JP6886014B2 - 再構成可能な論理デバイス内の以前に記憶した論理へのアクセスの制御 - Google Patents

再構成可能な論理デバイス内の以前に記憶した論理へのアクセスの制御 Download PDF

Info

Publication number
JP6886014B2
JP6886014B2 JP2019517433A JP2019517433A JP6886014B2 JP 6886014 B2 JP6886014 B2 JP 6886014B2 JP 2019517433 A JP2019517433 A JP 2019517433A JP 2019517433 A JP2019517433 A JP 2019517433A JP 6886014 B2 JP6886014 B2 JP 6886014B2
Authority
JP
Japan
Prior art keywords
logic
partition
logical
reconfigurable
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019517433A
Other languages
English (en)
Other versions
JP2019534508A (ja
Inventor
デイビス,マーク,ブラドリー
イーゼンバーグ,エレツ
ジョンソン,ロバート,マイケル
カーン,アシフ
モハンマド,ハテム アブドゥルファッターハ モハンマド アッタ,イスラム
モハンマド,ハテム アブドゥルファッターハ モハンマド アッタ,イスラム
ビシャラ,ナフェア
ペティー,クリストファー,ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amazon Technologies Inc
Original Assignee
Amazon Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amazon Technologies Inc filed Critical Amazon Technologies Inc
Publication of JP2019534508A publication Critical patent/JP2019534508A/ja
Application granted granted Critical
Publication of JP6886014B2 publication Critical patent/JP6886014B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • G06F3/0607Improving or facilitating administration, e.g. storage management by facilitating the process of upgrading existing storage systems, e.g. for improving compatibility between host and storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7867Architectures of general purpose stored program computers comprising a single central processing unit with reconfigurable architecture
    • G06F15/7871Reconfiguration support, e.g. configuration loading, configuration switching, or hardware OS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • G06F13/28Handling requests for interconnection or transfer for access to input/output bus using burst mode transfer, e.g. direct memory access DMA, cycle steal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/51Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems at application loading time, e.g. accepting, rejecting, starting or inhibiting executable software based on integrity or source reliability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0635Configuration or reconfiguration of storage systems by changing the path, e.g. traffic rerouting, path reconfiguration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0644Management of space entities, e.g. partitions, extents, pools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0685Hybrid storage combining heterogeneous device types, e.g. hierarchical storage, hybrid arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2143Clearing memory, e.g. to prevent the data from being stolen

Description

(対応する記載なし)
クラウドコンピューティングとは、遠隔地で利用可能であり、また、インターネット等のネットワークを通してアクセス可能であるコンピューティングリソース(ハードウェアおよびソフトウェア)を使用することである。いくつかの配設において、ユーザは、オンデマンドサービスで、ユーティリティとして、こうしたコンピューティングリソース(記憶装置およびコンピューティングパワーを含む)を購入することが可能である。クラウドコンピューティングは、リモートサービスにユーザのデータ、ソフトウェア、および計算を委託する。仮想コンピューティングリソースの使用は、コスト面での利点、および/またはコンピューティングリソースのニーズの変化に迅速に適応する能力を含む、いくつかの利点を提供することができる。
いくつかの計算は、(例えば、フィールドプログラマブルゲートアレイ(FPGA)内に)再構成可能な論理を伴って実装されたアクセラレータを含む、コプロセッサの使用を通して加速することができる。FPGAの開発者らは、典型的に、FPGAにマッピングされる機能を加速するために、ローカルホストコンピュータを、専門インターフェースによって、JTAGインターフェースをサポートするローカルFPGAの外部ピンに接続する。したがって、典型的にFPGA専門ハードウェアおよびセキュリティ機能が欠如しているクラウドコンピューティング環境においてそのようなアクセラレータを使用することは、改善の十分な機会を提示する。
(対応する記載なし)
(対応する記載なし)
開示される技術の特定の実施例に実装することができるような、構成データを管理するためのおよび再構成可能な論理デバイスをプログラムするための論理リポジトリサービスを含むシステムの一実施例を示すシステム図である。 論理リポジトリサービスの例示的な構造を示すシステム図である。 開示される技術の特定の実施例に実装することができるような、再プログラムする前にクリアすることができるアプリケーション論理を含むシステムの例示的な構成を概説するブロック図である。 論理リポジトリサービスによって行うことができる構成データの摂取および生成の一実施例を例示する図である。 構成可能なハードウェアプラットフォームを構成し、そこにインターフェースするための制御プレーンおよびデータプレーンの構成要素を含む、図4の例示的なシステムのさらなる詳細を示す図である。 仮想化された再構成可能な論理デバイスのデータを消去する例示的な方法を概説するフローチャートである。 仮想化された再構成可能な論理デバイスのデータを消去する例示的な方法を概説するフローチャートである。 論理リポジトリサービスを含むマルチテナント環境において稼働する複数の仮想マシンインスタンスを示す例示的なシステム図である。 特定の説明される技術革新を実装することができる適切なコンピューティング環境の一般化された実施例を表す図である。
専門コンピューティングリソースを一組の再使用可能な一般的コンピューティングリソース内に提供するための1つの解決策は、(フィールドプログラマブルゲートアレイ(FPGA)などの、再構成可能な論理デバイスを含むアドインカードをサーバコンピュータに提供することなどによって)一般的コンピューティングリソースの中の選択として構成可能な論理プラットフォームを備えるサーバコンピュータを提供することである。構成可能な論理(ロジック、論理回路)は、構成データのアプリケーションによって指定される論理機能を行うようにプログラムまたは構成することができるハードウェアである。例えば、コンピューティングリソースのユーザは、構成可能な論理を構成するための仕様(例えば、ハードウェア記述言語(例えば、Verilog、SystemVerilog、および/またはVHDL)もしくは他の言語(例えば、C、C++、および/またはSystemC)、スケマティックキャプチャアプリケーションによって生成されたネットリスト、またはスクリプトによって生成されるネットリストで書かれたもの)を提供することができる。構成可能な論理は、仕様に従って構成することができ、構成された論理は、ユーザのタスクを行うために使用することができる。しかしながら、コンピューティング設備の低レベルハードウェアへのユーザアクセスを可能にすることは、潜在的に、コンピューティング設備内のセキュリティおよびプライバシーの問題につながり得る。例えば、再構成可能な論理デバイスおよび関連付けられた構成要素(例えば、再構成可能な論理デバイスに結合されたメモリおよび他の回路)は、典型的に、クラウド環境において多数のユーザによって使用されるので、デバイスおよび関連付けられた構成要素に記憶されたデータは、コンピューティング設備内のリソースの以降のユーザに対して読み出し可能であるべきではない。
仮想化された再構成可能な論理デバイス内の再構成可能なハードウェアを含む、低レベルのハードウェアへのユーザアクセスを可能にする際に生じる課題としては、同じ再構成可能な論理デバイスのリソースの以降のユーザが、再構成可能な論理デバイス内のメモリおよび記憶要素の両方、ならびに再構成可能な論理デバイスにアクセス可能であるメモリなどの追加的なリソースの状態を調査することによって、機密のユーザデータへのアクセスを獲得し得る可能性が挙げられる。開示される技術は、再構成可能な論理デバイスおよび関連付けられた追加的なリソースに記憶されるデータを隔離、クリア、および/またはスクラブするための技術を含む。
本明細書で使用するとき、「隔離する」という用語は、再構成可能な論理デバイス内の他の回路からパーティションを論理的に分離するために、再構成可能な論理デバイスの一部分を構成することを指す。したがって、隔離することは、隔離したパーティションを、再構成可能な論理デバイス内の他のパーティション(例えば、他のユーザホストプロセス)から、ならびに再構成可能な論理デバイスの外部の他のデバイス(例えば、コンピューティングホスト上の他のユーザプロセス)からの無許可のアクセスからアクセスできなくする。例えば、デバイスは、パーティションをデバイス内の他のパーティションに接続する論理を再プログラムすることによって、相互接続を再プログラムすることによって、三状態ゲート、パスゲート、および/もしくはマルチプレクサなどのインターフェース回路を制御する制御信号をアサートもしくはデアサートすることによって、隔離することができる。いくつかの例において、構成の動作を隔離することは、選択されたパーティションが隔離、クリア、およびスクラブされるときに、デバイス内の他のパーティションで動作する論理が動作し続けることを可能にする。
本明細書で使用するとき、「クリアリング」は、再構成可能な論理デバイスのハードウェアリソースによって提供されるリセット機能の使用を通して、メモリおよび/または記憶要素に記憶された値をリセットすることを指す。クリアリングの一例は、構成ビットストリームをFPGAの構成ポートに適用することであり、構成ビットストリームは、FGPAを、メモリおよび/または記憶要素に以前に記憶されたデータへのアクセスを防止する、リセット状態または他の既知の状態に構成させる。いくつかの例において、構成ビットストリームは、デバイス内の再構成可能な論理の一部分を再構成するために使用されるが、他の例において、構成ビットストリームは、再構成可能な論理の全てを再構成するために使用される。いくつかの例において、FPGAは、FPGAのI/O上の信号をアサートすることによって適用することができる、リセット機能を含む。いくつかの例において、再構成可能な論理デバイスをクリアする行為は、専門ビットストリームを再構成可能な論理デバイスに適用し、部分再構成を行うことによって行うことができる。部分再構成を行うことによって、再構成可能な論理デバイスの論理および他のユーザパーティション、ならびに任意のスーパーバイザまたはホストパーティションは、そのプログラミングおよび状態を維持することができる。したがって、複数のユーザは、再構成可能な論理デバイスの異なる部分を同時に占有することができ、これらの同じユーザは、該ユーザがパーティションを使用し終わった後に、クリアおよびスクラブされた該ユーザのパーティションを有することができる。いくつかの例において、選択されたパーティションの論理がクリアされる間、他のパーティションおよびその関連付けられたメモリデバイスで動作する論理は、通常通り動作し続けることができる。
本明細書で使用するとき、「スクラビング」という用語は、回路のメモリまたは記憶装置(ストレージ)に記憶された値を消去するために、回路によって一連の動作を行うことを指す。当業者に容易に理解されるように、データは、全てがゼロ、全てが1、もしくは全てが既知のパターン(例えば、0xdeadbeef)などの既知の一組の値を書き込むことによって、またはランダム値を記憶して、回路に以前に記憶した値を置き換えることによって、メモリまたは記憶要素から消去することができる。いくつかの例において、再構成可能な論理デバイスのパーティションをスクラブする行為は、再構成可能な論理デバイス内に構成された専門論理を動作させ、部分再構成を行うことによって行うことができる。例えば、ラッチおよびフリップフロップなどの記憶デバイス(例えば、データ入力、セット/クリア/リセット、スキャン、または他の適切な入力)の代替の入力は、記憶された値をリセットするために、スクラバ回路から既知の値を受信することができる。いくつかの例において、メモリは、機能を行うリセットまたはセットピンを提供することができ、スクラバ回路は、メモリの複数のアドレスを通していくつかの書き込みを行うために繰り返すことができ、または一組の有効ビットは、メモリ出力のマルチプレクサと併せて使用して、メモリアドレスに記憶されたデータ値またはリセット値のどちらかを提供することができる。いくつかの例において、複数の読み出しポートメモリのポートは、スクラバ回路によって使用して、以前に記憶した値の上に既知のデータ値を書き込むことができる。いくつかの例において、選択されたパーティションの論理がスクラブされる間、他のパーティションおよびその関連付けられたメモリデバイスで動作する論理は、通常通り動作し続けることができる。
典型的に、再構成可能な論理デバイスの他のユーザまたはスーパーバイザパーティションは、隔離中にそれらのそれぞれのパーティションにアクセスすることが防止されるが、いくつかの例において、スーパーバイザパーティションまたはユーザパーティションは、これらのアクション中に、パーティションへの少なくとも部分的なアクセスを提供するように構成されてもよい。再構成可能なデバイスおよび/または関連付けられたリソースの一部分だけに対してクリアリングおよび/またはスクラビングを行うことによって、再構成可能な論理デバイスの他のユーザパーティションのユーザ論理およびメモリ、ならびに任意のスーパーバイザまたはホストパーティションは、それらのプログラミングおよび状態を維持し、一方で、識別された部分を消去することができる。したがって、複数のユーザは、再構成可能な論理デバイスの異なる部分を同時に占有することができ、これらの同じユーザは、該ユーザがパーティションを使用し終わった後に、例えば、ユーザ計算ホストインスタンスを終了した時点で、クリアされ、スクラブされた該ユーザのパーティションを有することができる。
本明細書で説明されるように、計算サービスの設備は、様々なコンピューティングリソースを含むことができ、あるタイプのコンピューティングリソースは、構成可能な論理プラットフォームを備えるサーバコンピュータ(代替的に、ホストコンピュータとも称される)を含むことができる。構成可能な論理プラットフォームは、コンピューティングリソースのハードウェア(例えば、構成可能な論理)がユーザによってカスタマイズされるように、コンピュータシステムのユーザによってプログラムまたは構成することができる。例えば、ユーザは、サーバコンピュータに密結合されたハードウェアアクセラレータとして機能するように、構成可能な論理をプログラムすることができる。例えば、ハードウェアアクセラレータは、サーバコンピュータの、周辺機器相互接続エクスプレス(PCI−ExpressもしくはPCIe)、またはIEEE802.3(Ethernet)接続などのローカル相互接続を介してアクセス可能であり得る。ユーザは、サーバコンピュータ上のアプリケーションを実行することができ、アプリケーションのタスクは、PCIeトランザクションを使用してハードウェアアクセラレータによって行うことができる。ハードウェアアクセラレータをサーバコンピュータに密結合することによって、アクセラレータとサーバコンピュータとの間の待ち時間を低減させることができ、これは、潜在的に、アプリケーションの処理速度を高めることができる。
計算サービスプロバイダは、構成可能なハードウェアの構成および動作を管理するために、ソフトウェアサービスを使用してコンピューティングリソースを管理することができる。1つの例として、計算サービスプロバイダは、ユーザのハードウェアまたは論理設計(論理構造)を摂取し(取り込み)、ユーザについて生成されたアプリケーション論理に基づいて構成可能な論理プラットフォームを構成するための有効な構成データを生成し、そして要求に応じて有効な構成データをダウンロードして構成可能な論理プラットフォームのインスタンスを構成するための、論理リポジトリサービスを実行することができる。構成データは、コンピュータリソースの使用を終了した後に、再構成可能な論理デバイスおよび接続された構成要素をクリアおよびスクラブするための回路を作成するためのデータを含むことができる。ダウンロード要求は、論理設計を開発したユーザからのもの、または論理設計を使用するライセンスを獲得したユーザからのものであり得る。したがって、論理設計は、ユーザまたは計算サービスプロバイダとは別の、計算サービスプロバイダ、ユーザ、または第三者によって作成することができる。例えば、アクセラレータの知的財産(IP)のマーケットプレイスは、計算サービスプロバイダのユーザに提供することができ、ユーザは、マーケットプレイスからアクセラレータを選択することによって、潜在的に、それらのアプリケーションの速度を高めることができる。
図1は、構成可能なリソースを計算リソース120内に構成するために使用することができる構成データを管理するための論理リポジトリサービス110を含む、システム100の一実施例を示すシステム図である。特に、論理リポジトリサービス110は、ホストおよびアプリケーション論理を計算サービスプロバイダのインフラストラクチャに摂取し、摂取した設計に基づいて構成データを生成し、摂取した設計および生成した構成データのリポジトリを維持し、そしてリソースが展開されるときに構成データを構成可能な計算リソースに提供するために使用することができる。
論理リポジトリサービス110は、ウェブサービスなどのネットワークアクセス可能サービスとすることができる。ウェブサービスは、一般的に、クラウドコンピューティングにおいて使用される。ウェブサービスは、ウェブまたはクラウドを通じて、ネットワークアドレスで提供されるソフトウェア機能である。クライアントは、サーバに対するウェブサービス要求を開始し、サーバは、要求を処理して、適切な応答を返す。クライアントウェブサービス要求は、典型的に、例えばAPI要求を使用して開始される。簡潔さの目的で、ウェブサービス要求は、下では一般にAPI要求として記述されるが、他のウェブサービス要求を作製することができることを理解されたい。API要求は、典型的にJSONまたはXMLで表される、定義された要求応答メッセージシステムに対するプログラマチックインターフェースシステムであり、これは、ウェブを介して、最も一般的にはHTTPベースのウェブサーバを介して公表される。したがって、特定の実装形態において、APIは、拡張マークアップ言語(XML)またはJavaScriptオブジェクト表記法(JSON)フォーマットとすることができる応答メッセージの構造の定義と共に、一組のハイパーテキストトランスファープロトコル(HTTP)として定義することができる。APIは、固有のタスクを達成すること、またはソフトウェア構成要素との相互作用を可能にすることを含むアクションを行う、一組の機能またはルーチンを特定することができる。ウェブサービスがAPI要求をクライアントデバイスから受信すると、ウェブサービスは、要求に対する応答を生成し、要求内に識別されるエンドポイントに対する応答を送信することができる。追加的または代替的に、ウェブサービスは、要求内に識別されるエンドポイントに対する応答を生成することなく、API要求に応じてアクションを行うことができる。
論理リポジトリサービス110は、API要求130を受信して、サーバコンピュータ140の構成可能なハードウェア142などの構成可能なハードウェアプラットフォームのための構成データを生成することができる。典型的に、構成可能なハードウェア142は、フィールドプログラマブルゲートアレイ(FPGA)、構成可能なプログラマブル論理デバイス(CPLDs)、プログラマブル論理デバイス(PLD)、およびプログラマブルメモリリソース(例えば、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)またはフラッシュメモリ))などの、リプログラマブル論理デバイスを含む。いくつかの例において、構成可能なハードウェアのいくつかまたは全ては、1回だけプログラム可能である。いくつかの例において、論理リポジトリサービス110のための機能は、サーバコンピュータ140を使用して全体的または部分的に実装されるが、他の例において、該機能は、サーバコンピュータとは別のコンピュータリソースを伴って実装される。
API要求130は、開発者、または計算サービスプロバイダのパートナーユーザによって考案され得る。要求130は、論理設計、構成可能なハードウェアプラットフォーム、ユーザ情報、アクセス特権、生産状況に関するデータおよび/またはメタデータを指定するためフィールド、ならびに入力、出力、および論理リポジトリサービス110のユーザに関する情報を説明するための種々の追加的なフィールドを含むことができる。具体的な例として、要求は、設計の説明、生産状態(トライアルまたは生産など)、サービスの入力または出力の暗号化された状態、入力ファイル(ハードウェア設計ソースコードなど)を記憶するための場所の参照、入力ファイルのタイプ、構成可能なハードウェアのインスタンスタイプ、および出力ファイルまたはレポートを記憶するための場所の参照を含むことができる。特に、要求は、構成可能なハードウェアプラットフォーム上に実装するためのアプリケーション論理132を指定するハードウェア設計の参照を含むことができる。構成可能なハードウェアにプログラムされるたきにアプリケーション論理の動作を制御するために使用されるホスト論理134は、例えば、計算サービスプロバイダ開発チームから受信される。アプリケーション論理132のおよび/またはホスト論理134の仕様は、ソースコード、論理合成ツールによって生成されるネットリスト、ならびに/または配置およびルーティングツールによって生成される配置およびルーティングされた論理ゲートなどの、一群のファイルとすることができる。ソースコードは、ハードウェア記述言語(HDL)、レジスタ転送論理(RTL)言語、またはオープンコンピューティング言語(OpenCL)もしくはCなどの高レベル言語で記述されたコードを含むことができる。
計算リソース120は、インスタンスタイプによって分類された数多くの異なるタイプのハードウェアおよびソフトウェアを含むことができる。特に、インスタンスタイプは、リソースのハードウェアおよびソフトウェアの少なくとも一部分を指定する。例えば、ハードウェアリソースとしては、様々なパフォーマンスレベル(例えば、異なるクロックスピード、アーキテクチャ、キャッシュサイズ、など)の中央処理ユニット(CPU)を有するサーバ、コプロセッサ(グラフィックス処理ユニット(GPU)および構成可能な論理など)を有する、および有しないサーバ、メモリおよび/またはローカル記憶の様々な容量およびパフォーマンスを有するサーバ、ならびに異なるネットワークパフォーマンスレベルを有するサーバを挙げることができる。例示的なソフトウェアリソースとしては、異なるオペレーティングシステム、アプリケーションプログラム、およびドライバを挙げることができる。1つの例示的なインスタンスタイプは、構成可能なハードウェア142と通信する中央処理ユニット(CPU)144を含むサーバコンピュータ140を備えることができる。構成可能なハードウェア142は、例えば、FPGA、プログラマブル論理アレイ(PLA)、プログラマブルアレイ論理(PAL)、ジェネリックアレイ論理(GAL)、またはコンプレックスプログラマブル論理デバイス(CPLD)などの、プログラマブル論理を含むことができる。
論理リポジトリサービス110は、API要求130を受信することに応じて、構成データ136を生成することができる。生成された構成データ136は、アプリケーション論理132およびホスト論理134に基づくことができる。具体的には、生成された構成データ136は、構成可能なハードウェア142がアプリケーション論理132およびホスト論理134によって指定された機能を行うように、該構成可能なハードウェアをプログラムまたは構成するために使用することができる情報を含むことができる。1つの例として、計算サービスプロバイダは、CPU144と構成可能なハードウェア142とをインターフェースするための論理(論理回路)を含むホスト論理134を生成することができる。この様態で、ホスト論理134は、潜在的に、アプリケーション論理132によって導入することができるセキュリティおよび可用性リスクを低減させることができる。他の例において、アプリケーション論理132は、PCIe、Ethernet、Infiniband、または他の適切なインターフェースを介して、CPU144に直接通信することができる。
構成データ136を生成することは、アプリケーション論理132のチェックおよび/もしくは試験を行うこと、アプリケーション論理132をホスト論理134ラッパーに統合すること、アプリケーション論理132を合成すること、ならびに/またはアプリケーション論理132を配置およびルーティングすることを含むことができる。
構成データ136を生成することは、アプリケーション論理132およびホスト論理134のソースコードを、構成可能なハードウェア142をプログラムまたは構成するために使用することができるデータにコンパイルおよび/または変換することを含むことができる。例えば、論理リポジトリサービス110は、アプリケーション論理132をホスト論理134ラッパーに統合することができる。具体的には、アプリケーション論理132は、アプリケーション論理132およびホスト論理134を含むシステム設計にインスタンス化することができる。統合されたシステム設計は、論理合成プログラムを使用して、システム設計のためのネットリストを作成するように合成することができる。ネットリストは、システム設計のために指定されたインスタンスタイプのために、配置およびルーティングプログラムを使用して、配置およびルーティングすることができる。配置およびルーティングされた設計は、構成可能なハードウェア142をプログラムするために使用することができる構成データ136に変換することができる。例えば、構成データ136は、配置およびルーティングプログラムから直接出力することができる。
1つの例として、生成された構成データ136は、FPGAを備える集積回路に結合された構成可能な論理(論理回路)およびメモリならびに追加的なリソースの一部分を隔離、クリア、および/またはスクラブすることを含む、FPGAの構成可能な論理の全てまたは一部分を構成するための完全なまたは部分的なビットストリームを含むことができる。FPGAは、構成可能な論理および非構成可能な論理を含むことができる。構成可能な論理は、組み合わせ論理および/またはルックアップテーブル(LUT)、ならびに連続論理要素(フリップフロップおよび/またはラッチなど)を備えるプログラマブル論理ブロック、プログラマブルルーティングおよびクロッキングリソース、プログラマブル分散型およびブロックランダムアクセスメモリ(RAM)、デジタル信号処理(DSP)ビットスライス、ならびにプログラマブル入力/出力ピンを含むことができる。ビットストリームは、構成論理(例えば、構成アクセスポート)を使用して、構成可能な論理のオンチップメモリにロードすることができる。オンチップメモリ内にロードされた値を使用して、構成可能な論理がビットストリームによって指定される論理機能を行うように、構成可能な論理を制御することができる。加えて、構成可能な論理は、互いに独立して構成することができる異なるパーティションまたは領域に分けることができる。1つの例として、フルビットストリームを使用して、構成可能な論理を領域全体にわたって構成することができ、部分ビットストリームを使用して、構成可能な論理領域の一部分だけを構成することができる。例えば、ホスト論理部分、第1のアプリケーション論理部分、第2のアプリケーション論理部分などの各々ための個々の部分ビットストリームを生成し、構成可能なハードウェアプラットフォームにダウンロードし、そして、それを使用して、単一のFPGAの異なる部分を独立してプログラムすることができる。部分ビットストリームを独立して適用することができるので、FPGAの他の部分の詳細な知識を他の人が利用できるようにする必要はなく、それによって、ユーザプライバシーを保護することができる。いくつかの例において、ビットストリームのいくつかまたは全ては、暗号化を使用してさらに保護することができる。非構成可能な論理は、入力/出力ブロック(例えば、シリアライザおよびデシリアライザ(SERDES)ブロックならびにギガビットトランシーバ)などの、FPGA内で特定の機能を行うハードマクロと、アナログ−デジタル変換器と、メモリ制御ブロックと、試験アクセスポートと、構成データを構成可能な論理にロードするための構成論理と、を含むことができる。
論理リポジトリサービス110は、生成された構成データ136を論理リポジトリデータベース150に記憶することができる。論理リポジトリデータベース150は、磁気ディスク、ダイレクトアタッチトストレージ、ネットワークアタッチトストレージ(NAS)、ストレージエリアネットワーク(SAN)、独立した複数のディスクからなる冗長配列(RAID)、磁気テープもしくはカセット、CD−ROM、DVD、または非一時的な方式で情報を記憶するために使用することができ、かつ論理リポジトリサービス110によってアクセスすることができる任意の他の媒体を含む、リムーバブルまたは非リムーバブル媒体に記憶することができる。加えて、論理リポジトリサービス110を使用して、(アプリケーション論理132およびホスト論理134の仕様などの)入力ファイル、ならびに論理設計および/または論理リポジトリサービス110のユーザに関するメタデータを記憶するために使用することができる。例えば、生成された構成データ136は、例えば、ユーザ識別子、1つまたは複数のインスタンスタイプ、マーケットプレイス識別子、マシンイメージ識別子、および構成可能なハードウェア識別子などの、1つ以上の特性によってインデックスを付けることができる。
論理リポジトリサービス110は、構成データをダウンロードするためのAPI要求160を受信することができる。例えば、要求160は、計算リソース120のユーザが計算リソース120内の新しいインスタンス(例えば、「F1.スモール」インスタンス)を起動または展開するときに生成することができる。別の例として、要求160は、オペレーティングインスタンスで実行するアプリケーションからの要求に応じて生成することができる。これは、例えば、(新しいアプリケーション論理を試験およびデバッグする間に、アプリケーション論理の開発者などによって)再構成可能な論理をクリアおよびスクラブする要求、または再構成可能な論理の選択された部分を隔離、クリア、およびスクラブするための開示される方法を開始するインスタンスを終了する要求を含むことができる。要求160は、ソースおよび/または宛先インスタンスの参照、ダウンロードする構成データ(例えば、インスタンスタイプ、マーケットプレイス識別子、マシンイメージ識別子、または構成可能なハードウェア識別子)の参照、ユーザ識別子、認可トークン、ならびに/またはダウンロードする構成データを識別するための、および/もしくは構成データへのアクセスを許可するための他の情報、を含むことができる。構成データを要求するユーザが、構成データにアクセスする許可を与えられた場合は、論理リポジトリデータベース150から構成データを取り出すことができ、有効な構成データ162(例えば、フルまたは部分ビットストリーム)を要求元インスタンス(例えば、サーバコンピュータ140)にダウンロードすることができる。有効な構成データ162は、宛先インスタンスの構成可能な論理を構成するために使用することができる。
論理リポジトリサービス110は、有効な構成データ162を要求元インスタンスにダウンロードすることができることを検証することができる。検証は、論理リポジトリサービス110によって複数の異なる位置で起こり得る。例えば、検証は、アプリケーション論理132がホスト論理134と互換性があることを検証することを含むことができる。特に、試験の回帰スイートは、シミュレータ上で実行して、アプリケーション論理132が設計に加えられた後に、予想通りにホスト論理134を行うことを検証することができる。追加的または代替的に、他のアプリケーション論理パーティションが、選択されたアプリケーション論理パーティションを隔離、クリア、およびスクラブすることによって影響されないことを確実にすることを含む、アプリケーション論理132が、ホスト論理134の再構成可能な領域とは別の再構成可能な領域にだけ残留するように指定されることを検証することができる。別の例として、検証は、有効な構成データ162が、ダウンロードするインスタンスタイプと互換性があることを検証することを含むことができる。別の例として、検証は、要求元が、有効な構成データ162にアクセスする許可を与えられていることを検証することを含むことができる。検証チェックのいずれかが不合格であった場合、論理リポジトリサービス110は、有効な構成データ162をダウンロードする要求を拒絶することができる。したがって、論理リポジトリサービス110は、潜在的に、コンピューティングリソース120のセキュリティおよび可用性を保護することができ、一方で、ユーザがコンピューティングリソース120のハードウェアをカスタマイズすることを可能にする。
上で述べたように、いくつかの例において、論理リポジトリサービス110について上で説明した動作は、サーバコンピュータ140を使用して、計算リソース120内の他のリソースを使用して、または計算リソース120以外の他のリソースを使用して行うことができる。
図2は、論理リポジトリサービス205の例示的な構造200を示すシステム図である。論理リポジトリサービス205は、計算サービスプロバイダによって管理されるサーバコンピュータで実行するソフトウェアとすることができる。論理リポジトリサービス205は、1つ以上のウェブAPIを通してアクセスすることができる。
論理リポジトリサービス205は、計算サービスプロバイダによってAPI要求をサービスするためのプロバイダインターフェース210を含むことができる。プロバイダインターフェース210を使用して、要求内に提供される証明書を使用して要求側の識別情報を認証することなどによって、要求が計算サービスプロバイダのエージェントからであることを認証することができる。プロバイダインターフェース210は、ホスト論理摂取機能215を提供することができる。特に、プロバイダインターフェース210は、ホスト論理設計を論理リポジトリサービス205にアップロードする要求を受信することができ、該要求は、ホスト論理摂取機能215によって処理することができる。上で説明されるように、ホスト論理は、アプリケーション論理をサンドボックス化して、コンピューティングリソースのセキュリティおよび可用性を維持するための論理を含むことができる。加えて、ホスト論理は、静的論理および再構成可能な論理にさらに分けることができる。静的論理は、初期化シーケンス中に(例えば、ブート時間に)構成することができ、一方で、再構成可能な論理は、構成可能な論理の動作中の異なる時間に構成することができる。1つの例として、PCI−Expressインターフェースは、リセット信号がデアサートされた後の約100ミリ秒以内にPCIエンドポイントがブートおよび列挙されるように指定することができる。ホスト論理は、割り当てられた時間ウインドウ以内にロードすることができる静的論理、および時間ウインドウが経過した後にロードすることができる再構成可能な論理に分けることができる。静的論理は、異なる再構成可能な領域間のインターフェースとして使用することができる。ホスト論理設計は、例えばSystemVerilog、Verilog、またはVHDLで書かれた、HDLソースコードを使用して指定することができる。HDLソースコードは、暗号化すること、または非暗号化することができる。いくつかの例では、論理構成要素を説明するネットリストを、HDLソースコードに加えて、またはその代わりに提供することができる。ホスト論理摂取モジュール215は、受信したホスト論理設計のチェック、ホスト論理設計の解読、および/またはホスト論理設計のためのバージョン情報の提供を行うために使用することができる。加えて、要求は、ホスト論理設計を1つ以上のインスタンスタイプと関連付けるための情報を含むことができる。例えば、いくつかのホスト論理設計は、インスタンスタイプのうちのあるサブセットだけによって機能することができ、他のホスト論理設計は、インスタンスタイプのうちの異なるサブセットだけによって機能することができる。
論理リポジトリサービス205は、論理リポジトリサービス205のユーザからAPI要求をサービスするための顧客−開発者インターフェース220を含むことができる。顧客−開発者インターフェース220を使用して、要求内に提供される証明書を使用して要求側の識別情報を認証することなどによって、要求が計算サービスプロバイダのユーザからであることを認証するために使用することができる。例えば、ユーザの各々には、アクセス管理、請求、および使用状況追跡のためにユーザを識別するために使用することができるアカウントを提供することができる。ユーザは、ユーザがアクセスすることを許可された論理設計だけを閲覧および修正するように限定することができる。例えば、ユーザが、ホスト論理をアップロードおよび/または修正することを防止することができる。
顧客−開発者インターフェース220は、アプリケーション論理設計(論理構造)を受信および/または処理するためのアプリケーション論理摂取機能225を含むことができる。アプリケーション論理設計は、ソースコード(例えば、SystemVerilog、Verilog、C、SystemC、または他の適切な記述言語で表現されるHDL言語コード)、構成可能な論理ブロックのリストおよび構成可能な論理ブロック間の接続のリストを含むネットリスト、および/または構成データを使用して指定することができる。例えば、HDLコードは、隔離、クリアリング、および/またはスクラビング動作を行うための論理のインスタンス化を記述することができ、これは、次いで、ソースコードを開発するエンジニアがアクセス不可能な専用のネットリストを含むことによって、構成データにステッチされる。別の例として、構成データは、論理リポジトリサービスにアップロードされる前に少なくとも特定の部分について予めコンパイルされた、フルまたは部分ビットストリームを含むことができる。アプリケーション論理は、(構成データ生成ブロック230などによって)ホスト論理と組み合わせて、構成可能なハードウェアプラットフォームにロードすることができる論理を作成する。アプリケーション論理設計を処理することは、ソースコードを下位レベルのフォーマットに翻訳および/またはコンパイルすること(例えば、OpenCLをコンパイルして、行動または構造Verilogを生成すること)と、必要とされる論理および/または(ホスト論理へのインターフェース信号などの)信号が存在することを検証することと、既知の制限された回路(リング発振器など)が存在しないことを検証することと、構成データの生成の準備における他の種々のタスクと、を含むことができる。
顧客−開発者インターフェース220は、ユーザからの種々のタイプの要求を受け入れることができる。1つの例として、ユーザは、構成可能なハードウェアイメージ(CHI)を作成するように要求することができる。CHIは、構成可能なハードウェアのインスタンスをコンピューティング環境内に構成するための情報を提供することができる。例えば、CHIは、1つ以上の互換性があるインスタンスタイプと、構成可能なハードウェアを構成するための構成データと、CHIへのアクセスを制御するためのアクセス許可と、構成可能なハードウェアを構成することと関連付けられた任意の他の情報と、を含むことができる。CHIを作成する要求は、設計記述またはタイトルのためのフィールドと、設計の生産状態と、設計が暗号化されるかどうかと、設計のためのソースコードの参照と、ソースコードインジケータのタイプと、構成データと互換性がある1つまたは複数のインスタンスタイプと、レポート情報を記憶する場所の参照と、を含むことができる。
構成データ生成ブロック230は、再構成可能な論理デバイスをプログラムするための構成データを作成するために使用することができる。例えば、構成データは、アプリケーション論理設計およびホスト論理設計に基づくことができる。別の例として、構成データは、アプリケーション論理設計だけ、またはホスト論理設計だけに基づくことができる。特に、構成データ生成ブロック230は、ホスト論理設計だけに基づいて、静的論理を生成することができる。加えて、構成データ生成ブロック230は、構成可能な論理の1つ以上の再構成可能な領域のための再構成可能な論理を生成することができる。例えば、構成データ生成ブロック230を使用して、ホスト機能に予約された領域のためのホストの再構成可能な論理を生成することができる。別の例として、構成データ生成ブロック230を使用して、主にアプリケーション機能に予約された領域のためのアプリケーションの再構成可能な論理を生成することができる。
構成データ生成ブロック230への入力は、(アプリケーション論理摂取225などからの)アプリケーション論理設計、(ホスト論理摂取215などからの)ホスト論理設計、および/または(クロック周波数、分割情報、配置情報、ターゲット技術などといった)種々の実装形態の詳細を記述する制約、であり得る。論理設計は、HDL、ネットリスト、および/または構成データを使用して記述されたソースコードを含むことができる。構成データ生成ブロック230は、アプリケーションおよびホスト設計を1つの設計に組み合わせて、構成データを作成することができる。図3を参照してより詳細に説明されるように、構成データ生成ブロック230は、論理合成ツールと、配置およびルーティングツールと、を含むことができる。これらのツールを使用することで、構成データ生成ブロック230は、構成可能なハードウェアプラットフォームにロードするための構成データを作成することができる。
構成データ生成ブロック230からの出力は、論理ライブラリ管理ブロック240を使用して管理することができる。例えば、論理ライブラリ管理ブロック240は、ユーザ情報を構成データと関連付けること、および情報を論理リポジトリデータベース250に記憶することができる。
コンピューティングサービスインターフェース260は、論理リポジトリサービス205とコンピューティングリソースとの間のインターフェースとして使用することができる。例えば、インスタンスがコンピューティングリソースに作成されると、API要求をコンピューティングサービスインターフェイス260に送信することができ、構成データを要求側リソースにダウンロードすることができる。静的論理ダウンロード構成要素262は、要求側インスタンスの構成可能なハードウェアプラットフォームに静的論理をダウンロードするために使用することができる。加えて、要求は、再構成可能な論理に関するものであり得、再構成可能な論理ダウンロード構成要素264を使用して、該要求をサービスすることができる。具体的には、再構成可能な論理ダウンロードは、論理ライブラリ管理ブロック240を介して、論理リポジトリデータベース250を通して構成データを検索することができる。要求は、再構成可能なホスト論理に関するもの、または再構成可能なアプリケーション論理に関するものであり得る。
図3は、開示される技術の特定の実施例に実装することができるような、仮想化された再構成可能な論理環境をサポートする例示的なホストコンピュータ140を概説するブロック図300である。
示されるように、構成可能なハードウェア142は、いくつかのパーティションを実装するようにプログラムされた、再構成可能な論理デバイスを含む。ホスト論理パーティション310は、アプリケーション論理パーティションの動作を監督および制御するための制御論理を含むように構成される。ホストパーティションは、スクラバ回路312を使用して個々のアプリケーション論理パーティションからデータを隔離、クリア、およびスクラブすることを含む、ユーザパーティションの動作を監督することができる。ホスト論理パーティション310は、汎用CPU144で実行するスーパーバイザモードプロセス315だけからアクセスすることができるように構成される。ホスト論理パーティション310は、典型的に低い頻度で再プログラムされる静的論理と、典型的により頻繁に再プログラムされる動的論理と、を含む。例えば、動的論理は、アプリケーション論理パーティション320が再プログラムまたは修正されるたびに再構成することができる。ホスト論理パーティション310は、アプリケーション論理パーティション320に/から制御信号を送信および受信する、制御信号発生器をさらに含む。
構成可能なハードウェア142は、再構成可能な論理リソースと、メモリ324と、を備える、第1のアプリケーション論理パーティション320をさらに含む。メモリ324は、ブロックRAM、分散RAM、構成メモリ、および他の形態のアドレス指定可能な内部メモリなどの、内蔵/内部FPGAメモリ回路を有することを含む、いくつかの異なる方法で実装することができる。アプリケーション論理パーティション320は、例えば、残りの構成可能なハードウェア142からアプリケーション論理パーティション320を電気的に隔離するために、アプリケーション論理パーティション320のインターフェースの相互接続または論理を再プログラムすることによって、または三状態ゲート、パスゲート、および/もしくはマルチプレクサなどの回路の制御信号をアサートする制御レジスタの値を設定することによって、構成可能なハードウェア142の他のパーティションから隔離することができる。
構成可能なハードウェア142は、第2のアプリケーション論理パーティション330をさらに含む。図3に示されるように、アプリケーション論理パーティションのユーザ論理は、スクラバ回路332で上書きされている。例えば、スクラバ回路332は、構成ポート360にスクラバを実装するための情報を有する構成ビットストリームを適用することによって提供することができる。他の例において、スクラバ回路332は、内部構成回路使用して、スクラバ回路をユーザ論理に上書きすることによって提供される。スクラバ回路は、再構成可能な論理(論理回路)の記憶要素(例えば、ラッチ、フリップフロップ、およびメモリ)、ならびに内蔵メモリ344に記憶されたデータを消去するための回路を含む。構成可能なハードウェア142は、代替の例として例示される、第3のアプリケーション論理パーティション340をさらに含む。第3のアプリケーション論理パーティション340は、それに結合された第3のスクラバ回路342と、内部メモリ344と、を有する。第3のスクラバ回路342は、アプリケーション論理パーティション340およびメモリ344のための再構成可能な論理の記憶要素に記憶されたデータを消去するように構成される。したがって、いくつかの例では、アプリケーション論理パーティションだけがスクラバを含む。他の例では、ホスト論理パーティション310だけがスクラバ回路312を含む。他の例において、スクラバ回路は、ホスト論理パーティション310およびアプリケーション論理パーティション320に含まれる回路にわたって実装される。
任意の適切なメモリタイプを、パーティションの再構成可能なデバイスメモリ324、334、または344内に含むことができる。例えば、FPGAは、ブロックRAMと呼ばれるコンパクトな大容量RAMを有し、これは、スタティックRAM(SRAM)または内蔵ダイナミックRAM(eDRAM)を使用して実装することができる。スクラバ回路は、メモリに以前に記憶されたデータを消去するために、内部および/または外部メモリの各アドレスをステップスルーし、既知のパターンを書き込むことができる。例えば、スクラバ回路を使用して、全てがゼロ、全てが1、既知のパターン(例えば、0xdeadbeef)、またはランダムなパターンなどのパターンをメモリに書き込むことができる。いくつかの他の例では、スクラバ回路を使用して、分散RAM、ルックアップテーブル(LUT)RAM、またはアプリケーション論理パーティションのその一部分と関連付けられた構成メモリなどの他のタイプのRAMも再プログラムすることができる。いくつかの例において、FPGAベンダは、スクラバ回路を実装するために使用することができる構成インスタンスを提供する。そのような例において、構成回路は、クリアリングおよびスクラビング動作を制御するために、CPU144で実行するプロセスのうちの1つに結合することができる、DMAダイレクトメモリアクセスインターフェースを含むことができる。他の例において、クリアリングは、部分再構成モードを使用して、構成ビットストリームを、構成可能なハードウェア142に適用することによって達成することができる。いくつかの例において、パーティションは、パーティション境界を関連付けられた構成論理のアドレス境界と整列させることによって、そのようなビットストリームの適用を容易にするように配設される。構成ビットストリームは、ビットストリームを構成ポート360に適用することによって、構成可能なハードウェア142をプログラムするために使用することができる。
サーバコンピュータ140は、構成可能なハードウェア142内の論理パーティションのうちの1つ以上に結合することができる外部メモリ370をさらに含むことができる。例えば、SRAM、DRAM、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)、および/またはフラッシュメモリは、パーティションの1つ以上が外部メモリ370に対して読み出しまたは書き込みができるように、構成可能なハードウェア142に電気的に接続することができる。典型的に、個々のパーティションが外部メモリ370の同じ領域に書き込むことを防止するために、いくつかの制御回路が提供される。例えば、パーティションの各々を外部メモリ370の異なるアドレス範囲と関連付けることができる。スクラバ回路のさらなる機能は、例えば、既知のゼロのパターン、既知の1のパターン、またはランダムなパターンを外部メモリ370に記憶させることによって、外部メモリに記憶されたデータを消去することができる。例えば、異なるタイプのスクラバ312、332、および/または342を全て結合して、外部メモリ370を消去することができる。
いくつかの例において、アプリケーション論理パーティションは、接続を他のアプリケーション論理部分に適合させることなく、それらを再構成することができるように配設される。これは、アプリケーション論理パーティションのいずれかを、他のアプリケーション論理パーティションとは独立して再プログラムすることを可能にする。例えば、2つ以上のアプリケーション論理パーティションが単一のFPGA集積回路に含まれる場合は、FPGAの任意の他の部分を、選択されたアプリケーション論理パーティションのうちの1つだけを再プログラムするために、部分的に再構成することができる。いくつかの例において、FPGA部分は、プログラミンググラニュラリティおよび標的のFPGAの特徴に部分的に基づいて選択される。例えば、FPGA部分は、FPGA内に配列した論理構成要素の行の範囲または列の範囲を異なる部分に割り当てることによって作成することができる。
ホスト論理およびアプリケーション論理部分は、CPU144で実行する別個のホストパーティション(例えば、別個のプロセスまたは仮想マシン)と関連付けられる。図3に示される例の場合、ホスト論理パーティション310は、CPU144で実行するスーパーバイザモードプロセス315と関連付けられる。スーパーバイザモードプロセス315は、CPUの他のプロセスよりも高い特権レベルで実行する。例えば、サーバコンピュータ140の管理者は、スーパーバイザモードプロセス315を使用または制御するための十分な許可を有する唯一のエンティティであり得る。アプリケーション論理パーティション320、330、および340の各々は、それぞれ、対応するユーザモードプロセス325、335、および345と関連付けられる。ユーザモードプロセスは、スーパーバイザモードプロセス315よりも低い許可レベルを有し、したがって、他のユーザは、管理者に加えて、ユーザモードプロセスを制御および使用することができる。
CPU144は、インターフェース350を介して、構成可能なハードウェア142に結合される。インターフェース350は、限定されないが、PCIe、Ethernet、およびInfinibandを含む、任意の適切な相互接続技術を伴って実装することができる。アプリケーション論理部分の各々は、その関連付けられたユーザモードプロセスに通信するために、インターフェース350の異なる予約部分を使用する。例えば、ユーザモードプロセスの各々は、異なる範囲のメモリアドレスへのアクセスを可能にされ得、次に、ホスト論理パーティション310は、個々のアプリケーション論理部分の各々を、それらの対応するプロセスと関連付けられたメモリアドレス範囲だけに結合する。したがって、アプリケーション論理パーティションと関連付けられたユーザモードプロセス以外のユーザモードプロセスに、またはそこからデータを送信することができないので、アプリケーション論理は、他のアプリケーション論理からさらに独立している。同様に、スーパーバイザモードプロセス315は、別の制限されたメモリレンジを介して、ホスト論理パーティション310に結合することができる。
図3に示されるように、構成要素のいくつかは、代替の例において、構成可能なハードウェア142の異なる部分を占有するように構成することができる。例えば、アプリケーション論理パーティションは、ホスト論理パーティション310に結合されない場合があるが、代わりに、相互接続インターフェースを介して、その関連付けられたユーザモードプロセスに直接結合され得る。例えば、インターフェース350は、アプリケーション論理ユニットパーティションが固有のメモリアドレス範囲に書き込み、次に、ホスト論理パーティション310を介して通信することなく、特定のユーザモードプロセスと関連付けられるように構成することができる。
さらに、構成可能なハードウェア142にアクセス可能であり得るメモリは、構成可能なデバイスメモリ324、334、および344に限定されない。例えば、別個の集積回路ダイに位置付けられた外部メモリ370は、I/Oインターフェースバスを介して、構成可能なハードのI/Oユニットに結合することができる。ホスト論理パーティション310は、外部メモリ370に書き込むように、およびそこから読み出すように構成することができる。いくつかの例では、別個の外部メモリダイをアプリケーション論理パーティションの各々に提供し、一方で、他の例では、ホスト論理パーティション310は、アプリケーション論理パーティション間の分離を維持するように構成される。
いくつかの例において、ホスト論理パーティション310および/またはアプリケーション論理パーティション320、330、または340に結合されたプロセスの各々は、CPU144によってホストされる異なる仮想マシンで実行されるプロセスと関連付けられる。他の例では、プロセスの2つ以上を同じ仮想マシン内で実行することができる。
図4は、論理リポジトリサービスによって行うことができるような、論理設計を摂取し、構成データを生成する、例示的なフロー400を例示する。摂取410中に、アプリケーション論理405、ホスト論理406、および/またはスクラバ論理407の記述を、論理リポジトリサービスによって受信することができる。いくつかの例において、アプリケーション論理405は、スクラバ論理407のセルの1つ以上のインスタンスをインスタンス化し、故に、スクラバ回路は、アプリケーション論理に組み込まれる。いくつかの例において、スクラバ回路は、RTLまたはネットリストにインスタンス化され、その結果、スクラバ回路は、メモリおよび/または記憶ユニットの所望される消去を行うようにアプリケーション論理に組み込まれる。論理設計は、IEEE1735−2014暗号化標準などを使用することによって、暗号化することができる。論理設計は、フロー400の摂取410中に、または後のステップ中に解読することができる。
1つの例として、アプリケーション論理405およびスクラバ論理407のソースコードは、摂取410中に受信することができ、アプリケーション論理およびスクラバ論理は、設計に組み合わせて、再構成可能な論理デバイスの第1の部分をプログラムするための論理合成420のソースコードを生成することができる。ホスト論理406のソースコードは、再構成可能な論理デバイスの第2の部分をプログラムするための論理合成420のソースコードを生成するために使用することができる。論理合成420は、標的技術に基づいて、行動および/または構造RTLで書かれた仕様をネットリストに変換するために使用することができる。例えば、論理合成420は、異なるアーキテクチャを有するFPGA、製造プロセス、容量、および/または製造業者などの、異なる構成可能な論理技術を標的にすることができる。ネットリストは、いくつかの、構成可能な論理ブロック、非構成可能なブロック(例えば、ハードまたはソフトマクロ)、および異なるブロック間の接続を含むことができる。ネットリストは、ネットリストのブロックが列挙されるが、標的技術内に未配置である、論理ネットリストとすることができる。ネットリストは、配置およびルーティング430への入力として使用することができる。配置およびルーティング430は、ネットリストからの構成可能なブロックのインスタンスおよびルーティング情報をとることができ、ブロックを物理的で再構成可能な論理デバイスにマッピングすることができる。配置およびルーティング設計は、ネットリストの論理構成要素の各々の物理的マッピングを含むことができる。追加的または代替的に、配置およびルーティング430は、ネットリストが設計のタイミング制約および物理デバイスの物理的制約に基づいて修正されるようにタイミング駆動することができる。配置およびルーティング430の出力は、ビットストリームイメージなどの構成データとすることができる。構成データは、異なる構成要素に分割すること、または分けることができる。例えば、構成データは、静的ホスト論理、再構成可能なホスト論理、および/または再構成可能なアプリケーション論理と関連付けられたデータを含むことができる。異なる構成要素は、オーバーラップまたは非オーバーラップとすることができる。例えば、静的ホスト論理は、再構成可能なアプリケーション論理によって使用される領域を通してルーティングすることができる。したがって、再構成可能なアプリケーション論理の部分的なビットストリームはまた、静的ホスト論理の一部分も含むことができる。
別の例として、アプリケーション論理および/またはホスト論理のネットリストは、摂取410中に、受信することができる。具体的な一例として、ネットリストは、アプリケーション論理のために受信することができ、ソースコードは、ホスト論理のために受信することができる。この事例において、ホスト論理は、論理合成420と合成して、ホスト論理のネットリストを生成することができ、ホストおよびアプリケーション論理のネットリストは、単一の設計に組み合わせて、配置およびルーティング430のネットリストを生成することができる。別の例として、アプリケーション論理および/またはホスト論理の構成データは、摂取410中に受信することができる。例えば、アプリケーション論理設計の部分ビットストリームを受信することができ、またはホストおよびアプリケーション論理設計のフルビットストリームを受信することができる。別の例として、構成ポートまたは内部構成ユニットに適用されたときに再構成可能な論理デバイスのパーティションの全部または一部分をクリアする、クリアリングビットストリームを受信することができる。ビットストリームは、基礎をなす再構成可能な論理デバイスの製造業者の属性、集積回路の設計、容量、および他の属性に基づいて選択することができる。
別の例として、タイミングレポートは、設計が構成可能なハードウェアのタイミング仕様を満たすかどうかを示す、静的タイミング解析を提供することができる。論理合成420、ならびに配置およびルーティング430は、論理合成420、ならびに配置およびルーティング430の各稼働が異なる結果を提供することができるように、ツールの各稼働によって変動する、ランダムな非決定論的ステップを含むことができる。したがって、開発者が、(タイミングレポートによって示されるように)タイミングを満たさない設計を有する場合、開発者は、論理合成420、ならびに/または配置およびルーティング430を再稼働することを所望する場合がある。この様態において、開発者は、同じ設計に対して複数の合成を実行し、ルーティングを稼働させることによって、自分の設計を繰り返すことができる。
ライブラリ管理および検証440機能は、開発および展開ステップ中の種々の時点で、構成可能な論理についてユーザ設計を有効にすることができる。1つの例として、検証440は、ホスト論理がアプリケーション論理の機能を限定することができるように、シミュレーションを行って、アプリケーション論理がホスト論理と互換性があるかどうかを検証することを含むことができる。検証440は、アプリケーション論理のネットリストを比較して、アプリケーション論理が、構成可能なハードウェアプラットフォームの容量および領域制限を満たすことを確認することを含むことができる。例えば、アプリケーション論理は、1つ以上の再構成可能な領域内でだけ論理を使用するように制限することができる。アプリケーション論理がそれらの領域外にある場合、アプリケーション論理を拒否することができる。加えて、アプリケーション論理は、ビットストリームとして摂取することができ、ビットストリームは、検証440によって有効にすることができる。ビットストリームの検証は、ホスト論理に対応する摂取されたビットストリームデータの一部分を、ホスト論理のベースラインバージョンと比較して、ホスト論理が壊されていないことを確認することを含むことができる。検証440からの出力は、有効な構成データとすることができる。
図5は、構成可能なハードウェアプラットフォーム510を構成し、そこにインターフェースするための制御プレーンおよびデータプレーンの構成要素を含む、例示的なシステム500のさらなる詳細を示す。制御プレーンは、構成可能なハードウェアプラットフォーム510を初期化、監視、再構成、および分解するための機能を含む。データプレーンは、ユーザのアプリケーションと構成可能なハードウェアプラットフォーム510との間で通信するための機能を含む。制御プレーンは、より高い特権レベルを有するユーザまたはサービスによってアクセス可能とすることができ、データプレーンは、より低い特権レベルを有するユーザまたはサービスによってアクセス可能とすることができる。1つの例において、構成可能なハードウェアプラットフォーム510は、PCIeなどのローカル相互接続を使用して、サーバコンピュータ540に接続される。いくつかの例では、EthernetまたはInfinibandなどの異なる相互接続が使用される。代替の一例において、構成可能なハードウェアプラットフォーム510は、サーバコンピュータ540のハードウェア内に統合することができる。1つの例として、サーバコンピュータ540は、図8の計算サービスプロバイダ800の複数のサーバコンピュータ802A〜802Cのうちの1台とすることができる。
ホストサーバコンピュータ540は、1つ以上のCPU、メモリ、記憶デバイス、相互接続ハードウェアなどを含む、基礎をなすハードウェア542を有する。ハードウェア542の上側で稼働する層は、ハイパーバイザまたはカーネル層544である。ハイパーバイザまたはカーネル層は、タイプ1またはタイプ2ハイパーバイザとして分類することができる。タイプ1ハイパーバイザは、ホストハードウェア542上で直接稼働して、ハードウェアを制御し、また、ゲストオペレーティングシステムを管理する。タイプ2ハイパーバイザは、従来のオペレーティングシステム環境内で稼働する。したがって、タイプ2環境において、ハイパーバイザは、オペレーティングシステム上で稼働する別個の層とすることができ、オペレーティングシステムは、システムハードウェアと相互作用する。異なるタイプのハイパーバイザとしては、Xenベースのもの、Hyper−V、ESXi/ESX、Linux(登録商標)などが挙げられるが、他のハイパーバイザを使用することができる。管理プロセス550(Xenハイパーバイザのドメイン0など)は、ハイパーバイザの一部とすること、またはそこから分離することができ、また一般に、ハードウェア542にアクセスするために必要なデバイスドライバを含む。
構成可能なハードウェアプラットフォーム510上のFPGA515などの再構成可能な論理デバイスを構成するために使用されるビットストリームなどの構成データは、例えばホストサーバコンピュータに結合されたメモリまたは記憶デバイスを使用して実装することができるビットストリームキャッシュ546にキャッシュすることができる。最初にビットストリームをビットストリームキャッシュ546に記憶した後に、構成可能なハードウェアプラットフォームは、キャッシュされたビットストリームを複数回使用して再プログラムし、それによって、ネットワーク記憶装置を介して構成データを転送するオーバーヘッドを回避することができる。
ユーザホストプロセス560は、ハイパーバイザ内の隔離の論理ユニットである。各ユーザパーティション560には、ハードウェア層のメモリ、CPU割り当て、記憶装置(ストレージ)、相互接続帯域幅などのそれ自体の部分を割り当てることができる。加えて、各ユーザホストプロセス560は、仮想マシンおよびそれ自体のゲストオペレーティングシステムを含むことができる。このように、各ユーザホストプロセス560は、他のパーティションから独立してそれ自体の仮想マシンをサポートするように設計された抽象的な容量部分である。ユーザホストプロセス560は、(XenハイパーバイザのドメインUなどの)管理プロセス550よりも低い特権レベルで実行する。
管理プロセス550は、ユーザホストプロセス560および構成可能なハードウェアプラットフォーム510のための管理サービスを行うために使用することができる。管理プロセス550は、(展開サービス、論理リポジトリサービス、およびヘルス管理サービスなどの)計算サービスプロバイダのウェブサービス、ユーザホストプロセス560、および構成可能なハードウェアプラットフォーム510と通信することができる。管理サービスは、ユーザホストプロセス560を起動および終了するための、ならびに構成可能なハードウェアプラットフォーム510の構成可能な論理の構成、再構成、および分解を行うためのサービスを含むことができる。具体的な一例として、管理プロセス550は、(図8の展開構成要素826などの)展開サービスからの要求に応じて、新しいユーザホストプロセス560を起動することができる。要求は、MIおよび/またはCHIの参照を含むことができる。MIは、ユーザホストプロセス560にロードするプログラムおよびドライバを指定することができ、CHIは、構成可能なハードウェアプラットフォーム510にロードする構成データを指定することができる。管理プロセス550は、MIと関連付けられた情報に基づいて、ユーザホストプロセス560を初期化することができ、また、CHIと関連付けられた構成データを構成可能なハードウェアプラットフォーム510にロードさせることができる。ユーザホストプロセス560および構成可能なハードウェアプラットフォーム510の初期化は、インスタンスを動作可能にするまでの時間を低減させることができるように、同時に起こり得る。
管理プロセス550は、構成可能なハードウェアプラットフォーム510のプログラミングおよび監視を管理するために使用することができる。管理プロセス550はまた、再構成可能な論理デバイスおよび関連付けられたリソース(例えば、メモリ)の隔離、クリアリング、およびスクラビングなどの消去動作を行い、承認するためのデータを送信および受信するためにも使用することができる。データは、管理プロセス550と構成可能なハードウェアプラットフォーム510との間で送信される。これらの目的のために管理プロセス550を使用することによって、構成データおよび構成可能なハードウェアプラットフォーム510の構成ポートへのアクセスを制限することができる。具体的には、より低い特権レベルを有するユーザは、管理プロセス550に直接アクセスすることが制限され得る。さらに、より低い特権レベルを有するユーザが、他のアプリケーション論理パーティションにアクセスすることを制限することができる。したがって、計算サービスプロバイダのインフラストラクチャを使用することなく、構成可能な論理を修正することができず、構成可能な論理をプログラムするために使用されるいかなる第三者IPも、未許可のユーザによって閲覧されることから保護することができる。さらに、未許可のユーザが、構成可能なハードウェアプラットフォーム510の任意の未許可のパーティションに記憶されたデータを検査することも防止される。
管理プロセス550は、構成可能なハードウェアプラットフォーム510を構成し、そこにインターフェースする制御プレーンのためのソフトウェアスタックを含むことができる。制御プレーンソフトウェアスタックは、(論理リポジトリサービスまたはヘルス監視サービスなどの)ウェブサービス、構成可能なハードウェアプラットフォーム510、およびユーザホストプロセス560と通信するための、構成可能な論理(CL)アプリケーション管理層552を含むことができる。例えば、CLアプリケーション管理層552は、ユーザホストプロセス560の起動に応じて、構成データをフェッチする要求を発行することができる。CLアプリケーション管理層552は、ハードウェア542の共有されたメモリを使用して、またはサーバコンピュータ540を構成可能なハードウェアプラットフォーム510に接続する相互接続を通じてパーティション間メッセージを送信および受信することによって、ユーザホストプロセス560と通信することができる。具体的には、CLアプリケーション管理層552は、構成可能なハードウェアプラットフォーム510のメールボックス論理521に対するメッセージの読み出しおよび書き込みを行うことができる。メッセージは、構成可能なハードウェアプラットフォーム510を再構成または分解(終了)する、エンドユーザアプリケーション561による要求を含むことができる。CLアプリケーション管理層552は、構成可能なハードウェアプラットフォーム510を再構成する要求に応じて、構成データをフェッチする要求を論理リポジトリサービスに発行することができる。CLアプリケーション管理層552は、構成可能なハードウェアプラットフォーム510を終了する要求に応じて、分解シーケンスを開始することができる。CLアプリケーション管理層552は、ユーザホストプロセス560への通信パスが機能しているかどうかを判定するために、ウォッチドッグ関連のアクティビティを行うことができる。
制御プレーンソフトウェアスタックは、構成データを構成可能なハードウェアプラットフォーム510にロードすることができるように、構成可能なハードウェアプラットフォーム510の構成ポート522(例えば、構成アクセスポート)にアクセスするためのCL構成層554を含むことができる。例えば、CL構成層554は、構成可能なハードウェアプラットフォーム510の完全なまたは部分的な構成を行うために、1つまたは複数のコマンドを構成ポート522に送信することができる。CL構成層554は、構成データに従って構成可能な論理をプログラムすることができるように、構成データ(例えば、ビットストリーム)を構成ポート522に送信することができる。構成データは、ホスト論理および/またはアプリケーション論理を指定することができる。
制御プレーンソフトウェアスタックは、サーバコンピュータ540を構成可能なハードウェアプラットフォーム510に接続する物理的相互接続を通じて通信するための管理ドライバ556を含むことができる。管理ドライバ556は、物理的相互接続を通じて伝送するための管理プロセス550に由来するコマンド、要求、応答、メッセージ、およびデータをカプセル化することができる。加えて、管理ドライバ556は、物理的相互接続を通じて管理プロセス550に送信されたコマンド、要求、応答、メッセージおよびデータをカプセル化解除することができる。管理ドライバ556は、相互接続に割り当てられたアドレス範囲にトランザクションをアドレッシングすることによって、ホスト論理パーティション520と通信することができる。
制御プレーンソフトウェアスタックは、CL管理および監視層558を含むことができる。CL管理および監視層558は、物理的相互接続で起こるトランザクションを監視および分析して、構成可能なハードウェアプラットフォーム510のヘルスを決定すること、および/または構成可能なハードウェアプラットフォーム510の使用状況特性を決定することができる。例えば、CL管理および監視層558は、構成データが構成可能なハードウェアプラットフォーム510に成功裏に展開されて、展開の状態を示すレポートを論理リポジトリサービスに伝送させることができるかどうかを監視することができる。
ユーザサーバ570は、構成データ575を管理プロセス550に送信するために使用することができる。構成データ575は、有効にすることができ、次いで、アプリケーション論理530の一部分(例えば、1つ以上の構成可能な論理パーティション)をプログラムするために使用することができる。ユーザサーバ570はまた、プログラムされたパーティションの動作を開始するコマンドを管理パーティションに送信することもできる。実行が進むと、隔離、クリアリング、および/またはスクラビング動作を行うためのコマンドを、管理プロセス550を介して、ユーザサーバ570から送信することができる。いくつかの代替の例において、ユーザサーバ570は、メモリを消去するためのデータを送信し、ユーザアプリーケーションパーティション内に記憶し、それと関連付けるために、ユーザホストパーティションのうちの1つと通信する。
構成可能なハードウェアプラットフォーム510は、非構成可能なハードマクロと、構成可能な論理とを含むことができる。例えば、FPGA515は、ホスト論理パーティション520と、スクラバ回路525と、構成ポート522と、メールボックス論理521と、アプリケーション論理530と、を含むことができる。FPGA515は、外部メモリ531などの外部構成要素に結合することができる。ハードマクロは、入力/出力ブロック(例えば、シリアライザおよびデシリアライザ(SERDES)ブロックおよびギガビットトランシーバ)、アナログ−デジタル変換器、メモリ制御ブロック、試験アクセスポート、および構成ポート522などの、構成可能なハードウェアプラットフォーム510内の特定の機能を行うことができる。構成可能な論理は、構成データを構成可能なハードウェアプラットフォーム510にロードすることによってプログラムすること、または構成することができる。例えば、構成ポート522は、構成データをロードするために使用することができる。1つの例として、構成データは、構成ポート522によってアクセス可能な(フラッシュメモリなどの)メモリに記憶することができ、構成データは、構成可能なハードウェアプラットフォーム510の(電源投入シーケンス中などの)初期化シーケンス中に自動的にロードすることができる。加えて、構成ポート522は、構成可能なハードウェアプラットフォーム510内のオフチッププロセッサまたはインターフェースを使用してアクセスすることができる。
構成可能なハードウェアプラットフォーム510は、アプリケーション論理530からデータを消去するように構成される、スクラバ回路525を含むことができる。例えば、スクラバ回路525は、アプリケーション論理パーティションの以前のユーザによって使用されたアプリケーション論理が、パーティションの以降のユーザによって識別することができないように論理を再構成することができる。さらに、スクラバ回路525は、アプリケーション論理パーティションのメモリおよび記憶要素に記憶された値を消去することができる。例えば、セットまたはリセット入力を有するフリップフロップおよびラッチをアサートして、その中に記憶された値を消去することができる。アプリケーション論理パーティション内のRAMは、ビルトインリセット機能を使用して、またはスクラバがRAMの中へリセット値を繰り返し記憶することによって、クリアすることができる。例えば、全てが1、全てがゼロのパターン、指定されたパターン(例えば、0xdeadbeef)、またはランダムなパターンを書き込んで、RAMおよび他のメモリを消去することができる。さらに、I/O回路などの他の論理要素は、例えば三状態ゲート、パスゲート、またはマルチプレクサ入力をデアサートすること、カウンタ値をリセットすること、FIFOもしくは他のキューのためのヘッド/テールポインタをリセットすること、または他の適切な消去動作をリセットすることによって、無効にする、またはリセットすることができる。
構成可能な論理は、ホスト論理パーティション520、およびいくつかのアプリケーション論理パーティションを含むアプリケーション論理530を含むようにプログラムすることができる。ホスト論理パーティション520は、エンドユーザがハードマクロへの、および物理的相互接続への限定されたアクセスを有するように、エンドユーザからハードマクロの少なくともいくつかのインターフェースをシールドすることができる。例えば、ホスト論理は、ユーザホストプロセス560のアクセスが、アプリケーション論理530内でそれらが関連付けられた構成可能な論理パーティション(複数可)へのアクセスだけに(例えば、アプリケーション論理パーティション1、アプリケーション論理パーティション2、またはアプリケーション論理パーティション3のうちの1つへのアクセスだけに)制限することができる。PCIeの文脈において、これは、ホストパーティションおよび構成可能な論理パーティションの特定の組み合わせのために特定のメモリアドレス範囲を予約するようにベースアドレスレジスタ(BAR)を構成することによって、異なるユーザホストパーティションを異なるメモリアドレス範囲に割り当てることによって実装することができる。
アプリケーション論理530は、ハードマクロと、構成可能な論理と、を含むことができる。アプリケーション論理530は、2つ以上の部分に分けることができ、部分の各々は、ユーザアプリケーション論理の1つ以上に割り当てることができる。構成可能な論理パーティションの各々は、ホスト論理パーティション520によって、構成可能なハードウェアプラットフォームの他のパーティションにアクセスすることから除外され、該ホスト論理は、アプリケーション論理530のリソースの分割およびアプリケーション論理530とユーザホストプロセス560との間の通信を管理する。
ホスト論理パーティション520は、メールボックス論理521、構成ポート522、ホストインターフェース514、およびアプリケーション論理530にさらに結合することができる。エンドユーザは、ユーザが構成可能なアプリケーション論理530を構成可能なハードウェアプラットフォーム510にロードさせることができ、また、ユーザホストプロセス560から、構成可能なアプリケーション論理530と通信することができる。
ホストインターフェース514は、物理的相互接続にシグナリングし、通信プロトコルを実装するための回路(例えば、ハードマクロおよび/または構成可能な論理)を含むことができる。通信プロトコルは、相互接続を通じて通信するためのルールおよびメッセージフォーマットを指定する。
代替の例において、アプリケーション論理530内のパーティションは、ホスト論理パーティション520を通して通信することなく、それらのそれぞれの関連付けられたユーザホストプロセス560と通信するように構成される。例えば、PCIeの文脈で、各パーティションは、異なるメモリアドレス範囲と関連付けられ、データは、DMAメッセージングを使用して、パーティションに、およびそこから送信することができる。例えば、FPGAが内部構成回路によってプログラムされる例の場合、回路は、DMAメッセージングを介してコマンドおよびデータを送信することによってプログラムすることができる。
アプリケーション論理530内の内蔵/内部メモリに加えて、別個のメモリ531をアプリケーション論理530に結合することができる。別個の集積回路ダイに位置付けられ得るメモリ531は、I/Oインターフェースバスを介して、アプリケーション論理530のI/Oユニットに結合することができる。さらに、外部メモリ531はまた、スクラバ回路525を使用してクリアすることもできる。例えば、外部メモリ531としては、DDR、DDR2、DDR3、または、DDR4 RAM)、またはハイブリッドメモリキューブ(HMC)などの、シンクロナスダイナミックランダムアクセスメモリデバイス(DRAM)を挙げることができる。追加的なリソースもまた、スタティックRAM、フラッシュメモリを含むFPGA515、EPROMおよびEEPROMを含む消去可能プログラマブルリードオンリーメモリ、ネットワークアドレス情報を含むネットワークインターフェース、または擬似乱数発生器に結合することができる。
アプリケーション論理530は、ユーザホストプロセス560のドライバと通信するために使用することができる。例えば、PCIeの文脈において、通信チャネルは、物理的相互接続に接続されたデバイスの列挙中にアドレス範囲にマッピングされた、物理または仮想機能として実装することができる。アプリケーションドライバは、割り当てられたアドレス範囲にトランザクションをアドレッシングすることによって、アプリケーション論理530と通信することができる。具体的には、アプリケーション論理530は、制御プレーンを通じてコマンド、要求、応答、メッセージ、およびデータを交換するために、アプリケーション論理管理ドライバ562と通信することができる。アプリケーション論理530は、データプレーンを通じてコマンド、要求、応答、メッセージ、およびデータを交換するために、アプリケーション論理データプレーンドライバ563と通信することができる。
いくつかの例において、アプリケーション論理530の1つの構成可能な論理パーティションは、単一の通信レーン/チャネルを使用して、1つのユーザホストパーティション560に通信するように構成される。いくつかの例において、アプリケーション論理530の1つの構成可能な論理パーティションは、単一の通信レーン/チャネルを使用して、またはホストパーティションごとの通信レーン/チャネルを使用して、2つ以上のホストパーティション(例えば、プロセスまたは仮想マシン)に通信するように構成される。いくつかの例において、1つのホストパーティションは、それぞれ別個の通信レーン/チャネルを使用して、複数の2つ以上の構成可能な論理パーティションに通信するように構成される。
メールボックス論理521は、1つ以上のバッファと、1つ以上の制御レジスタと、を含むことができる。例えば、所与の制御レジスタは、特定のバッファと関連付けることができ、レジスタは、管理プロセス550とユーザホストプロセス560とを同期させるために、セマフォとして使用することができる。具体的な一例として、パーティションが制御レジスタの値を修正することができる場合は、パーティションをバッファに書き込むことができる。バッファおよび制御レジスタは、ホスト論理パーティション520からアクセス可能である。代替の例において、バッファおよび制御レジスタは、ホスト論理パーティション520およびアプリケーション論理530からアクセス可能である。メッセージがバッファに書き込まれるときに、メッセージが終了していることを示すために、別の制御レジスタ(例えば、メッセージ準備完了レジスタ)に書き込むことができる。メッセージ準備完了レジスタは、メッセージが存在するかどうかを判定するために、パーティションによってポーリングすることができ、またはメッセージ準備完了レジスタが書き込まれることに応じて、割り込みを生成し、パーティションに伝送することができる。
ユーザホストプロセス560は、エンドユーザプロセス560を構成可能なハードウェアプラットフォーム510にインターフェースするためのソフトウェアスタックを含むことができる。アプリケーションソフトウェアスタックは、制御プレーンおよびデータプレーンと通信するための機能を含むことができる。具体的には、アプリケーションソフトウェアスタックは、構成可能なハードウェアプラットフォーム510へのアクセスをエンドユーザプロセス560に提供するためのCL−アプリケーションAPI564を含むことができる。CL−アプリケーションAPI564は、構成可能なハードウェアプラットフォーム510および管理プロセス550と通信するための方法または機能のライブラリを含むことができる。例えば、エンドユーザアプリケーション561は、CL−アプリケーションAPI564のAPIを使用して、コマンドまたはデータを構成可能なアプリケーション論理530に送信することができる。特に、CL−アプリケーションAPI564のAPIは、アプリケーション論理(AL)データプレーンドライバ563とインターフェースすることができ、これは、標的のパーティションと通信することができるアプリケーション論理530を標的とするトランザクションを生成することができる。この様態で、エンドユーザアプリケーション561は、構成可能なアプリケーション論理530に、データを受信させ、処理させ、および/または該データで応答させて、潜在的に、エンドユーザアプリケーション561のタスクを加速することができる。別の例として、エンドユーザアプリケーション561は、CL−アプリケーションAPI564のAPIを使用することによって、コマンドまたはデータを管理プロセス550に送信することができる。特に、CL−アプリケーションAPI564のAPIは、AL管理ドライバ562とインターフェースすることができ、これは、メールボックス論理521と通信することができるアプリケーション論理530を標的とするトランザクションを生成することができる。この様態で、エンドユーザアプリケーション561は、管理プロセス550に、構成可能なハードウェアプラットフォーム510に関する動作可能またはメタデータを提供させること、および/または構成可能なアプリケーション論理530を再構成するように要求させることができる。
アプリケーションソフトウェアスタックは、ハイパーバイザまたはカーネル544と併せて、エンドユーザアプリケーション561によって物理的相互接続を通じて行うことが可能な動作を制限するために使用することができる。例えば、計算サービスプロバイダは、(ファイルをマシンイメージと関連付けることなどによって)AL管理ドライバ562、ALデータプレーンドライバ563、およびCL−アプリケーションAPI564を提供することができる。これらの構成要素は、エンドユーザよりも高い特権レベルを有するユーザおよびサービスだけがファイルに書き込むことを許可することによって、改変から保護することができる。AL管理ドライバ562およびALデータプレーンドライバ563は、関連付けられたアプリケーション論理のアドレス範囲内のアドレスだけを使用するように制限することができる。加えて、入力/出力メモリ管理ユニット(I/O MMU)は、相互接続トランザクションを、それぞれのパーティションに割り当てられたアドレス範囲内にあるように制限することができる。
図6は、開示される技術の特定の実施例において行うことができるような、再構成可能な論理ホストからアプリケーションデータを除去する例示的な方法を概説するフローチャート600である。例えば、図1〜図5に関して上で論じたホストコンピュータおよび構成可能な論理デバイスを使用して、例示される方法を実施することができる。
プロセスブロック610において、以前にプログラムされたリソースおよび再構成可能な論理デバイスのパーティションが識別される。例えば、パーティションは、論理リソースを再プログラムすることを所望するアプリケーション開発者などのユーザによって識別することができる。他の例では、スーパーバイザプロセスが、仮想化されたホストが終了されることに基づいて、リソースのパーティションを識別することができる。例えば、パーティションは、パーティションを形成する一群の論理リソースおよび関連付けられた追加的なリソースを示すインデックスによって識別することができる。いくつかの例において、パーティションは、FPGAの属性に部分的に基づいて画定される。例えば、パーティションは、FGPAアレイの行/列番号の範囲によって識別することができる。
プロセスブロック620において、再構成可能な論理デバイスから以前に記憶した値を読み出すことを防止するために、新しい値が、プロセスブロック610において識別されたパーティションのメモリおよび/または記憶要素に記憶される。例えば、FPGA論理ブロックは、典型的に、いくつかのフリップフロップ、ラッチ、およびメモリ要素を含む。データをクリアするために、既知のゼロまたは1の値をこれらのメモリおよび記憶要素に記憶することができ、したがって、以前に記憶したデータが、同じ物理的再構成可能な論理デバイスの以降のユーザによってアクセスされることから防止する。
プロセスブロック630において、識別されたパーティションと関連付けられた追加的なリソースが識別される。例えば、外部メモリまたはその外部メモリの一部分が再構成可能な論理デバイスの識別されたパーティションと関連付けられ、結合された場合に、これらのメモリリソースが識別される。例えば、メモリとしては、DDR、DDR2、DDR3、DDR4 RAM、またはハイブリッドメモリキューブ(HMC)などの、シンクロナスダイナミックランダムアクセスメモリデバイス(DRAM)を挙げることができる。追加的なリソースのさらなる例としては、スタティックRAM、フラッシュメモリ、EPROMおよびEEPROMを含む消去可能プログラマブルリードオンリーメモリ、ネットワークアドレス情報を含むネットワークインターフェース、または擬似乱数発生器を挙げることができる。
プロセスブロック640において、新しい値が追加的なリソースに記憶される。例えば、マルチプレクサは、メモリに対する制御をスクラビング回路に一時的に渡すために使用することができ、よって、スクラビング回路は、仮想化されたインスタンスを稼働させることによって生成された値を消去するために、識別されたパーティションと関連付けられたアドレス範囲をステップスルーし、データパターンをメモリに書き込むことができる。
図7は、開示される技術の特定の実施例において行うことができるような、再構成可能な論理デバイスを含む仮想化されたホストをスクラブする例示的な方法を概説するフローチャートである。
プロセスブロック710において、第1の仮想マシンインスタンスが再構成可能な論理デバイスのパーティションを有して起動される。例えば、インスタンスは、I/OをFPGAのアプリケーション論理パーティションに書き込む、およびそこから読み出すように結合されるCPUを実行するユーザモードプロセスを有することができる。ユーザプロセスは、例えばメモリマッピングされたバスによって、または汎用CPUと再構成可能な論理デバイスのパーティションとの間に接続を管理するために使用されるホスト論理パーティションを介して、アプリケーションパーティションと直接通信することができる。再構成可能な論理デバイスは、構成ビットストリームを再構成可能な論理デバイスに適用することによって、起動時にプログラムすることができる。いくつかの例において、ビットストリームは、ユーザホストプロセスと関連付けられたそれらのリソースを再プログラムするためだけに、部分構成モードで適用される。他の例では、起動時にデフォルトのビットストリームをロードし、該ビットストリームは、再構成可能な論理デバイス内にプログラムされた構成回路を使用して、後で再構成することができる。
プロセスブロック720において、識別されたパーティションを使用して、ユーザによって指定された動作が行われる。例えば、アプリケーション論理パーティションは、CPUのユーザプロセスによって実行されるソフトウェアのための機能のハードウェア加速を提供するように構成されることができる。
仮想マシンインスタンスは、ある時点で終了される。例えば、ユーザがインスタンスを終了することができ、またはスーパーバイザプロセスがインスタンスの終了を開始することができる。プロセスブロック730において、ホストされたCPUに関するプロセス情報を削除することによって、仮想マシンインスタンスが終了される。いくつかの例において、プロセスブロック730からプロセスブロック740に移行するときには、短い時間が経過する。例えば、多くの事例において、システムは、仮想マシンインスタンスが終了した直後に、再構成可能な論理デバイスパーティションがクリアおよびスクラブされるように構成される。他の例において、「遅延」クリアリングおよびスクラビングを使用することができ、インスタンスが同じまたは異なるユーザによって再使用されるまで、ユーザデータをインスタンスに残留させておくことができる。そのような遅延スクラビングは、いくつかの計算リソースを節約することができるが、終了したパーティションに記憶されたデータに対する無許可のアクセスという追加的なリスクを提示する。
プロセスブロック740において、終了したインスタンスのパーティションが隔離される。例えば、アクセスを防止するために、パーティションを残りの再構成可能な論理デバイスに接続する相互接続および/または論理を再プログラムすることができる。いくつかの例では、パーティションを隔離するために、三状態またはパスゲート論理を使用することができる。
プロセスブロック750において、パーティションが隔離された後に、スクラバ回路は、構成可能な論理を再プログラムし、関連付けられたメモリを消去することに進む。例えば、スクラバ回路は、再プログラムすることを行うために、(例えば、各繰り返しと共にメモリ書き込みアドレスを漸増させることによって)構成値を書き込むこと、異なる状態値を記憶すること、またはメモリに書き込むことを複数回繰り返すことができる。
プロセスブロック760において、再構成可能な論理デバイスの識別されたパーティションが第2の仮想マシンインスタンスによって再プログラムされる。続いて、計算ホストおよびその関連付けられた再構成可能な論理デバイスを使用して、新しいインスタンスが起動される。したがって、その再構成可能な論理デバイスを含むホストコンピュータの以前のユーザによって生成されたデータに対する無許可のアクセスを防止することができる。いくつかの例において、他の再構成可能な論理パーティションのユーザを含む他のユーザは、パーティションが隔離され、再プログラムされる間、自分の動作を停止している。例えば、再構成可能なデバイスの他のパーティションのアクティビティは、プロセスブロック730において仮想マシンインスタンスを終了することの一部として停止され得る。次いで、他のパーティションが停止している間に、プロセスブロック740、750、およびいくつかの事例ではプロセスブロック760に関して上で説明した動作が行われる。識別されたパーティションが再プログラムされた後に、他のパーティションの動作を再開することができる。いくつかの事例において、他のFPGAの動作を停止させるかどうかは、再構成可能な論理デバイスのアーキテクチャによって決定することができる。例えば、いくつかのFPGAのアーキテクチャは、FPGAの特定の部分を再プログラムしている間に動作を停止させる必要がない場合がある。
図8は、本明細書で説明される実施例を使用することができる1つの環境を例示する、ネットワークベースの計算サービスプロバイダ800のコンピューティングシステム図である。背景として、計算サービスプロバイダ800(例えば、クラウドサービスプロバイダ)は、エンドレシピエントのコミュニティへの貢献として、コンピューティングおよび記憶容量の送達が可能である。いくつかの例において、計算サービスプロバイダは、組織によって、またはその組織に代わって編成するために確立することができる。すなわち、計算サービスプロバイダ800は、「プライベートなクラウド環境」を提供することができる。別の例において、計算サービスプロバイダ800は、マルチテナント環境をサポートし、複数の顧客は、独立して動作する(すなわち、パブリッククラウド環境)。一般に言えば、計算サービスプロバイダ800は、次のモデル、すなわち、サービスとしてのインフラストラクチャ(「IaaS」)、サービスとしてのプラットフォーム(「PaaS」)、および/またはサービスとしてのソフトウェア(「SaaS」)を提供することができる。他のモデルを提供することができる。IaaSモデルの場合、計算サービスプロバイダ800は、物理または仮想マシン、および他のリソースとして、コンピュータを提供することができる。仮想マシンは、下でさらに説明するように、ハイパーバイザによって、ゲストとして稼働させることができる。PaaSモデルは、オペレーティングシステム、プログラミング言語実行環境、データベース、およびウェブサーバを含むことができる、コンピューティングプラットフォームを送達する。アプリケーション開発者らは、基礎をなすハードウェアおよびソフトウェアを購入および管理するためのコストを伴うことなく、計算サービスプロバイダプラットフォーム上で該開発者らのソフトウェアソリューションを開発し、稼働させることができる。加えて、アプリケーション開発者らは、計算サービスプロバイダプラットフォームの構成可能なハードウェア上で該開発者らのハードウェアソリューションを開発および稼働させることができる。SaaSモデルは、計算サービスプロバイダにおけるアプリケーションソフトウェアのインストールおよび動作を可能にする。いくつかの例において、エンドユーザは、ウェブブラウザまたは他の軽量のクライアントアプリケーションを稼働させる、デスクトップコンピュータ、ラップトップ、タブレット、スマートフォンなどといったネットワーク化された顧客デバイスを使用して、計算サービスプロバイダ800にアクセスする。当業者は、計算サービスプロバイダ800を「クラウド」環境として説明することができることを認識するであろう。
特定の例示される計算サービスプロバイダ800は、複数のサーバコンピュータ802A〜802Cを含む。3台のサーバコンピュータだけが示されるが、任意の数を使用することができ、大規模施設は、何千台ものサーバコンピュータを含むことができる。サーバコンピュータ802A〜802Cは、ソフトウェアインスタンス806A〜806Cを実行するためのコンピューティングリソースを提供することができる。1つの例において、ソフトウェアインスタンス806A〜806Cは、仮想マシンである。当技術分野で知られているように、仮想マシンは、物理マシンのようにアプリケーションを実行するマシン(すなわち、コンピュータ)のソフトウェア実装のインスタンスである。仮想マシンの例において、サーバ802A〜802Bの各々は、ハイパーバイザ808、または単一のサーバ上で複数のソフトウェアインスタンス806の実行を可能にするように構成された別のタイプのプログラムを実行するように構成することができる。加えて、ソフトウェアインスタンス806の各々は、1つ以上のアプリケーションを実行するように構成することができる。
本明細書に開示される実施例は、主に仮想マシンの文脈で説明されるが、他のタイプのインスタンスを、本明細書に開示される概念および技術と共に利用することができることを理解されたい。例えば、本明細書に開示される技術は、記憶リソース、データ通信リソース、および他のタイプのコンピューティングリソースと共に利用することができる。本明細書に開示される実施例はまた、仮想マシンインスタンスを利用することなく、コンピュータシステム上でアプリケーションの全てまたは一部分を直接実行することができる。
サーバコンピュータ802A〜802Cは、異なるハードウェアリソースまたはインスタンスタイプの異種の集合体を含むことができる。ハードウェアインスタンスタイプのいくつかは、計算サービスプロバイダ800のユーザによって少なくとも部分的に構成可能である、構成可能なハードウェアを含むことができる。インスタンスタイプの1つの例は、構成可能なハードウェア804Aと通信するサーバコンピュータ802Aを含むことができる。具体的には、サーバコンピュータ802Aおよび構成可能なハードウェア804Aは、PCIeなどのローカル相互接続を通じて通信することができる。インスタンスタイプの別の例は、サーバコンピュータ802Bと、構成可能なハードウェア804Bと、を含むことができる。例えば、構成可能な論理804Bは、マルチチップモジュール内に、またはサーバコンピュータ802BのCPUと同じダイ上に集積することができる。インスタンスタイプのさらに別の例は、任意の構成可能なハードウェアを伴わないサーバコンピュータ802Cを含むことができる。したがって、構成可能な論理を伴う、および伴わないハードウェアインスタンスタイプは、計算サービスプロバイダ800のリソース内に存在させることができる。
1つ以上のサーバコンピュータ820は、サーバコンピュータ802およびソフトウェアインスタンス806の動作を管理するためのソフトウェア構成要素を実行するために予約することができる。例えば、サーバコンピュータ820は、管理構成要素822を実行することができる。顧客は、管理構成要素822にアクセスして、顧客によって購入されたソフトウェアインスタンス806の動作の種々の態様を構成することができる。例えば、顧客は、インスタンスを購入、レンタル、またはリースして、ソフトウェアインスタンスの構成を変更することができる。ソフトウェアインスタンスの各々の構成情報は、ネットワークアタッチトストレージ840上のマシンイメージ(MI)842として記憶することができる。具体的には、MI842は、VMインスタンスを起動するために使用される情報を記述する。MIは、インスタンス(例えば、OSおよびアプリケーション)のルートボリュームのテンプレート、どの顧客アカウントがMIを使用することができるのかを制御するための起動許可、およびインスタンスが起動されたときにインスタンスにアタッチするボリュームを指定するブロックデバイスマッピングを含むことができる。MIはまた、インスタンスが起動されたときに構成可能なハードウェア804にロードされる構成可能なハードウェアイメージ(CHI)844の参照も含むことができる。CHIは、構成可能なハードウェア804の少なくとも一部分をプログラムまたは構成するための構成データを含む。
顧客はまた、要望に応じて、購入したインスタンスをスケーリングする方法に関する設定も指定することができる。管理構成要素は、顧客ポリシーを実行するために、ポリシー文書をさらに含むことができる。自動スケーリング構成要素824は、顧客によって定義されたルールに基づいて、インスタンス806をスケーリングすることができる。1つの例において、自動スケーリング構成要素824は、顧客が、いつ新しいインスタンスをインスタンス化するべきなのかを決定する際に使用するためのスケールアップルール、およびいつ既存のインスタンスを終了するべきなのかを決定する際に使用するためのスケールダウンルールを指定することを可能にする。自動スケーリング構成要素824は、異なるサーバコンピュータ802または他のコンピューティングデバイスで実行するいくつかの副構成要素で構成することができる。自動スケーリング構成要素824は、内部管理ネットワークを通じて、利用可能なコンピューティングリソースを監視すること、および必要に基づいて、利用可能なリソースを修正することができる。
展開構成要素826は、コンピューティングリソースの新しいインスタンス806を展開する際に顧客を支援するために使用することができる。展開構成要素は、誰がアカウントの所有者であるのか、クレジットカード情報、所有者の国などといった、インスタンスと関連付けられたアカウント情報へのアクセスを有することができる。展開構成要素826は、顧客から、新しいインスタンス806を構成するべき方法を記述するデータを含む構成を受信することができる。例えば、構成は、新しいインスタンス806でインストールされる1つ以上のアプリケーションを指定すること、新しいインスタンス806を構成するために実行されるべきスクリプトおよび/または他のタイプのコードを提供すること、アプリケーションキャッシュが準備するべき方法を指定するキャッシュ論理を提供すること、ならびに他のタイプの情報を提供することができる。展開構成要素826は、顧客が提供する構成およびキャッシュ論理を利用して、新しいインスタンス806を構成、準備、および起動することができる。構成、キャッシュ論理、および他の情報は、管理構成要素822を使用する顧客によって、またはこの情報を展開構成要素826に直接提供することによって指定することができる。インスタンスマネージャは、展開構成要素の一部とみなすことができる。
顧客アカウント情報828は、マルチテナント環境の顧客と関連付けられた任意の所望の情報を含むことができる。例えば、顧客アカウント情報としては、顧客の一意の識別子、顧客の住所、課金情報、ライセンス情報、インスタンスを起動するためのカスタム化パラメータ、スケジュール情報、自動スケーリングパラメータ、アカウントにアクセスするために使用した以前のIPアドレス、顧客がアクセス可能なMIおよびCHIのリストなどを挙げることができる。
1つ以上のサーバコンピュータ830は、サーバコンピュータ802の構成可能なハードウェア804への構成データのダウンロードを管理するためのソフトウェア構成要素を実行するために予約することができる。例えば、サーバコンピュータ830は、摂取構成要素832と、ライブラリ管理構成要素834と、ダウンロード構成要素836と、を備える、論理リポジトリサービスを実行することができる。摂取構成要素832は、ホスト論理およびアプリケーション論理設計または仕様を受信すること、ならびに構成可能なハードウェア804を構成するために使用することができる構成データを生成することができる。ライブラリ管理構成要素834は、論理リポジトリサービスと関連付けられたソースコード、ユーザ情報、および構成データを管理するために使用することができる。例えば、ライブラリ管理構成要素834は、ユーザの設計によって生成された構成データを、ネットワークアタッチトストレージ840上のユーザによって指定された場所に記憶するために使用することができる。特に、構成データは、ネットワークアタッチトストレージ840上の構成可能なハードウェアイメージ844内に記憶することができる。加えて、ライブラリ管理構成要素834は、(アプリケーション論理およびホスト論理のための仕様のなどの)入力ファイル、ならびに論理設計および/または論理リポジトリサービスのユーザに関するメタデータのバージョニングおよび記憶を管理することができる。ライブラリ管理構成要素834は、例えば、ユーザ識別子、インスタンスタイプ、マーケットプレイス識別子、マシンイメージ識別子、および構成可能なハードウェア識別子などの1つ以上の特性によって、生成された構成データにインデックスを付けることができる。ダウンロード構成要素836は、構成データの要求を認証し、要求が認証されたときに構成データを要求者に伝送するために使用することができる。例えば、サーバコンピュータ802A〜B上のエージェントは、構成可能なハードウェア804を使用するインスタンス806を起動したときに、要求をダウンロード構成要素836に送信することができる。別の例として、サーバコンピュータ802A〜B上のエージェントは、構成可能なハードウェア804が動作している間に構成可能なハードウェア804を部分的に再構成するようにインスタンス806が要求したときに、要求をダウンロード構成要素836に送信することができる。
ネットワークアタッチトストレージ(NAS)840は、記憶空間およびNAS840に記憶されるファイルへのアクセスを提供するために使用することができる。例えば、NAS840は、ネットワークファイルシステム(NFS)などのネットワークファイル共有プロトコル(例えば)を使用して要求を処理するために使用される、1つ以上のサーバコンピュータを含むことができる。NAS840は、リムーバブル媒体または非リムーバブル媒体を含むことができ、該媒体としては、磁気ディスク、ストレージエリアネットワーク(SAN)、独立したディスクの冗長アレイ(RAID)、磁気テープもしくはカセット、CD−ROM、DVD、または情報を非一時的な方式で記憶するために使用することができ、また、ネットワーク850を通じてアクセスすることができる任意の他の媒体が挙げられる。
ネットワーク850は、サーバコンピュータ802A〜802C、サーバコンピュータ820および830、ならびに記憶装置840を相互接続するために利用することができる。ネットワーク850は、ローカルエリアネットワーク(LAN)とすることができ、また、エンドユーザが計算サービスプロバイダ800にアクセスすることができるように、ワイドエリアネットワーク(WAN)860に接続することができる。図8に例示されるネットワークトポロジが簡略化されたものであること、およびはるかに多くのネットワークおよびネットワーキングデバイスを利用して、本明細書で開示される種々のコンピューティングシステムを相互接続することができることを認識されたい。
図9は、説明される技術革新を実行することができる適切なコンピューティング環境900の一般的な例を表す。コンピューティング環境900は、本技術革新を多様な汎用または専用コンピューティングシステムで実行することができるので、使用または機能の範囲に関していかなる限定も示唆することを意図しない。例えば、コンピューティング環境900は、様々なコンピューティングデバイス(例えば、デスクトップコンピュータ、ラップトップコンピュータ、サーバコンピュータ、タブレットコンピュータなど)のうちのいずれかとすることができる。
図9を参照すると、コンピューティング環境900は、1つ以上の処理ユニット910、915と、メモリ920、925とを含む。図9において、この基本構成930は、破線内に含まれる。処理ユニット910、915は、コンピュータ実行可能命令を実行する。処理ユニットは、汎用中央処理ユニット(CPU)、特定用途向け集積回路(ASIC)内のプロセッサ、または任意の他のタイプのプロセッサとすることができる。マルチ処理システムでは、複数の処理ユニットがコンピュータ実行可能命令を実行して、処理能力を高める。例えば、図9は、中央処理ユニット910、ならびにグラフィックス処理ユニットまたは共処理ユニット915を示す。有形メモリ920、925は、処理ユニット(複数可)によってアクセス可能である揮発性メモリ(例えば、レジスタ、キャッシュ、RAM)、不揮発メモリ(例えば、ROM、EEPROM、フラッシュメモリなど)、またはこれら2つのいくつかの組み合わせとすることができる。メモリ920、925は、処理ユニット(複数可)による実行に適したコンピュータ実行可能命令の形態で、本明細書で説明される1つ以上の技術革新を実装するソフトウェア980を記憶する。
コンピューティングシステムは、追加的な特徴を有することができる。例えば、コンピューティング環境900は、記憶装置940と、1つ以上の入力デバイス950と、1つ以上の出力デバイス960と、および1つ以上の通信接続970とを含む。バス、コントローラ、またはネットワークなどの相互接続機構(図示せず)は、コンピューティング環境900の構成要素を相互接続する。典型的に、オペレーティングシステムソフトウェア(図示せず)は、コンピューティング環境900内で実行する他のソフトウェアのための動作環境を提供し、コンピューティング環境900の構成要素の動作を協調させる。
有形記憶装置940は、リムーバブルまたは非リムーバブルとすることができ、該記憶装置としては、磁気ディスク、磁気テープもしくはカセット、CD−ROM、DVD、または情報を非一時的な方式で記憶するために使用することができ、また、コンピューティング環境900内でアクセスすることができる任意の他の媒体が挙げられる。記憶装置940は、本明細書で説明される1つ以上の技術革新を実装するソフトウェア980のための命令を記憶する。
入力デバイス(複数可)950は、キーボード、マウス、ペン、もしくはトラックボールなどのタッチ入力デバイス、音声入力デバイス、スキャンデバイス、または入力をコンピューティング環境900に提供する別のデバイスとすることができる。出力デバイス(複数可)960は、ディスプレイ、プリンタ、スピーカ、CDライタ、またはコンピューティング環境900からの出力を提供する別のデバイスとすることができる。
通信接続(複数可)970は、通信媒体を通じた別のコンピューティングエンティティへの通信を可能にする。通信媒体は、コンピュータ実行可能命令、音声、または、ビデオ入力もしくは出力、または変調されたデータ信号内の他のデータ等の情報を伝達する。変調されたデータ信号は、信号内の情報をエンコードするような様態で設定または変更されたその特性のうちの1つ以上を有する信号である。一例として、また、限定されないが、通信媒体は、電気、光、RF、または他の搬送波を使用することができる。
開示される方法のいくつかの動作は、提示の便宜のために特定の連続的な順序で説明されるが、下に記載される特定の言葉によって特定の順序が要求されない限り、この説明の様態は、再配列を含むことを理解されたい。例えば、連続的に説明される動作は、いくつかの事例において、再配列される場合があり、または同時に行われる場合がある。その上、簡潔にするために、添付図面は、開示される方法を他の方法と併せて使用することができる種々の方式を示さない場合がある。
開示される方法のいずれかは、1つ以上のコンピュータ可読記憶媒体(例えば、1つ以上の光媒体ディスク、揮発性メモリ構成要素(DRAMまたはSRAM等)、または不揮発性メモリ(フラッシュメモリまたはハードドライブ等))に記憶され、また、コンピュータ(例えば、スマートフォン、またはコンピューティングハードウェアを含む他のモバイルデバイスを含む、任意の市販コンピュータ)上で実行される、コンピュータ実行可能命令のように実施することができる。コンピュータ可読記憶媒体という用語は、信号および搬送波等の通信接続を含まない。開示される技術を、ならびに開示される実施例の実施中に作成され、使用される任意のデータを実装するためのコンピュータ実行可能命令のいずれかは、1つ以上のコンピュータ可読記憶媒体に記憶することができる。コンピュータ実行可能命令は、例えば、専用ソフトウェアアプリケーション、またはウェブブラウザもしくは他のソフトウェアアプリケーション(リモートコンピューティングアプリケーション等)を介してアクセスまたはダウンロードされるソフトウェアアプリケーションの一部とすることができる。そのようなソフトウェアは、例えば、単一のローカルコンピュータ(例えば、任意の適切な市販のコンピュータ)上で、または1つ以上のネットワークコンピュータを使用して(例えば、インターネット、ワイドエリアネットワーク、ローカルエリアネットワーク、クライアントサーバネットワーク(クラウドコンピューティングネットワークなど)、または他のそのようなネットワークを介して)ネットワーク環境内で実行することができる。
明確にするため、ソフトウェアベースの実装形態の特定の選択された態様だけを説明する。当技術分野でよく知られている他の詳細は省略する。例えば、開示される技術は、任意の特定のコンピュータ言語またはプログラムに限定されないことを理解されたい。例えば、開示される技術は、C、C++、Java(登録商標)、Perl、または任意の他の適切なプログラミング言語で記述されたソフトウェアによって実施することができる。同様に、開示される技術は、任意の特定のコンピュータまたは特定のタイプのハードウェアに限定されない。適切なコンピュータおよびハードウェアの特定の詳細は、よく知られており、本開示で詳細に説明する必要はない。
また、本明細書で説明される任意の機能は、ソフトウェアの代わりに1つ以上のハードウェア論理構成要素によって少なくとも部分的に行うことができることを理解されたい。例えば、限定されないが、使用することができるハードウェア論理コンポーネントの例示的なタイプとしては、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、特定用途向け標準製品(ASSP)、システムオンチップシステム(SOC)、コンプレックスプログラマブル論理デバイス(CPLD)などが挙げられる。
さらに、(例えば、コンピュータに、開示される方法のうちのいずれかを実行させるためのコンピュータ実行可能命令を備える)ソフトウェアベースの実施例のいずれかを、適切な通信手段を通してアップロード、ダウンロード、またはリモートアクセスすることができる。そのような適切な通信手段としては、例えば、インターネット、ワールドワイドウェブ、イントラネット、ソフトウェアアプリケーション、ケーブル(光ファイバーケーブルを含む)、磁気通信、電磁通信(RF、マイクロ波、および赤外線通信を含む)、電子通信、または他のそのような通信手段が挙げられる。
本開示の実施形態は、以下の付記を考慮して説明することができる。
1.システムであって、
1つ以上のプロセッサを備えるコンピューティングホストと、
複数の論理デバイス部分の中へ構成された単一のフィールドプログラマブルゲートアレイ(FPGA)であって、該部分が、
1つ以上のアプリケーション論理パーティションを備え、アプリケーション論理パーティションの各々が、該メモリデバイスが、アプリケーション論理パーティションの選択された1つに記憶されたデータを消去するように構成された、アプリケーション論理パーティションのそれぞれの再構成可能な論理、
ホスト論理パーティション、および
内部構成回路の動作によってアクセスされる、メモリデバイスと、を備える、単一のフィールドプログラマブルゲートアレイと、を備える、システム。
2.内部構成回路が消去するように構成されるデータが、アプリケーション論理パーティションの選択された1つのラッチ、フリップフロップ、または構成メモリ、のうちの1つ以上に記憶されたデータを含み、
内部構成回路が、メモリデバイスに記憶されたデータを消去するようにさらに構成され、メモリデバイスが、FPGAの内部RAMを備える、付記1に記載のシステム。
3.内部構成回路が、ダイレクトメモリアクセス(DMA)を介して、内部構成回路にデータを消去させる命令またはデータを受信するようにさらに構成される、付記1または2のいずれかに記載のシステム。
4.内部構成回路が、選択されたアプリケーション論理パーティションを他のパーティションから結合解除することによって消去する前に、選択されたアプリケーション論理パーティションを隔離するようにさらに構成される、付記1〜3のいずれかに記載のシステム。
5.方法であって、
再構成可能なハードウェアプラットフォームから、アプリケーションデータを消去する要求を受信することに応じて、
再構成可能な論理デバイス内の以前にプログラムされたリソースのパーティションを識別することと、
識別されたパーティションのメモリまたは記憶要素に新しい値を記憶することと、
プログラマブルリソースの識別されたパーティションと関連付けられた追加的なリソースを識別することと、
追加的なリソースのメモリまたは記憶要素に新しい値を記憶することと、を含む、方法。
6.識別されたパーティションに新しい値を記憶することが、メモリまたは記憶要素の値を変化させるように、再構成可能な論理デバイスの構成ポートを通して、再構成可能な論理デバイスにおいてクリアリング論理を構成することを含む、付記5に記載の方法。
7.要求が、再構成可能な論理ホストを備えるインスタンスを終了するときに生成される、付記5または6に記載の方法。
8.要求が、再構成可能な論理デバイスに結合されたホストコンピュータで実行するスーパーバイザプロセスから受信される、付記5〜7のいずれかに記載の方法。
9.再構成可能な論理デバイスが、ホストコンピュータで実行するスーパーバイザプロセスによって制御されるホストパーティションを備え、識別されたパーティションに新しい値を記憶することを行うことが、識別されたパーティションに記憶された値をスクラブするように、ホストパーティション内の回路を動作させることを含む、付記5〜8に記載の方法。
10.スクラバ回路を備えるように、識別されたパーティションの論理を再構成することをさらに含み、スクラバ回路が、識別されたパーティションのメモリもしくは記憶要素に新しい値を記憶すること、または追加的なリソースのメモリもしくは記憶要素に新しい値を記憶することを行う、付記5〜9のいずれかに記載の方法。
11.識別されたパーティションが、追加的なリソースに結合されたスクラバ回路を備え、本方法が、追加的なリソースに新しい値を記憶することを行うように、スクラバ回路を動作させることをさらに含む、付記5〜10のいずれかに記載の方法。
12.新しい値をパーティションに記憶することが、既知のパターンの値をメモリまたは記憶要素に記憶することを含み、既知のパターンの値が、全てがゼロの値、全てが1の値、全てが所定の一組の1つ以上の値、またはランダムな値を含む、付記5〜11のいずれかに記載の方法。
13.再構成可能な論理デバイスが、識別されたパーティションを含む複数のパーティションを備え、本方法が、
識別されたパーティションのメモリまたは記憶要素に新しい値を記憶することを行う間に、他のパーティションの回路の動作を継続することをさらに含む、付記5〜12のいずれかに記載の方法。
14.追加的なリソースが、再構成可能な論理デバイスを備える集積回路に結合されたデバイス、すなわち、シンクロナスダイナミックランダムアクセスメモリデバイス(DRAM)、ハイブリッドメモリキューブ(HMC)、コプロセッサ、ネットワークインターフェースを備えるネットワークアドレス情報、または擬似乱数発生器、のうちの少なくとも1つを含む、付記5〜13のいずれかに記載の方法。
15.本方法が、再構成可能な論理ホストを介して、論理リポジトリデータベースからクリアリングビットストリームを受信することをさらに含み、
識別されたパーティションに新しい値を記憶することが、クリアリングビットストリームを再構成可能な論理デバイスの内部または外部構成ポートに適用することを含む、付記5〜14のいずれかに記載の方法。
16.再構成可能な論理デバイスに結合されたホストコンピュータから、識別されたパーティションにプログラムされるべきアプリケーション論理の記述を受信することと、
アプリケーション論理を含む構成データおよび内部構成回路を生成することと、
アプリケーション論理および内部構成回路の回路を形成するように、構成データによって再構成可能な論理デバイスをプログラムすることであって、内部構成回路が、識別された部分に新しい値を記憶すること、または追加的なリソースのメモリもしくは記憶要素に新しい値を記憶することを行うように構成されることと、をさらに含む、付記5〜15のいずれかに記載の方法。
17.再構成可能な論理デバイスおよび追加的なリソースの識別されたパーティションに結合された仮想マシンインスタンスを起動することと、
識別されたパーティションによって、コンピュータネットワークを介してユーザから受信される命令において指定される動作を行うことと、
仮想マシンインスタンスを終了することであって、終了することが、識別された部分および追加的なリソースに新しい値を記憶することを行うことによってデータを消去することを含むことと、をさらに含む、付記5〜16のいずれかに記載の方法。
18.再構成可能な論理デバイスおよび追加的なリソースの識別されたパーティションに結合された第1の仮想マシンインスタンスを起動することと、
第1の仮想マシンインスタンスを終了することと、
第2の仮想マシンインスタンスを起動することであって、第2の起動することが、第2の起動することが開始されるまで、識別された部分および追加的なリソースに新しい値を記憶することを遅延させることによって、識別されたパーティションを消去することを含むことと、をさらに含む、付記5〜17のいずれかに記載の方法。
19.システムであって、
1つ以上のプロセッサを備えるコンピューティングホストと、
コンピューティングホストに結合された再構成可能な論理デバイスであって、再構成可能な論理デバイスが、複数のユーザ論理パーティションに分割された論理を有し、ユーザ論理パーティションの各々が、コンピューティングホストで実行する異なるプロセスによって制御される、再構成可能な論理デバイスと、
メモリおよび記憶装置(ストレージ)の値に上書きし、ユーザ論理パーティションのうちの選択された1つの論理構成をクリアすることによって、選択されたユーザ論理パーティションからデータを消去するように構成された再構成回路と、を備える、システム。
20.再構成回路が、再構成可能な論理デバイスを備える集積回路に結合された追加的なリソースからデータを消去するようにさらに構成され、追加的なリソースが、選択されたユーザ論理パーティションと関連付けられる、付記19に記載のシステム。
21.再構成回路が、構成ビットストリームを再構成可能な論理デバイスに適用することによって、選択された論理パーティションからデータを消去するようにさらに構成される、付記19または20に記載のシステム。
22.再構成回路が、再構成回路がデータを消去する間、選択されたユーザ論理パーティション以外の再構成可能な論理デバイス内のパーティションの継続動作を可能にするようにさらに構成される、付記19〜21のいずれかに記載のシステム。
23.再構成回路が、ダイレクトメモリアクセス(DMA)接続でホストコンピュータに結合され、ホストコンピュータが、DMA接続を介して、コマンドまたはデータを送信するように構成され、コマンドまたはデータが、再構成回路にデータを消去させる、付記19〜22のいずれかに記載のシステム。
24.メモリが、
ブロックランダムアクセスメモリ(RAM)、
スタティックRAM、
ダイナミックRAM、
フラッシュメモリ、
内蔵DRAM、
構成メモリ、
分散RAM、または
ルックアップテーブルRAMを備え、
記憶装置が、
ラッチまたは
フリップフロップを備える、付記19〜23のいずれかに記載のシステム。
開示される方法、装置、およびシステムは、いかなる形であれ、限定するものと解釈されるべきではない。代わりに、本開示は、単独で、および互いとの種々の組み合わせおよび副次的な組み合わせで、種々の開示される実施例の全ての新規かつ非自明な特徴および態様を目的とする。開示される方法、装置、およびシステムは、任意の特定の態様または特徴またはそれらの組み合わせに限定されず、開示される実施例は、任意の1つ以上の特定の利点が存在すること、または問題を解決することを必要としない。
開示される技術の原理を適用することができる数多くの可能な実施例を考慮して、例示される実施例は、好適な例に過ぎないものであり、また、特許請求の範囲の範囲を限定するものとみなすべきではないことを認識されるべきである。むしろ、特許請求される対象の範囲は、以下の特許請求の範囲によって定義される。したがって、本発明者らは、本発明者らの発明として、これらの特許請求の範囲に該当する全てのものを主張する。

Claims (15)

  1. 方法であって、
    ホスト論理パーティションが、再構成可能なハードウェアプラットフォームからアプリケーションデータを消去する要求を、受信することに応じて、
    再構成可能な論理デバイス内の以前にプログラムされたリソースのパーティションを識別することと、
    前記識別されたパーティションのメモリまたは記憶要素に新しい値を記憶することと、
    プログラマブルリソースの前記識別されたパーティションと結合され、前記再構成可能な論理デバイス内のリソースとは別の追加的なリソースを識別することと、
    前記追加的なリソースのメモリまたは記憶要素に新しい値を記憶することと、を含む、方法。
  2. 前記識別されたパーティションに新しい値を前記記憶することが、前記メモリまたは記憶要素の値を変化させるように、前記再構成可能な論理デバイスの構成ポートを通して、前記再構成可能な論理デバイスにおいてクリアリング動作を行うための論理を構成することを含む、請求項1に記載の方法。
  3. 前記要求が、前記再構成可能な論理デバイスを備える仮想マシンインスタンスを終了するときに生成される、請求項1または2のいずれかに記載の方法。
  4. 前記要求が、前記再構成可能な論理デバイスに結合されたホストコンピュータで実行するスーパーバイザプロセスから受信される、請求項1〜3のいずれかに記載の方法。
  5. 前記再構成可能な論理デバイスが、ホストコンピュータで実行するスーパーバイザプロセスによって制御されるホストパーティションを備え、前記識別されたパーティションに新しい値を前記記憶することを行うことが、前記識別されたパーティションに記憶された値をスクラブするように、前記ホストパーティション内の回路を動作させることを含む、請求項1〜4のいずれかに記載の方法。
  6. スクラバ回路を備えるように、前記識別されたパーティションの論理回路を再構成することをさらに含み、前記スクラバ回路が、前記識別されたパーティションのメモリもしくは記憶要素に新しい値を前記記憶すること、または前記追加的なリソースのメモリもしくは記憶要素に新しい値を前記記憶することを行う、請求項1〜5のいずれかに記載の方法。
  7. 前記識別されたパーティションが、前記追加的なリソースに結合されたスクラバ回路を備え、前記方法が、前記追加的なリソースに前記新しい値を前記記憶することを行うように、前記スクラバ回路を動作させることをさらに含む、請求項1〜6のいずれかに記載の方法。
  8. 前記再構成可能な論理デバイスが、前記識別されたパーティションを含む複数のパーティションを備え、前記方法が、
    前記識別されたパーティションのメモリまたは記憶要素に新しい値を前記記憶することを行う間に、他のパーティションの回路の動作を継続することをさらに含む、請求項1〜7のいずれかに記載の方法。
  9. 前記方法が、前記再構成可能な論理デバイスを介して、論理リポジトリデータベースからクリアリングビットストリームを受信することをさらに含み、
    前記識別されたパーティションに新しい値を前記記憶することが、前記クリアリングビットストリームを前記再構成可能な論理デバイスの内部または外部構成ポートに適用することを含む、請求項1〜8のいずれかに記載の方法。
  10. 前記再構成可能な論理デバイスに結合されたホストコンピュータから、前記識別されたパーティションにプログラムされるべきアプリケーション論理の記述を受信することと、
    前記アプリケーション論理を含む構成データおよび内部構成回路を生成することと、
    前記アプリケーション論理および前記内部構成回路の回路を形成するように、前記構成データによって前記再構成可能な論理デバイスをプログラムすることであって、前記内部構成回路が、前記識別されたパーティションに新しい値を前記記憶すること、または前記追加的なリソースのメモリもしくは記憶要素に新しい値を記憶することを行うように構成されることと、をさらに含む、請求項1〜9のいずれかに記載の方法。
  11. 前記再構成可能な論理デバイスおよび前記追加的なリソースの前記識別されたパーティションに結合された仮想マシンインスタンスを起動することと、
    前記識別されたパーティションによって、コンピュータネットワークを介してユーザから受信される命令において指定される動作を行うことと、
    前記仮想マシンインスタンスを終了することであって、前記終了することが、前記識別されたパーティションおよび前記追加的なリソースに新しい値を前記記憶することを行うことによって、データを消去することを含むことと、をさらに含む、請求項1〜10のいずれかに記載の方法。
  12. 前記再構成可能な論理デバイスおよび前記追加的なリソースの前記識別されたパーティションに結合された第1の仮想マシンインスタンスを起動することと、
    前記第1の仮想マシンインスタンスを終了することと、
    第2の仮想マシンインスタンスを起動することであって、前記第2の仮想マシンインスタンスを起動することが開始されるまで、前記識別されたパーティションおよび前記追加的なリソースに新しい値を前記記憶することを遅延させることによって、前記識別されたパーティションを消去することを含むことと、をさらに含む、請求項1〜11のいずれかに記載の方法。
  13. システムであって、
    1つ以上のプロセッサを備えるコンピューティングホストと、
    前記コンピューティングホストに結合された再構成可能な論理デバイスであって、前記再構成可能な論理デバイスが、複数のユーザ論理パーティションとホスト論理パーティションに分割された論理回路を有し、前記ユーザ論理パーティションの各々が、前記コンピューティングホストで実行する異なるプロセスによって制御される、再構成可能な論理デバイスと、
    メモリおよび記憶装置の値に上書きし、前記ユーザ論理パーティションのうちの選択された1つの論理構成をクリアすることによって、前記選択されたユーザ論理パーティションからデータを消去するように構成されたスクラバ回路と、を備え、
    前記ホスト論理パーティションは、前記スクラバ回路でデータを消去するように、前記複数のユーザ論理パーティションの動作を監視するように構成されている、システム。
  14. 前記スクラバ回路が、前記再構成可能な論理デバイスを備える集積回路に結合された追加的なリソースからデータを消去するようにさらに構成され、前記追加的なリソースが、前記選択されたユーザ論理パーティションと関連付けられる、請求項13に記載のシステム。
  15. 前記スクラバ回路が、構成ビットストリームを前記再構成可能な論理デバイスに適用することによって、前記選択されたユーザ論理パーティションからデータを消去するようにさらに構成される、請求項13または14に記載のシステム。
JP2019517433A 2016-09-30 2017-09-28 再構成可能な論理デバイス内の以前に記憶した論理へのアクセスの制御 Active JP6886014B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/282,148 US10642492B2 (en) 2016-09-30 2016-09-30 Controlling access to previously-stored logic in a reconfigurable logic device
US15/282,148 2016-09-30
PCT/US2017/054180 WO2018064419A1 (en) 2016-09-30 2017-09-28 Controlling access to previously-stored logic in a reconfigurable logic device

Publications (2)

Publication Number Publication Date
JP2019534508A JP2019534508A (ja) 2019-11-28
JP6886014B2 true JP6886014B2 (ja) 2021-06-16

Family

ID=60162248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019517433A Active JP6886014B2 (ja) 2016-09-30 2017-09-28 再構成可能な論理デバイス内の以前に記憶した論理へのアクセスの制御

Country Status (5)

Country Link
US (2) US10642492B2 (ja)
EP (1) EP3519979A1 (ja)
JP (1) JP6886014B2 (ja)
CN (1) CN110088741A (ja)
WO (1) WO2018064419A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099894B2 (en) 2016-09-28 2021-08-24 Amazon Technologies, Inc. Intermediate host integrated circuit between virtual machine instance and customer programmable logic
US10338135B2 (en) 2016-09-28 2019-07-02 Amazon Technologies, Inc. Extracting debug information from FPGAs in multi-tenant environments
US10223317B2 (en) * 2016-09-28 2019-03-05 Amazon Technologies, Inc. Configurable logic platform
US10795742B1 (en) 2016-09-28 2020-10-06 Amazon Technologies, Inc. Isolating unresponsive customer logic from a bus
US10162921B2 (en) 2016-09-29 2018-12-25 Amazon Technologies, Inc. Logic repository service
US10282330B2 (en) 2016-09-29 2019-05-07 Amazon Technologies, Inc. Configurable logic platform with multiple reconfigurable regions
US10250572B2 (en) 2016-09-29 2019-04-02 Amazon Technologies, Inc. Logic repository service using encrypted configuration data
US10423438B2 (en) 2016-09-30 2019-09-24 Amazon Technologies, Inc. Virtual machines controlling separate subsets of programmable hardware
US10642492B2 (en) 2016-09-30 2020-05-05 Amazon Technologies, Inc. Controlling access to previously-stored logic in a reconfigurable logic device
US10855465B2 (en) * 2016-11-10 2020-12-01 Ernest Brickell Audited use of a cryptographic key
US11398906B2 (en) 2016-11-10 2022-07-26 Brickell Cryptology Llc Confirming receipt of audit records for audited use of a cryptographic key
US11405201B2 (en) 2016-11-10 2022-08-02 Brickell Cryptology Llc Secure transfer of protected application storage keys with change of trusted computing base
US11115293B2 (en) 2016-11-17 2021-09-07 Amazon Technologies, Inc. Networked programmable logic service provider
US10963001B1 (en) 2017-04-18 2021-03-30 Amazon Technologies, Inc. Client configurable hardware logic and corresponding hardware clock metadata
US11218368B2 (en) * 2017-06-15 2022-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Hardware platform based on FPGA partial reconfiguration for wireless communication device
US11474555B1 (en) * 2017-08-23 2022-10-18 Xilinx, Inc. Data-driven platform characteristics capture and discovery for hardware accelerators
WO2019130396A1 (ja) * 2017-12-25 2019-07-04 三菱電機株式会社 設計支援装置、設計支援方法及びプログラム
EP3864500A4 (en) 2018-10-12 2022-10-12 Supermem, Inc. ERROR CORRECTING MEMORY SYSTEMS
CN111414129B (zh) * 2019-01-07 2023-05-05 阿里巴巴集团控股有限公司 基于云的fpga控制数据的配置系统和方法以及电子设备
CN110502911A (zh) * 2019-08-16 2019-11-26 苏州浪潮智能科技有限公司 一种基于Faas云服务配置vFPGA的方法、设备以及存储介质
CN110618827A (zh) * 2019-08-26 2019-12-27 国网河南省电力公司洛阳供电公司 一种内置flash的fpga远程升级方法
US10957381B1 (en) * 2019-08-28 2021-03-23 Micron Technology, Inc. Metadata grouping for un-map techniques
CN110781506A (zh) * 2019-10-18 2020-02-11 浪潮电子信息产业股份有限公司 一种虚拟化fpga的运行方法、运行装置及运行系统
US11687279B2 (en) * 2020-01-27 2023-06-27 Samsung Electronics Co., Ltd. Latency and throughput centric reconfigurable storage device
US20210303315A1 (en) * 2020-03-31 2021-09-30 Src Labs, Llc Application logic architecture defining separate processing planes
CN111459679B (zh) * 2020-04-03 2023-10-27 宁波大学 一种用于5g通信测试仪表测试数据的并行处理方法
US20210399954A1 (en) * 2020-06-18 2021-12-23 F5 Networks, Inc. Orchestrating configuration of a programmable accelerator
US11468220B2 (en) * 2020-07-24 2022-10-11 Gowin Semiconductor Corporation Method and system for enhancing programmability of a field-programmable gate array via a dual-mode port
US11662923B2 (en) 2020-07-24 2023-05-30 Gowin Semiconductor Corporation Method and system for enhancing programmability of a field-programmable gate array
CN112596494B (zh) * 2020-12-04 2023-02-10 中国航空工业集团公司成都飞机设计研究所 一种基于hmc码相关性分析的飞行器故障定位方法
US20220179929A1 (en) * 2020-12-09 2022-06-09 Synopsys, Inc. Obfuscating encrypted register transfer logic model of a circuit
CN113657061B (zh) * 2021-08-19 2023-08-18 无锡中微亿芯有限公司 可实现不同配置应用过程间数据传递的fpga
CN114237676B (zh) * 2021-12-28 2023-12-08 湖南云箭智能科技有限公司 一种fpga逻辑更新方法、装置、设备及可读存储介质
CN116541898B (zh) * 2023-07-07 2023-10-13 山东多次方半导体有限公司 一种基于fpga实现多算法可重配置的密码卡设计方法

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000513523A (ja) 1996-06-21 2000-10-10 オーガニック システムズ インコーポレイテッド プロセスの即時制御を行う動的に再構成可能なハードウェアシステム
GB2321322B (en) 1996-10-28 2001-10-10 Altera Corp Remote software technical support
US6011407A (en) 1997-06-13 2000-01-04 Xilinx, Inc. Field programmable gate array with dedicated computer bus interface and method for configuring both
US8686549B2 (en) 2001-09-03 2014-04-01 Martin Vorbach Reconfigurable elements
US6034542A (en) 1997-10-14 2000-03-07 Xilinx, Inc. Bus structure for modularized chip with FPGA modules
JP3809727B2 (ja) 1998-06-17 2006-08-16 富士ゼロックス株式会社 情報処理システム、回路情報管理方法および回路情報記憶装置
DE69910826T2 (de) 1998-11-20 2004-06-17 Altera Corp., San Jose Rechnersystem mit rekonfigurierbarer programmierbarer logik-vorrichtung
US6539438B1 (en) 1999-01-15 2003-03-25 Quickflex Inc. Reconfigurable computing system and method and apparatus employing same
US6595921B1 (en) 1999-09-14 2003-07-22 Acuson Corporation Medical diagnostic ultrasound imaging system and method for constructing a composite ultrasound image
US7678048B1 (en) 1999-09-14 2010-03-16 Siemens Medical Solutions Usa, Inc. Medical diagnostic ultrasound system and method
US6678646B1 (en) 1999-12-14 2004-01-13 Atmel Corporation Method for implementing a physical design for a dynamically reconfigurable logic circuit
US6438737B1 (en) * 2000-02-15 2002-08-20 Intel Corporation Reconfigurable logic for a computer
US6785816B1 (en) 2000-05-01 2004-08-31 Nokia Corporation System and method for secured configuration data for programmable logic devices
US6826717B1 (en) 2000-06-12 2004-11-30 Altera Corporation Synchronization of hardware and software debuggers
WO2002001425A2 (en) 2000-06-23 2002-01-03 Xilinx, Inc. Method for remotely utilizing configurable hardware
US8058899B2 (en) 2000-10-06 2011-11-15 Martin Vorbach Logic cell array and bus system
US6802026B1 (en) 2001-05-15 2004-10-05 Xilinx, Inc. Parameterizable and reconfigurable debugger core generators
JP2002366597A (ja) 2001-06-07 2002-12-20 Pfu Ltd Fpga設計システムおよびfpga設計プログラム
GB0114317D0 (en) 2001-06-13 2001-08-01 Kean Thomas A Method of protecting intellectual property cores on field programmable gate array
US6476634B1 (en) 2002-02-01 2002-11-05 Xilinx, Inc. ALU implementation in single PLD logic cell
US6693452B1 (en) 2002-02-25 2004-02-17 Xilinx, Inc. Floor planning for programmable gate array having embedded fixed logic circuitry
US8914590B2 (en) 2002-08-07 2014-12-16 Pact Xpp Technologies Ag Data processing method and device
GB0304628D0 (en) 2003-02-28 2003-04-02 Imec Inter Uni Micro Electr Method for hardware-software multitasking on a reconfigurable computing platform
US6938488B2 (en) 2002-08-21 2005-09-06 Battelle Memorial Institute Acoustic inspection device
US7117481B1 (en) 2002-11-06 2006-10-03 Vmware, Inc. Composite lock for computer systems with multiple domains
US6907595B2 (en) 2002-12-13 2005-06-14 Xilinx, Inc. Partial reconfiguration of a programmable logic device using an on-chip processor
US7313794B1 (en) 2003-01-30 2007-12-25 Xilinx, Inc. Method and apparatus for synchronization of shared memory in a multiprocessor system
JPWO2004075056A1 (ja) 2003-02-21 2006-06-01 独立行政法人産業技術総合研究所 ウイルスチェック装置及びシステム
US7177961B2 (en) 2003-05-12 2007-02-13 International Business Machines Corporation Managing access, by operating system images of a computing environment, of input/output resources of the computing environment
US7505891B2 (en) 2003-05-20 2009-03-17 Verisity Design, Inc. Multi-user server system and method
JP2005107911A (ja) 2003-09-30 2005-04-21 Daihen Corp 書込情報生成用プログラム、ハードウェアへの情報書込用プログラム、これらのプログラムを記録したコンピュータ読み取り可能な記録媒体、書込情報生成装置及び情報書込装置
US7552426B2 (en) 2003-10-14 2009-06-23 Microsoft Corporation Systems and methods for using synthetic instructions in a virtual machine
US20050198235A1 (en) 2004-01-29 2005-09-08 Arvind Kumar Server configuration and management
US7243221B1 (en) 2004-02-26 2007-07-10 Xilinx, Inc. Method and apparatus for controlling a processor in a data processing system
US7281082B1 (en) 2004-03-26 2007-10-09 Xilinx, Inc. Flexible scheme for configuring programmable semiconductor devices using or loading programs from SPI-based serial flash memories that support multiple SPI flash vendors and device families
US20050223227A1 (en) 2004-03-31 2005-10-06 Deleeuw William C Addressable authentication in a scalable, reconfigurable communication architecture
US7721036B2 (en) 2004-06-01 2010-05-18 Quickturn Design Systems Inc. System and method for providing flexible signal routing and timing
US7987373B2 (en) 2004-09-30 2011-07-26 Synopsys, Inc. Apparatus and method for licensing programmable hardware sub-designs using a host-identifier
US8621597B1 (en) 2004-10-22 2013-12-31 Xilinx, Inc. Apparatus and method for automatic self-erasing of programmable logic devices
US8458467B2 (en) 2005-06-21 2013-06-04 Cisco Technology, Inc. Method and apparatus for adaptive application message payload content transformation in a network infrastructure element
US7886126B2 (en) 2005-01-14 2011-02-08 Intel Corporation Extended paging tables to map guest physical memory addresses from virtual memory page tables to host physical memory addresses in a virtual machine system
US7404023B1 (en) 2005-01-14 2008-07-22 Xilinx, Inc. Method and apparatus for providing channel bonding and clock correction arbitration
US7716497B1 (en) 2005-06-14 2010-05-11 Xilinx, Inc. Bitstream protection without key storage
US7451426B2 (en) 2005-07-07 2008-11-11 Lsi Corporation Application specific configurable logic IP
US7581117B1 (en) 2005-07-19 2009-08-25 Actel Corporation Method for secure delivery of configuration data for a programmable logic device
US7706417B1 (en) 2005-10-25 2010-04-27 Xilinx, Inc. Method of and circuit for generating a plurality of data streams
US8645712B1 (en) 2005-10-27 2014-02-04 Altera Corporation Electronic circuit design copy protection
US7739092B1 (en) 2006-01-31 2010-06-15 Xilinx, Inc. Fast hardware co-simulation reset using partial bitstreams
JP2007243671A (ja) 2006-03-09 2007-09-20 Kddi Corp 論理プログラマブルデバイス保護回路
US7715433B2 (en) 2006-07-14 2010-05-11 Boren Gary W Universal controller and signal monitor
WO2008014494A2 (en) 2006-07-28 2008-01-31 Drc Computer Corporation Fpga co-processor for accelerated computation
US7809936B2 (en) 2006-08-02 2010-10-05 Freescale Semiconductor, Inc. Method and apparatus for reconfiguring a remote device
US7734859B2 (en) 2007-04-20 2010-06-08 Nuon, Inc Virtualization of a host computer's native I/O system architecture via the internet and LANs
US7564727B1 (en) 2007-06-25 2009-07-21 Xilinx, Inc. Apparatus and method for configurable power management
US8219989B2 (en) 2007-08-02 2012-07-10 International Business Machines Corporation Partition adjunct with non-native device driver for facilitating access to a physical input/output device
US7902866B1 (en) 2007-08-27 2011-03-08 Virginia Tech Intellectual Properties, Inc. Wires on demand: run-time communication synthesis for reconfigurable computing
US7904629B2 (en) 2007-10-02 2011-03-08 NVON, Inc. Virtualized bus device
JP4593614B2 (ja) 2007-12-27 2010-12-08 富士通株式会社 画像データ検証方法及び画像データ検証システム
US8145894B1 (en) 2008-02-25 2012-03-27 Drc Computer Corporation Reconfiguration of an accelerator module having a programmable logic device
US8954685B2 (en) * 2008-06-23 2015-02-10 International Business Machines Corporation Virtualized SAS adapter with logic unit partitioning
JP5246863B2 (ja) 2008-11-14 2013-07-24 独立行政法人産業技術総合研究所 再構成可能論理デバイスの論理プログラムデータ保護システム及び保護方法
US9064058B2 (en) 2008-12-24 2015-06-23 Nuon, Inc. Virtualized PCI endpoint for extended systems
US20100174865A1 (en) * 2009-01-06 2010-07-08 International Business Machines Corporation Dynamic data security erasure
US8776090B2 (en) 2009-02-17 2014-07-08 Broadcom Corporation Method and system for network abstraction and virtualization for a single operating system (OS)
WO2010100871A1 (ja) 2009-03-03 2010-09-10 日本電気株式会社 遅延ライブラリ生成システム
WO2010106738A1 (ja) 2009-03-18 2010-09-23 日本電気株式会社 再構成可能な論理回路
US8560758B2 (en) 2009-08-24 2013-10-15 Red Hat Israel, Ltd. Mechanism for out-of-synch virtual machine memory management optimization
US8626970B2 (en) 2010-06-23 2014-01-07 International Business Machines Corporation Controlling access by a configuration to an adapter function
US8516272B2 (en) * 2010-06-30 2013-08-20 International Business Machines Corporation Secure dynamically reconfigurable logic
US8516268B2 (en) 2010-08-23 2013-08-20 Raytheon Company Secure field-programmable gate array (FPGA) architecture
JP5646764B2 (ja) 2010-10-22 2014-12-24 サムスン ヘビー インダストリーズ カンパニー リミテッド 動作中に再構成可能な制御システム及びその方法
US8561065B2 (en) 2010-11-15 2013-10-15 International Business Machines Corporation Virtualization of vendor specific network interfaces of self-virtualizing input/output device virtual functions
US8881141B2 (en) 2010-12-08 2014-11-04 Intenational Business Machines Corporation Virtualization of hardware queues in self-virtualizing input/output devices
CN102736945B (zh) 2011-03-31 2016-05-18 国际商业机器公司 一种运行应用程序的多个实例的方法和系统
US9218195B2 (en) 2011-05-17 2015-12-22 International Business Machines Corporation Vendor-independent resource configuration interface for self-virtualizing input/output device
JP5653865B2 (ja) * 2011-08-23 2015-01-14 日本電信電話株式会社 データ処理システム
KR20140061479A (ko) 2011-08-31 2014-05-21 톰슨 라이센싱 엔드-유저 디바이스의 구성 데이터의 보안 백업 및 복원을 위한 방법, 및 상기 방법을 이용하는 디바이스
US8726337B1 (en) 2011-09-30 2014-05-13 Emc Corporation Computing with presentation layer for multiple virtual machines
KR101614859B1 (ko) 2011-12-02 2016-04-22 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 서비스로써의 집적 회로
US9448846B2 (en) 2011-12-13 2016-09-20 International Business Machines Corporation Dynamically configurable hardware queues for dispatching jobs to a plurality of hardware acceleration engines
US9116812B2 (en) * 2012-01-27 2015-08-25 Intelligent Intellectual Property Holdings 2 Llc Systems and methods for a de-duplication cache
US9465632B2 (en) 2012-02-04 2016-10-11 Global Supercomputing Corporation Parallel hardware hypervisor for virtualizing application-specific supercomputers
US8775576B2 (en) 2012-04-17 2014-07-08 Nimbix, Inc. Reconfigurable cloud computing
US9619292B2 (en) 2012-04-30 2017-04-11 Alcatel Lucent Resource placement in networked cloud based on resource constraints
US9009703B2 (en) 2012-05-10 2015-04-14 International Business Machines Corporation Sharing reconfigurable computing devices between workloads
US9104453B2 (en) 2012-06-21 2015-08-11 International Business Machines Corporation Determining placement fitness for partitions under a hypervisor
CN103577266B (zh) 2012-07-31 2017-06-23 国际商业机器公司 用于对现场可编程门阵列资源进行分配的方法及系统
US8799992B2 (en) 2012-10-24 2014-08-05 Watchguard Technologies, Inc. Systems and methods for the rapid deployment of network security devices
WO2014116206A1 (en) 2013-01-23 2014-07-31 Empire Technology Development Llc Management of hardware accelerator configurations in a processor chip
US9361416B2 (en) 2013-01-30 2016-06-07 Empire Technology Development Llc Dynamic reconfiguration of programmable hardware
JP2014178784A (ja) * 2013-03-13 2014-09-25 Ricoh Co Ltd 情報処理装置、情報処理システム及び情報処理プログラム
US8928351B1 (en) 2013-03-13 2015-01-06 Xilinx, Inc. Emulating power domains in an integrated circuit using partial reconfiguration
US9396012B2 (en) 2013-03-14 2016-07-19 Qualcomm Incorporated Systems and methods of using a hypervisor with guest operating systems and virtual processors
US8745561B1 (en) 2013-03-15 2014-06-03 Cadence Design Systems, Inc. System and method for common path pessimism reduction in timing analysis to guide remedial transformations of a circuit design
US9747185B2 (en) 2013-03-26 2017-08-29 Empire Technology Development Llc Acceleration benefit estimator
JP6102511B2 (ja) 2013-05-23 2017-03-29 富士通株式会社 集積回路、制御装置、制御方法、および制御プログラム
WO2014189529A1 (en) 2013-05-24 2014-11-27 Empire Technology Development, Llc Datacenter application packages with hardware accelerators
US9672167B2 (en) 2013-07-22 2017-06-06 Futurewei Technologies, Inc. Resource management for peripheral component interconnect-express domains
US8910109B1 (en) 2013-08-12 2014-12-09 Altera Corporation System level tools to support FPGA partial reconfiguration
WO2015026373A1 (en) 2013-08-23 2015-02-26 Empire Technology Development, Llc Detacenter-based hardware accelerator integration
WO2015030731A1 (en) 2013-08-27 2015-03-05 Empire Technology Development Llc Speculative allocation of instances
US9098662B1 (en) 2013-08-28 2015-08-04 Altera Corporation Configuring a device to debug systems in real-time
WO2015042684A1 (en) 2013-09-24 2015-04-02 University Of Ottawa Virtualization of hardware accelerator
US9237165B2 (en) * 2013-11-06 2016-01-12 Empire Technology Development Llc Malicious attack prevention through cartography of co-processors at datacenter
US10461937B1 (en) 2013-12-18 2019-10-29 Amazon Technologies, Inc. Hypervisor supported secrets compartment
JP6190471B2 (ja) 2013-12-27 2017-08-30 株式会社日立製作所 パーティション実行制御装置、パーティション実行制御方法及び計算機に読み込み可能な記憶媒体
US9904749B2 (en) 2014-02-13 2018-02-27 Synopsys, Inc. Configurable FPGA sockets
US9483639B2 (en) 2014-03-13 2016-11-01 Unisys Corporation Service partition virtualization system and method having a secure application
US9298865B1 (en) 2014-03-20 2016-03-29 Altera Corporation Debugging an optimized design implemented in a device with a pre-optimized design simulation
US9503093B2 (en) 2014-04-24 2016-11-22 Xilinx, Inc. Virtualization of programmable integrated circuits
US9851998B2 (en) 2014-07-30 2017-12-26 Microsoft Technology Licensing, Llc Hypervisor-hosted virtual machine forensics
US10230591B2 (en) 2014-09-30 2019-03-12 Microsoft Technology Licensing, Llc Network resource governance in multi-tenant datacenters
US9672935B2 (en) 2014-10-17 2017-06-06 Lattice Semiconductor Corporation Memory circuit having non-volatile memory cell and methods of using
US9372956B1 (en) 2014-11-10 2016-06-21 Xilinx, Inc. Increased usable programmable device dice
US10394731B2 (en) 2014-12-19 2019-08-27 Amazon Technologies, Inc. System on a chip comprising reconfigurable resources for multiple compute sub-systems
US9703703B2 (en) 2014-12-23 2017-07-11 Intel Corporation Control of entry into protected memory views
WO2016118978A1 (en) 2015-01-25 2016-07-28 Objective Interface Systems, Inc. A multi-session zero client device and network for transporting separated flows to device sessions via virtual nodes
US9762392B2 (en) 2015-03-26 2017-09-12 Eurotech S.P.A. System and method for trusted provisioning and authentication for networked devices in cloud-based IoT/M2M platforms
US10574734B2 (en) 2015-04-09 2020-02-25 Rambus Inc. Dynamic data and compute management
US10027543B2 (en) 2015-04-17 2018-07-17 Microsoft Technology Licensing, Llc Reconfiguring an acceleration component among interconnected acceleration components
US9983938B2 (en) 2015-04-17 2018-05-29 Microsoft Technology Licensing, Llc Locally restoring functionality at acceleration components
EP3089035A1 (en) 2015-04-30 2016-11-02 Virtual Open Systems Virtualization manager for reconfigurable hardware accelerators
US20160323143A1 (en) * 2015-05-02 2016-11-03 Hyeung-Yun Kim Method and apparatus for neuroplastic internet of things by cloud computing infrastructure as a service incorporating reconfigurable hardware
US9678681B2 (en) * 2015-06-17 2017-06-13 International Business Machines Corporation Secured multi-tenancy data in cloud-based storage environments
US9684743B2 (en) 2015-06-19 2017-06-20 Synopsys, Inc. Isolated debugging in an FPGA based emulation environment
US10387209B2 (en) 2015-09-28 2019-08-20 International Business Machines Corporation Dynamic transparent provisioning of resources for application specific resources
US10013212B2 (en) 2015-11-30 2018-07-03 Samsung Electronics Co., Ltd. System architecture with memory channel DRAM FPGA module
US9590635B1 (en) 2015-12-03 2017-03-07 Altera Corporation Partial reconfiguration of programmable devices
US20170187831A1 (en) 2015-12-29 2017-06-29 Itron, Inc. Universal Abstraction Layer and Management of Resource Devices
US10069681B2 (en) 2015-12-31 2018-09-04 Amazon Technologies, Inc. FPGA-enabled compute instances
US9940483B2 (en) * 2016-01-25 2018-04-10 Raytheon Company Firmware security interface for field programmable gate arrays
US10778558B2 (en) 2016-03-09 2020-09-15 Intel Corporation Methods and apparatus to improve computing resource utilization
US10169065B1 (en) 2016-06-29 2019-01-01 Altera Corporation Live migration of hardware accelerated applications
US10833969B2 (en) 2016-07-22 2020-11-10 Intel Corporation Methods and apparatus for composite node malleability for disaggregated architectures
US10402566B2 (en) 2016-08-01 2019-09-03 The Aerospace Corporation High assurance configuration security processor (HACSP) for computing devices
US10846390B2 (en) 2016-09-14 2020-11-24 Oracle International Corporation Single sign-on functionality for a multi-tenant identity and data security management cloud service
US10511589B2 (en) 2016-09-14 2019-12-17 Oracle International Corporation Single logout functionality for a multi-tenant identity and data security management cloud service
US10528765B2 (en) 2016-09-16 2020-01-07 Intel Corporation Technologies for secure boot provisioning and management of field-programmable gate array images
US10223317B2 (en) 2016-09-28 2019-03-05 Amazon Technologies, Inc. Configurable logic platform
US11099894B2 (en) 2016-09-28 2021-08-24 Amazon Technologies, Inc. Intermediate host integrated circuit between virtual machine instance and customer programmable logic
US10338135B2 (en) 2016-09-28 2019-07-02 Amazon Technologies, Inc. Extracting debug information from FPGAs in multi-tenant environments
US10282330B2 (en) 2016-09-29 2019-05-07 Amazon Technologies, Inc. Configurable logic platform with multiple reconfigurable regions
US10250572B2 (en) 2016-09-29 2019-04-02 Amazon Technologies, Inc. Logic repository service using encrypted configuration data
US10162921B2 (en) 2016-09-29 2018-12-25 Amazon Technologies, Inc. Logic repository service
US10642492B2 (en) 2016-09-30 2020-05-05 Amazon Technologies, Inc. Controlling access to previously-stored logic in a reconfigurable logic device
US10423438B2 (en) 2016-09-30 2019-09-24 Amazon Technologies, Inc. Virtual machines controlling separate subsets of programmable hardware
US11115293B2 (en) 2016-11-17 2021-09-07 Amazon Technologies, Inc. Networked programmable logic service provider
US10691803B2 (en) * 2016-12-13 2020-06-23 Amazon Technologies, Inc. Secure execution environment on a server
US10747565B2 (en) 2017-04-18 2020-08-18 Amazon Technologies, Inc. Virtualization of control and status signals
US10764129B2 (en) 2017-04-18 2020-09-01 Amazon Technologies, Inc. Logic repository service supporting adaptable host logic
WO2018227518A1 (en) 2017-06-16 2018-12-20 Intel Corporation Reconfigurable device bitstream key authentication
US10469272B2 (en) 2017-07-28 2019-11-05 Netapp, Inc. Methods for facilitating secure cloud compute environments and devices thereof
US10902132B2 (en) 2017-08-25 2021-01-26 Graf Research Corporation Private verification for FPGA bitstreams
US10223014B1 (en) 2017-09-28 2019-03-05 Intel Corporation Maintaining reconfigurable partitions in a programmable device
US20200167506A1 (en) 2019-09-27 2020-05-28 Intel Corporation Security Architecture for Partial Reconfiguration of a Configurable Integrated Circuit Die
US11895201B2 (en) 2020-03-27 2024-02-06 Intel Corporation Programmable integrated circuit configured as a remote trust anchor to support multitenancy
US11537761B2 (en) 2020-09-25 2022-12-27 Intel Corporation Transparent network access control for spatial accelerator device multi-tenancy
US20210117246A1 (en) 2020-09-25 2021-04-22 Intel Corporation Disaggregated computing for distributed confidential computing environment

Also Published As

Publication number Publication date
US10642492B2 (en) 2020-05-05
JP2019534508A (ja) 2019-11-28
US11275503B2 (en) 2022-03-15
CN110088741A (zh) 2019-08-02
US20200257454A1 (en) 2020-08-13
EP3519979A1 (en) 2019-08-07
US20180095670A1 (en) 2018-04-05
WO2018064419A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6886014B2 (ja) 再構成可能な論理デバイス内の以前に記憶した論理へのアクセスの制御
JP6814299B2 (ja) マルチテナント環境のfpgaからのデバック情報の抽出
US11860810B2 (en) Configurable logic platform
US11182320B2 (en) Configurable logic platform with multiple reconfigurable regions
US11704459B2 (en) Logic repository service
CN110998555B (zh) 支持可适应性主机逻辑的逻辑仓储服务
US20240134811A1 (en) Configurable logic platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210513

R150 Certificate of patent or registration of utility model

Ref document number: 6886014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150