JP6886754B2 - Conger eel farming cage and conger eel farming method - Google Patents
Conger eel farming cage and conger eel farming method Download PDFInfo
- Publication number
- JP6886754B2 JP6886754B2 JP2016257895A JP2016257895A JP6886754B2 JP 6886754 B2 JP6886754 B2 JP 6886754B2 JP 2016257895 A JP2016257895 A JP 2016257895A JP 2016257895 A JP2016257895 A JP 2016257895A JP 6886754 B2 JP6886754 B2 JP 6886754B2
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- ozone
- nano
- cage
- fry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000252099 Conger myriaster Species 0.000 title claims description 33
- 238000009313 farming Methods 0.000 title claims description 25
- 238000000034 method Methods 0.000 title claims description 14
- 239000013535 sea water Substances 0.000 claims description 165
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 99
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 65
- 238000009360 aquaculture Methods 0.000 claims description 34
- 244000144974 aquaculture Species 0.000 claims description 34
- 239000002101 nanobubble Substances 0.000 claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 230000004083 survival effect Effects 0.000 claims description 19
- 241000251468 Actinopterygii Species 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 12
- 238000010079 rubber tapping Methods 0.000 claims description 12
- 230000000366 juvenile effect Effects 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 241001635206 Conger conger Species 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 241000252095 Congridae Species 0.000 description 18
- 230000000694 effects Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 210000002816 gill Anatomy 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000522084 Leptocephalus Species 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000000422 nocturnal effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 235000014102 seafood Nutrition 0.000 description 2
- 235000015170 shellfish Nutrition 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 241000252073 Anguilliformes Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000036782 biological activation Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000036186 satiety Effects 0.000 description 1
- 235000019627 satiety Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Farming Of Fish And Shellfish (AREA)
Description
本発明は、アナゴの養殖生簀及びアナゴの養殖方法に関し、とりわけ、アナゴの幼生又は稚魚又は幼魚を極めて高い生残率で飼育でき、且つエネルギーの消費を削減でき、かつ、細菌処理効果と生理活性効果ができるアナゴの養殖生簀及び養殖方法に関する。 The present invention relates to aquaculture cages for conger eels and methods for aquaculture of conger eels, and in particular, can breed conger eel larvae or fry or juveniles with an extremely high survival rate, reduce energy consumption, and have a bacterial treatment effect and physiological activity. Conger eel farming cages and farming methods that can be effective.
ウナギ目アナゴ科であり底魚である天然マアナゴの生態は、ウナギ同様にその生態は謎が多く、詳細には解明されていない。一般的には、天然マアナゴの生息場所は、内湾の海藻・砂泥地・岩礁であり、特に、海水と淡水が混合する河口等の比較的泥の多い所に生息し、濁りに強く100ppmでも影響はなく特に穴に生息することを好むとされている。 The ecology of the natural conger eel, which belongs to the family Eelidae and is a demersal fish, has many mysteries like eels and has not been elucidated in detail. In general, the habitat of natural whitespotted congers is seaweed, sandy mud, and reefs in the inner bay, and in particular, it inhabits relatively muddy places such as estuaries where seawater and freshwater are mixed, and is resistant to turbidity even at 100 ppm. It has no effect and is said to prefer to live in holes.
なお、食味的には、前述した海水と淡水が混合する河口等の比較的泥の多い所に生息するマアナゴが一番美味しいとされている。水温に関しては、10℃以下では生活できず、11℃以上で生活し、通常18〜20℃を好む。 In terms of taste, the whitespotted conger, which lives in relatively mud areas such as the estuary where seawater and freshwater are mixed, is said to be the most delicious. Regarding the water temperature, it is not possible to live below 10 ° C, but it lives above 11 ° C and usually prefers 18 to 20 ° C.
なお、天然マアナゴの産卵は外海で行なわれ、3〜5月に内海にレプトセファルス(葉形幼生)として来遊し、夏頃には爪楊枝ぐらいのマアナゴの稚魚となり、体長は7.0cm程度である。 In addition, spawning of natural whitespotted conger is carried out in the open sea, and it comes to the inland sea as leptocephalus (leaf-shaped larva) from March to May, and in summer it becomes a fry of whitespotted conger about the size of a toothpick, and its body length is about 7.0 cm. is there.
アナゴの成長過程は、幼生(レプトケファルス=ノレソレ)→稚魚(幼生が変態=シラス)→幼魚(30g以下)→若魚(100g以下)→未成魚(販売可能な120g以上)→成魚(繁殖が可能。オスは150g以上、メスは300g以上)となる。 The growth process of conger eels is: larvae (Leptocephalus = Noresole) → fry (larvae are metamorphosis = Shirasu) → juveniles (30 g or less) → young fish (100 g or less) → immature fish (120 g or more that can be sold) → adult fish (breeding) (150 g or more for males and 300 g or more for females).
このようなアナゴ類は、陸上養殖(流水式陸上養殖・循環式陸上養殖)において小規模で養殖(畜養)しているのが現状である。この陸上養殖においては、地下海水又は深層水を養殖漕に取り入れて養殖する。地下海水又は深層水の場合は、年間水温平均が18°C〜20°Cと安定し、飼育水温条件としては最適である。 At present, such conger eels are cultivated (livestock) on a small scale in land-based aquaculture (running water-based land-based aquaculture / circulation-type land-based aquaculture). In this land-based aquaculture, underground seawater or deep seawater is taken into the aquaculture tank for aquaculture. In the case of underground seawater or deep seawater, the average annual water temperature is stable at 18 ° C to 20 ° C, which is the optimum breeding water temperature condition.
しかしながら、これらの陸上施設でのアナゴ養殖は、以下のような問題点がある。 However, conger eel farming at these onshore facilities has the following problems.
流水式陸上養殖においては、海水温の調整ができないので、夏場の海水温が22℃以上となってしまい、図5(a)(b)に示すように、夏場における大量の斃死要因となり、夏場の水温対策を解決しないとアナゴ養殖には不向きである。アナゴは、自然海水が20℃を超えると斃死数の増加が始まる。23℃から26℃になると斃死数は著しく増加すし、全体の生残比率は50%以下になり採算が取れなくなる。図5で示したように、高水温時期の前は90%以上の生残率でありながら、高水温時になると生残率は45%までに低下する。高水温時におけるアナゴ斃死数の内、85%は90g以下の幼魚から若魚である。明らかに高水温が要因の斃死である。体力のない幼魚(30g以下)又は若魚(40gから90g)が大量に斃死する。 In running water type aquaculture, since the seawater temperature cannot be adjusted, the seawater temperature in summer becomes 22 ° C or higher, which causes a large amount of mortality in summer as shown in FIGS. 5 (a) and 5 (b), and in summer. It is not suitable for conger eel farming unless the measures against water temperature are solved. The number of conger eels begins to increase when the natural seawater exceeds 20 ° C. From 23 ° C to 26 ° C, the number of mortality increases remarkably, and the overall survival ratio becomes 50% or less, making it unprofitable. As shown in FIG. 5, the survival rate is 90% or more before the high water temperature period, but the survival rate drops to 45% at the high water temperature period. Of the number of conger eels dying at high water temperatures, 85% are young to young fish weighing 90 g or less. Obviously, the high water temperature is the cause of the death. A large number of weak young fish (30 g or less) or young fish (40 g to 90 g) die.
斃死したアナゴの細胞を採取し検査したところ、目の表面、鰓等に滑走細菌がいることが判明した。滑走細菌症になると、鰓につくと呼吸困難となり斃死する。また、外傷を中心にした症状が発生し、頭部や胴体等が腫れたり、えぐれたり爛れたりする。その要因として、滑走細菌は、18℃以上になると活発になり水温が高くなるほどより活発になることが分かった。環境の変化、つまり水温が高くなるにつれて、体力のない幼生又は稚魚又は幼魚の体表の粘膜状態が悪くなり、体力の弱ったものから、滑走細菌が体表に付き、外傷が発生する。一方で、アナゴに関する薬品は一切なく薬事法で使用することはできない。 When the cells of the dead conger eel were collected and examined, it was found that there were gliding bacteria on the surface of the eye, gills, etc. If you have gliding bacteropathy, you will have difficulty breathing and die when you reach the gills. In addition, symptoms centered on trauma occur, and the head, torso, etc. are swollen, scooped out, or scorched. As a factor, it was found that gliding bacteria became active above 18 ° C. and became more active as the water temperature increased. As the environment changes, that is, the water temperature rises, the mucosal condition of the body surface of weak larvae or fry or juveniles deteriorates, and gliding bacteria attach to the body surface from those with weak physical strength, causing trauma. On the other hand, there are no chemicals related to conger eels and they cannot be used under the Pharmaceutical Affairs Law.
また、斃死の理由の1つとして、ガス病の発生によることも判明した。ガス病とは、生簀内の海水に窒素が多く含まれることにより、毛細血管に空気が入ると目が出目金のようになる症状や鰓呼吸が困難になる症状であり、それが原因となって斃死する。 It was also found that one of the reasons for the death was the outbreak of gas disease. Gas disease is a symptomatology in which the seawater in the gill contains a large amount of nitrogen, and when air enters the capillaries, the eyes become like eyes and gill breathing becomes difficult. And die.
また、循環式なので、給餌(生餌)に発生する脂が生簀内に溜まってしまうという問題もある。 In addition, since it is a circulation type, there is a problem that fat generated in feeding (live food) accumulates in the cage.
一方、循環式陸上養殖では、加熱及び冷却により海水温を調整できるが、年間を通じて18°C〜20°Cの一定水温に維持する場合は、大量のエネルギーを消費するため、設備負担や全体のエネルギー消費の負担費が大きくアナゴの価格相場(市場価格2,000円〜2,500円)から考えるとランニングコストが掛り過ぎて採算性が悪い。 On the other hand, in circulation type land culture, the seawater temperature can be adjusted by heating and cooling, but if the water temperature is maintained at a constant temperature of 18 ° C to 20 ° C throughout the year, a large amount of energy is consumed, so the equipment burden and the overall water temperature are increased. Considering the price of Anago (market price of 2,000 to 2,500 yen), the running cost is too high and the profitability is poor.
深層水を利用する流水式陸上施設では、設備費及び深層水を汲み上げる設備費用等の負担及び吸上げ時に大量のエネルギーを消費するため、全体のエネルギー消費の負担費が大きくアナゴの価格相場(市場価格2,000円〜2,500円)から考えるとランニングコストが掛り過ぎて採算性が悪い。また、深層水を利用する陸上施設は、立地条件等があり、場所が限られる。 In running water type onshore facilities that use deep water, the burden of equipment costs and equipment costs for pumping deep water and a large amount of energy are consumed at the time of suction, so the overall energy consumption burden is large and the price of Anago (market) Considering the price (2,000 yen to 2,500 yen), the running cost is too high and the profitability is poor. In addition, land facilities that use deep sea water are limited in location due to location conditions.
なお、海面養殖は高水温時に不向きであるため、海面養殖において実施された例が報告されていない。 Since sea surface aquaculture is not suitable at high water temperatures, no examples of sea surface aquaculture have been reported.
従って、本発明の目的は、アナゴの幼生又は稚魚又は幼魚を極めて高い生存率で飼育でき、かつ、エネルギーの消費を削減でき、さらに、高水温時期に発生する細菌を薬品以外で細菌処理し、幼生又は稚魚又は幼魚の体力を強化できる生理活性化が必要である。また、生簀内の海水に含まれる窒素を空気中に放出させ、給餌に発生する脂を処理できるアナゴの養殖生簀及びアナゴの養殖方法を提供するものである。 Therefore, an object of the present invention is that larvae or fry or fry of anago can be bred with an extremely high survival rate, energy consumption can be reduced, and bacteria generated in a high water temperature period can be treated with bacteria other than chemicals. Biological activation that can strengthen the physical strength of larvae or fry or juveniles is required. Further, the present invention provides a conger eel farming cage and a conger eel farming method capable of treating the fat generated in feeding by releasing nitrogen contained in the seawater in the cage into the air.
本発明のアナゴの養殖生簀は、上記の目的を達成するため、海水を循環させながらメイン生簀とサブ生簀とからなる生簀内でアナゴの幼生又は稚魚又は幼魚を養殖するアナゴの養殖生簀であって、前記海水を濾過する濾過装置と、前記濾過装置で濾過された海水に対してオゾンを発生させて殺菌するオゾン発生装置と、前記オゾン発生装置で殺菌された海水を加温する加温装置と、前記加温装置及び前記オゾン発生装置で加温・殺菌された海水を前記生簀に供給する海水供給ポンプと、前記海水供給ポンプで前記生簀に供給する際にオゾンを含む海水にナノバブルを発生させることにより多量のイオン類に包まれているオゾン海水にオゾンナノバブルを発生させオゾンナノ海水とするオゾンナノノズル装置と、前記オゾンナノ海水に酸素を供給する気泡ナノノズル装置とからなり、前記メイン生簀は、前記サブ生簀に通じる開口部と、前記オゾンナノ海水を叩くことによって空気中に窒素を放出させるオゾンナノ海水叩き受台を有し、前記生簀から排出された海水は、前記濾過装置に供給されて循環されることを特徴とするアナゴの養殖生簀を提供する。The anago farming cage of the present invention is an anago farming cage that cultivates anago larvae, fry or juveniles in a cage composed of a main cage and a sub cage while circulating seawater in order to achieve the above object. , A filtration device that filters the seawater, an ozone generator that generates ozone to sterilize the seawater filtered by the filtration device, and a heating device that heats the seawater that has been sterilized by the ozone generator. , The seawater supply pump that supplies the seawater that has been heated and sterilized by the heating device and the ozone generator to the cage, and the seawater that contains ozone when the seawater supply pump supplies the seawater to the cage, generates nanobubbles. The main cage is composed of an ozone nanonozzle device that generates ozone nanobubbles in ozone seawater surrounded by a large amount of ions to make ozone nanoseawater, and a bubble nanonozzle device that supplies oxygen to the ozone nanoseawater. It has an opening leading to a sub cage and an ozone nano seawater tapping cradle that releases nitrogen into the air by tapping the ozone nano seawater, and the seawater discharged from the cage is supplied to the filtration device and circulated. We provide aquaculture cages for anago, which is characterized by this.
以上の構成において、前記加温装置は、前記海水を20℃〜28℃まで加熱することを特徴とする。 In the above configuration, the heating device is characterized in that the seawater is heated to 20 ° C. to 28 ° C.
また、前記メイン生簀は、床が二重床底の構造であることを特徴とする。 Further, the main cage is characterized in that the floor has a double floor structure.
また、前記二重床底は、上部床面がメッシュ状の構造であることを特徴とする。 Further, the double floor bottom is characterized in that the upper floor surface has a mesh-like structure.
また、前記上部床面には、光を遮断するシート状物がウナギ目アナゴ科類の寝床として設けられていることを特徴とする。 Further, the upper floor surface is characterized in that a sheet-like material that blocks light is provided as a bed for the family Conger eels of the order Eelidae.
また、沈殿槽と濾過槽及び貯水槽に脂吸着マットを設けていることを特徴とする。 Further, it is characterized in that a fat adsorption mat is provided in the settling tank, the filtration tank and the water storage tank.
また、本発明は、上記の目的を達成するため、捕獲したアナゴの幼生又は稚魚又は幼魚を生簀内の海水に投入し、前記生簀内の海水に対してナノバブルを発生させてオゾンナノ海水に変化させ、当該オゾンナノ海水に酸素を供給することにより微細気泡オゾンナノ海水に変化させ、冬時期の海水を5日〜10日かけて20℃〜28℃まで加熱して高水温環境とし、前記高水温環境の中で前記幼生又は稚魚又は幼魚を3ヶ月間飼育し、前記高水温に耐えられるように幼生又は稚魚又は幼魚の段階で体感させると同時にナノ海水により生残率を向上させる、ことを特徴とするアナゴの養殖方法を提供する。Further, the present invention is to achieve the above object, example the larvae or fry or juvenile sea eel was put into seawater in the cages, changes Ozon'nano seawater to generate nanobubbles against seawater in the cages By supplying oxygen to the ozone nano seawater, it is changed into fine bubble ozone nano seawater, and the seawater in winter is heated to 20 ° C. to 28 ° C. over 5 to 10 days to create a high water temperature environment. The feature is that the larvae or fry or larvae are bred for 3 months and experienced at the stage of larvae or fry or larvae so as to withstand the high water temperature, and at the same time the survival rate is improved by nano seawater. Provide a method for cultivating juvenile fish.
また、本発明は、捕獲したアナゴの幼生又は稚魚又は幼魚を循環式海水養殖生簀内の海水に投入し、前記生簀内の海水に対してナノバブルを発生させてオゾンナノ海水に変化させ、当該オゾンナノ海水に酸素を供給することにより微細気泡オゾンナノ海水に変化させ、冬時期の海水を5日〜10日かけて20℃〜28℃まで加熱して高水温環境とし、前記高水温環境の中で前記幼生又は稚魚又は幼魚を3ヶ月間飼育し、前記高水温に耐えられるように幼生又は稚魚又は幼魚の段階で体感させると同時にナノ海水により生残率を向上させ、夏時期に水温調整ができない流水式陸上施設に移行し養殖する、ことを特徴とするアナゴの養殖方法を提供する。Further, the present invention is that the larvae or fry or juvenile sea eel was caught catching poured into seawater circulating in seawater farming pens, varied Ozon'nano seawater to generate nanobubbles against seawater in the cages, the Ozon'nano By supplying oxygen to seawater, it is transformed into fine-bubble ozone nano-seawater, and the seawater in winter is heated to 20 ° C to 28 ° C over 5 to 10 days to create a high water temperature environment. Raise larvae or fry or juveniles for 3 months and experience them at the stage of larvae or fry or juveniles so that they can withstand the high water temperature. Provided is a method for cultivating anago, which is characterized by moving to a formal land facility and culturing.
また、本発明は、捕獲したアナゴの幼生又は稚魚又は幼魚を循環式海水養殖生簀内の海水に投入し、前記生簀内の海水に対してナノバブルを発生させてオゾンナノ海水に変化させ、当該オゾンナノ海水に酸素を供給することにより微細気泡オゾンナノ海水に変化させ、冬時期の海水を5日〜10日かけて20℃〜28℃まで加熱して高水温環境とし、前記高水温環境の中で前記幼生又は稚魚又は幼魚を3ヶ月間飼育し、前記高水温に耐えられるように幼生又は稚魚又は幼魚の段階で体感させると同時にナノ海水により生残率を向上させ、夏時期に水温調整ができない海面養殖施設に移行し養殖する、ことを特徴とするアナゴの養殖方法を提供する。Further, the present invention is that the larvae or fry or juvenile sea eel was caught catching poured into seawater circulating in seawater farming pens, varied Ozon'nano seawater to generate nanobubbles against seawater in the cages, the Ozon'nano By supplying oxygen to seawater, it is transformed into fine-bubble ozone nano-seawater, and the seawater in winter is heated to 20 ° C to 28 ° C over 5 to 10 days to create a high water temperature environment. The larvae or fry or juveniles are bred for 3 months and experienced at the stage of the larvae or fry or juveniles so that they can withstand the high water temperature, and at the same time, the survival rate is improved by nano seawater and the water temperature cannot be adjusted in the summer. Provided is a method for cultivating anago, which is characterized by moving to aquaculture facility and culturing.
本発明は、以上のように構成されるので、20℃以上のナノ海水で3ヶ月間飼育されたアナゴの幼生又は稚魚又は幼魚は、オゾンナノ海水と微細気泡ナノ海水効果により高い水温条件にも関わらず生残率の高い飼育をすることができる。この循環式ナノ海水養殖生簀で飼育されたアナゴは、流水式においては夏場の海水温時には大量の斃死を改善できる。 Since the present invention is configured as described above, conger eel larvae or fry or juveniles bred in nano-seawater at 20 ° C. or higher for 3 months are subject to high water temperature conditions due to the effect of ozone nano-seawater and fine-bubble nano-seawater. It can be bred with a high survival rate. Conger eels bred in this circulating nano-seawater aquaculture cage can improve a large amount of mortality in the running water type at seawater temperature in summer.
以下、図面を参照しながら、本発明の実施の形態に係るアナゴの養殖生簀及びアナゴの養殖方法を詳細に説明する。
図1は、本発明の実施の形態に係るアナゴの養殖生簀の全体構成図である。
図に示すように、このアナゴの養殖生簀は、給水装置4から供給される海水を循環させながらメイン生簀1内でアナゴの幼生又は稚魚又は幼魚を養殖する養殖生簀である。Hereinafter, the conger eel farming cage and the conger eel farming method according to the embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall configuration diagram of a conger eel farm cage according to an embodiment of the present invention.
As shown in the figure, the conger eel farming cage is a farming cage that cultivates conger eel larvae, fry or juveniles in the main cage 1 while circulating the seawater supplied from the water supply device 4.
この養殖生簀は、給水装置4から供給された海水を濾過する濾過装置5と、この濾過装置5で濾過された海水を貯水する貯水槽6と、貯水層6で貯水した海水に対してオゾンを発生させて殺菌するオゾン発生装置19と、オゾン発生装置19で殺菌された海水を20℃〜28℃まで加温する加温装置7と、加温装置7とオゾン発生装置19で加温・殺菌された海水をメイン生簀1に供給する海水供給ポンプ8と、海水供給ポンプ8でメイン生簀1に供給された海水に対してナノバブルを発生させ自然海水をオゾンナノ海水とするオゾンナノノズル装置9と、メイン生簀1内のオゾンナノ海水をポンプ13を通して結合パイプ13aで気泡ナノノズル13cへ供給すると同時にエアーホース13bを通じてエアーを気泡ナノノズル13cへ供給して微細気泡ナノ海水にする構成になっている。
なお、メイン生簀1に隣接してサブ生簀2が設けられている。このサブ生簀2は、メイン生簀1では養殖できないアナゴの稚魚又は幼魚を選別して養殖を行うものである。In this culture cage, ozone is applied to the
A sub cage 2 is provided adjacent to the main cage 1. The sub cage 2 selects and cultivates fry or juvenile conger eels that cannot be cultivated in the main cage 1.
以上の構成において、メイン生簀1およびサブ生簀2から排出されたナノ海水は、排水パイプ14および配管18を通じてポンプ17で沈殿槽15に戻され、ポンプ17で再度濾過装置5と貯水槽6に供給されて装置内を循環する。なお、この濾過装置5と貯水槽6と沈殿槽15とには、いずれも、脂吸着マットが設けられ、この脂吸着マットによって給餌の餌から発生し循環する海水と共に浮遊する脂を吸着するようにしている。 In the above configuration, the nano seawater discharged from the main basin 1 and the sub basin 2 is returned to the settling
なお、メイン生簀1には、アナゴの寝床11と、二重床底部12及び二重床底受台12aと、メイン生簀1の汚物を前述した沈殿槽15に排出する排水パイプ14及びポンプ17と、サブ生簀2に連通する選別開口部3とが設けられている。 The main cage 1 includes an anago bed 11, a double floor bottom 12 and a double floor bottom cradle 12a, and a drainage pipe 14 and a pump 17 for discharging the filth of the main cage 1 to the settling
オゾンナノノズル装置9は、多量のイオン類に包まれているオゾン海水にオゾンナノバブルを発生させる装置である。オゾンナノバブルを含んだ海水の場合は、極めて長期にわたってオゾン海水としての効果を維持できる。 The ozone nanonozzle device 9 is a device that generates ozone nanobubbles in ozone seawater surrounded by a large amount of ions. In the case of seawater containing ozone nanobubbles, the effect as ozone seawater can be maintained for an extremely long period of time.
通常のオゾン海水は、1〜2時間でオゾンの効果はなくなるが、オゾンナノバブルの場合は、1ヶ月以上にわたってオゾンを保持することに成功している。このことから、薬品に頼らない細菌殺菌効果がある。 Normal ozone seawater loses the effect of ozone in 1 to 2 hours, but ozone nanobubbles have succeeded in retaining ozone for 1 month or more. Therefore, it has a bacterial bactericidal effect that does not rely on chemicals.
また、皮膚等への優れた浸透能力も実証されており、表面のみでなくより内部へ作用を及ばす。このように、オゾンナノバブルを含む海水は、魚介類の環境変化に対する適応性を向上させることができる。 In addition, its excellent penetrating ability into the skin and the like has been demonstrated, and it acts not only on the surface but also on the inside. In this way, seawater containing ozone nanobubbles can improve the adaptability of fish and shellfish to environmental changes.
オゾンナノノズル装置9から出るオゾンナノ海水は、オゾンナノ海水叩き受台20に叩き付けられ、空気中に窒素を放出させてメイン生簀1に注入される。 The ozone nano seawater discharged from the ozone nano nozzle device 9 is struck by the ozone nano
気泡ナノノズル13cは、オゾンナノノズル装置9で出来たオゾンナノバブルを更に酸素ナノバブルに変成させるものであり、オゾンナノバブルを酸素ナノバブルに変成させることにより、生理活性効果をもたらす。よって、魚介類の環境変化に対する適応性を向上させ、衰弱した魚介類を急速に回復する効果がある。なお、酸素ナノバブルは、皮膚等への優れた浸透能力が実証されており、表面のみでなくより内部へ作用を及ばすことなどが報告されている。 The bubble nanobubble 13c further transforms the ozone nanobubbles produced by the ozone nanonozzle device 9 into oxygen nanobubbles, and by transforming the ozone nanobubbles into oxygen nanobubbles, a physiologically active effect is brought about. Therefore, it has the effect of improving the adaptability of seafood to environmental changes and rapidly recovering weakened seafood. Oxygen nanobubbles have been demonstrated to have excellent penetrating ability into the skin and the like, and it has been reported that they act not only on the surface but also on the inside.
本発明では、これらの点に着目し、オゾン発生装置で発生したオゾンで海水を殺菌し、殺菌された海水を、オゾンナノノズル装置9によりオゾンナノ海水化し、気泡ナノノズル13cにより微細気泡ナノ海水化し、その殺菌効果と生理活性効果によってアナゴの環境変化に対する適応性や体調を向上させ、かつ、加温装置7で海水を加温することにより、アナゴの温度に対する耐性を向上させるようにしたものである。 In the present invention, paying attention to these points, seawater is sterilized with ozone generated by an ozone generator, the sterilized seawater is converted into ozone nanoseawater by the ozone nanonozzle device 9, and fine bubble nanoseawater is converted by the bubble nanonozzle 13c. The bactericidal effect and the bioactive effect improve the adaptability and physical condition of the ozone to environmental changes, and the heating device 7 warms the seawater to improve the resistance of the ozone to the temperature. ..
図2は、メイン生簀1とサブ生簀2の詳細図であり、図2(a)は平面図、図2(b)は、メイン生簀1に設けられた選別開口部3をメイン生簀1からサブ生簀2側に向けて見た図、図2(c)は、選別開口部3の詳細を示す断面図である。 FIG. 2 is a detailed view of the main cage 1 and the sub cage 2. FIG. 2 (a) is a plan view, and FIG. 2 (b) shows the sorting opening 3 provided in the main cage 1 as a sub from the main cage 1. FIG. 2 (c), which is a view toward the cage 2 side, is a cross-sectional view showing the details of the sorting opening 3.
アナゴは夜行性であり、昼間は寝床からは出てこない。メイン生簀1に投入されたアナゴの稚魚又は幼魚は、投入後に養殖に適さない場合には、2日〜14日で昼間にアナゴの寝床から出て海水の表面を円形の流れに沿って泳ぐ習性がある。このため、メイン生簀1からサブ生簀2へと移行できるように開口部を設けた。但し、夜間は養殖できるアナゴが寝床から出てくるため。開口は昼間の時間帯に限る。アナゴは夜行性なので光を遮断できるシート状の物をアナゴの寝床11とし、図に示すように、メイン生簀1及びサブ生簀2に1ヶ所以上配置する。 Conger eels are nocturnal and do not come out of bed during the day. If the conger eel fry or juveniles put into the main cage 1 are not suitable for aquaculture after being put in, they will get out of the conger eel bed in the daytime and swim along the surface of the seawater along a circular stream in 2 to 14 days. There is. Therefore, an opening is provided so that the main cage 1 can be transferred to the sub cage 2. However, conger eels that can be cultivated come out of the bed at night. Opening is limited to daytime hours. Since the conger eel is nocturnal, a sheet-like object that can block light is used as the bed 11 of the conger eel, and as shown in the figure, one or more places are arranged in the main cage 1 and the sub cage 2.
図3は、オゾンナノ海水叩き受台20を説明するための図である。図3(a)は、その模式図、図3(b)は、図3(a)の丸い円Aで囲った部分の正面側からの拡大図、図3(c)は、図3(b)の側面図である。
図3(c)に示すように、オゾンナノ海水叩き受台20は三角形状の柱体であり、底部20aと背部20bは板状からなり、傾斜部20cは細かいメッシュ状網から構成されている。オゾンナノノズル装置9から出るオゾンナノ海水をこのオゾンナノ海水叩き受台20に叩き付けることにより、空気中に窒素を放出させる。FIG. 3 is a diagram for explaining the ozone nano
As shown in FIG. 3C, the ozone nano
このオゾンナノ海水叩き受台20でオゾンナノ海水を叩き付けるのは、ガス病への対策である。強力なポンプ等の吸引力で窒素ガスが発生し、生簀内の海水に窒素が多く含まれることがある。窒素が多く含まれるとガス病が発生しアナゴの斃死に繋がる。 Hitting ozone nano seawater with the ozone nano
この解決策として、本発明では、海水供給ポンプ8から出る海水を直接生簀内に注入するのではなく、海水供給ポンプ8から出る海水を一度オゾンナノ海水叩き受台20に受けて海水を叩きつけることにより、海水に含まれた窒素を空気中に放出させてからメイン生簀1に注入するようにした。 As a solution to this, in the present invention, instead of directly injecting the seawater discharged from the seawater supply pump 8 into the cage, the seawater discharged from the seawater supply pump 8 is once received by the ozone nano
図4は、二重床底部12と気泡ナノノズル13cの詳細図である。図4(a)はその概略平面図、図4(b)は概略断面構成図である。
アナゴは底魚のため底面に十分な酸素が必要であり、且つシート状のアナゴの寝床11内は酸素不足になるので、上部床12aと下部床12bの二重床からなる二重床底部12とし、上部床12aを二重床底受台12cで受けて二重底にし、上部床12aと下部床12bに海流が流れるような構成として二重床底部12が酸素不足にならいようにする。FIG. 4 is a detailed view of the double floor bottom 12 and the bubble nanonozzle 13c. FIG. 4A is a schematic plan view thereof, and FIG. 4B is a schematic cross-sectional configuration diagram.
Since the anago is a bottom fish, sufficient oxygen is required on the bottom surface, and the inside of the sheet-shaped anago bed 11 is deficient in oxygen. The upper floor 12a is received by the double floor bottom cradle 12c to form a double bottom, and the double floor bottom 12 is prevented from lacking oxygen so that the sea current flows through the upper floor 12a and the lower floor 12b.
また、アナゴは底魚であるため、二重底の上部床12aはメッシュ状の床面にして酸素が流動できる構造にしている。また、ポンプ13の結合パイプ13aを通じてメイン生簀1内のオゾンナノ海水を気泡ナノノズル13cに注入すると同時に、エアーホース13bを通じてエアーを気泡ナノノズル13cに注入することにより、生簀内のオゾンナノ海水を更に微細気泡ナノ海水に変成させる。これにより、メイン生簀1全体が攪拌され、メイン生簀1の底面が酸素不足になるのを防ぐことができる。 In addition, since conger eels are demersal fish, the double-bottomed upper floor 12a has a mesh-like floor surface so that oxygen can flow. Further, the ozone nano seawater in the main cage 1 is injected into the bubble nanonozzle 13c through the coupling pipe 13a of the pump 13, and at the same time, air is injected into the bubble nanonozzle 13c through the air hose 13b to further inject the ozone nanoseawater in the cage into the fine bubble nano. Transform into seawater. As a result, the entire main cage 1 is agitated, and it is possible to prevent the bottom surface of the main cage 1 from becoming oxygen-deficient.
以上の生簀を用いたアナゴの養殖方法は、以下の通りである。
(1)冬から春(12月頃〜翌年5月頃まで)にかけて捕獲したアナゴの幼生又は稚魚又は幼魚を上記した循環式の海メイン生簀1内の海水に投入し、メイン生簀1内の海水をオゾンナノノズル装置9によってオゾンナノ海水に変化させ、メイン生簀1内のオゾンナノ海水を気泡ナノノズル13cによって微細気泡オゾンナノ海水に変化させ、冬時期の海水を5日〜10日かけて20℃〜28℃まで加温装置7で加熱して高水温環境とし、高水温環境の中でアナゴの幼生又は稚魚又は幼魚を3ヶ月間飼育する。また、幼生又は稚魚又は幼魚の捕獲時期によっては自然海水温が20℃を超える時期まで前記高水温環境の中で前記幼生又は稚魚又は幼魚を飼育し、高水温に耐えられるように幼生又は稚魚又は幼魚の段階で体感させると同時にオゾンナノ海水と微細気泡オゾンナノ海水により生残率を向上させ、夏時期に水温調整ができない流水式陸上施設に移行し養殖する。The method of culturing conger eels using the above cages is as follows.
(1) The larvae or fry or fry of the anago caught from winter to spring (from around December to around May of the following year) are put into the seawater in the above-mentioned circulating sea main cage 1, and the seawater in the main cage 1 is ozone. The nano-nozzle device 9 is used to change to ozone nano-seawater, the ozone nano-seawater in the main cage 1 is changed to fine-bubble ozone nano-seawater by the bubble nano-nozzle 13c, and the seawater in winter is added to 20 ° C to 28 ° C over 5 to 10 days. A high water temperature environment is created by heating with a heating device 7, and larvae or fry or juveniles of Anago are bred in the high water temperature environment for 3 months. In addition, depending on the time of capture of larvae, fry or juveniles, the larvae or fry or juveniles are bred in the high water temperature environment until the natural seawater temperature exceeds 20 ° C. At the same time as experiencing it at the stage of juvenile fish, the survival rate will be improved by ozone nano seawater and fine bubble ozone nano seawater, and in the summer, it will be cultivated by moving to a running water type land facility where the water temperature cannot be adjusted.
(2)冬から春(12月頃〜翌年5月頃まで)にかけて捕獲したアナゴの幼生又は稚魚又は幼魚を上記した循環式のメイン生簀1内の海水に投入し、メイン生簀1内の海水をオゾンナノノズル装置9によってオゾンナノ海水に変化させ、メイン生簀1内のオゾンナノ海水を気泡ナノノズル13cによって微細気泡オゾンナノ海水に変化させ、冬時期の海水を5日〜10日かけて20℃〜28℃まで加温装置7で加熱して高水温環境とし、高水温環境の中でアナゴの幼生又は稚魚又は幼魚を3ヶ月間飼育する。また、幼生又は稚魚又は幼魚の捕獲時期によっては自然海水温が20℃を超える時期まで前記高水温環境の中で前記幼生又は稚魚又は幼魚を飼育し、高水温に耐えられるように幼生又は稚魚又は幼魚の段階で体感させると同時にオゾンナノ海水と微細気泡オゾンナノ海水により生残率を向上させ、夏時期に水温調整ができない海面養殖施設に移行し養殖する。(2) The larvae or fry or fry of the anago caught from winter to spring (from around December to around May of the following year) are put into the seawater in the above-mentioned circulation type main cage 1, and the seawater in the main cage 1 is put into ozone nano. The nozzle device 9 changes the ozone nano seawater in the main cage 1 into fine bubble ozone nano seawater by the bubble nano nozzle 13c, and the seawater in winter is heated to 20 ° C to 28 ° C over 5 to 10 days. It is heated by the device 7 to create a high water temperature environment, and larvae or fry or juveniles of Anago are bred in the high water temperature environment for 3 months. In addition, depending on the time of capture of larvae, fry or larvae, the larvae or fry or larvae are bred in the high water temperature environment until the natural seawater temperature exceeds 20 ° C. At the same time as experiencing it at the stage of juvenile fish, the survival rate will be improved by ozone nano seawater and fine bubble ozone nano seawater, and in the summer, it will be cultivated by moving to a sea surface aquaculture facility where the water temperature cannot be adjusted.
なお、幼生又は稚魚又は幼魚の捕獲時期によっては自然海水温が20℃を超える時期まで前記高水温環境の中で前記幼生又は稚魚又は幼魚を飼台し、前記高水温に耐えられるように幼生又は稚魚又は幼魚の段階で体感させると同時にオゾンナノ海水と微細気泡ナノ海水により生残率を向上させ、夏時期に水温調整ができない海面養殖施設に移行し養殖する Depending on the time of capture of the larvae, fry or juveniles, the larvae or fry or juveniles may be bred in the high water temperature environment until the natural seawater temperature exceeds 20 ° C. At the same time as experiencing the fry or juvenile stage, improve the survival rate with ozone nano seawater and fine bubble nano seawater, and move to a sea surface aquaculture facility where the water temperature cannot be adjusted in the summer to cultivate.
<試験例>
平均水温25℃の1000L(リットル)の循環式養殖生簀に、家庭用海水ポンプにナノノズル(株式会社中田コーティング製)を直結したナノバブル発生装置を設置し、平均体重30gのマアナゴ200尾(総体重6kg)の稚魚又は幼魚を収容し、飼料には生餌を用い、1日1回飽食給与して90日間飼育(2016年1月12日〜4月11日)した。<Test example>
A nanobubble generator with a nanonozzle (manufactured by Nakata Coating Co., Ltd.) directly connected to a domestic seawater pump was installed in a 1000 L (liter) circulating aquaculture cage with an average water temperature of 25 ° C, and 200 maanago fish with an average weight of 30 g (total weight 6 kg). ) Fry or juveniles were housed, and live food was used as feed, and the animals were fed once a day with satiety and bred for 90 days (January 12 to April 11, 2016).
その結果、実験終了時におけるマアナゴの総体重は12kgとなった。生残率は、97%であった。従来の大規模養殖において、23℃を超えると斃死数が増加を始め、24℃〜25℃になると斃死数が急増し、生残率が45%までに低下した事実があるが、この実験によって、生存率の画期的な向上を図ることができた。 As a result, the total body weight of the whitespotted conger at the end of the experiment was 12 kg. The survival rate was 97%. In conventional large-scale aquaculture, the number of mortality began to increase when the temperature exceeded 23 ° C, and the number of mortality increased sharply when the temperature exceeded 24 ° C to 25 ° C, and the survival rate decreased to 45%. , I was able to achieve a breakthrough improvement in the survival rate.
これは、海水を極めの細かいナノ海水にし、幼生又は稚魚又は幼魚の段階で高水温に馴染ますことで、海水温に対する耐性が培われ、90%以上の生残率の成果をもたらしたものと考えられる。これにより、海水を冷却する必要がなくなり、コスト削減ができ、陸上養殖と海面養殖を結合した養殖方法が可能になる。 This is because seawater is made into extremely fine nano-seawater and adapted to high water temperature at the stage of larvae or fry or juveniles, and resistance to seawater temperature is cultivated, resulting in a survival rate of 90% or more. Conceivable. This eliminates the need to cool seawater, reduces costs, and enables aquaculture methods that combine land-based aquaculture and sea-surface aquaculture.
<まとめ>
このように、20℃以上のナノ海水で3ヶ月間飼育されたアナゴの幼生又は稚魚又は幼魚は、ナノ海水効果により高い水温条件にも関わらず生残率の高い飼育をすることができると共に夏時期の海面にアナゴを移行しても海面養殖が可能となる。<Summary>
In this way, conger eel larvae, fry or juveniles bred in nano-seawater at 20 ° C or higher for 3 months can be bred with a high survival rate despite high water temperature conditions due to the nano-seawater effect, and in summer. Even if the conger eels are transferred to the sea surface during the season, sea surface cultivation is possible.
なお、海面ではアナゴ養殖の参考例及び成功例はないが、この循環式の海水養殖生簀と、例えば特許第5936005号公報に記載されるところの海面での回転養殖生簀を組み合せることによりアナゴの海面養殖が可能となる。 Although there are no reference examples or successful examples of anago farming on the sea surface, by combining this circulation type seawater aquaculture cage with, for example, a rotary aquaculture cage on the sea surface as described in Japanese Patent No. 5936005. Sea surface aquaculture becomes possible.
この開発により、従来にはない、流水式養殖や海面養殖におけるアナゴの養殖が実現できる。また、他種稚魚類並びに貝類の養殖も実現できる。 With this development, unprecedented aquaculture of conger eels in running water aquaculture and sea surface aquaculture can be realized. In addition, aquaculture of other species of fry and shellfish can be realized.
1 メイン生簀
2 サブ生簀
3 選別開口部
4 給水装置
5 濾過装置
6 貯水槽
7 加温装置
8 海水供給ポンプ
9 オゾンナノノズル装置
11 アナゴの寝床
12 二重床底部
12a 二重床底受台
13 ポンプ
13a 結合パイプ
13b エアーホース
13c 気泡ナノノズル
14 排水パイプ
15 沈殿槽
17 ポンプ
18 配管
19 オゾン発生装置
20 オゾンナノ海水叩き受台1 Main basin 2 Sub basin 3 Sorting opening 4
Claims (8)
前記海水を濾過する濾過装置と、前記濾過装置で濾過された海水に対してオゾンを発生させて殺菌するオゾン発生装置と、前記オゾン発生装置で殺菌された海水を加温する加温装置と、前記加温装置及び前記オゾン発生装置で加温・殺菌された海水を前記生簀に供給する海水供給ポンプと、前記海水供給ポンプで前記生簀に供給する際にオゾンを含む海水にナノバブルを発生させることにより多量のイオン類に包まれているオゾン海水にオゾンナノバブルを発生させオゾンナノ海水とするオゾンナノノズル装置と、前記オゾンナノ海水に酸素を供給する気泡ナノノズル装置とからなり、前記メイン生簀は、前記サブ生簀に通じる開口部と、前記オゾンナノ海水を叩くことによって空気中に窒素を放出させるオゾンナノ海水叩き受台を有し、前記生簀から排出された海水は、前記濾過装置に供給されて循環されることを特徴とするアナゴの養殖生簀。An aquaculture cage that cultivates conger eel larvae or fry or juveniles in a cage consisting of a main cage and a sub cage while circulating seawater.
A filtration device that filters the seawater, an ozone generator that generates ozone to sterilize the seawater filtered by the filtration device, and a heating device that heats the seawater that has been sterilized by the ozone generator. A seawater supply pump that supplies seawater that has been heated and sterilized by the heating device and the ozone generator to the fish cage, and seawater that contains ozone when the seawater supply pump supplies the seawater to the fish cage to generate nanobubbles. It consists of an ozone nanonozzle device that generates ozone nanobubbles in ozone seawater that is surrounded by a large amount of ions to make ozone nanoseawater, and a bubble nanonozzle device that supplies oxygen to the ozone nano seawater. It has an opening leading to the cage and an ozone nano seawater tapping cradle that releases nitrogen into the air by tapping the ozone nano seawater, and the seawater discharged from the cage is supplied to the filtration device and circulated. Anago farmed ozone characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016257895A JP6886754B2 (en) | 2016-12-15 | 2016-12-15 | Conger eel farming cage and conger eel farming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016257895A JP6886754B2 (en) | 2016-12-15 | 2016-12-15 | Conger eel farming cage and conger eel farming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018093852A JP2018093852A (en) | 2018-06-21 |
JP6886754B2 true JP6886754B2 (en) | 2021-06-16 |
Family
ID=62631906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016257895A Active JP6886754B2 (en) | 2016-12-15 | 2016-12-15 | Conger eel farming cage and conger eel farming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6886754B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109169471B (en) * | 2018-09-28 | 2020-06-16 | 南通市多乾新材料科技有限公司 | Raise breeding device in canopy of growth rate according to loach life habit |
CN109588363A (en) * | 2019-02-18 | 2019-04-09 | 正丰源生物科技(苏州)有限公司 | A kind of dynamic maintain of batch production aquatic products is grown and disease control system |
KR102084645B1 (en) * | 2019-04-26 | 2020-03-04 | 어업회사법인 설수산 주식회사 | Ground seawater nursery |
CN110214723A (en) * | 2019-05-31 | 2019-09-10 | 福建东水食品股份有限公司 | A kind of aquaculture method in artificial ecological system |
CN110495409A (en) * | 2019-08-02 | 2019-11-26 | 海南省海洋与渔业科学院 | The cultural method of plectropomus leopardus |
KR102351106B1 (en) * | 2019-09-05 | 2022-01-14 | 속초붉은대게산업 협동조합 | Eel Juvenile Cultivating Method Using Feed Containing Crab Shell |
CN110583542B (en) * | 2019-10-28 | 2021-11-05 | 林雅慧 | Industrial eel breeding method |
CN114304007B (en) * | 2022-01-12 | 2022-11-29 | 宁波大学 | Industrial recirculating aquaculture method for rainbow trout |
CN114831069B (en) * | 2022-05-31 | 2023-11-28 | 福建省寰杰科技发展有限公司 | Seafood culture pond with sea water reprocessing device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07112399B2 (en) * | 1990-02-13 | 1995-12-06 | 佳祐 上野 | Method and apparatus for separating live fish |
CN1198074A (en) * | 1996-07-30 | 1998-11-04 | 株式会社吉发斯 | Fish breeding apparatus |
JP3930863B2 (en) * | 2003-09-03 | 2007-06-13 | 株式会社陸上養殖工学研究所 | Seafood breeding equipment |
JP5936005B2 (en) * | 2013-04-12 | 2016-06-15 | 仁助 中山 | Floating-type rotary farming ginger |
JP2015019647A (en) * | 2013-07-23 | 2015-02-02 | 株式会社キッツ | Removal method and removal device for ammonia contained in culture water |
JP3206575U (en) * | 2016-07-12 | 2016-09-23 | 有限会社タイヨー種苗 | Micro-bubble aquaculture equipment for seafood |
-
2016
- 2016-12-15 JP JP2016257895A patent/JP6886754B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018093852A (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6886754B2 (en) | Conger eel farming cage and conger eel farming method | |
CN103299936B (en) | Manual breeding method of four gill bass | |
CN101675729B (en) | Method for cultivating and artificial breeding plateau saline-alkali water area northern pike | |
CN103875597A (en) | Giant salamander ecology-simulating domestication and breeding method | |
CN101107921A (en) | Method of cultivating asepsis dark-fringed takifugu genealogy | |
CN103461248A (en) | Fish fry cultivation method of acrossocheilus yunnanensis | |
CN103688893A (en) | Finless eel pond-net cage ecological culture method | |
CN104396829A (en) | Breeding method for fish fry | |
CN104137797A (en) | Ecological freshwater farming method for penaeus vannamei boone | |
CN109452203A (en) | A kind of flat Rockfish deep water mesh cage large size seedling seed breeding method of Xu Shi | |
CN104381197A (en) | Tortoise breeding method | |
CN104719213A (en) | Tor-brevifilis indoor cement pond net cage incubation method | |
Soltan | Aquaculture systems | |
CN108770742A (en) | A kind of method for culturing seedlings of Macrobrachium rosenbergii high-survival rate | |
CN109496925B (en) | Fry breeding method of schizopygmy marigold | |
Nabhitabhata et al. | Performance of simple large-scale cephalopod culture system in Thailand | |
CN106982762A (en) | A kind of nuisanceless colored perch freshwater aquaculture method | |
KR101839314B1 (en) | mandarin fish farming method and the system thereof in early stage | |
KR101839315B1 (en) | mandarin fish farming method and the system thereof in early stage | |
CN106386582A (en) | Breeding method of Ietalurus punetaus | |
CN106614111A (en) | Aquatic animal farming technique | |
CN103999809A (en) | Method for breeding naked schizothoracin fry and fingerlings through artificial feed | |
CN108477037A (en) | It is a kind of drawing river and enter the river crab in pond temporarily support fattening method | |
Francis | Fish-culture: a practical guide to the modern system of breeding and rearing fish | |
Türkmen et al. | The suggestion of integrated trout-crayfish culture in Turkey |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6886754 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |