JP6885486B1 - 電力変換装置の短絡故障検出装置 - Google Patents

電力変換装置の短絡故障検出装置 Download PDF

Info

Publication number
JP6885486B1
JP6885486B1 JP2020048102A JP2020048102A JP6885486B1 JP 6885486 B1 JP6885486 B1 JP 6885486B1 JP 2020048102 A JP2020048102 A JP 2020048102A JP 2020048102 A JP2020048102 A JP 2020048102A JP 6885486 B1 JP6885486 B1 JP 6885486B1
Authority
JP
Japan
Prior art keywords
circuit
short
arm
coil
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048102A
Other languages
English (en)
Other versions
JP2021151065A (ja
Inventor
那津子 竹内
那津子 竹内
松原 邦夫
邦夫 松原
拡 田久保
拡 田久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020048102A priority Critical patent/JP6885486B1/ja
Priority to PCT/JP2021/010877 priority patent/WO2021187534A1/ja
Priority to DE112021000086.1T priority patent/DE112021000086T5/de
Priority to CN202180005130.2A priority patent/CN114303068A/zh
Application granted granted Critical
Publication of JP6885486B1 publication Critical patent/JP6885486B1/ja
Publication of JP2021151065A publication Critical patent/JP2021151065A/ja
Priority to US17/681,371 priority patent/US11955791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】ロゴスキーコイルを利用して電力変換装置のアーム短絡および負荷短絡の両方を検出可能な短絡故障検出装置を提供する。【解決手段】アーム10の短絡によってアームに流れる電流に応じた第1の検出信号S1を出力する第1のロゴスキーコイル101と、負荷の短絡によってアーム10に流れる電流に応じた第2の検出信号S2を出力する第2のロゴスキーコイル102と、第1の検出信号S1に基づいてアーム短絡を判別するアーム短絡判別回路111と、第2の検出信号S2に基づいて負荷短絡を判別する負荷短絡判別回路112と、アーム短絡判別回路111の出力信号および負荷短絡判別回路112の出力信号に基づいて短絡故障を検出する短絡検出回路120と、を短絡故障検出装置100に設けた。【選択図】図2

Description

本発明は、インバータ等の電力変換装置の短絡故障を検出する短絡故障検出装置に関する。
モータ等の負荷を駆動する電力変換装置では、電力変換装置を構成する半導体スイッチング素子に過大電流が流れる場合がある。このような過大電流は長時間に亙って流れると、半導体スイッチング素子が破壊に至る恐れがある。そこで、半導体スイッチング素子に流れる過大電流を検知し、電力変換装置を停止させる短絡故障検出装置が電力変換装置に設けられる。
この種の短絡故障検出装置では、半導体スイッチング素子に流れる電流を検出するために、シャント抵抗、CT(Current Transformer;変流器)、またはロゴスキーコイル等が利用される。その中で、ロゴスキーコイルは、コアがないため、短絡故障検出装置を小型にすることが可能であり、また、大電流の測定が可能であるという利点がある。
特許文献1は、半導体スイッチング素子を含むアームを介して負荷を駆動する電力変換装置において、ロゴスキーコイルによりアームの短絡故障を検出する技術を開示している。図9はこの特許文献1に開示された装置の構成を示す回路図である。図9において、ゲート駆動回路6は、ゲート抵抗5を介して半導体スイッチング素子1にゲート電圧を供給し、半導体スイッチング素子1を駆動する。ロゴスキーコイル7は、半導体スイッチング素子1を流れる電流の時間勾配di/dtに比例した端子間電圧を出力する。短絡検出器8は、ロゴスキーコイル7の端子間電圧が一定時間以上に亘って大きな値を継続したことを捉えることにより、アーム短絡が発生したと判別し、ゲート駆動回路6による半導体スイッチング素子1の駆動を停止させる。
しかしながら、電力変換装置において発生し得る短絡故障には、上述したアーム短絡の他、電力変換装置の出力側に接続された負荷が短絡状態となる負荷短絡がある。そこで、特許文献2は、アーム短絡電流を空芯コイルにより検出し、負荷短絡電流をCT(Current Transformer;変流器)により検出する技術を開示している。
特開2001−169533号公報
国際公開第2018/073909号
上述した特許文献1に開示の技術は、アーム短絡の検出には有効であるが、負荷短絡の検出が困難であるという問題がある。以下、この問題について説明する。
図10は電力変換装置においてアーム短絡が発生した場合の短絡電流の電流経路RT1を例示する回路図である。また、図11は同電力変換装置において負荷短絡が発生した場合の短絡電流の電流経路RT2を例示する回路図である。
図10および図11に例示する電力変換装置では、直流電圧Eを蓄えたコンデンサの端子間に、逆並列接続された半導体スイッチング素子SW1およびフライホイールダイオードD1からなるアームと、逆並列接続された半導体スイッチング素子SW2およびフライホイールダイオードD2からなるアームとが直列接続されている。また、同コンデンサの端子間には、逆並列接続された半導体スイッチング素子SW3およびフライホイールダイオードD3からなるアームと、逆並列接続された半導体スイッチング素子SW4およびフライホイールダイオードD4からなるアームとが直列接続されている。そして、半導体スイッチング素子SW1およびSW2の共通接続ノードと、半導体スイッチング素子SW3およびSW4の共通接続ノードとの間にモータの巻き線等の負荷Zが接続されている。また、図10および図11において、L1はアーム短絡の際の短絡電流の電流経路に介在する自己インダクタンスである。また、L2は半導体スイッチング素子SW1およびSW2の共通接続ノードから負荷Zを介して半導体スイッチング素子SW3およびSW4の共通接続ノードに至る電流経路に介在する自己インダクタンスである。
図10に示す例では、半導体スイッチング素子SW1がOFF、半導体スイッチング素子SW2がONであるときに、半導体スイッチング素子SW1の短絡故障が発生し、直流電圧Eを出力するコンデンサ→半導体スイッチング素子SW1→半導体スイッチング素子SW2→コンデンサという電流経路RT1を介してアーム短絡電流iaが流れる。この場合、アーム短絡電流iaに関して次式が成立する。
E=L1×dia/dt ……(1)
図11に示す例では、半導体スイッチング素子SW1およびSW4がON、半導体スイッチング素子SW2およびSW3がOFFであるときに、負荷Zの短絡故障が発生し、直流電圧Eを出力するコンデンサ→半導体スイッチング素子SW1→負荷Z→半導体スイッチング素子SW4→コンデンサという電流経路RT2を介して負荷短絡電流irが流れる。この場合、負荷短絡電流irに関して次式が成立する。
E=(L1+L2)×dir/dt ……(2)
ここで、自己インダクタンスL1およびL2間にはL1≪L2の関係が成立する。従って、上記式(1)および(2)から次式の成立することが分かる。
dir/dt≪dia/dt ……(3)
図12はアーム短絡電流iaおよび負荷短絡電流irの電流波形を例示する図である。図12において横軸は時間t、縦軸は電流値iである。アーム短絡電流iaの電流経路RT1に介在する自己インダクタンスL1は小さい。このため、t=0において半導体スッチング素子SW2がターンオンしたとすると、アーム短絡電流iaは短時間のうちに大きな電流値に立ち上がり、直流電圧Eを出力するコンデンサに蓄積された電荷を短時間のうちに放電させる。このため、アーム短絡電流iaは、半導体スッチング素子SW2のターンオン後の短時間のうちに発生する。一方、負荷短絡電流irの電流経路RT2に介在する自己インダクタンスL2は自己インダクタンスL1に比べて非常に大きい。このため、負荷短絡電流irは、半導体スイッチング素子SW1およびSW4のターンオン後、非常に緩やかな時間勾配で増加する。そして、周波数領域に着目すると、アーム短絡電流の周波数帯域の上限周波数は、負荷短絡電流の周波数帯域の上限周波数に比べて桁違いに高い。
時間勾配の小さな負荷短絡電流irを検出するためには、例えばロゴスキーコイルの巻き数を多くし、ロゴスキーコイルの感度を高くする必要がある。しかし、ロゴスキーコイルの巻き数を多くすると、ロゴスキーコイルの自己インダクタンスが高くなる。しかしながら、アーム短絡時および負荷短絡時の双方において、ロゴスキーコイルの端子間電圧を精度よく検出するためには、ロゴスキーコイルの自己インダクタンスを低くして、ロゴスキーコイルの自己インダクタンスと寄生容量とからなるLC共振回路の共振周波数を十分に高くする必要がある。具体的には共振周波数をアーム短絡時におけるロゴスキーコイルの端子間電圧の周波数帯域の上限周波数よりも高くする必要がある。この共振周波数が当該周波数帯域内にあると、共振の影響によりロゴスキーコイルの端子間電圧波形が歪み、アーム短絡を検出することが困難になるからである。そこで、共振の影響を受けないようにするために、ロゴスキーコイルの自己インダクタンスを小さくし、共振周波数を高くする必要がある。しかし、ロゴスキーコイルの自己インダクタンスを小さくするためには、ロゴスキーコイルの感度を低下させざるを得ない。この場合、負荷短絡電流iaの時間勾配dia/dtが極めて小さいので、ロゴスキーコイルの端子間電圧がノイズに埋もれ、負荷短絡の検出が極めて困難である。
特許文献2に開示の技術では、アーム短絡電流を空芯コイルにより検出し、負荷短絡電流をCTにより検出する。しかし、CTを用いると、コストが増加するとともに、ディスクリート部品が多くなって電力変換装置の構成が複雑になる問題がある。
この発明は以上に説明した課題に鑑みてなされたものであり、ロゴスキーコイルを利用して電力変換装置のアーム短絡および負荷短絡の両方を検出可能な短絡故障検出装置を提供することを目的とする。
この発明による短絡故障検出装置は、半導体スイッチング素子を各々含む複数のアームを有し、前記複数のアームを介して直流電源から負荷に電力を供給する電力変換装置の短絡故障検出装置において、前記複数のアームにおける1のアームに流れる電流であって、当該アームまたは他のアームの短絡によって当該アームに流れるアーム短絡電流に応じた第1の検出信号を出力する第1のロゴスキーコイルと、前記複数のアームにおける1のアームに流れる電流であって、前記負荷の短絡によって当該アームに流れる負荷短絡電流に応じた第2の検出信号を出力する第2のロゴスキーコイルと、前記第1の検出信号に基づいて前記アームの短絡を判別するアーム短絡判別回路と、前記第2の検出信号に基づいて前記負荷の短絡を判別する負荷短絡判別回路と、前記アーム短絡判別回路の出力信号および前記負荷短絡判別回路の出力信号に基づいて短絡故障を検出する短絡検出回路とを有することを特徴とする。
この発明によれば、アーム短絡電流を第1のロゴスキーコイルにより検出し、負荷短絡電流を第1のロゴスキーコイルとは別の第2のロゴスキーコイルにより検出する。従って、第2のロゴスキーコイルの感度を負荷短絡電流の検出に適した値とし、そのために第2のロゴスキーコイルの自己インダクタンスが大きくなったとしても、第1のロゴスキーコイルによるアーム短絡電流の検出の妨げになることはない。よって、アーム短絡および負荷短絡の双方を検出することができる。
この発明の一実施形態である短絡故障検出装置を含む電力変換装置の構成を示す回路図である。 同短絡故障検出装置の構成を示す回路図である。 同実施形態の動作を示す波形図である。 同実施形態の動作を示す波形図である。 同実施形態の動作を示す波形図である。 同実施形態の第1具体例を示す図である。 同実施形態の第2具体例を示す図である。 同実施形態の第3具体例を示す図である。 同実施形態の第4具体例を示す図である。 同第4具体例を示す図である。 同実施形態の第5具体例を示す図である。 従来の短絡故障検出装置の構成を示す回路図である。 電力変換装置におけるアーム短絡電流の電流経路を示す回路図である。 同電力変換装置における負荷短絡電流の電流経路を示す回路図である。 アーム短絡電流および負荷短絡電流の電流波形を示す図である。
以下、図面を参照しつつ本発明の実施形態について説明する。
図1はこの発明の一実施形態である短絡故障検出装置を含む電力変換装置の構成を示す回路図である。この電力変換装置において、コンデンサ30は、直流電源40によって充電され、直流電圧を出力する。コンデンサ30の両端子間にはアーム10_1および10_2が直列接続され、かつ、同端子間にはアーム10_3および10_4が直列接続されている。そして、アーム10_1および10_2間の共通接続ノードと、アーム10_3および10_4間の共通接続ノードとの間にモータの巻き線等の負荷Zが接続される。各アーム10_1〜10_4は、半導体スイッチング素子を含む。ゲート駆動回路20_1〜20_4は、アーム10_1〜10_4の各半導体スイッチング素子に与えるゲート信号を発生することにより各半導体スイッチング素子を駆動する。このように電力変換装置は、半導体スイッチング素子を含むアーム10_1〜10_4を有しており、このアームを介して直流電源40から負荷Zに電力を供給するものである。
電力変換装置において、ある1つのアーム(例えばアーム10_1とする)に着目すると、このアーム10_1には、当該アーム10_1に短絡故障が発生した場合、あるいは他のアーム10_2に短絡故障が発生した場合にアーム短絡電流が流れる。また、電力変換装置において、負荷Zの短絡故障が発生した場合には、アーム10_1に負荷短絡電流が流れる。このようなアーム短絡電流または負荷短絡電流が長時間に亙ってアーム10_1に流れると、アーム10_1の半導体スイッチング素子が破壊に至る恐れがある。そこで、アーム10_1に流れる電流に基づいてアーム短絡または負荷短絡の発生を検知し、ゲート駆動回路10_1による半導体スイッチング素子の駆動を停止させる短絡故障検出装置100_1がアーム10_1に対して設けられる。他のアーム10_2〜10_4にも同様なアーム短絡電流および負荷短絡電流が流れる可能性がある。そこで、アーム10_2〜10_4に対しても、短絡故障検出装置100_1と同様な短絡故障検出装置100_2〜100_3が設けられる。
なお、以下では、各々を区別する必要がない場合に、アーム10_1〜10_4をアーム10と総称し、ゲート駆動回路20_1〜20_4をゲート駆動回路20と総称し、短絡故障検出装置100_1〜100_4を短絡故障検出装置100と総称する。
図2は本実施形態による短絡故障検出装置100の構成例を示す回路図である。なお、この図2には、短絡故障検出装置100に関する理解を容易にするため、アーム10およびゲート駆動回路20が短絡故障検出装置100とともに示されている。
図2において、アーム10は、半導体スイッチング素子11と、この半導体スイッチング素子11に逆並列接続されたフライホイールダイオード12とを含む。この例において、半導体スイッチング素子11は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor;金属−酸化膜−半導体構造の電解効果トランジスタ)である。半導体スイッチング素子11のドレインは導線51を介してコンデンサ30または他のアームに接続され、半導体スイッチング素子11のソースは導線52を介してコンデンサ30または他のアームに接続されている。ゲート駆動回路20は、半導体スイッチング素子11に対してゲート信号を供給することにより半導体スイッチング素子11のON/OFF駆動を行う。
図2に示す例では、第1のロゴスキーコイル101および第2のロゴスキーコイル102に導線52が挿入されている。ここで、第1のロゴスキーコイル101は、アーム短絡電流の検出を目的とし、第2のロゴスキーコイル102は、負荷短絡電流の検出を目的として設けられたものである。導線52に電流が流れると、この電流を中心として、円状に回る磁界が発生し、この磁界の強度の時間変化に応じた電圧が第1のロゴスキーコイル101および第2のロゴスキーコイル102に誘起される。この結果、導線52に流れる電流の時間勾配di/dtに比例した電圧波形の第1の検出信号S1および第2の検出信号S2が第1のロゴスキーコイル101および第2のロゴスキーコイル102から各々出力される。
本実施形態において、第1のロゴスキーコイル101はアーム短絡電流の検出に最適化されたコイルであり、第2のロゴスキーコイル102は負荷短絡電流の検出に最適化されたコイルである。検出対象である電流の時間勾配di/dtに対する感度、すなわち、電流の時間勾配di/dtに対するロゴスキーコイルの出力電圧の比に着目すると、第1のロゴスキーコイル101の感度は、第2のロゴスキーコイル102の感度よりも低くなっている。具体的には、例えば第1のロゴスキーコイル101の巻き数は、第2のロゴスキーコイル102の巻き数よりも少ない。第1のロゴスキーコイル101の感度を、第2のロゴスキーコイル102の感度よりも低くするのは、第1のロゴスキーコイル101の自己インダクタンスを低くすることで、第1のロゴスキーコイル101の自己インダクタンスと寄生容量とからなるLC共振回路の共振周波数を高くし、この共振周波数をアーム短絡電流の周波数帯域の範囲外にするためである。また、第2のロゴスキーコイル102の感度を第1のロゴスキーコイル101の感度よりも高くするのは、時間勾配の小さな負荷短絡電流を精度よく検出するためである。
アーム短絡判別回路111は、第1の検出信号S1に基づいて、電力変換装置においてアーム短絡が発生したことを判別する回路である。具体的には、アーム短絡判別回路111は、第1の基準時間Tref1を超えて第1の検出信号S1が第1の基準レベルVref1よりも高いレベルを維持した場合に、アーム短絡が発生したことを判別する。アーム短絡判別回路111は、アーム短絡を判別した場合、短絡判別信号E1を非アクティブレベル“0”からアクティブレベル“1”にする。
負荷短絡判別回路112は、第2の検出信号S2に基づいて、電力変換装置において負荷短絡が発生したことを判別する回路である。具体的には、負荷短絡判別回路112は、第2の基準時間Tref2を超えて第2の検出信号S2が第2の基準レベルVref2よりも高いレベルを維持した場合に、負荷短絡が発生したことを判別する。負荷短絡判別回路112は、負荷短絡が発生したことを判別した場合、短絡判別信号E2を非アクティブレベル“0”からアクティブレベル“1”にする。
短絡検出回路120は、アーム短絡判別回路111が出力する短絡判別信号E1および負荷短絡判別回路112が出力する短絡判別信号E2に基づいて、電力変換装置において何等かの短絡故障が発生したことを示す短絡検出信号Eを生成する回路である。この例において、短絡検出回路120は、短絡判別信号E1と短絡判別信号E2の論理和を短絡検出信号Eとして出力するOR回路である。ゲート駆動回路20は、短絡検出信号Eがアクティブレベル“1”になった場合に半導体スイッチング素子11を駆動する動作を停止する。
図3A、図3Bおよび図3Cは、本実施形態の動作例を示す波形図である。図3Aには、通常時、アーム短絡時および負荷短絡時の各々について、導線52に流れる電流iの波形、第1の検出信号S1の波形、アーム短絡判別回路111内で発生するレベル判定信号D1の波形、およびアーム短絡判別回路111が出力する短絡判別信号E1の波形が示されている。また、図3Bには、通常時、アーム短絡時および負荷短絡時の各々について、導線52に流れる電流iの波形、第2の検出信号S2の波形、負荷短絡判別回路112内で発生するレベル判定信号D2の波形、および負荷短絡判別回路112が出力する短絡判別信号E2の波形が示されている。また、図3Cには、通常時、アーム短絡時および負荷短絡時の各々について、導線52に流れる電流iの波形、アーム短絡判別回路111が出力する短絡判別信号E1の波形、負荷短絡判別回路112が出力する短絡判別信号E2の波形、および短絡検出回路120が出力する短絡検出信号Eの波形が示されている。これらの図において、横軸は時間tであり、縦軸は電圧値、電流値または真理値である。
まず、図3Aを参照し、アーム短絡判別回路111の動作を説明する。アーム短絡判別回路111では、第1のロゴスキーコイル101から出力される第1の検出信号S1を第1の基準レベルVref1と比較し、第1の検出信号S1が第1の基準レベルVref1を超過した場合にレベル判定信号D1をアクティブレベル“1”とする。アーム短絡時には、時間勾配di/dtの大きな電流iが導線52に流れる。従って、アーム短絡判別回路111には、このような大きな時間勾配di/dtを検出することが求められる。このため、第1の基準レベルVref1は、アーム短絡が発生した場合の第1の検出信号S1と比較するのに適切な十分に大きな電圧値とされる。また、アーム短絡判別回路111では、レベル判定信号D1が第1の基準時間Tref1を超えてアクティブレベル“1”を維持した場合にアーム短絡判別信号E1をアクティブレベル“1”とする。アーム短絡時において、時間勾配di/dtの大きな電流iが導線52に流れる時間は短い。このため、第1の基準時間Tref1は、アーム短絡を検出することができる十分に短い時間、例えば数十ns〜数百nsとされる。
通常時、半導体スイッチング素子11のターンオンより導線52に流れる電流iが立ち上がり、この電流iの立ち上がり期間、電流iの時間勾配di/dtを示す第1の検出信号S1が第1の基準レベルVref1を超え、レベル判定信号D1がアクティブレベル“1”となる。しかし、電流iの立ち上がり期間は短く、レベル判定信号D1がアクティブレベル“1”となる期間は、第1の基準時間Tref1より短い。従って、短絡判別信号E1がアクティブレベル“1”となることはない。
負荷短絡時は、半導体スイッチング素子11のターンオンより導線52に流れる電流iが立ち上がり、その後、負荷短絡電流の電流経路に介在する自己インダクタンスにより定まる時間勾配で電流iが増加する。この場合において、電流iの立ち上がり期間、電流iの時間勾配di/dtを示す第1の検出信号S1が第1の基準レベルVref1を超える。しかし、通常時と同様、電流iの立ち上がり期間は短く、レベル判定信号D1がアクティブレベル“1”となる期間は、第1の基準時間Tref1より短い。従って、短絡判別信号E1がアクティブレベル“1”となることはない。
アーム短絡時の動作は、次のようになる。アーム10の半導体スイッチング素子11のターンオン時に、半導体スイッチング素子11と直列接続された他のアーム10に短絡故障が発生していると、導線52に流れる電流iが当該電流iの電流経路に介在する自己インダクタンスにより定まる時間勾配で立ち上がる。この結果、電流iの時間勾配di/dtを示す第1の検出信号S1が第1の基準レベルVref1を超え、レベル判定信号D1がアクティブレベル“1”となる。この場合の電流iの立ち上がり期間は、通常動作における電流iの立ち上がり期間よりは長く、レベル判定信号D1は、第1の基準時間Tref1を超えてアクティブレベル“1”を維持する。このため、短絡判別信号E1がアクティブレベル“1”となる。
この例において、第1のロゴスキーコイル101は、第1の検出信号S1が領域A1p内または領域A1n内となる場合の電流の時間勾配di/dtを高精度で検出する。そして、第1の基準レベルVref1は、領域A1p内にある。そのため、アーム短絡判別回路111は、精度よくアーム短絡を検出することができる。
次に図3Bを参照し、負荷短絡判別回路112の動作を説明する。負荷短絡判別回路112では、第2のロゴスキーコイル102から出力される第2の検出信号S2を第2の基準レベルVref2と比較し、第2の検出信号S2が第2の基準レベルVref2を超過した場合にレベル判定信号D2をアクティブレベル“1”とする。負荷短絡時には、時間勾配di/dtの小さな電流iが導線52に流れる。従って、負荷短絡判別回路112には、このような小さな時間勾配di/dtを検出することが求められる。このため、第2の基準レベルVref2は、負荷短絡が発生した場合の第2の検出信号S2と比較するのに適切な十分に小さな電圧値とされる。また、負荷短絡判別回路112では、レベル判定信号D2が第2の基準時間Tref2を超えてアクティブレベル“1”を維持した場合に短絡判別信号E2をアクティブレベル“1”とする。負荷短絡時において、導線52に流れる電流iの時間勾配di/dtが大きくなる時間は通常時およびアーム短絡時と比べて長い。このため、第2の基準時間Tref2は、通常動作あるいはアーム短絡を負荷短絡と誤認することがない十分に長い時間、例えば基準時間Tref1に対して数十倍〜数百倍程度の値に設定する。
通常時、半導体スイッチング素子11のターンオンにより導線52に流れる電流iが立ち上がり、この電流iの立ち上がり期間、電流iの時間勾配di/dtを示す第2の検出信号S2が第2の基準レベルVref2を超え、レベル判定信号D2がアクティブレベル“1”となる。しかし、レベル判定信号D2がアクティブレベル“1”となる期間は、第2の基準時間Tref2より短い。従って、短絡判別信号E2がアクティブレベル“1”となることはない。
半導体スイッチング素子11と直列接続された半導体スイッチング素子が短絡故障した状態で、半導体スイッチング素子11のターンオンが発生すると、アーム短絡が発生する。この時、導線52に流れる電流iはアーム短絡電流の電流経路に介在する自己インダクタンスにより定まる時間勾配で立ち上がる。この結果、電流iの時間勾配di/dtを示す第2の検出信号S2が第2の基準レベルVref2を超え、レベル判定信号D2がアクティブレベル“1”となる。しかしながら、アーム短絡時は第1の検出信号S1も第1の基準レベルVref1を超え、レベル判定信号D1がアクティブレベル“1”となる。各々の短絡検出時間はTref1<<Tref2であるため、アーム短絡が発生すると短絡判別信号E1が短絡判別信号E2より先にアクティブレベル“1”となる。このため、アーム短絡が発生しても短絡判定を検出することはない。
負荷短絡時は、半導体スイッチング素子11のターンオンより導線52に流れる電流iが立ち上がり、その後、負荷短絡電流の電流経路に介在する自己インダクタンスにより定まる時間勾配で電流iが増加する。このように電流iが立ち上がり、その後、一定時間勾配で増加する間、電流iの時間勾配di/dtを示す第2の検出信号S2が第2の基準レベルVref2を超え、レベル判定信号D2がアクティブレベル“1”となる。負荷短絡時、このレベル判定信号D2は第2の基準時間Tref2を超えてアクティブレベル“1”を維持する。従って、短絡判別信号E2がアクティブレベル“1”となる。
この例において、第2のロゴスキーコイル102は、第2の検出信号S2が領域A2内の信号となる電流の時間勾配di/dtを高精度で検出する。そして、第2の基準レベルVref2は領域A2内にある。そのため、負荷短絡により発生する第2の検出信号S2を精度よく検出することができる。
次に図3Cを参照し、短絡検出回路120の動作を説明する。図3Cに示すように、短絡検出回路120は、短絡判別信号E1と短絡判別信号E2の論理和を短絡検出信号Eとして出力する。従って、アーム短絡または負荷短絡が発生した場合には、短絡検出信号Eがゲート駆動回路20に出力され、ゲート駆動回路20による半導体スイッチング素子11の駆動が停止される。
以上説明したように、本実施形態によれば、ロゴスキーコイルを利用して、電力変換装置において発生するアーム短絡および負荷短絡の両方を精度よく検出することができる。また、本実施形態によれば、短絡電流を検出するために、CT等のディスクリート部品を利用しないので、コストを下げ、かつ、短絡故障検出装置の大型化を回避することができる。
以下、本実施形態の各種具体例について説明する。
<第1具体例>
第1具体例および後述する第2〜第3具体例は、アーム短絡時に適切な大きさの第1の検出信号S1を発生することが可能な第1のロゴスキーコイル101と、負荷短絡時に適切な大きさの第2の検出信号S2を発生することが可能な第2のロゴスキーコイル102とに関する具体例である。
図4は本実施形態の第1具体例を示す図である。この第1具体例において、アーム短絡を検出するための第1のロゴスキーコイル101Aは、トロイダルコイル状に巻かれた往路41と、トロイダルコイルの巻き始めと巻き終わりを結んで巻き戻す復路42とで構成される。第2のロゴスキーコイル102Aも、往路41および復路42と同様な往路43および復路44からなる。第1具体例では、アーム短絡を検出するための第1のロゴスキーコイル101Aの巻き数n1と負荷短絡を検出するための第2のロゴスキーコイル102Aの巻き数n2とが異なる。具体的には第1のロゴスキーコイル101Aの往路41の巻き数n1と、第2のロゴスキーコイル102Aの往路43の巻き数n2との間にはn2>n1の関係がある。以下、その理由について説明する。
ロゴスキーコイルに誘起される電圧vは、次式により与えられる。
v=−μ・(SQ・n/LG)・(di/dt) ……(4)
ここで、μは空気の透磁率(真空の透磁率と同じ)、SQはロゴスキーコイルの磁路断面積、nはロゴスキーコイルの巻き数、LGはロゴスキーコイルの磁路長、di/dtはロゴスキーコイルの検出対象である電流iの時間勾配である。磁路断面積SQとは、ロゴスキーコイルの往路41および43において、往路をなすトロイダルコイルにより囲まれた空間の断面積である。磁路長は、ロゴスキーコイルにおいて、トロイダルコイルにより囲まれた空間の長さであり、復路42および44の長さに略等しい。
上記式(5)を巻き数nについて解くと次式が得られる。
n=−(LG・v)/(μ・SQ・(di/dt)) ……(5)
この式(5)は、電流の時間勾配di/dtが小さい場合において、十分な大きさの電圧vをロゴスキーコイルから得るためには、巻き数nを増やす必要があることを示している。
そこで、第1具体例において、第2のロゴスキーコイル102Aについては、検出対象の電流の時間勾配di/dtが小さいため、その巻き数n2を第1のロゴスキーコイル101Aの巻き数n1よりも増やしている。具体的には、式(5)において、アーム短絡時の電流の時間勾配di/dtを負荷短絡時の電流の時間勾配di/dtの例えば10倍程度に設定して必要な巻き数n1およびn2を計算し、求めた巻き数n1およびn2のロゴスキーコイル101Aおよび102Aを設けている。このようにすることで、アーム短絡および負荷短絡の両者を精度良く検出することができる。
<第2具体例>
図5は本実施形態の第2具体例を示す図である。この第2具体例では、アーム短絡を検出するための第1のロゴスキーコイル101Bの磁路断面積SQ1と負荷短絡を検出するための第2のロゴスキーコイル102Bの磁路断面積SQ2が異なる。具体的には磁路断面積SQ1およびSQ2間に、SQ2>SQ1の関係がある。
前掲式(5)を磁路断面積SQについて解くと次式が得られる。
SQ=−(LG・v)/(μ・n・(di/dt)) ……(7)
この式(7)は、電流の時間勾配di/dtが小さい場合において、十分な大きさの電圧vをロゴスキーコイルから得るためには、磁路断面席SQを増やす必要があることを示している。
そこで、第2具体例において、第2のロゴスキーコイル102Bについては、検出対象の電流の時間勾配di/dtが小さいため、その磁路断面積SQ2を第1のロゴスキーコイル101Bの磁路断面積SQ1よりも大きくしている。具体的には、式(7)において、アーム短絡時の電流の時間勾配di/dtを負荷短絡時の電流の時間勾配di/dtの例えば10倍程度に設定して必要な磁路断面積SQ1およびSQ2を計算し、求めた磁路断面積SQ1およびSQ2のロゴスキーコイル101Bおよび102Bを設けている。このようにすることで、アーム短絡および負荷短絡の両者を精度良く検出することができる。
<第3具体例>
図6は本実施形態の第3具体例を示す図である。この第3具体例では、アーム短絡を検出するための第1のロゴスキーコイル101Cの磁路長LG1と負荷短絡を検出するための第2のロゴスキーコイル102Cの磁路長LG2が異なる。具体的には磁路長LG1およびLG2間に、LG1>LG2の関係がある。
前掲式(5)を磁路長LGについて解くと次式が得られる。
LG=−(μ・SQ・n・(di/dt))/v ……(8)
そこで、第3具体例では、式(8)において、アーム短絡時の電流の時間勾配di/dtを負荷短絡時の電流の時間勾配di/dtの例えば10倍程度に設定して必要な磁路長LG1およびLG2を計算し、求めた磁路長LG1およびLG2のロゴスキーコイル101Cおよび102Cを設けている。このようにすることで、アーム短絡および負荷短絡の両者を精度良く検出することができる。
<第4具体例>
第4具体例は第1のロゴスキーコイル101および第2のロゴスキーコイル102の実装に関する具体例である。図7Aおよび図7Bは第4具体例を示す図である。ここで、図7Aは図7Bの半導体スイッチング素子11D側から見た第1のロゴスキーコイル101Dおよび第2のロゴスキーコイル102Dを示す図である。また、図7Bは図7AのA−A’線断面図である。
図7Bにおいて、半導体スイッチング素子11Dと主配線基板70との間には、第1層配線基板61と、第2層配線基板62と、第3層配線基板63とからなる多層配線基板が挟まれている。ここで、第1層配線基板61は主配線基板70から離間し、第2層配線基板62は第1層配線基板61から離間し、第3層配線基板63は第2層配線基板62から離間し、半導体スイッチング素子11Dは第3層配線基板63から離間している。
導線51および52は、前掲図1の導線51および52に相当するものであり、半導体スイッチング素子11Dのソースおよびドレインに各々接続されている。これらの導線51および52は、半導体スイッチング素子11Dから延びて、第3層配線基板63と、第2層配線基板62と、第1層配線基板61とを通過し、主配線基板70に接続されている。半導体スイッチング素子11Dは、導線51または52と、主配線基板70とを介して、電力変換装置内の他の半導体スイッチング素子または電源線に接続されている。
そして、アーム短絡検出用の第1のロゴスキーコイル101Dは、導線51を取り囲むように、第1層配線基板61と、第2層配線基板62と、第3層配線基板63に配置されている。また、負荷短絡検出用の第2のロゴスキーコイル102Dは、導線52を取り囲むように、第1層配線基板61と、第2層配線基板62と、第3層配線基板63に配置されている。
さらに詳述すると、第1のロゴスキーコイル101Dは、トロイダルコイル状に巻かれた往路41と、トロイダルコイルの巻き始めと巻き終わりを結んで巻き戻す復路42とで構成されている。復路42は、第2層配線基板62に形成される。また、往路41は、第1層配線基板61上の配線と、第2層配線基板62に形成されたスルーホールを介して第1層配線基板61から第3層配線基板63に至る配線と、第3層配線基板63上の配線とにより構成される。第2のロゴスキーコイル102Dも、第1のロゴスキーコイル101Dの往路41および復路42と同様な往路43および復路44により構成される。
この第4具体例においても、アーム短絡および負荷短絡の双方を精度よく検出することができる。また、第4具体例によれば、前掲図1の構成と異なり、第1のロゴスキーコイル101Dと、第2のロゴスキーコイル102Dとを、半導体スイッチング素子11Dのソース側とドレイン側に分けて配置している。すなわち、第4具体例では、アームを経由する電流経路においてアームの一方側(例えば導線51)および他方側(例えば導線52)の各位置に第1のロゴスキーコイル101Dおよび第2のロゴスキーコイル102Dが配置されている。このため、第4具体例は、半導体スイッチング素子11Dとコンデンサ30(図1参照)との間の配線長を短くすることができるという利点がある。
<第5具体例>
図8は本実施形態の第5具体例を示す図である。第5具体例では、ブスバーなどの被測定電流経路104を覆うようにアーム短絡検出用の第1のロゴスキーコイル101Eと、負荷短絡検出用の第2のロゴスキーコイル102Eが配置される。そして、第5具体例では、第1のロゴスキーコイル101Eと第2のロゴスキーコイル102との間に金属等からなるシールド板103が配置される。この第5具体例によれば、第1のロゴスキーコイル101Eに流れる電流と第2のロゴスキーコイル102に流れる電流とが互いに干渉しあうのを防ぐことができる。
<他の実施形態>
以上、この発明の一実施形態について説明したが、この発明には他にも実施形態が考えられる。例えば次の通りである。
(1)上記実施形態では、この発明による短絡故障検出装置を4個のアームを有する2相のインバータに適用した。しかし、この発明による短絡故障検出装置の適用範囲はこれに限定されるものではない。この発明による短絡故障検出装置は、例えば3相のインバータ等、2相以外の相数のインバータに適用してもよい。また、この発明による短絡故障検出装置は、例えばDC/DCコンバータ等、インバータ以外の電力変換装置に適用してもよい。
(2)上記実施形態では、半導体スインチング素子の例としてMOSFETを挙げたが、半導体スイッチング素子はこれに限定されるものではなく、例えばIGBT(Insulated Gate Bipolar Transistor;絶縁ゲート型バイポーラトランジスタ)等の他の半導体スイッチング素子であってもよい。
(3)上記第1具体例〜第5具体例の任意の2つ、3つ、4つまたは全部を組み合わせてもよい。例えば第1のロゴスキーコイル101の巻き数よりも第2のロゴスキーコイル102の巻き数を多くし、かつ、第1のロゴスキーコイル101におけるコイルの断面積よりも第2のロゴスキーコイル102におけるコイルの断面積を大きくし、さらに第1のロゴスキーコイル101の磁路長よりも第2のロゴスキーコイル102の磁路長を短くしてもよい。
(4)第4具体例では、第1のロゴスキーコイル101Dおよび第2のロゴスキーコイル102Dの両方を第1層配線基板61、第2層配線基板62および第3層配線基板63に配置したが、いずれか一方のみを第1層配線基板61、第2層配線基板62および第3層配線基板63に配置してもよい。
(5)上記実施形態ではアーム短絡判定回路111、負荷短絡判定回路112、短絡検出回路120をそれぞれ個別に設けたがこれらの回路を一つの回路として実装しても良い。
(6)上記実施形態では短絡検出信号Eがゲート駆動回路20に入力されていたが、短絡判定信号E1,E2を直接ゲート駆動回路20に入力しても良い。また、短絡判定信号E1が出力された際はアーム短絡であるため、ゲート駆動回路20停止後にゲート駆動回路20の再起動を禁止する、短絡判定信号E2が出力された際は負荷短絡であるため、ゲート駆動回路20停止後に負荷の短絡が解除されたことが確認できればゲート駆動回路20を再起動させるといったように出力された短絡判定信号によって保護動作を変えても良い。
100……電力変換装置、30……コンデンサ、40……直流電源、10_1〜10_4,10……アーム、20_1〜20_4,20……ゲート駆動回路、100_1〜100_4,100……短絡故障検出装置、11,11D……半導体スイッチング素子、12……フライホイールダイオード、51,52……導線、101,101A,101B,101C,101D,101E……第1のロゴスキーコイル、102,102A,102B,102C,102D,101E……第2のロゴスキーコイル、41,43……往路、42,44……復路、70……主配線基板、61……第1層配線基板、62……第2層配線基板、63……第3層配線基板、111……アーム短絡判別回路、112……負荷短絡判別回路、120……短絡検出回路、103……シールド板、Z……負荷。

Claims (8)

  1. 半導体スイッチング素子を各々含む複数のアームを有し、前記複数のアームを介して負荷に電力を供給する電力変換装置の短絡故障検出装置において、
    前記複数のアームにおける1のアームに流れる電流であって、当該アームまたは他のアームの短絡によって当該アームに流れるアーム短絡電流に応じた第1の検出信号を出力する第1のロゴスキーコイルと、
    前記複数のアームにおける1のアームに流れる電流であって、前記負荷の短絡によって当該アームに流れる負荷短絡電流に応じた第2の検出信号を出力する第2のロゴスキーコイルと、
    前記第1の検出信号に基づいて前記アームの短絡を判別するアーム短絡判別回路と、
    前記第2の検出信号に基づいて前記負荷の短絡を判別する負荷短絡判別回路と、
    前記アーム短絡判別回路の出力信号および前記負荷短絡判別回路の出力信号に基づいて短絡故障を検出する短絡検出回路と
    を有することを特徴とする短絡故障検出装置。
  2. 前記第1のロゴスキーコイルの巻き数よりも前記第2のロゴスキーコイルの巻き数が多いことを特徴とする請求項1に記載の短絡故障検出装置。
  3. 前記第1のロゴスキーコイルにおけるコイルの断面積よりも前記第2のロゴスキーコイルにおけるコイルの断面積が大きいことを特徴とする請求項1または2に記載の短絡故障検出装置。
  4. 前記第1のロゴスキーコイルにおけるコイルの磁路長よりも前記第2のロゴスキーコイルにおけるコイルの磁路長が短いことを特徴とする請求項1〜3のいずれか1項に記載の短絡故障検出装置。
  5. 前記第1のロゴスキーコイルおよび前記第2のロゴスキーコイルの少なくとも一方が配線基板に組み込まれていることを特徴とする請求項1〜4のいずれか1項に記載の短絡故障検出装置。
  6. 前記アームを経由する電流経路において前記アームの一方側および他方側の各位置に前記第1のロゴスキーコイルおよび前記第2のロゴスキーコイルが配置されたことを特徴とする請求項1〜5のいずれか1項に記載の短絡故障検出装置。
  7. 前記第1のロゴスキーコイルと前記第2のロゴスキーコイルとの間にシールドを備えることを特徴とする請求項1〜6のいずれか1項に記載の短絡故障検出装置。
  8. 請求項1の短絡故障検出装置と、前記短絡故障検出装置が出力する短絡判別信号に基づいて半導体スイッチング素子の駆動を停止するゲート駆動回路とを含むことを特徴とする電力変換装置。
JP2020048102A 2020-03-18 2020-03-18 電力変換装置の短絡故障検出装置 Active JP6885486B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020048102A JP6885486B1 (ja) 2020-03-18 2020-03-18 電力変換装置の短絡故障検出装置
PCT/JP2021/010877 WO2021187534A1 (ja) 2020-03-18 2021-03-17 短絡故障検出装置および電力変換装置
DE112021000086.1T DE112021000086T5 (de) 2020-03-18 2021-03-17 Kurzschluss-detektor und stromrichter
CN202180005130.2A CN114303068A (zh) 2020-03-18 2021-03-17 短路故障检测装置和电力变换装置
US17/681,371 US11955791B2 (en) 2020-03-18 2022-02-25 Short-circuit detector and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048102A JP6885486B1 (ja) 2020-03-18 2020-03-18 電力変換装置の短絡故障検出装置

Publications (2)

Publication Number Publication Date
JP6885486B1 true JP6885486B1 (ja) 2021-06-16
JP2021151065A JP2021151065A (ja) 2021-09-27

Family

ID=76310122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048102A Active JP6885486B1 (ja) 2020-03-18 2020-03-18 電力変換装置の短絡故障検出装置

Country Status (1)

Country Link
JP (1) JP6885486B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024037340A (ja) * 2022-09-07 2024-03-19 株式会社 日立パワーデバイス 過電流状態判定装置、過電流状態判定方法および電力変換システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118834A (ja) * 2006-11-08 2008-05-22 Toyota Industries Corp サージ低減回路およびサージ低減回路を備えたインバータ装置
JP2008301617A (ja) * 2007-05-31 2008-12-11 Toshiba Corp 電力変換器の保護装置
WO2018073909A1 (ja) * 2016-10-19 2018-04-26 三菱電機株式会社 インバータ装置及びインバータ装置の停止方法
CN112119557B (zh) * 2018-05-23 2022-08-23 三菱电机株式会社 电力用半导体元件的保护电路以及功率模块
JP2019216540A (ja) * 2018-06-13 2019-12-19 株式会社明電舎 電力変換回路の制御装置

Also Published As

Publication number Publication date
JP2021151065A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
US9835670B2 (en) Isolator, semiconductor device, and method for controlling isolator
JP6568743B2 (ja) 伝導性ノイズ抑制回路及びインバータ装置
US10048296B2 (en) Detection of current change in an integrated circuit
JP6350422B2 (ja) 電力変換装置
JP7385368B2 (ja) 電流検出器及びパワーモジュール
JP2003050254A (ja) 電流検出器
JP6885486B1 (ja) 電力変換装置の短絡故障検出装置
JP5293666B2 (ja) 半導体装置
JP2017092789A (ja) 電力変換装置
US20150288290A1 (en) Power conversion device
JP4835930B2 (ja) 地絡検出手段を備えたインバータ装置
CN109245508B (zh) 电子设备
JPH08237936A (ja) 電圧形インバータのノイズフィルタ
JP6661002B2 (ja) 電力変換装置
WO2021187534A1 (ja) 短絡故障検出装置および電力変換装置
EP3602083B1 (en) Short-circuit current sensor for power electronics module
JP2022112452A (ja) 電力変換装置
WO2018193003A1 (en) Short circuit detection in paralleled half-bridge modules
JP5560232B2 (ja) 電流検出装置
JP2010063284A (ja) 電力変換装置及び電力変換システム
JP2005278296A (ja) コンデンサ装置およびそれを備えた電源システム
JP2022129346A (ja) 短絡故障検出装置および電力変換装置
JP7317074B2 (ja) 電力変換装置
JP6832894B2 (ja) 電力変換装置
JP5840514B2 (ja) 漏れ電流抑制回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250