙げられる。
上記硬化膜は、量子ドットディスプレイに使用される光学フィルタ及び光学フィルムとして好適である。また、遮光機能及び反射防止機能を付与する部材として好適である。
量子ドットディスプレイの例としては、米国特許出願公開第2013/0335677号、米国特許出願公開第2014/0036536号、米国特許出願公開第2014/0036203号、及び、米国特許出願公開第2014/0035960号に記載されたものが挙げられる。
以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
また、以下の実施例において「部」及び「%」は、特に断りのない限り、質量基準である。
[黒色着色剤含有硬化性組成物の調製]
以下に示す1〜9の各種成分を混合、攪拌して、下記表9〜表11に示す実施例及び比較例の各硬化性組成物を得た。
なお、各硬化性組成物の最終的な固形分は、表9〜表11に記載された固形分濃度(「有機溶剤」欄内に記載)になるよう、表中に記載の有機溶剤で調整した。
以下、まず、硬化性組成物に配合する各種成分について説明する。
1.重合抑制能を有する基とチオール基とを有する化合物
重合抑制能を有する基とチオール基とを有する化合物として、下記に挙げるものを用いた。以下、化合物(C)−B−3−4の合成方法を一例として、重合抑制能を有する基とチオール基とを有する化合物の合成方法を説明する。
〔化合物(C)−B−3−4の合成〕
(合成例−1)3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートの合成
500mlの3つ口フラスコに、2,6−ジ−t−ブチル−4−(ヒドロキシメチル)フェノール35.45g、ピリジン19.1g、及びN,N−ジメチルアセトアミド177gを投入し、氷浴下で撹拌した。次いで、アクリル酸クロリド20.36gを系中に滴下し、得られた反応液を室温に昇温して4.5時間撹拌した。その後、1規定塩酸300mlを反応液に投入し、酢酸エチル300mlにて抽出した後、更に抽出された有機相を飽和食塩水750mlにて水洗した。次に、得られた有機相を硫酸ナトリウムにて乾燥し、ろ過操作後に得られたろ液を減圧濃縮することで粗体12gを得た。シリカゲルカラムにて精製を行い、目的物である3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートを10.9g(収率:25%)得た。
(合成例−2)化合物(C)−B−3−4の合成
50mlフラスコにペンタエリトリトールテトラ(3−メルカプトプロピオナート)(東京化成製)3.42g、3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレート2.03g、及びエタノール12.5gを投入し、得られた混合物を室温で撹拌した。撹拌後、トリエチルアミン312mgを混合物に添加し、更に室温で30分撹拌した。その後、1規定塩酸20ml、及び水20mlを系中に加え、酢酸エチル40mlにて抽出した。その後、得られた有機相を水40mlで水洗し、減圧濃縮して目的物である化合物(C)−B−3−4を4.55g(収率:83.5%)得た。
表4に、化合物(C)−B−3−4の構造を示す。
化合物(C)−B−3−4において、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基である場合、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が重合抑制能を有する基に相当する。
化合物(C)−B−3−4において、「チオール基の数」及び「重合抑制能を有する基の数」は、NMRにより測定されたピークの面積比(積分強度比)に基づいて平均数として同定した。この結果、チオール基の数は3.6であるのに対し、重合抑制能を有する基に相当する3,5−ジ−t−ブチル−4−ヒドロキシフェニル基の数は0.4であることが確認された。
なお、以下に示す他の「重合抑制能を有する基とチオール基とを有する化合物」についても、同様の方法により、「チオール基の数」及び「重合抑制能を有する基の数」を求めた。
〔化合物(C)−B−1−1〜化合物(C)−B−1−3〕
化合物(C)−B−1−1〜化合物(C)−B−1−3は、(合成例−2)の原料チオール(ペンタエリトリトールテトラ(3−メルカプトプロピオナート)(東京化成製))をテトラエチレングリコールビス(3−メルカプトプロピオネート)に変更し、3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートの添加量を変更することにより合成した。
以下、表2に、得られた化合物(C)−B−1−1〜化合物(C)−B−1−3の構造を示す。なお、下記一般式中、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基である場合、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が重合抑制能を有する基に相当する。また、化合物(C)−B−1−1〜化合物(C)−B−1−3におけるチオール基の数及び重合抑制能を有する基の数は表に示す通りである。
〔化合物(C)−B−2−1〜化合物(C)−B−2−3〕
化合物(C)−B−2−1〜化合物(C)−B−2−3は、(合成例−2)の原料チオール(ペンタエリトリトールテトラ(3−メルカプトプロピオナート)(東京化成製))をトリメチロールプロパントリス(3−メルカプトプロピオネート)に変更し、3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートの添加量を変更することで合成した。
表3に、得られた化合物(C)−B−2−1〜化合物(C)−B−2−3の構造を示す。なお、下記一般式中、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基である場合、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が重合抑制能を有する基に相当する。また、化合物(C)−B−2−1〜化合物(C)−B−2−3におけるチオール基の数及び重合抑制能を有する基の数は表に示す通りである。
〔化合物(C)−B−3−1〜化合物(C)−B−3−6〕
化合物(C)−B−3−1〜化合物(C)−B−3−6は、(合成例−2)の3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートの添加量を変更することで合成した。
表4に、得られた化合物(C)−B−3−1〜化合物(C)−B−3−6の構造を示す。なお、下記式中、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基である場合、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が重合抑制能を有する基に相当する。また、化合物(C)−B−3−1〜化合物(C)−B−3−6におけるチオール基の数及び重合抑制能を有する基の数は表に示す通りである。
〔化合物(C)−B−4−1〜化合物(C)−B−4−3〕
化合物(C)−B−4−1〜化合物(C)−B−4−3は、(合成例−2)の原料チオール(ペンタエリトリトールテトラ(3−メルカプトプロピオナート)(東京化成製))をジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)に変更し、3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートの添加量を変更することで合成した。
表5に、得られた化合物(C)−B−4−1〜化合物(C)−B−4−3の構造を示す。なお、下記式中、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基である場合、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が重合抑制能を有する基に相当する。また、化合物(C)−B−4−1〜化合物(C)−B−4−3におけるチオール基の数及び重合抑制能を有する基の数は表に示す通りである。
〔化合物(C)−B−5−1〜化合物(C)−B−5−3〕
化合物(C)−B−5−1〜化合物(C)−B−5−3は、(合成例−2)の原料チオール(ペンタエリトリトールテトラ(3−メルカプトプロピオナート)(東京化成製))をトリペンタエリスリトールポリ(3−メルカプトプロピオネート)に変更し、3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレートの添加量を変更することで合成した。
表6に、得られた化合物(C)−B−5−1〜化合物(C)−B−5−3の構造を示す。なお、下記式中、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、3,5−ジ−t−ブチル−4−ヒドロキシベンジルオキシカルボニルエチル基である場合、3,5−ジ−t−ブチル−4−ヒドロキシフェニル基が重合抑制能を有する基に相当する。また、化合物(C)−B−5−1〜化合物(C)−B−5−3におけるチオール基の数及び重合抑制能を有する基の数は表に示す通りである。
〔化合物(C)−T−3−1〜化合物(C)−T−3−3〕
(合成例−3)2−((((2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル)オキシ)カルボニル)アミノ)エチルアクリレートの合成
300mlの3つ口フラスコにカレンズAOI(昭和電工社製)19.7g、プロピレングリコールモノメチルエーテルアセテート73.5g、及び4−ヒドロキシTEMPO(TEMPO:2,2,6,6−テトラメチルピペリジン1−オキシル)19.7gを投入し、得られた混合物を70℃で撹拌した。次いで、混合物にネオスタンU−600(日東電工化成社製)0.231gを添加し、その後、更に70℃にて3.5時間加熱撹拌した。得られた反応液を室温に戻した後、水350mlを反応液に添加し、酢酸エチル140mlを加え抽出した。有機相を硫酸マグネシウムにて乾燥し、ろ過した後に得られたろ液の減圧濃縮を行った。シリカゲルカラムにて精製し、目的物である2−((((2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル)オキシ)カルボニル)アミノ)エチルアクリレートを21g(収率:79.7%)得た。
化合物(C)−T−3−1〜化合物(C)−T−3−3は、(合成例−2)の原料モノマー(3,5−ジ−t−ブチル−4−ヒドロキシベンジルアクリレート)を2−((((2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル)オキシ)カルボニル)アミノ)エチルアクリレートに変更し、添加量を変更することで合成した。
表7に、得られた化合物(C)−T−3−1〜化合物(C)−T−3−3の構造を示す。なお、下記式中、硫黄原子に連結するRは、水素原子(表中のRaに相当)又は((((2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル)オキシ)カルボニル)アミノ)エチルオキシカルボニルエチル基(表中のRbに相当)を表す。つまり、Rが水素原子の場合には、硫黄原子と共にチオール基を構成する。また、Rが、((((2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル)オキシ)カルボニル)アミノ)エチルオキシカルボニルエチル基である場合、2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル−4−イル基が重合抑制能を有する基に相当する。また、化合物(C)−T−3−1〜化合物(C)−T−3−3におけるチオール基の数及び重合抑制能を有する基の数は表に示す通りである。
2.着色剤分散液
〔着色剤分散液1(チタンブラック)、着色剤分散液2(TiN)の作製〕
<着色剤>
以下の方法により、後述する着色剤分散液に配合するための各着色剤を作製した。
<<チタンブラックA−1の作製>>
平均粒径15nmの酸化チタンMT−150A(商品名:テイカ(株)製)を100g、BET(Brunauer,Emmett,Teller)比表面積300m/gのシリカ粒子AEROSIL300(登録商標)300/30(エボニック社製)を25g、及び、Disperbyk190(商品名:ビックケミー社製)を100g秤量し、これらをイオン電気交換水71gに加えて、混合物を得た。その後、KURABO製MAZERSTAR KK−400Wを使用して、公転回転数1360rpm、自転回転数1047rpmにて混合物を30分間処理することにより均一な混合物水溶液を得た。この混合物水溶液を石英容器に充填し、小型ロータリーキルン(株式会社モトヤマ製)を用いて酸素雰囲気中で920℃に加熱した。その後、小型ロータリーキルン内を窒素で雰囲気を置換し、同温度でアンモニアガスを100mL/minで5時間流すことにより窒化還元処理を実施した。終了後回収した粉末を乳鉢で粉砕し、Si原子を含み、粉末状の比表面積73m2/gのチタンブラック〔チタンブラック粒子及びSi原子を含む被分散体〕を得た(以下では、「チタンブラックA−1」と表記する)。
<<チタン窒化物含有粒子(TiN−1)>>
まず、Ti粒子(TC−200、トーホーテック社製)をArガス中においてプラズマ処理することにより、Tiナノ粒子化した。プラズマ処理後のTiナノ粒子を、Arガス雰囲気下でO濃度50ppm以下、30℃の条件で24時間静置した後、O濃度が100ppmとなるようにAr雰囲気にOガスを導入した状態において30℃、24時間静置した(Ti粒子の前処理)。
その後、得られたTiナノ粒子をホソカワミクロン製TTSPセパレータを用いて収率10%となる条件で分級を行い、Ti粒子の粉末を得た。得られた粉末の一次粒子径は、TEM(Transmission Electron Microscope)観察によって100個の粒子の平均粒子径を算術平均により求めたところ、120nmであった。
チタン窒化物含有粒子TiN−1は、国際公開第2010/147098の図1に記載の黒色複合微粒子製造装置に準ずる装置を用いて製造した。
具体的には、黒色複合微粒子製造装置において、プラズマトーチの高周波発振用コイルには、約4MHz及び約80kVAの高周波電圧を印加し、プラズマガス供給源からはプラズマガスとしてアルゴンガス50L/min及び窒素50L/minの混合ガスを供給し、プラズマトーチ内にアルゴン−窒素熱プラズマ炎を発生させた。また、材料供給装置の噴霧ガス供給源からは10L/minのキャリアガスを供給した。
そして、上記のようにして得られたTi粒子に対して、Fe粉(JIP270M、JFEスチール社製)、及びSi粉(Silicon powder SI006031)を、それぞれの質量比がTi/Fe/Si=99.9/0.05/0.05となるよう混合し、キャリアガスであるアルゴンガスと共に、プラズマトーチ内の熱プラズマ炎中に供給し、熱プラズマ炎中で蒸発させ、気相状態で高度に分散させた。
また、気体供給装置によって、チャンバ内に供給される気体としては、窒素を使用した。このときのチャンバ内の流速は5m/secとして、供給量は1000L/minとした。また、サイクロン内の圧力は50kPaとし、また、チャンバからサイクロンへの各原料の供給速度は、10m/s(平均値)とした。
このようにして、チタン窒化物含有粒子TiN−1を得た。
得られたチタン窒化物含有粒子TiN−1について、ICP発光分光分析法によって、チタン(Ti)原子、鉄(Fe)原子及びケイ素(Si)原子の含有量を測定した。なお、ICP発光分光分析法には、セイコーインスツルメンツ社製のICP発光分光分析装置「SPS3000」(商品名)を用いた。
また、窒素原子の含有量については、堀場製作所製の酸素・窒素分析装置「EMGA−620W/C」(商品名)を用いて測定し、不活性ガス融解−熱伝導度法により算出した。上記の結果、チタン窒化物含有粒子TiNに含まれる各原子の質量比は、Ti/N/Fe/Si=57/34/0.0030/0.0020であった。
チタン窒化物含有粒子TiN−1のX線回折は、粉末試料をアルミ製標準試料ホルダーに詰め、広角X線回折法(理学電機社製、商品名「RU−200R」)により測定した。測定条件としては、X線源はCuKα線とし、出力は50kV/200mA、スリット系は1°−1°−0.15mm−0.45mm、測定ステップ(2θ)は0.02°、スキャン速度は2°/分とした。
そして、回折角2θ(42.6°)付近に観察されるTiN(200)面に由来するピークの回折角を測定した。更に、この(200)面に由来するピークの半値幅より、シェラーの式を用いて、粒子を構成する結晶子サイズを求めた。その結果、ピークの回折角は42.62°、結晶子サイズは10nmだった。なお、TiOに起因するX線回折ピークは全く見られなかった。
<着色剤分散液の調製>
上記で作製した着色剤、下記に示す分散剤、及び、下記に示す有機溶剤を、それぞれ表8に示す組成となるよう、攪拌機(IKA社製EUROSTAR)によって15分間混合して、混合液を得た。次に、得られた混合液に対して、シンマルエンタープライゼス製のNPM−Pilotを使用して下記条件にて分散処理を行い、着色剤分散液を得た。
<分散剤>
・分散樹脂1A:下記式により表される分散剤(各構造単位に併記される数値(主鎖繰り返し単位に併記される数値)は、各構造単位の含有量〔モル%〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。)
なお、「Mw」は重量平均分子量を意図する。
<有機溶剤>
・PGMEA:プロピレングリコール1−モノメチルエーテル2−アセタート
<<分散条件>>
・ビーズ径:φ0.05mm、(ニッカトー製ジルコニアビーズ、YTZ)
・ビーズ充填率:65体積%
・ミル周速:10m/sec
・セパレータ周速:13m/s
・分散処理する混合液量:15kg
・循環流量(ポンプ供給量):90kg/hour
・処理液温度:19〜21℃
・冷却水:水
・処理時間:22時間程度
〔着色剤分散液3(カーボンブラック)の調製〕
下記組成Cにて、二本ロールを用い高粘度分散処理を施し、分散組成物を得た。この際の分散組成物の粘度は70000mPa・sであった。
その後、この分散組成物に下記組成Dの混合物を添加し、3000rpmの条件でホモジナイザーを用いて3時間攪拌した。得られた混合溶液を、0.3mmジルコニアビーズを用いた分散機(商品名:ディスパーマット、GETZMANN社製)にて4時間微分散処理を施して、着色剤分散液3を調製した。この際の混合溶液の粘度は37mPa・sであった。
<組成C>
・カーボンブラック(平均一次粒径15nm)・・・23質量部
・ベンジルメタクリレート/メタクリル酸(モル比=67/33)共重合体(Mw:28000)のPGMEA 45%溶液・・・22質量部
・分散剤(ゼネカ社製 ソルスパース5000)・・・1.2質量部
<組成D>
・ベンジルメタクリレート/メタクリル酸(モル比=67/33)共重合体(Mw:28000)のPGMEA45%溶液・・・22質量部
・溶剤(PGMEA)・・・200質量部
3.アルカリ可溶性樹脂
硬化性組成物中、アルカリ可溶性樹脂としては下記のものを用いた。
・アルカリ可溶性樹脂1:ベンジルメタクリレート/アクリル酸共重合体〔組成比:ベンジルメタクリレート/アクリル酸共重合体=80/20(質量%)、Mw:25000〕
4.重合性化合物
硬化性組成物中、重合性化合物としては下記式により表される重合性化合物を用いた。
5.光重合開始剤
硬化性組成物中、光重合開始剤としては下記のオキシム系重合開始剤を用いた。
・オキシム系重合開始剤1:IRGACURE OXE−02(BASF社製)
・オキシム系重合開始剤2:アデカアークルズNCI−831(ADEKA社製、ニトロ基を含有する。)
・オキシム系重合開始剤3:
・オキシム系重合開始剤4:
6.界面活性剤
硬化性組成物中、界面活性剤としては下記のものを用いた。
・界面活性剤1:下記式により表される界面活性剤(重量平均分子量(Mw)=15311)
ただし、下記式において、式中(A)及び(B)で表される構造単位はそれぞれ62モル%、38モル%である。式(B)で表される構造単位中、aは、b、cは、それぞれ、a+c=14、b=17の関係を満たす。
7.比較用多官能チオール
比較用多官能チオールとして、下記構造の多官能チオール1を用いた。
8.比較用重合禁止剤
比較用重合禁止剤として、下記の種類の重合禁止剤を用いた。
・重合禁止剤1:4−メトキシフェノール
・重合禁止剤2:ジブチルヒドロキシトルエン(BHT)
・重合禁止剤3:4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル
9.溶剤
・PGMEA:プロピレングリコール1−モノメチルエーテル2−アセタート
・シクロヘキサノン
[評価]
上記各硬化性組成物を、以下の方法で評価した。
〔保存安定性の評価〕
<1.硬化性組成物の露光感度(初期)>
調製直後の各硬化性組成物を、ガラス基板上にスピンコートを用いて塗布し、乾燥して膜厚1.0μmの硬化性組成物層を形成した。スピンコートの条件は、まず、回転数:300rpm(rotation per minute)で、5秒間、次いで、800rpmで20秒間とした。また、乾燥条件は100℃で80秒とした。
上記により得られた塗膜に対して、i線ステッパー露光装置FPA−3000i5+(Canon(株)製)を用いて、波長365nmの光を、1μmのラインアンドスペースを有するパターンマスクを通して10〜1600mJ/cmの露光量で照射した。次に、60%CD−2000(富士フイルムエレクトロニクスマテリアルズ社製)現像液を使用して、露光後の硬化性組成物層を、25℃、60秒間の条件で現像し、パターン状の硬化膜を得た。その後、パターン状の硬化膜を流水で20秒間リンスした後、エアー乾燥した。
上記露光工程において、光が照射された領域の現像後のパターン線幅が、1.0μm以上となる最小の露光量を露光感度とし、この露光感度を初期の露光感度とした。
<2.硬化性組成物の露光感度(経時後:45℃で30日間経過後)>
調製直後の硬化性組成物を密閉容器に封入し、器内温度が45℃に設定された恒温器(EYELA/LTI−700)内に保持し、30日間経過後に取り出した。取り出した硬化性組成物を用いて、調製直後の硬化性組成物を用いて行ったのと同様の試験を行い、露光感度を求めた。これを経時後の露光感度とした。
<評価>
初期の露光感度と、経時後の露光感度から、以下の式で求められる露光感度の変動率(%)を算出した。上記変動率(%)の値が小さいほど保存安定性が優れていることを示す。
(式)変動率=[(経時後の露光感度−初期の露光感度)/初期の露光感度]×100
なお、実用上、評価「3」以上が好ましく、「4」及び「5」は優れた性能を有すると評価する。結果を表9〜表11に示す。
−評価基準−
「5」:変動率が0%〜3%だった。
「4」:変動率が3%超6%以下だった。
「3」:変動率が6%超10%以下だった。
「2」:変動率が10%超15%以下だった。
「1」:変動率が15%超だった。
〔未露光部残渣の評価〕
上記の<1.硬化性組成物の露光感度(初期)>の試験において、現像後のパターン線幅が1.0μm以上となる最小の露光量で得られた硬化膜を、ガラス基板ごと220℃のオーブンで1時間加熱した。硬化膜を加熱した後、ガラス基板上の、露光工程において光が照射されなかった領域(未露光部)に存在する残渣の数をSEM(Scanning Electron Microscope、倍率:20000倍)にて観察し、未露光部残渣を評価した。評価は以下の基準により行い、結果を表9〜表11に示した。なお、実用上、評価「3」以上が好ましく、「4」及び「5」は優れた性能を有すると評価する。
−評価基準−
「5」:パターンが形成され、未露光部には、残渣が全く観察されなかった。
「4」:パターンが形成され、未露光部1.0μm四方に残渣が1〜3個観察された。
「3」:パターンが形成され、未露光部1.0μm四方に残渣が4〜10個観察された。
「2」:パターンが形成され、未露光部1.0μm四方に残渣が11個以上観察された。
「1」:現像不良でパターン形成されなかった。
〔パターンエッジ形状の評価(アンダーカット/太り)〕
以下の方法により、各硬化性組成物を用いて形成したパターン状の硬化膜のパターンエッジ形状を評価した。
<硬化性組成物層形成工程>
シリコンウェハ上に、乾燥後の膜厚が1.5μmになるように、硬化性組成物層を形成した。硬化性組成物層の形成は、スピンコートを用いて行った。上記膜厚となるよう、スピンコートの回転数を調整した。塗布後の硬化性組成物層を、シリコンウェハを下にしてホットプレート上に載置して乾燥した。ホットプレートの表面温度は100℃で、乾燥時間は、120秒間とした。
<露光工程>
得られた硬化性組成物層を、以下の条件で露光した。
露光は、i線ステッパー(商品名「FPA−3000iS+」、キャノン社製)を用いて行った。硬化性組成物層に対して、線形20μm(幅20μm、長さ4mm)を有するマスクを介して400mJ/cmの露光量(照射時間0.5秒)で照射(露光)した。
<現像工程>
乾燥後の硬化性組成物層を、以下の条件により現像し、パターン状の硬化膜を得た。
乾燥後の硬化性組成物層に対して、テトラメチルアンモニウムハイドロオキサイド(TMAH)0.3質量%水溶液を用いて、23℃で、60秒間のパドル現像を5回繰り返し、パターン状の硬化膜を得た。その後、パターン状の硬化膜をスピンシャワーを用いてリンスし、更に純水で洗浄した。
<ポストベーク工程>
上記で得られたパターン状の硬化膜を、クリーンオーブンCLH−21CDH(光洋サーモ社製)を用いて220℃で300秒間加熱した。
更に、加熱後のパターン状の硬化膜を、表面温度220℃のホットプレートに載置し、300秒間加熱した。
<評価>
上記のパターン状の硬化膜を走査型電子顕微鏡で撮影し、20μmパターン断面のエッジ形状を下記基準にて評価した。
1.アンダーカット幅(μm)の測定評価
図4に示すように、ウエハ4上に形成されたパターン状の硬化膜のパターンエッジ部2の底部の切れ込みの長さTをアンダーカット幅として測定した。なお、図4において、Lは露光領域、Lは未露光領域に相当する。評価は以下の基準により行い、結果を表9〜表11に示した。
−評価基準−
「AA」:アンダーカット幅が0μm超0.25μm以下だった。
「A」:アンダーカット幅が0.25μm超0.5μm以下だった。
「B」:アンダーカット幅が0.5μm超1.0μm以下だった。
「C」:アンダーカット幅が1.0μm超だった。
2.太り幅(μm)の測定評価
図5に示すように、ウエハ4上に形成されたパターン状の硬化膜のパターンエッジ部6の上部のひさしの長さPを測定した。なお、図5において、Lは露光領域、Lは未露光領域に相当する。評価は以下の基準により行い、結果を表9〜表11に示した。
−評価基準−
「AA」:太り幅が0μm超、0.25μm以下だった。
「A」:太り幅が0.25μm超、0.5μm以下だった。
「B」:太り幅が0.5μm超、1.0μm以下だった。
「C」:太り幅が1.0μm超だった。
以下に、表9〜表11を示す。
表中「溶剤」欄の「PGMEA/シクロヘキサノン=1/1」は質量比である。表中の式(1)の値は、重合抑制能を有する基とチオール基とを有する化合物において、重合抑制能を有する基の数/(チオール基の数+重合抑制能を有する基の数)×100により算出される数値R1を表す。表中の「光重合開始剤の特定化合物に対する質量比」は、光重合開始剤の重合抑制能を有する基とチオール基とを有する化合物に対する質量比を表す。
表9〜表11の結果から、実施例の硬化性組成物を用いた場合には、保存安定性に優れ、未露光部における残渣の発生が抑制され、且つ、優れたパターン形状を有する硬化膜を得ることができることが確認された。
また、実施例1〜3、実施例4〜6、実施例7〜12、実施例13〜15、実施例16〜18、及び実施例19〜21の各々について対比すると、式(1)で表される数値が1〜50%(好ましくは3〜30%、より好ましくは8〜15%)である場合には、本発明の効果がより優れることが確認された。
また、実施例2、実施例5、実施例9、実施例14、及び実施例17の対比から、一般式(1X)で表される化合物において、nが3〜6(好ましくは4)である場合には、本発明の効果がより優れることが確認された。
また、実施例8〜10、及び実施例19〜21の対比から、重合抑制能を有する基が、フェノール系化合物から誘導される1価の基(好ましくは3,5−ジ−t−ブチル−4−ヒドロキシフェニル基)である場合には、本発明の効果がより優れることが確認された。
また、実施例24〜26、及び実施例29〜33の対比から、重合抑制能を有する基とチオール基とを有する化合物の含有量が、全固形分に対して、0.01〜3質量%(好ましくは0.2〜2.5質量%、より好ましくは0.6〜1.3質量%)である場合には、本発明の効果がより優れることが確認された。
実施例22〜33の対比から、光重合開始剤の含有量が、重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で1〜100倍である場合には、本発明の効果がより優れることが確認された。特に、光重合開始剤の含有量が、重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で2.5〜35倍である場合には、太り抑制能とアンダーカット抑制能により優れることが確認され、更に、光重合開始剤の含有量が、重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で2.5〜25倍である場合には、保存安定性に優れ、また現像残渣抑制能にもより優れることが確認された。特に、光重合開始剤の含有量が、重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で5〜10倍である場合には、アンダーカットが顕著に抑制されることが確認された。
一方、比較例の硬化性組成物は、所望の効果を発現しないことが確認された。
[実施例39]
表12に記載の成分及び配合量とした以外は実施例1と同様の方法により、実施例39の硬化性組成物を調製した。さらに、得られた実施例39の硬化性組成物について、実施例1と同様の方法により評価を実施した。結果を表12に示す。
なお、表12中で使用される各種成分は、表9〜表11中で使用されるものと同じである。
表12の結果から、重合抑制能を有する基とチオール基とを有する化合物と、重合抑制能を有する基を含有しない多官能チオール化合物とを併用した硬化性組成物を用いた場合にも、保存安定性に優れ、未露光部における残渣の発生が抑制され、且つ、優れたパターン形状を有する硬化膜を得ることができることが確認された。
[有彩色着色剤含有硬化性組成物]
表13に記載の成分及び配合量とした以外は実施例1と同様の方法により、実施例40〜42の硬化性組成物を調製した。また、表14に記載の成分及び配合量とした以外は比較例1と同様の方法により、比較例7〜9の硬化性組成物を調製した。さらに、得られた実施例40〜42及び比較例7〜9の硬化性組成物について、実施例1と同様の方法により評価を実施した。結果を表13及び表14に示す。
なお、表13及び表14中で使用される着色剤分散液以外の各種成分は、表9〜表11中で使用されるものと同じである。
以下、表13及び表14に用いた各種着色分散液について説明する。
〔Blue顔料分散液の調製〕
着色剤としてピグメントブルー15:6(9.5質量部)と、ピグメントバイオレット23(2.4質量部)と、樹脂としてBYK−161(BYK社製)(5.6質量部)と、溶剤としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)(82.5質量部)とからなる混合液を、ビーズミルにより15時間混合して、Blue顔料分散液を調製した。
〔Green顔料分散液の調製〕
(合成例4)ハロゲン化亜鉛フタロシアニン顔料の合成
フタロニトリル、アンモニア、及び塩化亜鉛を原料として亜鉛フタロシアニンを製造した。この1−クロロナフタレン溶液は、750〜850nmに光の吸収を有していた。
亜鉛フタロシアニンのハロゲン化は、下記の通りである。
まず、塩化スルフリル(45.5質量部)、無水塩化アルミニウム(54.5質量部)、塩化ナトリウム(7質量部)を40℃で混合し、亜鉛フタロシアニン顔料(15質量部)を加えた。これに臭素(35質量部)を滴下して加え、19.5時間かけて130℃まで昇温し1時間保持した。その後反応混合物を水に取り出し、ハロゲン化亜鉛フタロシアニン粗顔料を析出させた。この水性スラリーを濾過し、60℃の湯での洗浄、1%硫酸水素ナトリウム水での洗浄、60℃の湯での洗浄を順に行い、90℃で乾燥させ、2.7質量部の精製されたハロゲン化亜鉛フタロシアニン粗顔料Aを得た。
精製したハロゲン化亜鉛フタロシアニン粗顔料A(1質量部)、粉砕した塩化ナトリウム(10質量部)、ジエチレングリコール(1質量部)を双腕型ニーダーに仕込み、100℃で8時間混練した。混練後80℃の水(100質量部)に取り出し、1時間攪拌後、濾過、湯洗、乾燥、粉砕しハロゲン化亜鉛フタロシアニン顔料を得た。
得られたハロゲン化亜鉛フタロシアニン顔料は、質量分析とフラスコ燃焼イオンクロマトグラフによるハロゲン含有量分析から、平均組成ZnPcBr9.8Cl3.13.1であった。なお、Pcはフタロシアニンの略語である。
合成例4で得られたハロゲン化亜鉛フタロシアニン顔料(顔料1)(50質量部)と、ピグメントイエロー150(顔料2)(15質量部)と、顔料誘導体A(5質量部)と、樹脂として分散剤A(20質量部)と、溶剤としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)(360質量部)とからなる混合液を、ビーズミルにより15時間混合して、Green顔料分散液を調製した。
・顔料誘導体A:以下に示す構造
・分散剤A:以下に示す構造(各構造単位に併記される数値(主鎖繰り返し単位に併記される数値)は、各構造単位の含有量〔モル%〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。)

酸価=50mgKOH/g、Mw=24000
〔Red顔料分散液の調製〕
<Red顔料分散液:PR254/PY139を含有する分散液の調製>
Pigment Red 254(9.6質量部)、Pigment Yellow 139(4.3質量部)、顔料分散剤BYK−161(BYK社製)(6.8質量部)、及び、プロピレングリコールメチルエーテルアセテート(以下、「PGMEA」と称する。)(79.3質量部)からなる混合液を、ビーズミル(ジルコニアビーズ0.3mm径)により3時間混合して、顔料分散液を調製した。その後さらに、減圧機構付き高圧分散機NANO−3000−10(日本ビーイーイー(株)製)を用いて、2000kg/cmの圧力下で流量500g/minとして分散処理を行なった。
この分散処理を10回繰り返し、Red顔料分散液を得た。
以下、結果を表13及び表14に示す。
上記の結果から、着色剤として有彩色着色剤を用いた硬化性組成物であっても、本発明の所望の効果が発現することが確認できる。
[赤外線吸収顔料及び有彩色顔料含有硬化性組成物]
表16に記載の成分及び配合量とした以外は実施例1と同様の方法により、実施例43の硬化性組成物を調製した。また、表17に記載の成分及び配合量とした以外は比較例1と同様の方法により、比較例10の硬化性組成物を調製した。さらに、得られた実施例43及び比較例10の硬化性組成物について、実施例1と同様の方法により評価を実施した。結果を表16及び表17に示す。
なお、表16及び表17中で使用される着色剤分散液(IR(infraredrays)顔料分散液、及び有彩色顔料分散液)、及びアルカリ性可溶性樹脂以外の各種成分は、表9〜表11中で使用されるものと同じである。着色剤分散液(IR顔料分散液、及び有彩色顔料分散液)、及びアルカリ性可溶性樹脂については、それぞれ後述するものを用いた。
〔着色剤分散液〕
<赤外線吸収顔料含有分散液(IR分散液)>
(赤外線吸収顔料含有分散液の調製)
ピロロピロール顔料1(13.5質量部)、分散樹脂1(4.0質量部)、PGMEA(82.5質量部)の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO−3000−10(日本ビーイーイー(株)製))で、混合、分散して、IR顔料分散液を調製した。なお、上記分散樹脂1は、後述する有彩色顔料分散液2−1〜2−4で使用したものと同じである。
ピロロピロール顔料1:下記構造(特開2009−263614号公報に記載の方法で合成した)(波長800〜900nmの範囲に吸収極大を有する赤外線吸収剤)
<有彩色顔料分散液2−1〜2−4の調製>
下記表15に示す組成の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO−3000−10(日本ビーイーイー(株)製))で、3時間混合、分散して、有彩色顔料分散液2−1〜2−4を調製した。下記表15には、該当する成分の使用量(単位:質量部)を示す。
以下、表15にて使用される成分を示す。なお、アルカリ可溶性樹脂2については、硬化性組成物の調製に際しても別途使用した。
(分散剤)
・分散樹脂1:Disperbyk−111(BYKChemie社製)
・分散樹脂2:下記構造(Mw:7950)(各構造単位に併記される数値(主鎖繰り返し単位に併記される数値)は、各構造単位の含有量〔モル%〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。)
・分散樹脂3:下記構造(Mw:30000)(各構造単位に併記される数値(主鎖繰り返し単位に併記される数値)は、各構造単位の含有量〔モル%〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。)
(アルカリ可溶性樹脂)
・アルカリ可溶性樹脂2:下記構造(Mw:12000)(各構造単位に併記される数値は、各構造単位の含有量〔モル%〕を表す。)
以下、結果を表16及び表17に示す。
上記の結果から、着色剤として赤外線吸収剤及び有彩色顔料を用いた硬化性組成物であっても、本発明の所望の効果が発現することが確認できる。
[白色着色剤含有硬化性組成物]
表18に記載の成分及び配合量とした以外は実施例1と同様の方法により、実施例44の硬化性組成物を調製した。また、表19に記載の成分及び配合量とした以外は比較例1と同様の方法により、比較例11の硬化性組成物を調製した。さらに、得られた実施例44及び比較例11の硬化性組成物について、実施例1と同様の方法により評価を実施した。結果を表18及び表19に示す。
なお、表18及び表19の硬化性組成物中で使用される着色剤分散液、及びアルカリ性可溶性樹脂以外の各種成分は、表9〜表11で使用されるものと同じである。着色剤分散液、及びアルカリ性可溶性樹脂については、それぞれ後述するものを用いた。
〔着色剤分散液〕
<白色顔料分散液の調製>
チタンブラックA−1を含む分散液(着色剤分散液1)において、チタンブラックA−1のかわりに酸化チタン顔料を用いて着色剤分散液を調製した(着色剤分散液の組成は、以下のとおりである。酸化チタン:38.5質量部、Solsperse 36000 Lubrizol社製:11.5質量部、PGMEA:50部)。
〔アルカリ可溶性樹脂3〕
なお、下記アルカリ可溶性樹脂3の重量平均分子量Mwは、12000である。(各構造単位に併記される数値は、各構造単位の含有量〔モル%〕を表す。)
以下、結果を表18及び表19に示す。
上記の結果から、着色剤として白色着色剤を用いた硬化性組成物であっても、本発明の所望の効果が発現することが確認できる。
[実施例45]
界面活性剤を用いなかったことを除いては実施例3と同様にして、硬化性組成物を作製し、評価を行ったところ、実施例3と同様の結果が得られた。
[実施例46]
実施例3に使用した着色分散液について、分散樹脂を分散樹脂1Aから下記に示す分散樹脂1Bに変更したたことを除いては実施例3と同様にして、硬化性組成物を作製し、評価を行ったところ、実施例3と同様の結果が得られた。
・分散樹脂1B:下記式により表される分散剤(各構造単位に併記される数値(主鎖繰り返し単位に併記される数値)は、各構造単位の含有量〔モル%〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。)

なお、「Mw」は重量平均分子量を意図する。
[実施例47]
実施例3において、重合性化合物としてM−1 15質量部を、M−1 10質量部及びPET−30(ペンタエリスリトールトリアクリレート、日本化薬社製)5質量部にかえた以外は同様にして、評価を行ったところ、実施例3と同様の結果が得られた。
[実施例48]
実施例3において、TiN-1に代えて、TiN-1とカーボンブラック(商品名「カラーブラック S170」、デグサ社製、平均一次粒子径17nm、BET比表面積200m/g、ガスブラック方式により製造されたカーボンブラック)を用い、その固形分質量比が7:3になるようにした以外は、実施例3と同様にして、評価したところ、アンダーカットの評価がAAからAになった以外は実施例1と同様の効果が得られた。
[実施例49]
実施例41のGreen顔料分散液を下記Green顔料分散液2にかえた以外は実施例40と同様の方法により硬化性組成物を調製し、実施例41と同様の方法により評価を行ったところ、実施例41と同様の効果が得られた。
<Green顔料分散液2>
実施例41のGreen顔料分散液の調製において、分散剤Aを下記分散剤Bにかえた以外は同様の方法によりGreen顔料分散液2を調製した。
・分散剤B:以下に示す構造(各構造単位に併記される数値は、繰り返し部位の繰り返し数を示す。)
a=3.5、b=2.5、酸価=30mgKOH/g、Mw=20000
100・・・固体撮像装置
101・・・固体撮像素子
102・・・撮像部
103・・・カバーガラス
104・・・スペーサー
105・・・積層基板
106・・・チップ基板
107・・・回路基板
108・・・電極パッド
109・・・外部接続端子
110・・・貫通電極
111・・・レンズ層
112・・・レンズ材
113・・・支持体
114、115・・・遮光膜
201・・・受光素子
202・・・カラーフィルタ
201・・・受光素子
202・・・カラーフィルタ
203・・・マイクロレンズ
204・・・基板
205b・・・青色画素
205r・・・赤色画素
205g・・・緑色画素
205bm・・・ブラックマトリクス
206・・・pウェル層
207・・・読み出しゲート部
208・・・垂直転送路
209・・・素子分離領域
210・・・ゲート絶縁膜
211・・・垂直転送電極
212・・・遮光膜
213、214・・・絶縁膜
215・・・平坦化膜
300・・・赤外線センサ
310・・・固体撮像素子
311・・・赤外線吸収フィルタ
312・・・カラーフィルタ
313・・・赤外線透過フィルタ
314・・・樹脂膜
315・・・マイクロレンズ
316・・・平坦化膜
4・・・ウエハ
2、6・・・パターンエッジ部
T・・・切れ込みの長さ
P・・・ひさしの長さ
・・・露光領域
・・・未露光領域

Claims (16)

  1. 重合抑制能を有する基とチオール基とを有する化合物と、
    重合性化合物と、
    オキシム化合物、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物からなる群から選択される光重合開始剤と、
    着色剤と、を含有する硬化性組成物であって、
    前記重合抑制能を有する基とチオール基とを有する化合物が下記一般式(1X)で表される化合物である、硬化性組成物
    一般式(1X)
    一般式(1X)中、nは2以上の整数を表し、
    Aはn価の基を表し、
    Rは水素原子又は下記一般式(2X)で表される1価の基を表す。
    一般式(2X)
    一般式(2X)中、Lは、2価の連結基を表し、Qは、重合抑制能を有する基を表し、*は硫黄原子との結合部位を表す。なお、一般式(2X)中、L及びQが複数存在する場合には、複数のL及び複数のQはそれぞれ同一であっても異なっていてもよい。
    前記重合抑制能を有する基は、一般式(IH−1)で表される化合物又は一般式(IH−2)で表される化合物に含まれる水素原子を1つ引き抜いて1価の基とした基である。
    一般式(IH−1)中、R は、置換基を表す。
    の前記置換基は、さらに置換基を有してもよいアルキル基、さらに置換基を有してもよいアルケニル基、ヒドロキシ基、さらに置換基を有してもよいベンジル基、さらに置換基を有してもよいアミノ基、さらに置換基を有してもよいアリール基、カルボキシ基、さらに置換基を有してもよいアルコキシカルボニル基、又は、さらに置換基を有してもよいアシル基を表す。
    〜R は、それぞれ独立して、水素原子、または、置換基を表す。
    ただし、一般式(IH−1)のR 〜R のうちいずれかの水素原子、又は置換基が有する水素原子が、が引き抜かれることで前記重合抑制能を有する基が形成される。
    一般式(IH−2)中、Wは、アルキレン基を表す。
    ただし、一般式(1X)で表される化合物は、式(1)で表される数値R1が0%超であり、かつ、下記式(2)で表される数値R2が0%超である。
    式(1): R1=[重合抑制能を有する基の数/(チオール基の数+重合抑制能を有する基の数)]×100
    式(2): R2=[チオール基の数/(チオール基の数+重合抑制能を有する基の数)]×100
  2. 前記一般式(1X)で表される化合物において、前記式(1)で表される数値R1が1〜50%である、請求項1記載の硬化性組成物。
  3. 前記一般式(1X)で表される化合物において、前記式(1)で表される数値R1が3〜30%である、請求項記載の硬化性組成物。
  4. 前記一般式(1X)で表される化合物において、前記式(1)で表される数値R1が8〜15%である、請求項記載の硬化性組成物。
  5. 前記光重合開始剤の含有量が、前記重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で1〜100倍である、請求項1〜4のいずれか1項に記載の硬化性組成物。
  6. 前記光重合開始剤の含有量が、前記重合抑制能を有する基とチオール基とを有する化合物の含有量に対して、質量比で5〜10倍である、請求項1〜5のいずれか1項に記載の硬化性組成物。
  7. 前記重合抑制能を有する基とチオール基とを有する化合物の含有量が、全固形分に対して0.01〜3質量%である、請求項1〜のいずれか1項に記載の硬化性組成物。
  8. 前記一般式(1X)で表される化合物が、一般式(1)で表される化合物である、請求項1〜7のいずれか1項に記載の硬化性組成物。
    一般式(1)中、mは、0、1又は2を表し、Lは、それぞれ独立に、アルキレン基、アリーレン基、エーテル基、エステル基、チオエステル基、アミド基、ウレタン基、及びウレア基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた連結基を表し、Qは、それぞれ独立に、水素原子又は一般式(2)で表される基を表す。
    一般式(2)中、Lは、アルキレン基、アリーレン基、エーテル基、エステル基、チオエステル基、アミド基、ウレタン基、及びウレア基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた連結基を表し、Qは、前記重合抑制能を有する基であり、*は硫黄原子との結合部位を表す。なお、一般式(1)中、L及びQが複数存在する場合には、複数のL及び複数のQはそれぞれ同一であっても異なっていてもよい。
    ただし、前記一般式(1)で表される化合物において、下記式(3)で表される数値R3及び下記式(4)で表される数値R4は、いずれも0%超の数である。
    式(3):R3=[Qの数/(チオール基の数+Qの数)]×100
    式(4):R4=[チオール基の数/(チオール基の数+Qの数)]×10
  9. 前記重合抑制能を有する基は、前記一般式(IH−1)で表される化合物に含まれる水素原子を1つ引き抜いて1価の基とした基である、請求項1〜8のいずれか1項に記載の硬化性組成物。
  10. 前記重合抑制能を有する基は、前記一般式(IH−2)で表される化合物に含まれる水素原子を1つ引き抜いて1価の基とした基である、請求項1〜8のいずれか1項に記載の硬化性組成物。
  11. 更に、重合抑制能を有する基を有さないチオール化合物を含有する、請求項1〜10のいずれか1項に記載の硬化性組成物。
  12. 請求項1〜11のいずれか1項に記載の硬化性組成物を硬化して得られる、硬化膜。
  13. 請求項1〜11のいずれか1項に記載の硬化性組成物を用いて硬化性組成物層を形成する、硬化性組成物層形成工程と、
    前記硬化性組成物層をパターン状に露光する、露光工程と、
    未露光部を現像除去して硬化膜を形成する、現像工程と、を含有する硬化膜の製造方法。
  14. 請求項13に記載の硬化膜の製造方法を含有する、カラーフィルタの製造方法。
  15. 請求項12に記載の硬化膜をカラーフィルタとして含有する、固体撮像素子。
  16. 請求項12に記載の硬化膜をカラーフィルタとして含有する、赤外線センサ。
JP2018564456A 2017-01-25 2018-01-09 硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ Active JP6727344B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017011676 2017-01-25
JP2017011676 2017-01-25
PCT/JP2018/000201 WO2018139186A1 (ja) 2017-01-25 2018-01-09 硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ

Publications (2)

Publication Number Publication Date
JPWO2018139186A1 JPWO2018139186A1 (ja) 2019-11-07
JP6727344B2 true JP6727344B2 (ja) 2020-07-22

Family

ID=62979334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018564456A Active JP6727344B2 (ja) 2017-01-25 2018-01-09 硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ

Country Status (3)

Country Link
JP (1) JP6727344B2 (ja)
TW (1) TW201827507A (ja)
WO (1) WO2018139186A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006078B2 (ja) * 2017-08-10 2022-01-24 Agc株式会社 反射型マスクブランク、および反射型マスク
JP7263856B2 (ja) * 2019-03-14 2023-04-25 東洋インキScホールディングス株式会社 感光性着色組成物、および、これを用いたカラーフィルタ、液晶表示装置
JP2020190665A (ja) * 2019-05-23 2020-11-26 東洋インキScホールディングス株式会社 固体撮像素子用カラーフィルタの感光性着色組成物、カラーフィルタ、およびそれを用いた固体撮像素子
TWI804966B (zh) * 2021-08-31 2023-06-11 力晶積成電子製造股份有限公司 遠紅外線感測元件以及包含其的感測器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284787A (ja) * 2001-03-27 2002-10-03 Yokohama Rubber Co Ltd:The 安定フリーラジカル化合物およびそれを含むポリマー組成物
JP2006227223A (ja) * 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd パターン形成用組成物、パターン形成材料、及びパターン形成方法
JP2006251390A (ja) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP6325097B2 (ja) * 2014-05-27 2018-05-16 富士フイルム株式会社 着色組成物、膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子および赤外線センサ
US9512380B2 (en) * 2014-06-05 2016-12-06 China Petroleum & Chemical Corporation Hindered phenol compound, preparation thereof and use thereof as an antioxidant

Also Published As

Publication number Publication date
WO2018139186A1 (ja) 2018-08-02
JPWO2018139186A1 (ja) 2019-11-07
TW201827507A (zh) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6896718B2 (ja) 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法
JP6745869B2 (ja) 組成物、組成物の製造方法、硬化膜、カラーフィルタ、遮光膜、固体撮像素子および画像表示装置
TWI798453B (zh) 遮光性樹脂組成物、硬化膜、濾色器、遮光膜、固體攝像元件、圖像顯示裝置
JP6818751B2 (ja) 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、硬化膜の製造方法、及び、多官能チオール化合物
JP6674035B2 (ja) 組成物、硬化膜、カラーフィルタ、固体撮像素子、赤外線センサ、近赤外線センサ、及び、近接センサ
JP6727344B2 (ja) 硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ
JP6680907B2 (ja) 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び、硬化膜の製造方法
JP6698820B2 (ja) 組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子および画像表示装置
JP7109624B2 (ja) 組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像装置及び画像表示装置
WO2019176409A1 (ja) 硬化膜の製造方法、固体撮像素子の製造方法
JP2022079500A (ja) 金属窒化物含有粒子、分散組成物、硬化性組成物、硬化膜、及びそれらの製造方法、並びにカラーフィルタ、固体撮像素子、固体撮像装置、赤外線センサ
JP6571275B2 (ja) 組成物、組成物の製造方法、硬化膜、カラーフィルタ、遮光膜、固体撮像素子及び画像表示装置
JPWO2019069609A1 (ja) 硬化膜の製造方法、固体撮像素子の製造方法、画像表示装置の製造方法
JP6745977B2 (ja) 硬化性組成物、硬化膜、遮光膜、固体撮像素子、固体撮像装置、及び、硬化膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250