JP6893538B2 - 光走査装置および、光学拡張または光学圧縮の装置 - Google Patents

光走査装置および、光学拡張または光学圧縮の装置 Download PDF

Info

Publication number
JP6893538B2
JP6893538B2 JP2019154540A JP2019154540A JP6893538B2 JP 6893538 B2 JP6893538 B2 JP 6893538B2 JP 2019154540 A JP2019154540 A JP 2019154540A JP 2019154540 A JP2019154540 A JP 2019154540A JP 6893538 B2 JP6893538 B2 JP 6893538B2
Authority
JP
Japan
Prior art keywords
prism
optical element
scanning
optical
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019154540A
Other languages
English (en)
Other versions
JP2020056997A (ja
Inventor
帥 董
帥 董
小平 洪
小平 洪
劉 祥
祥 劉
淮 黄
淮 黄
進 趙
進 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Publication of JP2020056997A publication Critical patent/JP2020056997A/ja
Priority to JP2021092166A priority Critical patent/JP2021140184A/ja
Application granted granted Critical
Publication of JP6893538B2 publication Critical patent/JP6893538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本技術は、一般に光走査装置および方法に関し、特に、走査光学パターンの生成および走査を対象とする。
光スキャナは、自動運転への応用を含む多くの応用を有する。モバイルプラットフォームの環境は、典型的にはパルス信号(例えば、レーザ信号)を送信し、パルス信号の反射を検出するLiDARセンサなどの1つまたは複数のセンサを使用してスキャンまたは他の方法で検出することができる。
環境についての三次元情報は、このようにして(例えば、レーザ走査点において)決定され得る。様々な干渉の原因(例えば、変化する地上レベル、障害物の種類など)、および位置および位置技術の制限(例えば、GPS信号の精度)は、障害物回避およびナビゲーション用途に影響を及ぼし得る。したがって、光スキャナから得られる三次元情報の精度および信頼性を改善するための改善された光走査および処理技術が依然として必要とされている。
本発明は、簡易な構成でビームの拡大および圧縮を行う光走査装置および、光学拡張または光学圧縮の装置を提供することを主な目的とする。
本発明の第1の態様によれば、光走査装置が提供され、該光走査装置は、
入力光源に結合されて入力光ビームを受け取り、第1の走査パターンを有する走査光ビームを生成するように動作可能であるビームスキャナと、
前記ビームスキャナから走査光ビームを受光し、少なくとも走査光ビームの寸法を変化させるように配置される第1の光学素子と、
前記第1の光学素子から出力された光を受光し、走査光ビームの方向および寸法の少なくともいずれかに別の変化を生じさせ、拡大または圧縮された視野で第2の走査パターンを生成するように設置される第2の光学素子と、
を備える。
本発明の第2の態様によれば、光学拡張または光学圧縮の装置が提供され、該装置は、
第1の走査パターンを有する光ビームを受け取り、第1の方向転換ビームを生成するための第1の光学素子と、前記第1の方向転換ビームを受け取り、第2の走査パターンを有する第2の方向転換ビームを生成する第2の光学素子とを含む少なくとも2つの光学素子を備え、
前記第1の光学素子および前記第2の光学素子の各々は、前記第1の光学素子が前記第2の光学素子に対して第1の角度範囲内で位置決めされるときに前記第2の走査パターンが拡張された視野で生成され、前記第1の光学素子が前記第2の光学素子に対して第2の角度範囲内で位置決めされるときに前記第2の走査パターンが圧縮された視野で生成されるような角度範囲で互いに対して位置決めされるように構成される。
また、本発明の第3の態様によれば、光走査装置が提供され、該光走査装置は、
入力光ビームを受け取り、円形または楕円形の走査ビーム部を含む第1の走査パターンを生成するように構成される第1のビーム走査部と、
前記第1のビーム走査部からの光を受光して第2の走査パターンを有する出力ビームを生成するように配置される第2のビーム走査部と、
を備え、
前記第2の走査パターンは少なくとも1つの平坦または直線境界を含む。
また、本発明の第4の態様によれば、光走査装置が提供され、該光走査装置は、入力光ビームを受け取り、円形または楕円形の走査ビーム部を含む第1の走査パターンを生成するように構成される第1のビーム走査部と、
前記第1のビーム走査部からの光を受光して第2の走査パターンを有する出力ビームを生成するように配置される第2のビーム走査部と、
を備え、
前記第2の走査パターンは少なくとも1つの平坦または直線境界を含む。
さらに、本発明の第5の態様によれば、光走査装置が提供され、該光走査装置は、
第1および第2の回転速度をそれぞれ有し、互いに反対方向に回転するように構成された第1のプリズムと第2のプリズムとを含む第1のビーム走査部と、
前記第1のビーム走査部からの光を受けるように配置され、第3および前記第4のプリズムを含む第2のビーム走査部と、
を備え、
前記第3および前記第4のプリズムは、互いに反対方向に回転するように構成され、
前記第3のプリズムは第3の回転速度を有し、
前記第4のプリズムは第4の回転速度を有し、
前記第1から前記第4の回転速度は、特定の走査パターンを有する出力ビームを生成するように選択可能である。
本発明の実施形態によれば、装置の複雑な制御を必要とすることなくビームを拡大し圧縮することができる光走査装置および、光学拡張または光学圧縮の装置を提供することができる。
ビームスキャナと視野拡大用のプリズムとを含む光学装置の一例を示す図の一例である。 ビームスキャナと視野を圧縮するためのプリズムとを含む光学装置の一例を示す図の一例である。 ビームスキャナと、3次元で示されている視野を圧縮するためのプリズムとを含む光学装置の別の例を示す図の一例である。 走査を行うためのプリズムと視野を圧縮するためのプリズムとを含む光学装置の他の例を示す図の一例である。 視野を変更するためのプリズムを含む光学装置の光線追跡図の一例を示す図の一例である。 図3B1に示す光学装置の3D図を示す図の一例である。3B1。 視野(FOV)を変更するために使用される2つのプリズムの別の図の一例である。 プリズムおよびそれらの互いに対する向きの三次元図を示す図の一例である。 開示された実施形態による光学装置によって生成された走査パターンの例を示す図の一例である。 走査を実行するプリズムと視野の圧縮または拡大のための様々な光学部品とを含む光学装置の一例を示す図の一例である。 プリズムと屈折ビームの例を示す図の一例である。 様々な領域を示す入力角に対するプリズムの偏向角の導関数の例示的なプロットを示す図の一例である。 例示的なプリズムの3D図を示す図の一例である。 例示的なプリズムの別の3D図を示す図の一例である。 様々な寸法および角度を示す例示的なプリズムの概略図の一例である。 頂部が底部よりも光源に近い状態で入射光線に対して傾斜したプリズムの光線追跡図の一例を示す。 図6F1に示すプリズムの3D図を示す図の一例である。 基部が頂点よりも光源に近い状態で入射光線に対して傾斜したプリズムの光線追跡図の一例である。 図6G1に示すプリズムの3D図を示す図の一例である。 入射光線に対してより大きい入射角を有する頂部よりも基部が光源に近い状態で入射光線に対して傾斜したプリズムの光線追跡図の一例を示す。 図6H1に示すプリズムの3D図の一例を示す。 平面ミラースキャナと回転多面鏡スキャナの一例を示す図の一例である。 デュアルスキャナの例と対応するスキャンパターンの例を示す図の一例である。 デュアルスキャナの他の例と対応するスキャンパターンの他の例を示す図の一例である。 デュアルスキャナの他の例および対応するスキャンパターンの他の例を示す図の一例である。 デュアルスキャナの追加の例を示す図の一例である。 デュアルスキャナのさらなる例を示す図の一例である。 走査パターンの例と4つのプリズムの例を示す図の一例である。
以下、本発明の実施の形態のいくつかについて図面を参照しながら説明する。添付の図面は、あくまでも本願発明の理解を容易にするためのものであり、本発明の範囲を限定することを意図するものでは決してない。図面において同一または対応する要素・部材には同一の参照符号を付し、その重複説明は適宜省略する。また、図中の各部材の形状・サイズについては、説明を容易にするため、適宜拡大・縮小・省略するために現実の縮尺・比率とは合致していない場合がある。また、「実質的に」の用語は、測定誤差をも含む趣旨で使用される。
また、以下で使用される第1、第2等のような用語は、同一又は相応する構成要素を区別するための識別記号に過ぎなく、同一又は相応する構成要素が、第1、第2等の用語によって限定されるものではない。
また、結合とは、各構成要素間の接触関係において、各構成要素間に物理的に直接接触される場合だけを意味するのではなく、他の構成が各構成要素間に介在され、その他の構成に構成要素がそれぞれ接触されている場合まで含む概である。
開示される技術のいくつかの態様は、他の特徴および利点の中でも、走査ビームの視野(FOV)の増大および減少を含む、走査光ビームのサイズの変更を可能にする、二次元(例えば方位角および仰角)で走査光ビームを生成するための技術に関する。走査は、様々な構成のプリズム、回転可能なミラー、および回転可能なポリゴンミラーの少なくともいずれかによって実行することができる。走査ビームのFOVに対する変更は、所定の角度関係で配置されたプリズムによって実行されてもよく、他の光学部品も同様に含んでもよい。所定の角度関係に応じて、プリズムは1つ以上の軸に沿ったFOVの拡張および圧縮を行うことができる。
開示された技術のさらなる態様は、(楕円形または円形のパターンとは対照的に)長方形の走査パターンを含むスキャミングビームパターン、またはより一般的には1つ以上の平坦または直辺を含む走査パターンを生成するための光走査ビームの形状の制御に関する。開示されているスキャナは、生成された走査パターンを異なる方向に制御することを可能にする少なくとも2つの部分を含む。
例示的な一実施形態では、静止プリズムを使用するFOV拡張/圧縮(本明細書ではビーム拡張/圧縮とも呼ばれることがある)の技法が開示されている。プリズムウェッジ角、プリズム間の相対角度、および少なくとも材料の屈折率に基づく材料の選択を選択することによって、所定のFOV拡張および圧縮の少なくともいずれかを達成することができる。
レーザビーム走査は、レーザレーダ、レーザ誘導、光通信、精密追跡システム、および他の多くの用途で使用されている。以前は、解決策は機械的走査(例えば、走査ガルバノメータ、回転ミラー、微小電気機械システム(MEMS)スキャナ)、およびフェイズドアレイ走査(例えば、音響光学的スキャニング、電気光学結晶を介したスキャニング、液晶フェイズドアレイ、フェイズドアレイ格子)を含んでいた。機械的走査は最も成熟した走査技術であるが、低い走査速度を含むいくつかの不利な点を有し、走査装置は大容積を必要とする。フェイズドアレイ走査は、光ビームのアレイの位相を変調することによって制御され、それによって、高精度、高速、および機械的慣性のない(またはほとんどない)光ビームの指向性偏向を実現するが、制限された走査範囲(通常わずか±10°)、複雑な制御システム、制限された効率(高消費電力)および高コストを含む不利益点があった。
自動車のLIDARなどの一部のアプリケーションでは、他の車や障害物などの関心のあるオブジェクトは、仰角方向よりも方位角方向でより密集しているため、方位角方向(車両に対して左右に見た方向)のFOVは、仰角方向(上下に見た場合)のFOVよりも広くなるはずです。いくつかの例示的な実施形態では、レーザスポットサイズは、方位角において大きくてもよい(例えば、方位角において大きな発散角を有する)。
本明細書に開示されたビーム走査装置は、いくつかの実施形態において、ビーム走査部とFOV伸縮部とを含む。ビーム走査部は、ガルバノメータ(駆動ミラー)、MEMSデバイス、音響または電気光学走査フェイズドアレイを含み得る。FOV拡張/圧縮部分は、視野を一次元または二次元に拡張または圧縮する位置に固定されたプリズムを含むことができる。プリズム間の1つ以上の角度は、FOVが拡張されるかまたは圧縮されるかどうかを決定する。例えば、2つのプリズムが入射光に対して配置される方向および角度は、入射光が圧縮されるのか拡張されるのかを決定することができる。FOVをプリズムで拡張/縮小することによって、スキャナの制御システムの複雑さを軽減することができる。いくつかの実施形態では、それに加えてまたはその代わりに、線または格子などの他の光学部品を使用して、拡張または圧縮視野を生成することができる。
図6F1および図6G1は、入射光に対してどのような角度でどのようにプリズムを配向すればどのように拡張または圧縮されたFOVを生成することができるかについて2つの例を示す。
実施例1:発散ビームが図6F1に示されるように配向されたプリズムに入射するとき。図示の角度でプリズムの頂部(例えば、より狭い)部分に入射するビームは、プリズムの底部に入射するビームと比較してより大きな角度で屈折する。結果として、プリズムを出るビームは、FOVの全体的な拡張または圧縮を提供することができるが、光円錐の頂部/底部セクションは、異なる圧縮/拡張係数を受ける可能性がある。図6F1は、全反射を受けた底部(広い部分)の光線も示しています(アプリケーションによっては回避する必要がある場合とない場合がある)。
実施例2:図6G1は、図6F1に示すプリズムとは反対の方向に傾斜したプリズムを示す。この構成に関して、FOVの拡張または圧縮に関する同様の評価を行うことができる。2つ以上のプリズムをカスケードで使用することは、FOVの拡張または圧縮の程度に対するさらなる制御を可能にするだろう。
図1は、いくつかの例示的実施形態による光学装置100を示す。この装置は、ビームスキャナ102、第1のプリズム103、および第2のプリズム105を含む。光学装置100は、FOV拡張を引き起こすように構成される。
図示しない光源からの入射ビーム101はビームスキャナ102に供給され、ビームスキャナ102は時間の経過と共にビームを複数の方向に向け直すかまたは走査する。スキャナ102は、ある場合はある方向に、また別の場合は別の方向にビームを向け、それによって経時的に走査パターンを生成する。あるひろがりでは、ビームは光軸110と走査ビーム109との間で最大偏向角111に偏向される。走査ビーム109は、第1のプリズムの頂端部に向かって第1のプリズム103を通過し、屈折し、そして第1の屈折ビーム117として光軸に対して角度116で第1のプリズム103を出る。ビームが反対方向に走査されると、ビームは最大偏向角111Aまで走査され、ビーム109Aは第1のプリズムの基端部に向かって第1のプリズム103を通過し屈折し、第1の屈折ビーム117Aとして角度116Aで第1のプリズム103を出る。ビーム117および117A(およびその間のすべてのビーム)は中間面104を通過することができる。次に、ビーム117は第2のプリズム105を通過して屈折し、第2の屈折ビーム118として光軸に対して角度112で第2のプリズム105を出る。ビーム117Aは、第2のプリズム105を通過して屈折し、第2の屈折ビーム118Aとして光軸に対して角度112Aで第2のプリズム105を出る。ビーム118および118Aは中間面106を通過することができる。ここで、第1プリズムからの出射角と第2プリズムからの出射角の比較、例えば、角度116と116Aの合計と角度111と111Aの合計との比較は、拡張または圧縮のどちらが発生するかを明らかにすることができる。なお、面104および106は物理的な面ではなく、開示されたシステムの説明の目的のための仮想面であることに留意されたい。
いくつかの例では、同じ入射角または異なる入射角を有する2つ以上の入射ビームが同時にまたは異なる時間にビームスキャナ102に提供される。いくつかの例では、2つ以上の入射ビームは、共に実装された2つ以上のダイオードダイから到来することがある。いくつかの例では、2つ以上のダイオードダイは、同じプリント回路基板に電気的に接続されている基板上に実装されている。いくつかの例では、2つ以上の入射ビームは、2つ以上のレーザダイオードから到来してもよい。いくつかの例では、2つ以上のレーザダイオードは同じプリント回路基板に電気的に接続されている。
スキャナ102は、ある時はある方向に、また別の時には別の方向にビームを向け、それによって経時的に走査パターンを生成する。ある寸法では、ビームは光軸110と走査ビーム109との間で最大偏向角111に偏向される。走査ビーム109は、第1のプリズム103の頂端部に向かってこれを通過し、屈折し、そして第1の屈折ビーム117として光軸に対して角度116で第1のプリズム103を出る。ビームが反対方向に走査されると、ビームは最大偏向角111Aまで走査され、ビーム109Aは第1のプリズム103の基端部に向かってこれを通過して屈折し、第1の屈折ビーム117Aとしての光軸に対して角度116Aで第1のプリズム103を出る。ビーム117および117A(およびその間のすべてのビーム)は中間面104を通過してよい。次に、ビーム117は第2のプリズム105を通過して屈折し、第2の屈折ビーム118として光軸に対して角度112で第2のプリズム105を出る。ビーム117Aは、第2のプリズム105を通過して屈折し、第2の屈折ビーム118Aとして光軸に対して角度112Aで第2のプリズム105を出る。ビーム118および118Aは中間面106を通過してよい。例えば、角度116および116Aの合計と、角度111および111Aの合計との比較により、拡張または圧縮のどちらが発生するのかを明らかにすることができる。面104および106は物理的な面ではなく、開示されたシステムの説明の目的のための仮想面であることに留意されたい。
図1の例では、第1のプリズム103および第2のプリズム105は、FOVの拡張を引き起こすように配置されている。拡張すると、角度112および112Aによって決定されるFOVは、角度111およびは111Aによって決定されるFOVよりも大きい。例えば、角度112が角度111より大きく角度112Aが111Aより大きい場合、または角度112が角度111より大きい場合、および角度112Aが角度111Aより大きい場合、FOVは拡張される。拡張を生じさせるために、第1のプリズム103は、その光源側の第1の面と、その頂部がその基部よりも位置121に近いところで光軸との間に90度を超えるある角度φで配置される。第2のプリズム105は、その像面側の第2の面と光軸との間に、その頂部がその基部よりも位置121に近いところで90度未満の角度θで配置されている。第1および第2のプリズムは、例えば中間面106において位置114から位置115への光軸のシフトを引き起こし得る。
図2Aは、いくつかの例示的実施形態による光学装置200を示す。この装置は、ビームスキャナ202、第1のプリズム203、および第2のプリズム205を含む。光学装置200は、FOV圧縮を引き起こすように構成される。
図2Aに示す例では、第1のプリズム203および第2のプリズム205は、FOVの圧縮を引き起こすように配置されている。圧縮により、角度212および212Aによって決定されるFOVは、角度211および211Aによってスキャナ202の出射時に決定されたFOVより小さい。例えば、角度212Aと角度212との合計が、角度211Aと角度211との合計より小さいとき、FOVは圧縮される。圧縮を生じさせるために、第1のプリズム203は、その基部がその頂部よりも位置221に近いところで、その光源側の第1の面と光軸との間で90度未満のある角度φで配置される。第2のプリズム105は、その基部がその頂部よりも位置221に近いところでその像面側の第2の面と光軸との間で90度を超えるある角度θで配置される。第1および第2のプリズムは、例えば中間面206において位置214から位置215への光軸のシフトを引き起こし得る。
図2Bは、光学スキャナ252、第1のプリズム253、および第2のプリズム255を含む光学装置の一例を示し、少なくともいくつかの光学部品および光線の3次元図を示す。符号254および256で示される平面は物理的な物体ではないが、読者が中間平面254および像平面256における光線の境界を決定するのを助けるために図2Bに含まれる。そのため、平面254および256は仮想面と呼ばれることがある。FOVは符号261で示される垂直方向に圧縮される。符号262に示す水平方向には圧縮も拡張もしない。
図3Aは、いくつかの例示的実施形態による光学装置300を示す。図3Aに示す装置は、図2Aと同様にFOV圧縮を引き起こすように構成される。さらに、図3Aは、ビームスキャナ部の構成要素のいくつかを示す。装置300は、FOV圧縮を引き起こすように配置された第1のプリズム303および第2のプリズム305を含む。図2Aと比較すると、図3Aは、第3のプリズム321および第4のプリズム322を含むビームスキャナ302の一実装形態を示す。プリズム321および322は、互いに逆の方向に回転可能である。例えば、プリズム321は(例えばモータによって)時計回りに回転し、プリズム322は反時計回りに回転する。いくつかの例示的実施形態では、一方のプリズムを毎分約10,300回転(RPM)の速度で回転させることができ、他方のプリズムを2800RPMで回転させることができる。他の回転速度もまた使用され得る。4つのプリズムのそれぞれは、いくつかの実施形態では、約1.509の屈折率を有する光学的に透明な材料から構成される。プリズム321および322のうちの少なくともいずれかは、18度の頂角を有することができる。いくつかの例示的実施形態では、第3のプリズム321および第4のプリズム322は、40°に等しい角度312および312Aの合計に等しい全角にわたってビームを走査することができる。
図3B1は、FOVを変更するための2つのプリズム303Bおよび305Bの光線追跡図を示す。320Bは光線追跡図であり、システムを通過する光線の一部を示す。
図3B2は、325Bにおいて、プリズム307Bおよび309Bの三次元図、および互いに対するそれらの向き、ならびにシステムを横切る光線の束を示す。
図3B1および図3B2は、反対の傾斜方向を有する、同じウェッジ角度を有する例である。図3B1および図3B2において、ビームは、第1のプリズムの厚い側から入射し、第1のプリズムによって垂直方向に圧縮され、次に第2のプリズムの薄い側に入射し、垂直方向に広がる。
図3B1〜B2のプリズムは、図1、図2A、及び図3Aとは異なる向きにされている。図3Bにおいて、第1のプリズムは、基部がその頂部よりも光源に近い方向に向けられている(傾斜している)。第2のプリズムは、その頂部がその基部よりも第1のプリズムに近い方を向いている。図3B1−B2に示す第1のプリズムは、はFOVを第1の方向に圧縮し、第2のプリズムはFOVを第2の方向に拡張する。第1の方向と第2の方向は、同じ方向、または互いに90度(または別の角度)異なる方向であり得る。いくつかの実施形態では、第1のプリズムは、圧縮する代わりにFOVを拡張することができ、第2のプリズムは、拡張する代わりにFOVを圧縮することができる。
対照的に、図1は、第1のプリズムの頂部が第1のプリズムの基部よりも光源に近い場合を示しているが、第2のプリズムの頂部は、第1のプリズムと比べて、その頂部がその基部よりも第1のプリズムに近いようにひっくり返っている。図2は、第1のプリズムの頂部よりも第1のプリズムの底部が光源に近いことと、第2のプリズムの底部がその頂部よりも第1のプリズムに近いこととを示す。図2Bおよび3Aにおけるプリズムは、図2Aと同様に配向されている。
図3Cは、FOVを変更するために使用される2つのプリズム303Cおよび305Cを含む他の構成である。320Cは、システムを通過する光線のいくつかを示す光線追跡図である。また、図3Dは、プリズムおよびそれらの互いに対する向きの三次元図320Dを示す。いくつかの実施形態では、第1のプリズムは第1の方向にFOVを拡張することができ、第2のプリズムは第2の方向にFOVを圧縮することができる。他の実施形態では、第1のプリズムは第1の方向にFOVを圧縮し、第2のプリズムは第2の方向にFOVを拡張することができる。いくつかの実施形態では、第1の方向は第2の方向に対して垂直であり、他の実施形態ではそうではない。
前述の実施形態における第2のプリズム(105/205/255/305/305B/309B/305C/305D)は、光軸と比較してFOVの中心にオフセットを生じさせることを含む複数の効果を達成するために使用することができる。第1プリズムによって導入されたオフセットの一部を補償し、第2プリズムの第2面上の反射防止コーティングを使用して反射光を減少させ、実質的な損失なしに光が第2プリズムを出ることができるが迷光または反射光が第2のプリズムを通過して入ることを防ぐ。第2のプリズムは、第2の表面を通り、第1のプリズムによってFOVへの何らかの調整(例えば、拡張または圧縮)の後にさらにFOVを調整する。
開示される実施形態は、以下の特徴のうちの1つ以上を含み得る。第1のプリズムによって引き起こされるFOVの変化の程度は、第2のプリズムによって引き起こされる変化の程度に近い。第1のプリズムによって引き起こされる偏向方向は、(所定の偏心を達成するために)第2のプリズムによって引き起こされる偏向方向と反対である。第1のプリズムによって引き起こされる第1の組の偏向角と第2のプリズムによって引き起こされる第2の組の偏向角との間の差は、視野のFOVの10%未満である。第1のプリズムのウェッジ角は、第2のプリズムのウェッジ角と反対である。第1および第2のプリズムの入射角は10度未満だけ異なる(光軸の両側のビーム偏向角が過度に異なり、走査パターンが中心対称にならないようにするため)。出射面での光の傾斜角は12度未満である(受光開口が小さすぎるのを避けるため)。最後のもの(例えば、第2のプリズム)に入射する光は、プリズムの厚い端部から薄い端部に入射する。最後の(例えば第2の)プリズムへの入射光の角度は限られた範囲の角度に限定される。
図4は、走査プロット400A、400B、および400Cの例を示す。これらの走査プロットは、上述の光学装置のような光学装置からのある期間にわたるビームの位置を示す。プロットは、方位角と仰角(天頂角)の関数として、時間の経過に伴うビームの位置を示す。例示的な走査プロット400Aは、FOVを修正する追加の光学部品を使用せずにスキャナ部によって生成される走査パターンに対応する。特に、プロット400Aは、約±20°の方位角における最大走査角、および約±20°の仰角における最大走査角(水平線の上下)を示す。スキャンパターンの中心は、仰角が約0度、方位角が0度である。
例示的な走査プロット400Bは、FOV拡張/圧縮光学素子が利用されるときに生成され、約±20°の方位角における最大走査角、および約±15°から−8°の仰角における最大走査角を示す。走査パターンの中心は、方位角で約0度、方位角で+2度である。例示的な走査プロット400Bを生成する実施形態では、プリズム303および305は屈折率1.82を有する材料で作られている。プリズム303は14度の頂角を有し、30度傾斜している。プリズム305は20度の頂角を有し、8度に傾斜している。この例では、仰角は40度から22度に圧縮され、圧縮比は0.55である。
図4において、例示的な走査プロット400Cは、FOV拡張/圧縮光学素子が利用されるときに生成され、約±20°の方位角における最大走査角、および約+5°から-22°の仰角における最大走査角を示す。走査パターンの中心もプロット400Aおよび400Bの中心と比較してシフターであり、方位角で約0度、方位角で-7°である。
図5は、図4の光走査装置と同様の光走査装置を示す。図5の実施形態は、プリズム321と同様のプリズム521と、プリズム322と同様のプリズム522とを含む。プリズム521および522は、プリズム321および322と同様に互いに逆回転してもよい。光学素子507はFOVの圧縮または伸張に使用される。図1〜3の装置は、伸縮を引き起こすプリズムを含む。図5において、他の光学要素を追加的または代替的に使用して拡張または圧縮を引き起こすことができる。例えば、凹レンズ、平凹レンズ、またはミラーを含む光学素子520を使用してFOV拡張を引き起こすことができる。FOV圧縮を引き起こすために使用することができる光学素子530の例には、凸レンズ、平凸レンズ、または鏡が含まれる。
開示された技術の動作原理をさらに説明するために、図6A〜図6H2を参照する。簡略化された光線追跡図に加えて、単一のプリズム要素または複数のプリズムのいずれかを示す。
図6Aは、屈折率n608を有し、頂部604および基部606を有する材料から作製されたプリズム602を示す。頂部604の角度は603で示される。入力ビームは、第1の表面の法線に対して角度610でプリズムに衝突し、屈折し、そして第2の表面の法線と出力ビームとの間に形成される角度612でプリズムの反対側を出る。角度614は、プリズムを直進する場合の入力ビームと方向と出力ビーム方向との間の角度である。プリズムの角度間の関係は以下のように表すことができる。
Figure 0006893538
図6Bは、入射角の関数としての偏向角導関数dδ/dθ1のプロット600Bの一例を示しており、ここで、角度δおよび角度θ1は、プリズムについて上述されている。図6Bのプロットは、FOVの拡張または圧縮を生じさせるための適切なプリズムの選択を助けることができる。導関数は、入射角θ1に対する光ビームの偏向角δの変化率を表す。図6Bの領域610において、約−90度と−18度の入射角の間では、プリズムは全反射により入射ビームを反射する。負の値がより小さく(例えば、−15度)、最大で約0度までの角度では、プリズムは、入力ビーム角度範囲と比較して、出力ビーム角度範囲のFOVを拡張する。正の値(例えば、+5度)を有する角度では、プリズムは、入力ビーム角度範囲と比較して、出力ビーム角度範囲のFOVを圧縮する。上記のプロットは、上記のプリズム103/203/303および105/205/305などのプリズムの選択に使用することができる。図4のプロット例では、図6Bでは、プリズム材料の屈折率nは1.8であり、頂角αは25度である。
一実施形態では、FOV拡張を達成するために、入力ビームが負の角度で第1のプリズムに入射し(上述のように、入射ビームの角度を領域620に配置する)、第2のプリズムがそのウェッジ角を反転させて反転される。第1プリズムからのビームは、第2プリズム表面の法線に対して負の角度で到達する。両方のプリズムの複合拡張は、2つのプリズムのそれぞれによる拡張の乗算として表すことができる。
一実施形態では、FOV圧縮を達成するために、入力ビームが第1のプリズムに正の角度で入射し(上述のように、入射ビームの角度を領域630に配置する)、第2のプリズムがそのウェッジ角を逆にして入射する。第1プリズムからのビームは、第2プリズム表面の法線に対して正の角度で到達する。両方のプリズムの複合拡張は、2つのプリズムのそれぞれによる圧縮の乗算として表すことができる。
上述の例示的な実施形態は、大きな角度の圧縮/拡張(例えば、0.4から2.2倍の圧縮/拡張)を引き起こすように実現することができる。ビームの位置がずれているか、総偏向角が大きすぎると、実用上の限界が生じることがある。第1のプリズムを入射光に対して大きな角度で配置して光ビームの第1の大きな角度拡張を達成し、第2のプリズムを主光軸に対して小さな角度または逆の角度で配置して光ビームの第2の小さな角度での拡張または小さな角度での圧縮を達成することによって上記の限界に対処することができる。これらの組み合わせはビームの所定の拡張角度を生じさせる。
いくつかの例示的実施形態では、3つのプリズムを使用して拡張または圧縮を引き起こすことができる。例えば、3つのプリズムは圧縮または拡張を引き起こす可能性がある。いくつかの実施形態では、最初の2つ(第1および第2)のプリズムは拡張または圧縮を引き起こすことがあり、第3のプリズムはビームの偏心および光軸との角度を調整することがある。
いくつかの例示的実施形態では、4つのプリズムを圧縮または拡張のために使用することができる。例えば、4つのプリズムは圧縮または拡張を引き起こす可能性がある。いくつかの実施形態では、最初の3つ(第1から第3)のプリズムは拡張または圧縮を引き起こすことがあり、第4のプリズムはビームの偏心および光軸との角度を調整することがある。
いくつかの例示的実施形態では、4つのプリズムは2対のプリズムを含む。第1の対は水平FOV拡張または圧縮を実現することができ、第2の対は垂直FOV拡張または圧縮を実現するために光軸上で90°回転させることができる。
他の例示的な実施形態では、第1の対は所定の方向へのFOVの拡張または圧縮を実現し、第2の対は所定の方向へのFOVの拡張または圧縮を実現するために光軸上で所定の角度だけ回転させることができる。
図6Cは、プリズム650Cの3D図の一例を示す。図6Cのプリズム(および本明細書に開示されるプリズムの多く)は、ウェッジプリズムと呼ばれることがある。図6Cのウェッジプリズムは、円形の面を有し、これはまた、第1の次元(図6Cの垂直の次元)において円形の断面を有するプリズムとして表すことができる。プリズム材料は、一方の側が他方の側よりも厚く、厚い側から狭い側に向かって直線状のテーパを有する。符号654Cに示すように、第1の寸法に垂直な寸法の断面形状は長方形である。いくつかの実施形態では、2つの方向にくさび形断面を有するプリズムを使用することができることに留意されたい。符号652Cで示されているのは、図6Cに示されているプリズムなどのプリズムの配向を説明するために使用され得る基準方向である。
図6Dは、プリズム650Dの3D図の他の例を示す。断面図が符号652Dに示されており、これは図6Cに示される断面図654Cに垂直である。
図6Eは、様々な寸法および角度を示すプリズム650Eの3D図の別の例を示す。プリズムが屈折している場合、入射光654Eは面に入射し、反対側の面を出る。プリズム650Eは、寸法A、B、およびCを有し、そして頂角αおよび頂面652Eを有する。
図6F1は、入射光線に対して傾斜したプリズム652Fを示す光線図であり、頂部は基部よりも光源に近い。ビームと入射面の法線654Fとの間の角度が負である(すなわち、ビームが法線とウェッジ角との間から入射する)場合、全体的なFOVはプリズムによって拡張することができる。入射光線の入射角が大きくなればなるほど、入射角が十分に大きくなって第2の表面で全反射が起こるまでの拡張度が大きくなる。図6F2は、図6F1のプリズム668Fの3D図666Fを示す。
図6G1は、底部が頂部よりも光源に近い状態で入射光線に対して傾斜したプリズム652Gを示す光線図650Gの一例を示す。ビームと入射面の法線654Gとの間の角度が正(すなわち、入射光線が表面法線の下からプリズム面に当たる)であるとき、FOVはプリズムによって圧縮され得る。入射光線の入射角が大きくなればなるほど、圧縮の程度は大きくなるが、光軸の左右の側の2つのビームの偏向角の差は大きくなる。例えば、図6H1では図6G1よりも入射光線に対する入射角が大きいが、光線の偏向角はより大きい。図6H1の構成は、いくつかの用途では有用であり得る一方、他の用途では、あまりにも歪んだ走査パターンを生成し得る。図6G2は、図6G1のプリズム658Gの3D図656Gを示し、図6H2は、図6H1のプリズム658Hの3D図656Hを示す。
図7は、単軸スキャナの例を示しており、そのうちの少なくともいくつかは、前述の図においてスキャナまたはスキャナの一部として使用することができる。符号710は、回転または振動して入力ビームから走査出力ビームを生じさせる回転可能平面ミラーである。ミラーは、MEMS装置、モータ、ガルバノメータ、または他の装置を介して回転することができる。符号720には回転可能なポリゴンミラーがある。符号710では各面が平面鏡と同様の平面鏡である5面鏡が示されている。ポリゴンミラーは、モータまたは他の装置によって回転されて入力ビームを走査させる。方位角および仰角などの二次元で走査するために、複数の走査装置を含む装置を使用することができる。
前述のように、場合によっては、1つ以上の側面が平坦であるか、長方形の境界を有するか、そうでなければ1つ以上の寸法で制御することができる光走査パターンを生成する追加の制御および操作を行うことが望ましい。この点に関して、図8は、スキャナ構成および走査パターンの例を示す。符号800Aでは、回転可能な単一プリズム825と回転可能な平面ミラー832とを含む2つのスキャナを備えた光学装置が示されている。符号800Bでは、回転可能な単一プリズム825と回転可能なポリゴンミラー860とを含む2つのスキャナを備えた光学装置が示されている。800Aの平面ミラー832とプリズム825、または800Bの回転可能な単一プリズム825と回転可能なポリゴンミラー860を反対方向に回転させると、符号800Cおよび符号800Dに示すパターンのようなビーム走査パターンが生成される。入力ビームプロット例800Cおよび800Dは、方位角および仰角にわたる走査を示す。
図9は、スキャナ構成および走査パターンのさらなる例を示す。符号900Aでは、回転可能な一対のプリズム910と回転可能な平面ミラー932とを含む2つのスキャナを備えた光学装置が示されている。平面ミラー932が回転し、一対のプリズム910が反対方向に回転すると、符号900Bに示すパターンのようなビーム走査パターンが入力ビームから生成される。プロット例900Bは、方位角および仰角にわたる走査を示す。いくつかの例示的な実施形態では、プリズムは異なる回転速度で同じ方向に回転させることができる。
図10は、スキャナ構成および走査パターンのさらなる例を示す。符号1000Aでは、ガルバノメータ1030と回転可能な単一プリズム1025とを含む2つのスキャナを備えた光学装置が示されている。1000Bでは、一対の回転可能なプリズム1010と回転可能な単一のプリズム1025を含む2つのスキャナを備えた光学装置が示されており、光は最初に回転可能なプリズム1010に入る。いくつかの例示的な実施形態では、回転可能な単一プリズム1025は、回転可能なプリズム1010と交換されてもよく、その結果、最初に光が回転可能な単一プリズム1025に入る。1000Aのガルバノメータ1030とプリズム1025を反対方向に回転させると、符号1000Cと符号1000Dに示すパターンのようなビーム走査パターンが入力ビームから生成されることがある。回転可能な一対の回転可能なプリズム1010が逆回転され、回転可能な単一のプリズム1025が回転されると、符号1000Cおよび符号1000Dに示されるパターンのようなビーム走査パターンが入力ビームから生成され得る。プロット例800Cおよび800Dは、方位角および仰角(天頂)角にわたる走査を示す。符号1000Cにおける走査パターンは、高さ方向にも走査される水平(または平坦)走査パターンである。符号1000Dにおけるスキャンパターンは、水平方向にもスキャンされる円形のスキャンパターンである。回転可能な単一プリズム1025と比較したガルバノメータ1030の相対速度、または単一プリズム1025と比較した逆回転プリズム対1010の相対速度に応じて、1000Cおよび1000Dなどの異なるパターンを生成することができる。いくつかの例示的実施形態では、プリズム1010の速度はプリズム1025の速度より大きい。例えば、プリズム1010の速度はプリズム1025の速度の5倍、または8倍、または9倍以上であり得る。プリズム1025およびプリズム1010を含むこの説明全体を通してのプリズムは、互いに異なるサイズであり得る。
符号1000Bでのスキャナ構成に関して、逆回転プリズム対1010(時々リズリープリズム対とも呼ばれる)は、等速度で回転することができ、第3のプリズム1025と組み合わされると、走査線を平らまたは水平にすることができる。2つの等速逆回転プリズムの回転速度は、第3のプリズム1025の速度より大きい。このようにして、生成される点群は、(符号1000Cに示されるように)水平方向にあり得、それは、自動運転における他の多くの用途と同様に用途を有し得る。
いくつかの例示的実施形態では、符号1000Bにおける3つのプリズムの頂角はα,α,αであり、屈折率はn、n、nである。3つのプリズムの回転角は、θ,θ,θである。プリズムの回転角は、x軸に対するプリズムのウェッジ角の方向として定義される。
3つのプリズムの物理的パラメータは同じでも異なっていてもよい。例えば、プリズム1はプリズム2と同じ(幾何学的形状および屈折率)であり得る。したがって、この例ではα=αであり、n=nである。
プリズム1とプリズム2を回転させてθ+θ=2nπ(nは整数)とすると、光は、プリズム1とプリズム2を透過して水平方向に走査される。スキャンの範囲は、プリズム1とプリズム2のウェッジ角と屈折率に関係する。このプリズムペアの後のFOVは次のように表すことができる:
Figure 0006893538
回転プリズム3を通過した後、光は入射方向を中心に回転する。回転片の回転角はプリズムのウェッジ角と屈折率に関係しており、偏向角は次のように表すことができる:
Figure 0006893538
光が3つのプリズムを通過した後、射出方向は水平走査と円形走査との重ね合わせと同等になり得るので、平坦なFOVが形成され得る。プリズムの屈折率およびウェッジ角パラメータを制御することによって、両方向のFOVを柔軟に調整することができる。
水平方向と垂直方向のFOV範囲は次のように表すことができる:
Figure 0006893538
開示される主題のいくつかの実施形態では、第1のスキャナは特定の線B1(図示せず)に沿って走査し、第2のスキャナは第2の線B2(図示せず)に沿って走査し、ここで、B1とB2は互いにある角度で(例えば、互いに垂直に)交わる。
図11にスキャナ構成の追加の例を示す。符号1100Aの構成では、ガルバノメータ1130と一対の回転可能なプリズム1120とを含む2つのスキャナを備えた光学装置が示されている。回転プリズム1120は、例えば、リスレー(Risley)プリズム対とすることができる。符号1100Bの構成では、2つのガルバノメータ1130および1132が示されている。
図12にスキャナ構成の追加の例を示す。符号1200Aの構成において、ガルバノメータ1230および回転多面鏡が示されている。符号1200Bの構成では、逆回転し得る一対の回転可能なプリズム1210と回転可能なポリゴンミラー1260が示されている。符号1200Cの構成で、逆回転可能な一対の回転可能なプリズム1210(例えば、リスレー(Risley)の対)、およびガルバノメータ1232が示されている。符号1200Dの構成では、2対の回転可能なプリズムが示されており、各対は逆回転し得る。
2つの逆回転プリズムの速度が−wおよび+wであるとき、走査パターンは直線に近似することができる。回転ミラーが回転速度aを有し、2つの反対方向に回転するプリズムがa−wおよびa+wで回転するとき、2つの互いに垂直な直線を走査して矩形の走査領域を形成することができる。
図13の符号1300Aおよび1300Bは、異なる相対速度での上記走査装置の走査パターンを示す。
図13は、符号1300Cで、互いに対して傾斜した4つのプリズムを示す。4つのプリズムのウェッジ角はαからαであり、屈折率はそれぞれnからnであり、4つのプリズムの回転角はθからθである。プリズムの回転角はプリズムウェッジ角方向として定義することができる。
4つのプリズムのパラメータは同じでも異なっていてもよい。例えば、プリズム1はプリズム2と同じ対(幾何学的形状と材料の屈折率)であり、プリズム3はプリズム4と同じ対である可能性がある(幾何学的形状と材料の屈折率)。
この例では、α=α、α=α、n=n、およびn=nである。プリズム1およびプリズム2が回転し、θ+θ=2nπ(nは整数)のとき、光はプリズム1およびプリズムを通過した後水平方向に走査され得る。走査範囲(すなわち、水平FOV)は、プリズム1およびプリズム2のウェッジ角に関連しており、これは以下のように表すことができる:
Figure 0006893538
プリズム3およびプリズム4が回転してθ+θ=(2n+1)π(nは整数)を満たすとき、光はプリズム3およびプリズム4を通過して垂直方向に走査され、FOVは次のように表すことができる:
Figure 0006893538
プリズムのウェッジ角および屈折率を設計することによって、水平および垂直FOVを柔軟に設計することが可能である。以下は、含めることができる例示的な機能のリストを提供する。
1.FOVの視野角と仰角は別々に制御することができる。
2.拡張および圧縮は、ある範囲にわたって調整され得る(例えば、0.4〜2.2倍)。
3.同じFOVで同軸送信/受信をサポートする。
4.FOVは、FOVを変えるように変化させることができ、それによって制御システムの複雑さを軽減することができる静止プリズムによって調整することができる。
5.正しく配置されたプリズムを追加することによって、FOVの特定の走査範囲を達成することができる。
6.2つの逆回転するウェッジプリズムを用いて直線的に走査することができる。
7.シャフトを中心に回転する片面ミラーを使用することで、最大360°のスキャン範囲を達成できます。
8.2組の逆回転するミラーは長方形の走査パターンを達成することができる。
9.光源は、他のものに加え、準連続波(QCW)、連続波(CW)、単一波長、および波長可変レーザの少なくともいずれかを含むことができる。光源は、905ナノメートル、1550ナノメートル、および他の波長を含む1つまたは複数の波長の光を生成することができる。
10.二重逆回転プリズムは、平面または直線で走査することができる。
11.ガルバノメータ平面鏡と組み合わせた単一プリズムは、平坦な走査パターンを生成することができる。
12.振動ミラーおよび回転ミラーを使用して、方位角および所定範囲の仰角で360°にわたって走査することができる。
13.ミラーの回転速度がaであり、プリズムの回転速度がa+wおよびa−wである二重プリズムおよび反射器アセンブリを使用して、360°にわたる走査を達成することができる。
14.多面鏡と組み合わせたガルバノメータ平面鏡は、所定の角度範囲内の走査範囲を生じさせることができる。
15.ポリゴンミラーと組み合わせて一定速度で回転する二重プリズムは、所定の角度範囲内の走査範囲を生じさせることができる。
16.2つの異なる速度で回転角を回転させた4つのプリズム(2n+1)πまたは(2n+1/2)πは、長方形のパターンでスキャンすることができ、これは方位角および仰角の方向で独立したスキャンが可能になる。
実施形態の前述の説明は、例示および説明の目的で提示されている。前述の説明は、網羅的であることを意図するものでも開示された正確な形態に本発明の実施形態を限定することを意図するものでもなく、上記の教示に照らして修正および変形が可能であり、または様々な実施形態の実施から得られる。本明細書で論じられる実施形態は、特定の用途に適した様々な修正とともに様々な実施形態において当業者が本発明を利用できるようにするために様々な実施形態の原理および性質ならびにその実際的な応用を説明するために選択されて説明されたものである。本明細書に記載の実施形態の特徴は、方法、装置、モジュール、およびシステムのあらゆる可能な組み合わせで組み合わせることができる。
102,202,302:ビームスキャナ
101:入射ビーム(入力光ビーム)
102,202,302:ビームスキャナ
252:光学スキャナ
103,203,253,303:プリズム(第1の光学素子)
105,205,255,305,305B,309B,305C,305D:プリズム(第2の光学素子)
321,521,:第3のプリズム(第3の光学素子)
322,522:第4のプリズム(第4の光学素子)
104,106:中間面
110:光軸
710,832,932:回転可能なミラー
825:単一プリズム
a:ミラーの回転速度
a+w,a−w:プリズムの回転速度

Claims (12)

  1. 入力光源に結合されて入力光ビームを受け取り、第1の走査パターンを有する走査光ビームを生成するように動作可能であるビームスキャナと、
    前記ビームスキャナから走査光ビームを受光し、少なくとも走査光ビームの寸法を変化させるように配置される第1の光学素子と、
    前記第1の光学素子から出力された光を受光し、走査光ビームの方向および寸法の少なくともいずれかに別の変化を生じさせ、拡大または圧縮された視野で第2の走査パターンを生成するように設置される第2の光学素子と、
    を備え、
    前記第1の光学素子は、所定の角度範囲内の角度で前記第2の光学素子に対して位置決めされて前記第1の走査パターンに関連する視野と比較して拡張または圧縮された視野を有する第2の走査パターンが生成され、
    前記第1の光学素子および前記第2の光学素子は、前記第1の光学素子の光源側の面および前記第2の光学素子の像面側の面が当該光走査装置の光軸に対して像面側から見てそれぞれ鈍角および鋭角をなすように位置決めされるように構成され、
    第1および第2の光学素子の一方または両方に対する角度の選択に基づいて、前記第2の走査パターンに関連する視野の拡大量または縮小量が増減され、
    前記第1の光学素子による偏向方向と前記第2の光学素子による偏向方向とは反対であり、
    前記第1の光学素子による偏向角と前記第2の光学素子による偏向角との差は前記視野のFOVの10%未満であり、
    前記第1の光学素子のウェッジ角は、前記第2の光学素子のウェッジ角と反対であり、
    前記第1の光学素子の入射角と前記第2の光学素子の入射角とは10度未満だけ異なる、
    光走査装置。
  2. 前記第1の光学素子は第1のプリズムであり、
    前記第2の光学素子は第2のプリズムであり、
    前記第1のプリズムは、当該光走査装置の光軸と走査光ビームを受ける前記第1のプリズムの第1の面との間に形成される角度が90度より大きくなるように位置決めされ、
    前記第2のプリズムは、当該光走査装置の光軸と走査光ビームを出力する前記第2のプリズムの第2の面との間に形成される角度が90度未満となるように位置決めされる、
    請求項1に記載の光走査装置。
  3. 前記第1の光学素子は第1のプリズムであり、
    前記第2の光学素子は第2のプリズムであり、
    前記第1のプリズムは、当該光走査装置の光軸と前記走査光ビームを受ける前記第1のプリズムの第1の面との間に形成される角度が90度未満であるように位置決めされ、
    前記第2のプリズムは、当該光走査装置の光軸と前記走査光ビームを出力する前記第2のプリズムの第2の面との間に形成される角度が90度より大きくなるように位置決めされる、
    請求項1に記載の光走査装置。
  4. 前記第1の光学素子および前記第2の光学素子は、方位角と比較して仰角において前記第2の走査パターンが中心対称にならないように配置される、
    請求項1に記載の光走査装置。
  5. 前記第2の光学素子は、走査光を出射するその第2面に反射防止膜を有し、該反射防止膜により、光が前記第2面を通過して前記第2の光学素子に入射することを防止しながら、前記走査光ビームが実質的な損失なく前記第2面から出射することを可能にする、
    請求項1に記載の光走査装置。
  6. 前記第1の光学素子は第1ウェッジプリズムであり、
    前記第2の光学素子は第2ウェッジプリズムであり、
    前記第1ウェッジプリズムまたは前記第2ウェッジプリズムの一方または両方は、2つの異なる方向に先細りの断面を有する、
    請求項1に記載の光走査装置。
  7. 前記生成された第2の走査パターンの中心は、前記第1の走査パターンの中心に対してずれている、
    請求項1に記載の光走査装置。
  8. 前記ビームスキャナが、互いに反対方向に回転して前記第1の走査パターンを有する前記走査光ビームを生成するように構成された一対のプリズムを含む、
    請求項1に記載の光走査装置。
  9. 前記第1の光学素子は前記第1の走査パターンを横方向にシフトさせるように配置され、
    前記第2の光学素子が、前記第1の光学素子によってもたらされる横方向シフトの少なくとも一部を補償するように配置されている、
    請求項1に記載の光走査装置。
  10. 前記横方向のシフトは、前記第1の走査パターンの拡張により行われ、
    前記第2の光学素子は、
    (a)走査光学パターンの横方向シフトの少なくとも一部を補償し、
    (b)前記第1の走査パターンの更なる拡張または圧縮を行う
    ように配置される、
    請求項9に記載の光走査装置。
  11. 前記横方向のシフトは、前記第1の走査パターンの圧縮により行われ、
    前記第2の光学素子は、
    (a)前記第1の走査パターンの横方向シフトの少なくとも一部を補償し、
    (b)前記第1の走査パターンの更なる圧縮または拡張を行う
    ように配置される、
    請求項9に記載の光走査装置。
  12. 第1の走査パターンを有する光ビームを受け取り、第1の方向転換ビームを生成するための第1の光学素子と、前記第1の方向転換ビームを受け取り、第2の走査パターンを有する第2の方向転換ビームを生成する第2の光学素子とを含む少なくとも2つの光学素子を備える光学拡張または光学圧縮の装置であって、
    前記第1の光学素子および前記第2の光学素子の各々は、前記第1の光学素子が前記第2の光学素子に対して第1の角度範囲内で位置決めされるときに前記第2の走査パターンが拡張された視野で生成され、前記第1の光学素子が前記第2の光学素子に対して第2の角度範囲内で位置決めされるときに前記第2の走査パターンが圧縮された視野で生成されるような角度範囲で互いに対して位置決めされるように構成され、
    前記第1の光学素子による偏向方向と前記第2の光学素子による偏向方向とは反対であり、
    前記第1の光学素子による偏向角と前記第2の光学素子による偏向角との差は前記視野のFOVの10%未満であり、
    前記第1の光学素子のウェッジ角は、前記第2の光学素子のウェッジ角と反対であり、
    前記第1の光学素子の入射角と前記第2の光学素子の入射角とは10度未満だけ異なる、
    装置。
JP2019154540A 2018-09-30 2019-08-27 光走査装置および、光学拡張または光学圧縮の装置 Active JP6893538B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021092166A JP2021140184A (ja) 2018-09-30 2021-06-01 光走査装置および、光学拡張または光学圧縮の装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2018109186 2018-09-30
CNPCT/CN2018/109186 2018-09-30
PCT/CN2019/071769 WO2020062718A1 (en) 2018-09-30 2019-01-15 Optical scanning device with beam compression and expansion
CNPCT/CN2019/071769 2019-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021092166A Division JP2021140184A (ja) 2018-09-30 2021-06-01 光走査装置および、光学拡張または光学圧縮の装置

Publications (2)

Publication Number Publication Date
JP2020056997A JP2020056997A (ja) 2020-04-09
JP6893538B2 true JP6893538B2 (ja) 2021-06-23

Family

ID=69950923

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019154540A Active JP6893538B2 (ja) 2018-09-30 2019-08-27 光走査装置および、光学拡張または光学圧縮の装置
JP2021092166A Ceased JP2021140184A (ja) 2018-09-30 2021-06-01 光走査装置および、光学拡張または光学圧縮の装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021092166A Ceased JP2021140184A (ja) 2018-09-30 2021-06-01 光走査装置および、光学拡張または光学圧縮の装置

Country Status (5)

Country Link
US (1) US20210263303A1 (ja)
EP (1) EP3797328A4 (ja)
JP (2) JP6893538B2 (ja)
CN (1) CN112789542A (ja)
WO (1) WO2020062718A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200191957A1 (en) * 2018-12-18 2020-06-18 Didi Research America, Llc Transmitter having beam-shaping component for light detection and ranging (lidar)
KR102240887B1 (ko) * 2019-11-13 2021-04-15 엘브이아이테크놀러지(주) 라이다 시스템
DE102019135759B4 (de) 2019-12-23 2024-01-18 Carl Zeiss Ag LIDAR-System zur scannenden Abstandsermittlung eines Objekts
US10976415B1 (en) * 2020-11-09 2021-04-13 Aeva, Inc. Techniques for image conjugate pitch reduction
CN117980771A (zh) * 2021-06-23 2024-05-03 华为技术有限公司 带变形棱镜的光学检测系统
WO2023032575A1 (ja) 2021-08-30 2023-03-09 日本電気株式会社 アンテナ方向算出装置、処理方法、記録媒体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3217785C1 (de) * 1982-05-12 1983-12-15 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Optisch-mechanischer Abtaster
JP2584224B2 (ja) * 1987-03-30 1997-02-26 富士写真フイルム株式会社 光ビ−ム記録装置
EP0496870A4 (en) * 1990-08-22 1993-01-07 Phoenix Laser Systems, Inc. System for scanning a surgical laser beam
JP3600763B2 (ja) * 1999-09-24 2004-12-15 三菱プレシジョン株式会社 ウェッジプリズムの照射位置制御方法および装置
JP2002277812A (ja) * 2001-03-22 2002-09-25 Nec Corp レーザ走査方法並びに走査装置
JP4936554B2 (ja) * 2004-03-05 2012-05-23 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド プリズムデバイス、ならびに光および無線周波数結合型ビームステアリングシステム
JP5000082B2 (ja) * 2004-06-14 2012-08-15 三菱電機株式会社 光波レーダ装置
FR2892206B1 (fr) * 2005-10-18 2008-02-15 Commissariat Energie Atomique Dispositif optique multi-parametrable de double-balayage laser
EP1969525A1 (en) * 2005-12-23 2008-09-17 Ingenia Holdings (UK)Limited Optical authentication
EP1986032A1 (en) * 2007-04-25 2008-10-29 Saab Ab Optical scanner
JP5416492B2 (ja) * 2009-06-30 2014-02-12 三星ダイヤモンド工業株式会社 レーザ光によるガラス基板加工装置
JP2013171125A (ja) * 2012-02-20 2013-09-02 Topcon Corp プロジェクタ光学系
EP2856240A4 (en) * 2012-04-26 2016-03-02 Neptec Design Group Ltd LIDAR HEAD FOR HIGH-SPEED 360 DEGREE SCAN
JP5983933B2 (ja) * 2012-10-12 2016-09-06 株式会社トヨコー 塗膜除去方法及びレーザー照射装置
US9557630B1 (en) * 2013-06-26 2017-01-31 Amazon Technologies, Inc. Projection system with refractive beam steering
CN105824118B (zh) * 2015-01-07 2019-04-16 先进微系统科技股份有限公司 激光投射装置
KR20160092716A (ko) * 2015-01-28 2016-08-05 한국전자통신연구원 리슬리 프리즘을 이용한 홀로그램 프로젝션 시스템
US9891430B2 (en) * 2015-02-10 2018-02-13 Opus Microsystems Corporation Laser projector
DE102015108422A1 (de) * 2015-05-28 2016-12-01 Hochschule Darmstadt Strahlenoptisches System
CN106526835A (zh) * 2016-11-01 2017-03-22 同济大学 级联棱镜副光束粗精两级扫描装置
JP6876511B2 (ja) * 2017-05-12 2021-05-26 株式会社トプコン 偏向装置及び測量機
EP3637134B1 (en) * 2017-07-04 2021-04-28 Mitsubishi Electric Corporation Laser radar device

Also Published As

Publication number Publication date
US20210263303A1 (en) 2021-08-26
EP3797328A1 (en) 2021-03-31
WO2020062718A1 (en) 2020-04-02
JP2020056997A (ja) 2020-04-09
CN112789542A (zh) 2021-05-11
EP3797328A4 (en) 2021-09-15
JP2021140184A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6893538B2 (ja) 光走査装置および、光学拡張または光学圧縮の装置
US11300779B2 (en) Ladar transmitter with ellipsoidal reimager
KR102596018B1 (ko) 리이미저를 구비한 레이더 송신기
CN108226899B (zh) 激光雷达及其工作方法
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
US11644543B2 (en) LiDAR systems and methods that use a multi-facet mirror
CN102053289B (zh) 聚光透镜及三维距离测量装置
US11092801B2 (en) Lever system for driving mirrors of a LiDAR transmitter
US20220260688A1 (en) Lidar device
JPS6048732B2 (ja) 自己増幅偏向走査光学系
US20200150418A1 (en) Distance measurement device and mobile body
US20220065999A1 (en) Hybrid two-dimensional steering lidar
WO2004099849A1 (en) Optical unit and system for steering a light beam
Vuthea et al. A design of Risley scanner for LiDAR applications
US20220244360A1 (en) Hybrid two-dimensional steering lidar
US20070279721A1 (en) Linear optical scanner
US20230119426A1 (en) Lidar device
CN217360285U (zh) 扫描装置
JP2002277812A (ja) レーザ走査方法並びに走査装置
JP2548928B2 (ja) 多ビ−ム走査式光学装置
JPH01309021A (ja) 光ビーム走査光学系
US20240264284A1 (en) Lidar laser scanning system
JP2002258185A (ja) ビーム合成方法・ビーム合成用プリズム・マルチビーム走査用光源装置・マルチビーム走査装置
JPH04204514A (ja) 光ビームの走査装置
WO2023158957A2 (en) Hybrid two-dimensional steering lidar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6893538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150