JP6875522B2 - 半固体電解質、電極、半固体電解質層付き電極、および二次電池 - Google Patents

半固体電解質、電極、半固体電解質層付き電極、および二次電池 Download PDF

Info

Publication number
JP6875522B2
JP6875522B2 JP2019525229A JP2019525229A JP6875522B2 JP 6875522 B2 JP6875522 B2 JP 6875522B2 JP 2019525229 A JP2019525229 A JP 2019525229A JP 2019525229 A JP2019525229 A JP 2019525229A JP 6875522 B2 JP6875522 B2 JP 6875522B2
Authority
JP
Japan
Prior art keywords
semi
solid electrolyte
negative electrode
electrode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019525229A
Other languages
English (en)
Other versions
JPWO2018230238A1 (ja
Inventor
篤 宇根本
篤 宇根本
克 上田
克 上田
敦史 飯島
敦史 飯島
明秀 田中
明秀 田中
純 川治
純 川治
奥村 壮文
壮文 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2018230238A1 publication Critical patent/JPWO2018230238A1/ja
Application granted granted Critical
Publication of JP6875522B2 publication Critical patent/JP6875522B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、半固体電解質、電極、半固体電解質層付き電極、および二次電池に関する。
従来の非水電解液二次電池として、特許文献1には、アニオンを挿入乃至脱離可能な正極活物質を含む正極と、カチオンを挿入乃至脱離可能な負極活物質を含む負極と、非水溶媒に電解質塩が溶解されてなる非水電解液とを備えた非水電解液蓄電素子であって、前記非水溶媒は、非水溶媒全量に対して鎖状カーボネートを85.0−99.9質量%および環状カーボネートを0.1−15.0質量%含み、 前記環状カーボネートは少なくともフッ素化環状カーボネートを含み、前記非水電解液中の電解質塩の濃度が2mol/L以上であることを特徴とする非水電解液蓄電素子が開示されている。
特開2016−058252号公報
特許文献1の方法では、非水溶媒の重量に対してフッ素化環状カーボネートの量を規定しているため、二次電池の寿命を向上させることは難しい。
本発明は、二次電池の寿命を向上させることを目的とする。
上記課題を解決するための本発明の特徴は、例えば以下の通りである。
半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量が0.6%〜11.7%である半固体電解質。
本明細書は本願の優先権の基礎となる日本国特許出願番号2017−117337号の開示内容を包含する。
本発明により二次電池の寿命を向上できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
二次電池の外観図である。 二次電池の断面図である。 実施例および比較例の結果を示す表である。 劣化係数と負極界面添加材重量比との関係図である。 負極界面添加材重量比と初回放電容量との関係図である。 初回放電容量と負極かさ密度との関係図である。 負極かさ密度と負極界面添加材重量比との関係図である。
以下、図面などを用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
本明細書に記載される「〜」は、その前後に記載される数値を下限値および上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値または下限値は、他の段階的に記載されている上限値または下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値または下限値は、実施例中に示されている値に置き換えてもよい。
本明細書では、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、非水電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用できる。
図1は、本発明の一実施形態に係る二次電池の外観図である。図2は、本発明の一実施形態に係る二次電池の断面図である。図1および図2は積層型の二次電池であり、二次電池1000は、正極100、負極200、外装体500および半固体電解質層300を有する。外装体500は、半固体電解質層300、正極100、負極200、を収容する。外装体500の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼など、非水電解質に対し耐食性のある材料から選択することができる。本発明は、捲回型の二次電池にも適用できる。
二次電池1000内で、正極100、半固体電解質層300、負極200で構成される電極体400が積層されている。正極100または負極200を電極または二次電池用電極と称する場合がある。正極100、負極200、または半固体電解質層300を二次電池用シートと称する場合がある。半固体電解質層300および正極100または負極200が一体構造になっているものを半固体電解質層付き電極と称する場合がある。半固体電解質層付き電極は、半固体電解質を含む半固体電解質層および電極を有し、電極は負極であることが好ましい。
正極100は、正極集電体120および正極合剤層110を有する。正極集電体120の両面に正極合剤層110が形成されている。負極200は、負極集電体220および負極合剤層210を有する。負極集電体220の両面に負極合剤層210が形成されている。正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体と称する場合がある。
正極集電体120は正極タブ部130を有する。負極集電体220は負極タブ部230を有する。正極タブ部130または負極タブ部230を電極タブ部と称する場合がある。電極タブ部には電極合剤層が形成されていない。ただし、二次電池1000の性能に悪影響を与えない範囲で電極タブ部に電極合剤層を形成してもよい。正極タブ部130および負極タブ部230は、外装体500の外部に突出しており、突出した複数の正極タブ部130同士、複数の負極タブ部230同士が、例えば超音波接合などで接合されることで、二次電池1000内で並列接続が形成される。本発明は、二次電池1000中で電気的な直列接続を構成させたバイポーラ型の二次電池にも適用できる。
正極合剤層110は、正極活物質、正極導電剤、正極バインダを有する。負極合剤層210は、負極活物質、負極導電剤、負極バインダを有する。半固体電解質層300は、半固体電解質バインダおよび半固体電解質を有する。半固体電解質は、粒子および半固体電解液を含む。正極活物質または負極活物質を電極活物質、正極導電剤または負極導電剤を電極導電剤、正極バインダまたは負極バインダを電極バインダと称する場合がある。
電極合剤層の細孔に半固体電解液を充填させてもよい。この場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入し、電極合剤層の細孔に半固体電解液を充填させる。この場合、半固体電解質に含まれる粒子を要せず、電極合剤層中の電極活物質や電極導電剤などの粒子が粒子として機能して、それらの粒子が半固体電解液を保持する。電極合剤層の細孔に半固体電解液を充填する別の方法として、半固体電解液、電極活物質、電極導電剤、電極バインダを混合したスラリーを調製し、調製したスラリーを電極集電体上に一緒に塗布する方法などがある。
半固体電解質層300の形成に用いる半固体電解質は、エーテル系溶媒またはイオン液体にリチウム塩などの電解質塩を溶解させた半固体電解質溶媒、負極界面添加材、および任意の低粘度有機溶媒を含む半固体電解液と、SiOなどの粒子とを混合した材料である。半固体電解質層300は正極100と負極200の間にリチウムイオンの伝達させる媒体となる他に、電子の絶縁体としても働き、正極100と負極200の短絡を防止する。
半固体電解質層300に微多孔膜などのセパレータを用いてもよい。セパレータとして、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータに微多孔膜が用いられる場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入することで、半固体電解質層300に半固体電解液が充填される。
正極100、負極200、または半固体電解質層300のいずれか一つのみまたは二つ以上に半固体電解質が含まれていてもよい。
<電極導電剤>
電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラックなどが好適に用いられるが、これに限られない。
<電極バインダ>
電極バインダは、電極中の電極活物質や電極導電剤などを結着させる。電極バインダとしては、スチレン−ブタジエンゴム、カルボキシメチルセルロ−ス、ポリフッ化ビニリデン(PVDF)およびこれらの混合物などが挙げられるが、これに限られない。
<正極活物質>
貴な電位を示す正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層の負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が望ましく、具体例としては、LiMO2、Li過剰組成のLi[LiM]O2、LiM2O4、LiMPO4、LiMVOx、LiMBO3、Li2MSiO4(ただし、M = Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ruなどを少なくとも1種類以上含む)が挙げられる。また、これら材料における酸素の一部を、フッ素など、他の元素に置換してもよい。さらに、硫黄、TiS2、MoS2、Mo6S8、TiSe2などのカルコゲナイドや、V2O5などのバナジウム系酸化物、FeF3などのハライド、ポリアニオンを構成するFe(MoO4)3、Fe2(SO4)3、Li3Fe2(PO4)3など、キノン系有機結晶などが挙げられるが、これらに限られない。さらに、化学組成におけるリチウムやアニオン量は上記定比組成からずれていてもよい。
<正極集電体120>
正極集電体120として、厚さが10〜100μmのアルミニウム箔、あるいは厚さが10〜100μm、孔径0.1〜10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用できる。材質、形状、製造方法などに制限されることなく、任意の正極集電体120を使用できる。
<負極活物質>
負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層110中の正極活物質から脱離したリチウムイオンが挿入される。卑な電位を示す負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料、有機結晶、活性炭など)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:Li4Ti5O12やLi2TiO4など)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズなどを少なくとも1種類以上含む)やこれらの酸化物を用いることができるが、これに限られない。
<負極集電体220>
負極集電体220として、厚さが10〜100μmの銅箔、厚さが10〜100μm、孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。銅の他に、ステンレス鋼、チタン、ニッケルなども適用できる。材質、形状、製造方法などに制限されることなく、任意の負極集電体220を使用できる。
<電極>
電極活物質、電極導電剤、電極バインダおよび有機溶媒を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法などによって電極集電体へ付着させることで電極合剤層が作製される。その後、有機溶媒を乾燥させ、ロールプレスによって電極合剤層を加圧成形することにより電極が作製される。電極スラリーに半固体電解液または半固体電解質を含めてもよい。塗布から乾燥までを複数回行うことにより、複数の電極合剤層を電極集電体に積層させてもよい。電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。
<粒子>
粒子としては、電気化学的安定性の観点から、絶縁性粒子であり有機溶媒またはイオン液体を含む半固体電解液に不溶であることが好ましい。粒子として、例えば、シリカ(SiO2)粒子、γ−アルミナ(Al2O3)粒子、セリア(CeO2)粒子、ジルコニア(ZrO2)粒子などの酸化物無機粒子を好ましく用いることができる。粒子として固体電解質を用いてもよい。固体電解質としては、例えば、酸化物系固体電解質や硫化物系固体電解質などの無機系固体電解質の粒子が挙げられる。
半固体電解液の保持量は粒子の比表面積に比例すると考えられるため、粒子の一次粒子の平均粒径は、1nm〜10μmが好ましい。粒子の一次粒子の平均粒径が大きいと、粒子が十分な量の半固体電解液を適切に保持できず半固体電解質の形成が困難になる可能性がある。また、粒子の一次粒子の平均粒径が小さいと、粒子間の表面間力が大きくなって粒子同士が凝集し易くなって、半固体電解質の形成が困難になる可能性がある。粒子の一次粒子の平均粒径は、1nm〜50nmがより好ましく、1nm〜10nmがさらに好ましい。粒子の一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて測定できる。
<半固体電解液>
半固体電解液は、半固体電解質溶媒、任意の低粘度有機溶媒、および負極界面添加材を含む。半固体電解質溶媒は、イオン液体またはイオン液体に類似の性質を示すエーテル系溶媒と、電解質塩との混合物を含む。半固体電解液が低粘度有機溶媒を含む場合、電解質塩は、半固体電解質溶媒ではなく低粘度有機溶媒が含んでいてもよい。また、半固体電解質溶媒と低粘度有機溶媒の両方に含んでいてもよい。イオン液体またはエーテル系溶媒を主溶媒と称する場合がある。イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。半固体電解質溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性、具体的には室温における蒸気圧が150Pa以下であるものが望ましい。
電極合剤層に半固体電解液が含まれている場合、電極合剤層中の半固体電解液の含有量は20体積%〜40体積%であることが望ましい。半固体電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、半固体電解液の含有量が多い場合、電極合剤層から半固体電解液が漏れ出す可能性がある。
イオン液体はカチオンおよびアニオンで構成される。イオン液体としては、カチオン種に応じ、イミダゾリウム系、アンモニウム系、ピロリジニウム系、ピペリジニウム系、ピリジニウム系、モルホリニウム系、ホスホニウム系、スルホニウム系などに分類される。イミダゾリウム系イオン液体を構成するカチオンには、例えば、1-エチル-3-メチルイミダゾリウム(EMI)や1-ブチル-3-メチルイミダゾリウム(BMI)などのアルキルイミダゾリウムカチオンなどがある。アンモニウム系イオン液体を構成するカチオンには、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム(DEME)やテトラアミルアンモニウムなどのほかに、N,N,N-トリメチル-N-プロピルアンモニウムなどのアルキルアンモニウムカチオンがある。ピロリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピロリジニウム(Py13)や1-ブチル-1-メチルピロリジニウムなどのアルキルピロリジニウムカチオンなどがある。ピペリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピペリジニウム(PP13)や1-ブチル-1-メチルピペリジニウムなどのアルキルピペリジニウムカチオンなどがある。ピリジニウム系イオン液体を構成するカチオンには、例えば、1-ブチルピリジニウムや1-ブチル-4-メチルピリジニウムなどのアルキルピリジニウムカチオンなどがある。モルホリニウム系イオン液体を構成するカチオンには、例えば、4-エチル-4-メチルモルホリニウムなどのアルキルモルホリニウムなどがある。ホスホニウム系イオン液体を構成するカチオンには、例えば、テトラブチルホスホニウムやトリブチルメチルホスホニウムなどのアルキルホスホニウムカチオンなどがある。スルホニウム系イオン液体を構成するカチオンには、例えば、トリメチルスルホニウムやトリブチルスルホニウムなどのアルキルスルホニウムカチオンなどがある。これらカチオンと対になるアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI)、ビス(フルオロスルホニル)イミド(FSI)、テトラフルオロボレート(BF4)、ヘキサフルオロホスファート(PF6)、ビス(ペンタフルオロエタンスルホニル)イミド(BETI)、トリフルオロメタンスルホネート(トリフラート)、アセテート、ジメチルホスファート、ジシアナミド、トリフルオロ(トリフルオロメチル)ボレートなどがある。これらのイオン液体を単独または複数組み合わせて使用してもよい。
イオン液体とともに用いる電解質塩として、溶媒に均一に分散できるものを使用できる。カチオンがリチウム、上記アニオンからなるものがリチウム塩として使用することができ、例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF4)、リチウムヘキサフルオロホスファート(LiPF6)、リチウムトリフラートなどが挙げられるが、これに限られない。これらの電解質塩を単独または複数組み合わせて使用してもよい。
エーテル系溶媒は、電解質塩とともに溶媒和イオン液体を構成する。エーテル系溶媒として、イオン液体に類似の性質を示す公知のグライム(R-O(CH2CH2O)n-R’(R、R’は飽和炭化水素、nは整数)で表される対称グリコールジエーテルの総称)を利用できる。イオン伝導性の観点から、テトラグライム(テトラエチレンジメチルグリコール、G4)、トリグライム(トリエチレングリコールジメチルエーテル、G3)、ペンタグライム(ペンタエチレングリコールジメチルエーテル、G5)、ヘキサグライム(ヘキサエチレングリコールジメチルエーテル、G6)を好ましく用いることができる。また、エーテル系溶媒として、クラウンエーテル((-CH2-CH2-O)n(nは整数)で表される大環状エーテルの総称)を利用できる。具体的には、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6などを好ましく用いることができるが、これに限らない。これらのエーテル系溶媒を単独または複数組み合わせて使用してもよい。電解質塩と錯体構造を形成できる点で、テトラグライム、トリグライムを用いることが好ましい。
エーテル系溶媒とともに用いる電解質塩としては、LiFSI、LiTFSI、LiBETIなどのリチウムイミド塩を利用できるが、これに限らない。エーテル系溶媒および電解質塩の混合物を単独または複数組み合わせて使用してもよい。
<低粘度有機溶媒>
低粘度有機溶媒は、半固体電解質溶媒の粘度を下げ、イオン伝導率を向上させる。半固体電解質溶媒を含む半固体電解液の内部抵抗は大きいため、低粘度有機溶媒を添加して半固体電解質溶媒のイオン伝導率を上げることにより、半固体電解液の内部抵抗を下げることができる。ただ、半固体電解質溶媒が電気化学的に不安定であるため、電池動作に対して分解反応が促進され、二次電池1000の繰返し動作に伴って二次電池1000の抵抗増加や容量低下を引き起こす可能性がある。さらに、負極活物質として黒鉛を利用した二次電池1000では、充電反応中、半固体電解質溶媒のカチオンが黒鉛に挿入されて黒鉛構造を破壊し、二次電池1000の繰返し動作ができなくなる可能性がある。
低粘度有機溶媒は、例えばエーテル系溶媒および電解質塩の混合物の25℃における粘度である140Pa・sよりも粘度の小さい溶媒であることが望ましい。低粘度有機溶媒として、炭酸プロピレン(PC)、リン酸トリメチル(TMP)、ガンマブチルラクトン(GBL)、炭酸エチレン(EC)、リン酸トリエチル(TEP)、亜リン酸トリス(2,2,2-トリフルオロエチル)(TFP)、メチルホスホン酸ジメチル(DMMP)などが挙げられる。これらの低粘度有機溶媒を単独または複数組み合わせて使用してもよい。低粘度有機溶媒に上記の電解質塩を溶解させてもよい。二次電池1000の容量維持率の観点から低粘度有機溶媒としてECが望ましい。
<半固体電解質バインダ>
半固体電解質バインダは、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(P(VDF-HFP))、ポリテトラフルオロエチレン(PTFE)などが好適に用いられる。これらの半固体電解質バインダを単独または複数組み合わせて使用してもよい。PVDF、P(VDF-HFP)、PTFEを用いることで、半固体電解質層300と電極集電体の密着性が向上するため、電池性能が向上する。
<半固体電解質>
半固体電解液が粒子に担持または保持されることにより半固体電解質が構成される。半固体電解質の作製方法として、半固体電解液と粒子とを特定の体積比率で混合し、メタノールなどの有機溶媒を添加し・混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレに広げ、有機溶媒を留去して半固体電解質の粉末を得る方法などが挙げられる。半固体電解液が低粘度有機溶媒を含む場合、低粘度有機溶媒が揮発しやすいことを考慮して、半固体電解液が最終的に目標とする量で半固体電解質中に含まれるように制御するものとする。
<半固体電解質層300>
半固体電解質層300の作製方法として、半固体電解質の粉末を成型ダイスなどでペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法などがある。半固体電解質に半固体電解質バインダの粉末を添加・混合することにより、柔軟性の高いシート状の半固体電解質層300を作製できる。また、半固体電解質に、分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を添加・混合し、分散溶媒を留去することで、半固体電解質層300を作製できる。半固体電解質層300は、前記の、半固体電解質に結着剤の溶液を添加・混合したものを電極上に塗布および乾燥することにより作製してもよい。
半固体電解質層300中の半固体電解液の含有量は70体積%〜90体積%であることが望ましい。半固体電解液の含有量が小さい場合、電極と半固体電解質層300との界面抵抗が増加する可能性がある。また、半固体電解液の含有量が大きい場合、半固体電解質層300から半固体電解液が漏れ出してしまう可能性がある。
<負極かさ密度>
負極かさ密度(以下、単に負極密度または密度ともいう)を所定の値にすることにより、二次電池1000の電池容量を向上できる。具体的には、(負極かさ密度(g/cm3))≦−0.05042(負極界面添加材重量比(%))2+0.4317(負極界面添加材重量比(%))+0.9032、特に(負極かさ密度(g/cm3))≦−0.076(負極界面添加材重量比(%))2+0.571(負極界面添加材重量比(%))+0.6251、とすることが望ましい。ここで、上記負極界面添加材重量比は、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比を意味する(以下、同様)。負極かさ密度の計測方法は、集電箔上に塗布した負極合剤層210の重量と厚みを計測することで求めることができる。具体的には、計測した負極合剤層210の重量を、負極合剤層210の厚みと面積の積で割ることによって求めることができる。
<負極界面添加材>
負極界面添加材は、負極表面に不動態被膜を形成して半固体電解液の還元分解を抑制する。負極界面添加材として、炭酸ビニレン(VC)、リチウムビス(オキサレート)ボラート(LiBOB)、炭酸フルオロエチレン(FEC)、およびエチレンサルファイトなどが挙げられる。これらの負極界面添加材を単独または複数組み合わせて使用してもよい。
本発明の半固体電解質は、半固体電解質溶媒、任意の低粘度有機溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含み、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量が0.6%〜11.7%となるように負極に適用して使用される。半固体電解質の重量と負極の重量の和に対する負極界面添加材の量を規定することによって、半固体電解質と黒鉛などを含む負極200の界面との安定性が向上する。具体的には、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比(以下、負極界面添加材重量比と記す)を0.6%〜11.7%、特に1.7%〜5.8%、とすることが望ましい。負極界面添加材重量比が小さい場合、二次電池1000の安定動作に資する半固体電解質と黒鉛を含む負極200との界面が形成されないために、二次電池1000の寿命が低下する可能性がある。負極界面添加材重量比が大きい場合、正極100の表面で分解反応を誘発して、クーロン効率を下げ、電池抵抗を上昇させる可能性がある。、負極200と半固体電解質層300に用いた半固体電解質の重量和に対する、負極界面添加材重量を求めることにより、負極界面添加材重量比を決めることができる。
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
<半固体電解質の作製>
テトラグライム(G4)とリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)がモル比で1:1となるよう、秤量してビーカーに投入し、均一溶媒になるまで混合してリチウムグライム錯体を作製した。リチウムグライム錯体と、粒子径7nmのヒュームドシリカナノ粒子が体積比80:20となるよう秤量し、さらに、低粘度有機溶媒である炭酸プロピレン(PC)、負極界面添加材として炭酸ビニレン(VC)、メタノールを攪拌子とともにビーカーに投入し、スターラーを用いて600rpmで攪拌して均一な混合物を得た。この混合物を、ナスフラスコに投入し、エバポレータを用い、100mbar、60℃で3時間かけて乾燥した。乾燥後粉末を、100μmメッシュのふるいにかけて粉末状の半固体電解質を得た。
<正極100の作製>
正極活物質してLiNi0.33Mn0.33Co0.33O2を、正極導電剤としてアセチレンブラックを、正極バインダとしてN-メチルピロリドンへ溶解させたポリフッ化ビニリデン(PVDF)を重量比が84:7:9となるよう秤量して混合し、正極スラリーとした。これを正極集電体120であるステンレス箔上へ塗布し、80℃で2時間乾燥してN-メチルピロリドンを除去し、正極シートを得た。正極シートを、直径13mmで打ち抜き、一軸プレスすることにより、両面塗工量37.5g/cm2、密度2.5g/cm3とする正極100を得た。
<負極200の作製>
負極活物質として黒鉛を使用した。負極導電剤と負極バインダは正極100と同様である。これらを重量比が88:2:10となるよう秤量して混合し、負極スラリーとした。これを負極集電体220であるステンレス箔上へ塗布し、80℃で2時間乾燥してN-メチルピロリドンを除去し、負極シートを得た。負極シートを、直径13mmで打ち抜き、一軸プレスすることにより、両面塗工量17mg/cm2、密度1.6g/cm3とする負極200を得た。得られた負極の重量を測定した。
<半固体電解質層300の作製>
半固体電解質とバインダとしてのポリテトラフルオロエチレン(PTFE)が、重量比95:5となるよう、それぞれ秤量して乳鉢に投入し、均一混合した。この混合物を、ポリテトラフルオロエチレンのシートを介して油圧プレス機にセットし、400kgf/cm2でプレスした。さらに、ギャップを500に設定したロールプレス機で圧延し、厚み200μmのシート状の半固体電解質層300を作製した。これを直径16mmで打ち抜き、以下のリチウムイオン二次電池の作製に用いた。得られた半固体電解質層300中のリチウムグライム錯体とPCとの重量比は55.5:44.5であった。VCの重量は半固体電解質の重量と負極200の重量の和に対して0.6%(負極界面添加材重量比)であった。
<リチウムイオン二次電池の作製>
正極100、負極200、半固体電解質層300を積層し、2032型コインセルに封入してリチウムイオン二次電池とした。
<実施例2〜9>
半固体電解質の重量と負極200の重量の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<実施例10〜11>
負極界面添加材としてリチウムビス(オキサレート)ボラート(LiBOB)を用い、半固体電解質の重量と負極200の重量の和に対するLiBOBの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<実施例12〜14>
負極界面添加材として炭酸フルオロエチレン(FEC)を用い、半固体電解質の重量と負極200の重量の和に対するFECの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<実施例15>
低粘度有機溶媒として炭酸エチレン(EC)を用い、負極界面添加材として炭酸ビニレン(VC)を用い、半固体電解質層300中のリチウムグライム錯体とECとの重量比を図3のようにし、半固体電解質の重量と負極200の重量の和に対するVCの重量を1.7%とした以外は、実施例1と同様にした。
<実施例16〜33>
負極200の密度、半固体電解質の重量と負極200の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<比較例1>
負極界面添加材を使用しなかった以外は、実施例1と同様にした。
<比較例2〜3>
半固体電解質の重量と負極200の重量の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<比較例4〜9>
負極界面添加材を使用しなかった以外は、実施例16〜21と同様にした。
<放電容量の測定>
実施例および比較例のリチウムイオン二次電池について、測定電圧範囲を2.7V〜4.2Vとし、充電は定電流−定電圧モードで、放電は定電流モードで電池動作させ、初回サイクル放電後の放電容量(初回放電容量)、30サイクル放電後の放電容量(30サイクル放電容量)を測定した。
<考察>
図3に、実施例および比較例の測定結果を示す。初回放電容量を30サイクル放電容量で割った値(放電容量維持率)を図3に示す。二次電池1000の電池容量には初回放電容量が、二次電池1000の寿命には放電容量維持率が強く影響すると考えられている。そこで、電池容量の評価基準としては、初回放電容量が105(mAh/g)以上あることを条件とし、寿命の評価基準としては、放電容量維持率が65%以上であることを条件とした。
負極界面添加材の組成に依らず、いずれの実施例についても、放電容量維持率が望ましい値であった。特に、負極界面添加材重量比が1.7%〜5.8%の場合、低粘度溶媒が同一であり、負極界面添加材を含まない比較例よりも30サイクル放電容量が大きかった。
負極かさ密度に依らず、負極界面添加材が添加されていない比較例に比べて、負極界面添加材が添加されている実施例の方が、初回放電容量が大きかった。
図4に、劣化係数と負極界面添加材重量比との関係図を示す。放電容量維持率を、サイクル数の1/2乗に対してプロットし、直線近似により傾きを求めて劣化係数と定義した。劣化係数は常に負の値をとり、その絶対値が小さいほど容量維持率が高いことを示す。図4に示したように、負極界面添加材重量比に対して劣化係数をプロットし、両者の関係を最小二乗法によりフィッティングしたところ、(劣化係数)=−0.1375(負極界面添加材重量比)2+2.0857(負極界面添加材重量比)−7.5141なる関係があった。この関係から、負極界面添加材を含まない比較例1よりも劣化係数の絶対値が小さくなるのは、負極界面添加材重量比が15.2%以下であることがわかった。なお、負極界面添加材を含まない二次電池1000の劣化係数は−7.5141であり、100サイクル後の放電容量維持率は24.9%であることが期待される。劣化係数が−5(100サイクル後の放電容量維持率が50%)となるのは、負極界面添加材重量比が1.3%〜13.9%であり、さらに、劣化係数が−3(100サイクル後の放電容量維持率が70%)となるのは、負極界面添加材重量比が2.6%〜12.6%であった。
<負極界面添加材がVC>
主溶媒がG4、低粘度有機溶媒がPC、負極界面添加材がVCである二次電池では、半固体電解質の重量と負極200の重量の和に対する負極界面添加材重量比が0.6%〜11.7%(実施例1〜9)で、負極界面添加材を含まない比較例1、負極界面添加材重量比が14.6%以上の比較例2および3と比較して、30サイクル放電容量が大きかった。負極界面添加材重量比が0.6%〜5.8%(実施例1〜7)では、比較例1、2および3よりも30サイクル放電容量が大きかった。さらに、負極界面添加材重量比が1.7%〜5.8%(実施例3〜7)では、少なくとも30回の繰り返し電池動作中、放電容量が130mAh/g以上と高かった。
負極界面添加材重量比が小さい場合、半固体電解質と負極200との界面が十分に安定化されず、リチウムグライム錯体の共挿入や還元分解が部分的に進行して初回放電容量が小さくなったことが考えられる。一方、負極界面添加材重量比が大きい場合、サイクル動作に伴って徐々に正極100の表面でVCが分解して高抵抗を誘発し、これによって放電容量が小さくなったと考えられる。
低粘度有機溶媒がECである実施例15について、負極界面添加材重量比を1.7%とすることにより、初回放電容量および30サイクル放電容量は大きかった。
<負極界面添加材がLiBOB>
負極界面添加材をLiBOBとした実施例10および11では、負極界面添加材重量比の最大値を1.7%としている。これよりも重量比が大きい場合には、導入したLiBOBが混合溶媒に溶解しきらない可能性があるためである。負極界面添加材重量比を0.6%〜1.7%とすることで、LiBOBを含まない比較例1よりも初回放電容量および30サイクル放電容量は大きかった。
<負極界面添加材がFEC>
負極界面添加材をFECとした実施例12〜14は、FECを含まない比較例1よりも初回放電容量は大きく、30サイクル放電容量も100mAh/g以上を示した。
負極界面添加材重量比が1.7%、3.5%および5.8%の時、放電容量維持率はそれぞれ97%、88%および85%と、単調に減少した。これは、負極界面添加材重量比が1.7%以上の組成範囲では、黒鉛含有の負極200と半固体電解質との界面を部分的には安定化させる効果がある一方、最適重量比よりも過剰であり、繰り返し電池動作に伴って、正極100と半固体電解質との界面でFECの分解反応が起き、これによって高抵抗が誘発されたことが要因として考えられる。
<負極界面添加材重量比と負極かさ密度>
電極塗工量が一定である場合、電池容量は、負極界面添加材重量比だけでなく、負極かさ密度にも依存する。これは、負極かさ密度が小さい場合には、負極200が厚くなるために二次電池の抵抗が上昇する可能性があるからである。また、負極かさ密度が大きい場合には、電極内部の空隙が小さくなり、初回充電中に負極界面添加材が電極集電体近くまで到達しないために半固体電解質の分解反応が誘発されて、二次電池の抵抗が上昇する可能性があるからである。
図5に、実施例16〜33および比較例4〜9について、負極かさ密度を一定(1.12〜1.77g/cm3)とし、負極界面添加材重量比に対する初回放電容量の関係を示した。この場合、初回放電容量は負極界面添加材重量比に依存して、二次関数で近似できた。一方、近似曲線の定数項は負極かさ密度に依存した。
図6に、実施例16〜33および比較例4〜9について、負極界面添加材重量比を一定(0〜5.8%)とし、負極かさ密度に対する初回放電容量の関係を示した。この場合、初回放電容量は負極かさ密度に対して負の傾きをもつ直線で近似できた。直線の傾きの大きさは、負極界面添加材重量比に依存した。これら図5および図6の結果は、負極かさ密度と負極界面添加材の両方が初回放電容量のパラメータとして寄与していることを示している。
図5および図6から得た近似曲線と近似直線から、一定の初回放電容量Qを得るために必要な負極かさ密度と負極界面添加材重量比の関係を求め、図7に示した。負極かさ密度に依らず、負極界面添加材を添加することにより、初回放電容量Qが大きくなった。また、(負極かさ密度(g/cm3))≦−0.05042(負極界面添加材重量比(%))2+0.4317(負極界面添加材重量比(%))+0.9032で示される領域では、初回放電容量Qが120mAh/g以上であった。さらに、(負極かさ密度(g/cm3))≦−0.076(負極界面添加材重量比(%))2+0.571(負極界面添加材重量比(%))+0.6251で示される領域では、初回放電容量Qは130mAh/g以上であった。
100 正極
110 正極合剤層
120 正極集電体
130 正極タブ部
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ部
300 半固体電解質層
400 電極体
500 外装体
1000 二次電池
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
本発明の実施形態として例えば以下を挙げることができる。
[実施形態1]
半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、
前記半固体電解質の重量と適用する負極の重量の和に対する前記負極界面添加材の重量比が0.6%〜11.7%である半固体電解質。
[実施形態2]
実施形態1の半固体電解質において、
前記半固体電解質の重量と適用する負極の重量の和に対する前記負極界面添加材の重量比が1.7%〜5.8%である半固体電解質。
[実施形態3]
実施形態1の半固体電解質において、
前記負極界面添加材は炭酸ビニレン(VC)である半固体電解質。
[実施形態4]
実施形態1の半固体電解質において、
前記半固体電解液は低粘度有機溶媒をさらに含む半固体電解質。
[実施形態5]
実施形態1の半固体電解質を含む半固体電解質層を有する電極。
[実施形態6]
実施形態1の半固体電解質を含む半固体電解質層および電極を有する半固体電解質層付き電極。
[実施形態7]
実施形態6の半固体電解質層付き電極であって、
前記電極は負極であり、
以下を満たす半固体電解質層付き電極。
(負極かさ密度(g/cm 3 ))≦−0.05042(前記半固体電解質の重量と負極の重量の和に対する前記負極界面添加材の重量比(%)) 2 +0.4317(前記半固体電解質の重量と負極の重量の和に対する前記負極界面添加材の重量比(%))+0.9032
[実施形態8]
実施形態1の半固体電解質を含む半固体電解質層を有する二次電池であって、
所定サイクル後の前記二次電池の容量維持率が、前記負極界面添加材を含まない場合の前記二次電池の容量維持率よりも大きい二次電池。

Claims (5)

  1. 半固体電解質を含む半固体電解質層および電極を有する半固体電解質層付き電極であって、
    前記電極が負極であり、
    前記半固体電解質が、半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含み、
    前記半固体電解質の重量と前記負極の重量の和に対する前記負極界面添加材の重量比が0.6%〜11.7%であり、
    以下を満たす半固体電解質層付き電極
    (負極かさ密度(g/cm 3 ))≦−0.05042(前記半固体電解質の重量と前記負極の重量の和に対する前記負極界面添加材の重量比(%)) 2 +0.4317(前記半固体電解質の重量と前記負極の重量の和に対する前記負極界面添加材の重量比(%))+0.9032
  2. 請求項1に記載の半固体電解質層付き電極において、
    前記半固体電解質の重量と前記負極の重量の和に対する前記負極界面添加材の重量比が1.7%〜5.8%である半固体電解質層付き電極。
  3. 請求項1または2に記載の半固体電解質層付き電極において、
    前記負極界面添加材が炭酸ビニレン(VC)である半固体電解質層付き電極。
  4. 請求項1〜3のいずれか1項に記載の半固体電解質層付き電極において、
    前記半固体電解液が低粘度有機溶媒をさらに含む半固体電解質層付き電極。
  5. 請求項1〜4のいずれか1項に記載の半固体電解質層付き電極を有する二次電池。
JP2019525229A 2017-06-15 2018-05-16 半固体電解質、電極、半固体電解質層付き電極、および二次電池 Active JP6875522B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017117337 2017-06-15
JP2017117337 2017-06-15
PCT/JP2018/018977 WO2018230238A1 (ja) 2017-06-15 2018-05-16 半固体電解質、電極、半固体電解質層付き電極、および二次電池

Publications (2)

Publication Number Publication Date
JPWO2018230238A1 JPWO2018230238A1 (ja) 2020-01-09
JP6875522B2 true JP6875522B2 (ja) 2021-05-26

Family

ID=64660269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525229A Active JP6875522B2 (ja) 2017-06-15 2018-05-16 半固体電解質、電極、半固体電解質層付き電極、および二次電池

Country Status (4)

Country Link
JP (1) JP6875522B2 (ja)
KR (1) KR102272029B1 (ja)
CN (1) CN110521049B (ja)
WO (1) WO2018230238A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231188B2 (ja) * 2018-10-02 2023-03-01 エリーパワー株式会社 リチウムイオン電池の製造方法
CN114792793B (zh) * 2021-01-25 2024-01-26 中国科学院物理研究所 一种钠离子电池添加剂和高功率钠离子电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177574B2 (ja) * 2001-11-02 2008-11-05 松下電器産業株式会社 リチウム二次電池
JP5408702B2 (ja) * 2009-01-23 2014-02-05 Necエナジーデバイス株式会社 リチウムイオン電池
JP5620005B2 (ja) * 2012-02-29 2014-11-05 新神戸電機株式会社 リチウムイオン電池
WO2013128679A1 (ja) * 2012-02-29 2013-09-06 新神戸電機株式会社 リチウムイオン電池
JP6303412B2 (ja) * 2013-03-19 2018-04-04 株式会社村田製作所 電池、電解質層、電池パック、電子機器、電動車両、蓄電装置および電力システム
DE102013215257A1 (de) * 2013-08-02 2015-02-05 Wacker Chemie Ag Verfahren zum Zerkleinern von Silicium und Verwendung des zerkleinerten Siliciums in einer Lithium-Ionen-Batterie
KR20150041978A (ko) * 2013-10-10 2015-04-20 에스케이케미칼주식회사 이차 전지용 전해액 조성물 및 이를 포함하는 이차 전지
JP2016058252A (ja) 2014-09-10 2016-04-21 株式会社リコー 非水電解液蓄電素子及びリチウムイオン二次電池
CN104993135A (zh) * 2015-06-13 2015-10-21 田东 一种具有长循环性能的锂离子电池
WO2017077986A1 (ja) * 2015-11-06 2017-05-11 株式会社日立製作所 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
CN105720300B (zh) * 2016-03-31 2019-06-21 成都国珈星际固态锂电科技有限公司 凝胶聚合物锂离子电池及其制备方法,及电动车

Also Published As

Publication number Publication date
KR102272029B1 (ko) 2021-07-01
WO2018230238A1 (ja) 2018-12-20
CN110521049B (zh) 2022-03-15
JPWO2018230238A1 (ja) 2020-01-09
KR20190119654A (ko) 2019-10-22
CN110521049A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
JP6686229B2 (ja) 半固体電解質層、電池セルシートおよび二次電池
CN100470920C (zh) 非水电解质电池
WO2019234977A1 (ja) 半固体電解質層及び二次電池
JP6924264B2 (ja) 半固体電解液、半固体電解質、半固体電解質層および二次電池
WO2019176174A1 (ja) 正極スラリー、正極、電池セルシート、二次電池
JP6875522B2 (ja) 半固体電解質、電極、半固体電解質層付き電極、および二次電池
JP6843966B2 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極、二次電池
JP2020004598A (ja) 電池
JP2020145054A (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
WO2021111847A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
JP6894973B2 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池
WO2019225078A1 (ja) 絶縁層、電池セルシート、二次電池
JP2020202158A (ja) 絶縁層、電池セル用シート及び電池セル
WO2019142502A1 (ja) 負極、半二次電池、二次電池
JP6893247B2 (ja) 半二次電池および二次電池
WO2021225065A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
WO2019198329A1 (ja) 絶縁層、電池セルシート、電池
WO2019087815A1 (ja) 正極合剤層、正極、半二次電池、二次電池
WO2020003864A1 (ja) 負極、電池セルシートおよび二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R150 Certificate of patent or registration of utility model

Ref document number: 6875522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150