JP6874158B2 - 炭化珪素半導体装置および電力変換装置 - Google Patents

炭化珪素半導体装置および電力変換装置 Download PDF

Info

Publication number
JP6874158B2
JP6874158B2 JP2019561112A JP2019561112A JP6874158B2 JP 6874158 B2 JP6874158 B2 JP 6874158B2 JP 2019561112 A JP2019561112 A JP 2019561112A JP 2019561112 A JP2019561112 A JP 2019561112A JP 6874158 B2 JP6874158 B2 JP 6874158B2
Authority
JP
Japan
Prior art keywords
region
well region
silicon carbide
semiconductor device
carbide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019561112A
Other languages
English (en)
Other versions
JPWO2019124378A1 (ja
Inventor
史郎 日野
史郎 日野
雄一 永久
雄一 永久
康史 貞松
康史 貞松
英之 八田
英之 八田
洸太朗 川原
洸太朗 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019124378A1 publication Critical patent/JPWO2019124378A1/ja
Priority to JP2021071811A priority Critical patent/JP7170781B2/ja
Application granted granted Critical
Publication of JP6874158B2 publication Critical patent/JP6874158B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、炭化珪素で構成される炭化珪素半導体装置および電力変換装置に関するものである。
炭化珪素(SiC)を用いて構成されるPNダイオードに関して、順方向電流すなわちバイポーラ電流を流し続けると、結晶中に積層欠陥が発生して順方向電圧がシフトするという信頼性上の問題が知られている。これは、PNダイオードを通して注入された少数キャリアが多数キャリアと再結合する際の再結合エネルギーにより、炭化珪素基板に存在する基底面転位などを起点として、面欠陥である積層欠陥が拡張するためだと考えられている。この積層欠陥は、電流の流れを阻害するため、積層欠陥の拡張により電流が減少し順方向電圧を増加させ、半導体装置の信頼性の低下を引き起こす。
このような順方向電圧の増加は、炭化珪素を用いた縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)においても同様に発生する。縦型MOSFETは、ソース・ドレイン間に寄生PNダイオード(ボディダイオード)を備えており、順方向電流がこのボディダイオードに流れると、縦型MOSFETにおいてもPNダイオードと同様の信頼性低下を引き起こす。SiC−MOSFETのボディダイオードをMOSFETの還流ダイオードとして用いる場合には、このMOSFET特性の低下が発生する場合がある。
上記のような寄生PNダイオードへの順方向電流通電による信頼性上の問題を解決する方法として、一つには、特許文献1に示されるように、寄生PNダイオードに長時間、順方向電流を流すストレス印加を行ない、ストレス印加前後での順方向電圧の変化を測定して、順方向電圧の変化の大きい素子を製品から排除(スクリーニング)する方法がある。しかしながら、この方法では、通電時間が長くなり、欠陥の多いウエハを使用すると不良品が多く発生するというデメリットがある。
また、別の方法として、MOSFET等のユニポーラ型のトランジスタである半導体装置に、ユニポーラ型のダイオードを還流ダイオードとして内蔵させて使用する方法がある。例えば特許文献2、特許文献3には、ユニポーラ型のダイオードとしてショットキバリアダイオード(SBD:Schottky Barrier Diode)をMOSFETのユニットセル内に内蔵させる方法が記載されている。
このような活性領域にユニポーラ型ダイオード、すなわち多数キャリアのみで通電するダイオードを内蔵したユニポーラ型トランジスタでは、SiC半導体装置に適用した場合、ユニポーラ型ダイオードの拡散電位すなわち通電動作が始まる電圧をPN接合の拡散電位よりも低く設計することで、還流動作時にボディダイオードにバイポーラ電流が流れないようにして、活性領域のユニポーラ型トランジスタの特性劣化を抑制することができる。
しかしながら、活性領域にユニポーラ型ダイオードが内蔵されたユニポーラ型トランジスタにおいても、終端領域すなわち活性領域以外の領域では、構造上ユニポーラ型ダイオードを配置し難い箇所に寄生PNダイオードが形成されている箇所ができてしまう場合がある。
例えば、ゲートパッド近傍や半導体装置終端部近傍の領域では、ソース電極よりも外周側に張り出した終端ウェル領域が形成されており、終端ウェル領域とドリフト層との間で寄生PNダイオードを形成している。そして、この箇所では、ショットキ電極が形成されておらず、ユニポーラ型ダイオードが形成されていない。終端ウェル領域ではショットキ電極が無いため、終端ウェル領域とドリフト層とによって形成されるPNダイオードにソース電極とドレイン電極との間の電圧が印加され、結果としてPNダイオードにバイポーラ電流が流れる。
このような箇所に基底面転位などの起点が存在すると、積層欠陥が拡張し、トランジスタの耐圧が低下してしまうことがある。具体的にはトランジスタがオフ状態のときに漏れ電流が発生し、漏れ電流による発熱によって素子や回路が破壊してしまうことがある。
この問題を回避するためには、終端ウェル領域とドリフト層によって形成されるPNダイオードにバイポーラ電流が流れないように、ソース・ドレイン間の印加電圧を一定値以下に制限すればよい。そのためには、チップサイズを拡大させ、還流電流が流れた際に発生するソース・ドレイン間電圧を低減すればよい。その場合、チップサイズが大きくなり、コストが増大するデメリットが伴う。
また、チップサイズを拡大することなく、終端ウェル領域とドリフト層によって形成されるPNダイオードの順方向動作を抑制する方法として、終端ウェル領域の各箇所と、ソース電極の間に形成される通電経路の抵抗を高める方法がある。通電経路の抵抗を高める方法には、終端ウェル領域とソース電極のコンタクト抵抗を高める方法(例えば特許文献4)などがある。このような構成にすると、終端ウェル領域とドリフト層とによって形成されるPNダイオードにバイポーラ電流が流れた際に、上記抵抗成分によって電圧降下が生じるため、終端ウェル領域の電位がソース電位と乖離し、その分、PNダイオードにかかる順方向電圧が低減する。したがって、バイポーラ電流の通電を抑制することができる。
さらに、終端ウェル領域内にショットキアバリアダイオード(SBD)を作成する方法が知られている(例えば、特許文献5)。
特開2014−175412号公報 特開2003−017701号公報 WO2014−038110国際公開公報 WO2014−162969国際公開公報 WO2016−052261国際公開公報
しかしながら、終端ウェル領域にソース電極にオーミック接続する電極を設けると、終端ウェル領域とソース電極との間のコンタクト抵抗を高めたとしても、終端ウェル領域とソース電極の間に形成される通電経路の抵抗を十分に高めることができず、終端ウェル領域へのバイポーラ電流の通電を十分に低減できない場合があった。
さらに、終端ウェル領域内にSBDを形成しても終端ウェル領域や活性領域端部のウェル領域へのバイポーラ電流の通電を十分に低減できない場合があった。
本発明は、上述のような問題を解決するためになされたもので、より信頼性を高めた炭化珪素半導体装置を提供することを目的とする。
本発明にかかる炭化珪素半導体装置は、第1導電型の炭化珪素の半導体基板と、半導体基板上に形成された第1導電型のドリフト層と、ドリフト層の表層に複数設けられた第2導電型の第1ウェル領域と、第1ウェル領域の表面からドリフト層に至るまで第1ウェル領域に隣接して形成された複数の第1導電型の第1離間領域と、第1離間領域上に設けられ、第1離間領域とショットキ接合する第1ショットキ電極と、第1ウェル領域上に設けられたオーミック電極と、第1ウェル領域と別にドリフト層の表層に設けられた第2導電型の第2ウェル領域と、第2ウェル領域の表面からドリフト層に至るまで第2ウェル領域に隣接して形成された、複数の第1導電型の第4離間領域と、第4離間領域上に設けられ、第離間領域とショットキ接合する第2ショットキ電極と、第1ウェル領域の表層部に形成された第1導電型のソース領域と、第1ウェル領域上および第2ウェル領域上に形成されたゲート絶縁膜と、第1ウェル領域上および第2ウェル領域上のゲート絶縁膜上に形成されたゲート電極と、ゲート電極と接続され、第2ウェル領域の上方に形成されたゲートパッドと、第1ショットキ電極、第2ショットキ電極、および、オーミック電極に電気的に接続され、第2ウェル領域と非オーミック接続されたソース電極と、第2ウェル領域と第1導電型の第5離間領域を介して隣接し、ソース電極にオーミック接続された第2導電型の接地補助領域とを備えたものである。
本発明にかかる炭化珪素半導体装置によれば、活性領域端部のウェル領域にバイポーラ電流が流れることをより抑制し、信頼性を高めることができる。
この発明の実施の形態1に係る炭化珪素半導体装置を上面から見た平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の断面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の断面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の断面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の断面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の断面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態1に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態に係る炭化珪素半導体装置の別の構成の平面模式図である。 この発明の実施の形態2に係る炭化珪素半導体装置の断面模式図である。 この発明の実施の形態2に係る炭化珪素半導体装置の平面模式図である。 この発明の実施の形態3に係る炭化珪素半導体装置の断面模式図である。 この発明の実施の形態3に係る炭化珪素半導体装置の平面模式図である。 この発明の実施の形態4に係る炭化珪素半導体装置の平面模式図である。 この発明の実施の形態5に係る電力変換装置の構成を示す模式図である。
以下、添付の図面を参照しながら実施形態について説明する。なお、図面は模式的に示されるものであり、異なる図面にそれぞれ示されている画像のサイズ及び位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得る。また、以下の説明では、同様の構成要素には同じ符号を付して図示し、それらの名称及び機能も同様のものとする。よって、それらについての詳細な説明を省略する場合がある。
本明細書に記載の実施の形態においては、炭化珪素(SiC)半導体装置の一例として、第1導電型をn型、第2導電型をp型としたnチャネル炭化珪素MOSFETを例に挙げて説明する。電位の高低についての記述は、第1導電型をn型、第2導電型をp型とした場合に対する記述であり、第1導電体をp型、第2導電型をn型とした場合には、電位の高低の記述も逆になる。
さらに、本願では、炭化珪素半導体装置全体のうち、ユニットセルが周期的に並ぶ領域を活性領域と、また、活性領域以外の領域を終端領域と呼んで説明する。
実施の形態1.
まず、本発明の実施の形態1にかかる炭化珪素半導体装置の構成を説明する。
図1は、実施の形態1にかかる炭化珪素半導体装置であるショットキダイオード(SBD)内蔵炭化珪素MOSFET(SBD内蔵SiC−MOSFET)を上面から見た平面模式図である。図1において、SiC−MOSFETの上面の一部にはゲートパッド81が形成されており、これに隣接してソース電極80が形成されている。また、ゲートパッド81から延びるように、ゲート配線82が形成されている。
図2は、図1のソース電極80から炭化珪素半導体装置の外周部のゲート配線82にかけてのa−a’部分の断面を模式的に示す断面模式図である。また、図3は、図1の上面図の主に炭化珪素半導体部分を記載した平面模式図である。
図2において、n型で低抵抗の炭化珪素で構成される半導体基板10の表面上に、n型の炭化珪素で構成されるドリフト層20が形成されている。図1で説明したゲート配線82が設けられている領域にほぼ対応する位置のドリフト層20の表層部には、図3に示すように、p型の炭化珪素で構成される第2ウェル領域31が設けられている。
図1で説明したソース電極80が設けられている領域の下部には、ドリフト層20の表層部に、p型の炭化珪素で構成される第1ウェル領域30が複数設けられている。第1ウェル領域30のそれぞれの表層部には、第1ウェル領域30の外周から所定の間隔だけ内部に入った位置に、n型の炭化珪素で構成されるソース領域40が形成されている。
各第1ウェル領域30の表層部のソース領域40のさらに内側の第1ウェル領域30の表層部には、低抵抗p型の炭化珪素で構成されるコンタクト領域32が形成されており、そのさらに内部には、第1ウェル領域30を貫通する、炭化珪素で構成される第1離間領域21が形成されている。第1離間領域21は、第1ウェル領域30の近傍にあればよく、第1ウェル領域30を貫通しないで第1ウェル領域30に隣接していてもよい。また、第1離間領域21は、ドリフト層20と同じn型で、ドリフト層20と同じ不純物濃度を有する。
この第1離間領域21の表面側には、第1離間領域21とショットキ接続する第1ショットキ電極71が形成されている。ここで、第1ショットキ電極71は、上面から見て、少なくとも対応する第1離間領域21を含むように形成されていることが望ましい。
また、ソース領域40の表面上には、オーミック電極70が形成されており、オーミック電極70、第1ショットキ電極71およびコンタクト領域32に接続されるソース電極80がこれらの上に形成されている。第1ウェル領域30は、低抵抗のコンタクト領域32を介してオーミック電極70と電子と正孔の授受を容易に行なうことができる。
隣接する第1ウェル領域30間のドリフト層20の領域は、第2離間領域22となっており、ドリフト層20と同じn型で、ドリフト層20と同じ不純物濃度を有する。隣接する第1ウェル領域30、その間の第2離間領域22、およびそれぞれの第1ウェル領域30内のソース領域40の表面上には、ゲート絶縁膜50が形成されており、そのゲート絶縁膜50上の少なくとも第1ウェル領域30の上部には、ゲート電極60が形成されている。ゲート電極60が形成されている箇所の下部で、ゲート絶縁膜50を介して対向する第1ウェル領域30の表層部を、チャネル領域と呼ぶ。
炭化珪素半導体装置の第1ウェル領域30が形成されている、図1のソース電極80が形成されている領域が、活性領域であり、その活性領域の外側、すなわち、最外周の第1ウェル領域30の外側には第2ウェル領域31が形成されている。第1ウェル領域30と第2ウェル領域31の間には、第3離間領域23が形成されている。第3離間領域23は、ドリフト層20と同じn型で、ドリフト層20と同様の不純物濃度を有する。
第2ウェル領域31が形成されている領域より外側が、終端領域となる。
第2ウェル領域31の内部には、第2ウェル領域31を貫通する、炭化珪素で構成される第4離間領域24が複数形成されている。第4離間領域24は、第2ウェル領域31の近傍にあればよく、第2ウェル領域31を貫通しないで第2ウェル領域31に隣接していてもよい。ここで、複数形成された第4離間領域24のそれぞれの表面側には、第4離間領域24とショットキ接続する第2ショットキ電極73が形成されている。ここで、第2ショットキ電極73は、上面から見て、少なくとも対応する第4離間領域24を含むように形成されていることが望ましい。
第2ウェル領域31上にも、ゲート絶縁膜50およびフィールド絶縁膜51が形成されており、そのゲート絶縁膜50およびフィールド絶縁膜51の上部には、ゲート電極60が形成されている。また、ゲート電極60とソース電極80との間には、層間絶縁膜55が形成されている。さらに、第2ウェル領域31の上方のゲート電極60とゲート配線82とは、層間絶縁膜55に形成されたゲートコンタクトホール95を介して接続されている。また、第2ウェル領域31の外周側、すなわち、第1ウェル領域30と反対側には、p型で炭化珪素のJTE領域37が形成されている。JTE領域37の不純物濃度は、第2ウェル領域31の不純物濃度より低いものとする。
第2ウェル領域31の表面上のゲート絶縁膜50の一部には開口(第2コンタクトホール91)が形成されており、その開口内には、第2ショットキ電極73、および、オーミック電極70などと接続されているソース電極80が形成されている。ここで、第2ウェル領域31は直接ソース電極80とオーミック接続されておらず、絶縁されている、あるいは、ショットキ接続されている。
活性領域においては、層間絶縁膜55およびゲート絶縁膜50を貫通して形成された第1コンタクトホール90を介して、オーミック電極70、第1ショットキ電極71およびコンタクト領域32上のソース電極80が層間絶縁膜55上のソース電極80と接続されている。
半導体基板10の裏面側には、ドレイン電極84が形成されている。
ここで、第2ショットキ電極73は第4離間領域24よりも大きく、第4離間領域24の全ての平面領域を覆う必要がある。その理由は、第4離間領域24のうち、少しでもショットキ特性を有する電極に覆われていない領域ができると、オフ状態においてその部分でリーク電流が発生し、所望の耐圧を実現できないためである。第4離間領域24と第2ショットキ電極73の大きさを完全に一致させることは、マスク合わせずれなど製造上起こりうるばらつきがありできないため、第2ショットキ電極73を第4離間領域24よりも大きく設計することで、確実に第4離間領域24を第2ショットキ電極73で覆う必要がある。
したがって、第2ショットキ電極73は第4離間領域24の周りの第2ウェル領域31と接触する必要があるが、仮に第2ショットキ電極73と第2ウェル領域31の接触特性がオーミック特性を有すると、本発明の効果である第2ウェル領域31のバイポーラ通電の抑制が実現できなくなってしまう。この問題を避けるために、本発明の第2ショットキ電極73は第4離間領域24のみならず、第2ウェル領域31に対してもショットキ特性を有する。具体的には、第2ウェル領域31の表面濃度を充分に下げ、半導体・ショットキ界面におけるトンネルリークを抑制する。これを実現するために、第2ウェル領域31の表面濃度は1×1019cm−3以下、さらに望ましくは1×1018cm−3以下にすればよい。
また、第4離間領域24の幅は、望ましくは第1離間領域21の幅と同じか、大きくとも第1離間領域21の幅の3倍以下とすることが望ましい。これは第4離間領域24の幅が大きいと、オフ状態において第2ショットキ電極73と第4離間領域24の接触によって形成されるショットキ界面に大きな電界がかかり、リーク電流が増大してしまって、損失が増えたり所望の耐圧が得られなかったりするためである。
次に、本実施の形態の炭化珪素半導体装置であるSBD内蔵SiC−MOSFETの製造方法について説明する。
まず、第1主面の面方位がオフ角を有する(0001)面であり、4Hのポリタイプを有する、n型で低抵抗の炭化珪素からなる半導体基板10の上に、化学気相堆積法(chemical Vapor Deposition:CVD法)により、1×1015から1×1017cm−3の不純物濃度でn型、5から50μmの厚さの炭化珪素からなるドリフト層20をエピタキシャル成長させる。
つづいて、ドリフト層20の表面の所定の領域にフォトレジスト等により注入マスクを形成し、p型の不純物であるAl(アルミニウム)をイオン注入する。このとき、Alのイオン注入の深さはドリフト層20の厚さを超えない0.5から3μm程度とする。また、イオン注入されたAlの不純物濃度は、1×1017から1×1019cm−3の範囲でありドリフト層20の不純物濃度より高くする。その後、注入マスクを除去する。本工程によりAlイオン注入された領域が第1ウェル領域30および第2ウェル領域31となる。
次に、ドリフト層20の表面にフォトレジスト等により注入マスクを形成し、p型の不純物濃度であるAlをイオン注入する。このとき、Alのイオン注入の深さはドリフト層20の厚さを超えない0.5から3μm程度とする。また、イオン注入されたAlの不純物濃度は、1×1016から1×1018cm−3の範囲でありドリフト層20の不純物濃度より高く、かつ、第1ウェル領域30の不純物濃度よりも低いものとする。その後、注入マスクを除去する。本工程によりAlがイオン注入された領域がJTE領域37となる。同様に、所定の領域に第1ウェル領域30の不純物濃度より高い不純物濃度でAlをイオン注入することにより、コンタクト領域32を形成する。
つづいて、ドリフト層20の表面の第1ウェル領域30の内側の所定の箇所が開口するようにフォトレジスト等により注入マスクを形成し、n型の不純物であるN(窒素)をイオン注入する。Nのイオン注入深さは第1ウェル領域30の厚さより浅いものとする。また、イオン注入したNの不純物濃度は、1×1018から1×1021cm−3の範囲であり、第1ウェル領域30のp型の不純物濃度を超えるものとする。本工程でNが注入された領域のうちn型を示す領域がソース領域40となる。
次に、熱処理装置によって、アルゴン(Ar)ガス等の不活性ガス雰囲気中で、1300から1900℃の温度で、30秒から1時間のアニールを行う。このアニールにより、イオン注入されたN及びAlを電気的に活性化させる。
つづいて、CVD法、フォトリソグラフィ技術等を用いて、第1ウェル領域30が形成された領域にほぼ対応する活性領域以外の領域の半導体層の上に、膜厚が0.5から2μmの酸化珪素からなるフィールド絶縁膜51を形成する。
次に、フィールド絶縁膜51に覆われていない炭化珪素表面を熱酸化して所望の厚みのゲート絶縁膜50である酸化珪素膜を形成する。つづいて、ゲート絶縁膜50およびフィールド絶縁膜51の上に、導電性を有する多結晶シリコン膜を減圧CVD法により形成し、これをパターニングすることによりゲート電極60を形成する。次に、酸化珪素からなる層間絶縁膜55を減圧CVD法により形成する。つづいて、層間絶縁膜55とゲート絶縁膜50を貫き、活性領域内のコンタクト領域32とソース領域40とに到達する第1コンタクトホール90を形成し、同時に、第2ウェル領域31に到達する第2コンタクトホール91を形成する。
次に、スパッタ法等によりNiを主成分とする金属膜を形成後、600から1100℃の温度の熱処理を行ない、Niを主成分とする金属膜と、第1コンタクトホール90内の炭化珪素層とを反応させて、炭化珪素層と金属膜との間にシリサイドを形成する。つづいて、反応してできたシリサイド以外の残留した金属膜をウェットエッチングにより除去する。これにより、オーミック電極70が形成される。
つづいて、半導体基板10の裏面(第2主面)にNiを主成分とする金属膜を形成、熱処理することにより、半導体基板10の裏側に裏面オーミック電極(図示せず)を形成する。
次に、フォトレジスト等によるパターニングを用いて、第1離間領域21と第4離間領域との上の層間絶縁膜55とゲート絶縁膜50と、および、ゲートコンタクトホール95となる位置の層間絶縁膜55を除去する。除去する方法としては、ショットキ界面となる炭化珪素層の表面にダメージを与えないウェットエッチングとする。
つづいて、スパッタ法等により、ショットキ電極となる金属膜を堆積し、フォトレジスト等によるパターニングを用いて、第1コンタクトホール90内の第1離間領域21上に第1ショットキ電極71を、第2コンタクトホール91内の第4離間領域24上に第2ショットキ電極73をそれぞれ形成する。
次に、ここまで処理してきた基板の表面にスパッタ法又は蒸着法によりAl等の配線金属を形成し、フォトリソグラフィ技術により所定の形状に加工することで、ソース側のオーミック電極70、第1ショットキ電極71、第2ショットキ電極73、および、第2ウェル領域31に接触するソース電極80、および、ゲート電極60に接触するゲートパッド81とゲート配線82とを形成する。
さらに、基板の裏面に形成された裏面オーミック電極(図示せず)の表面上に金属膜であるドレイン電極84を形成すれば、図1〜3に示した本実施の形態の炭化珪素半導体装置が完成する。
次に、本実施の形態の炭化珪素半導体装置であるSBD内蔵SiC−MOSFETの動作について説明する。ここで、半導体材料が4H型の炭化珪素の炭化珪素半導体装置を例に説明する。この場合pn接合の拡散電位はおおよそ2Vである。
以下、主に還流動作の場合について説明する。
還流動作では、ソース電圧(ソース電極80の電圧)に対しドレイン電圧(ドレイン電極84の電圧)が低くなり、数Vの電圧が発生する。活性領域においては、第1ウェル領域30より低電圧でオンする、第1離間領域21と第1ショットキ電極71間のSBDが形成されているので、原則として還流電流がSBDに流れ、第1ウェル領域30には流れない。終端領域においては、第2ウェル領域31にオーミック電極を経由してオーミック接続するソース電極80がある場合、第2ウェル領域31とドリフト層20と間に形成されるpn接合にソース−ドレイン間の電圧の多くが印加されるために、第2ウェル領域31とドリフト層20とで形成されるpnダイオードにバイポーラ電流が流れることになる。しかしながら、本発明の炭化珪素半導体装置においては、第2ウェル領域31がソース電極80とオーミック接続されておらず、絶縁されている、あるいは、ショットキ接続されている。また、第2ウェル領域31を貫通して形成されている複数の第4離間領域24とその上部の第2ショットキ電極73との間にSBDが形成されている。
しかしながら、この第2ウェル領域31を貫通して形成された第4離間領域24を通るSBD電流は、第2ウェル領域31がソース電極80とオーミック接続されていない本発明においては、特に流れ難くなる。この現象を説明するために、還流動作中における第2ウェル領域31の電位変化を説明する。
還流動作時にはドレイン電極84にソース電圧を0Vとして例えば−10Vといった負電圧が発生し、ソース電極80からドレイン電極84に電流が流れる。ソース電極80からドレイン電極84に至るまでの経路では、抵抗比に応じた電位分布が発生するため、ドリフト層20のうち第2ウェル領域31に接する部分には、ソース電極80とドレイン電極84との間の電位(例えば−3V)が発生する。仮に第2ウェル領域31がソース電極80にオーミック接続されている場合、第2ウェル領域31の電位は略0Vに維持されるため、pn接合には順方向電圧(本例では3V)が印加され、pn接合にバイポーラ電流が流れる。
これに対して、本発明では第2ウェル領域31がソース電極80にオーミック接続されていないため、第2ウェル領域31がチャージアップし、第2ウェル領域31は、ドリフト層20のうち第2ウェル領域31に接する部分の電位とソース電極80の電位との間の電位(例えば−2V)に帯電する。
このとき、第4離間領域24と第2ウェル領域31とで形成されるpn接合に着目すると、第2ウェル領域31がソース電極80にオーミック接続されている場合に比べ、第2ウェル領域31がオーミック接続されていない場合の方が、第2ウェル領域31のチャージアップ電位分だけ、pn接合に印加される逆バイアスが大きくなる。第4離間領域24と第2ウェル領域31とで形成されるpn接合に印加される逆バイアスは、第4離間領域24と第2ウェル領域31のそれぞれに空乏層を形成するが、相対的に不純物濃度の低い第4離間領域24に特に広く空乏層が広がる。SBD電流は、この空乏層によって実効的に通電経路を細められた第4離間領域24を通る必要があるため、第4離間領域24部分に大きな抵抗が生じる。
従って、仮に第1離間領域21と第4離間領域24を同じ幅、同じ不純物濃度で設計したとしても、チャージアップする第2ウェル領域31に挟まれた第4離間領域24の方が、抵抗が大きく小さな電流しか通流できないことになる。
終端領域に形成されるSBDの密度が活性領域に形成されるSBDの密度と同じまたは小さい場合、活性領域端部のSBDおよび終端領域のSBDに流れるSBD電流は、活性領域の中央部にあるSBDに流れるSBD電流よりも小さく、且つSBDが形成されていないチップ外周方向に向かって拡散して流れるため、活性領域端部では、ドリフト層20や半導体基板10に流れるSBD電流密度が、活性領域内部の他の活性領域に比べて小さくなる。そのため、活性領域端部では、ドリフト層20や半導体基板10で生じる電圧降下も、他の活性領域に比べて小さくなる。
ここで、ソース・ドレイン間にかかる電圧がチップ内で同一であり、ソース・ドレイン間の電圧からドリフト層20と半導体基板10で生じる電圧降下を差し引いた電圧がpn接合に印加されることから、活性領域端部では、他の活性領域に比べてpn接合に印加される電圧が大きくなってしまう。活性領域端部では、終端領域の第2ウェル領域31と異なり、第1ウェル領域30がソース電極80とオーミック接続されているため、pn接合に拡散電位を超える電圧が印加されるとバイポーラ電流が流れてしまう。このバイポーラ電流が流れる原因は、活性領域端部におけるドリフト層20と半導体基板10のSBD電流密度が低いためである。
本実施の形態の炭化珪素半導体装置であるSBD内蔵SiC−MOSFETにおいては、終端領域の第2ウェル領域31に形成されるSBDの間隔が、活性領域のSBD間隔より小さい。すなわち、終端領域である第2ウェル領域31に形成されるSBDの密度が、活性領域のSBD密度より高い。したがって、SBDが形成されていないチップ外周部に向けてSBD電流が拡散して流れたとしても、活性領域端部のSBD電流密度が他の活性領域のSBD電流密度より低くならず、活性領域端部においても第1ウェル領域30とドリフト層20との間のpn接合に順方向電流であるバイポーラ電流が流れることを抑制でき、pn接合の積層欠陥の拡張およびこの積層欠陥の拡張による絶縁耐圧の低下を抑制できる。
なお、第4離間領域24を流れるSBD電流を増やす方法として、第4離間領域24の幅を広げる方法や、第4離間領域24のn型不純物濃度を高める方法が考えられるが、これらは耐圧保持時にSBDにかかる逆バイアスを増加させるため、信頼性の観点で必ずしも好ましくない。
このように、本実施の形態の炭化珪素半導体装置によれば、活性領域端部における還流動作時のバイポーラ動作を抑制することができ、信頼性を高めることができる。
また、本実施の形態の炭化珪素半導体装置の還流動作時のバイポーラ動作抑制効果は、活性領域端部のSBDと終端領域内のSBDの距離が大きい場合に、さらに顕著な効果を奏する。
その理由は、先に説明したように、活性領域端部のSBDから流れるSBD電流が外周方向に広がるためである。活性領域端部のSBDと終端領域内のSBDの距離が大きければ、活性領域端部のSBD電流が外周方向に広がりやすくなる。そのとき、本実施の形態の炭化珪素半導体装置のように、終端領域のSBDの間隔が活性領域のSBDの間隔より小さいと、活性領域端部のSBD電流が外周方向に広がるのを抑制でき、活性領域端部の第1ウェル領域30とドリフト層20との間のpn接合に順方向電流であるバイポーラ電流が流れることを抑制でき、pn接合の積層欠陥の拡張およびこの積層欠陥の拡張による絶縁耐圧の低下を抑制できる。
図4に、第2ウェル領域31上の大部分にフィールド絶縁膜51を形成した、本実施の形態の炭化珪素半導体装置の断面模式図を示す。図4に示した構造の炭化珪素半導体装置では、第2ウェル領域31上の活性領域側にゲート絶縁膜50が形成されており、第2ウェル領域31上の活性領域から見て遠い側にゲート絶縁膜50より厚さの大きいフィールド絶縁膜51が形成されている。
このとき、活性領域端部のSBDと終端領域の最も内側のSBDとの間に、フィールド絶縁膜51の端部、すなわち、フィールド絶縁膜51とゲート絶縁膜50との境界が形成され、第2ウェル領域31の内側に形成されるSBDを形成するための第2コンタクトホール91がフィールド絶縁膜51を貫通して形成される。第2コンタクトホール91をゲート絶縁膜50より膜厚の大きいフィールド絶縁膜51を貫通して形成するためのエッチング工程で、チップ平面方向のエッチング、すなわちサイドエッチの量が大きくなる。そのため、フィールド絶縁膜51の端部や第2コンタクトホール91の側壁の仕上がり位置がばらつきやすく、このばらつきを考慮してチップ平面方向に大きな寸法マージンを見込む必要が生じ、結果として、活性領域端部のSBDと終端領域の最も内側のSBDとの間の距離が、活性領域内のSBD同士の間隔より大きくなってしまう。
このような場合においても、図4にその断面模式図を示すように、終端領域内のSBD間の間隔を活性領域内のSBD同士の間隔より小さくすることにより、活性領域端部のSBD電流が外周方向に広がるのを抑制でき、活性領域端部の第1ウェル領域30とドリフト層20との間のpn接合に順方向電流であるバイポーラ電流が流れることを抑制できる。その結果、pn接合の積層欠陥の拡張およびこの積層欠陥の拡張による絶縁耐圧の低下を抑制できる。
中でも、本実施の形態の炭化珪素半導体装置の効果が特に大きいのは、活性領域とゲートコンタクトホール95が形成される領域の間である。このような場所では、ゲート電極60の電位を活性領域からゲートコンタクトホール95まで接続して伝達する必要があるため、図4の断面図のようにゲート電極60が終端領域と活性領域との間で完全に分離されるのではなく、断面図の奥行き方向のどこかでゲート電極60が繋がっている架橋部が形成されている。ゲート電極60の架橋部が形成される領域では、第2コンタクトホール91を形成することができないため、終端領域のSBDが形成されない。
図5に、活性領域端部から終端領域にかけての半導体層の構造を主に記載した本実施の形態の炭化珪素半導体装置の一部の平面模式図を示す。また、図6に、同じ活性領域端部から終端領域にかけてのゲート電極60の構造を主に記載した本実施の形態の炭化珪素半導体装置の一部の平面模式図を示す。
図5および図6に記載されているように、終端領域のSBDは活性領域端部の周囲に沿う方向について、断続的に形成されている。また、図6に示すように、ゲートコンタクトホール95から活性領域に至る経路の途中に終端領域のSBDが形成されており、第2ウェル領域31の、上方にゲートコンタクトホール95が形成されている領域の活性領域側では、ゲート電極60(ゲート電極60の架橋部)と終端領域のSBDが活性領域端部の周囲に沿って交互に形成されている。
ここで、ゲート電極60を流れるゲート電流が、ゲートコンタクトホール95からゲート電極60の架橋部を通った後に広い活性領域に広がって流れ、活性領域の至る所に形成された入力容量を充放電する動作を考えれば、仮にゲート電極60の架橋部の幅が活性領域に形成されるゲート電極60の幅と同程度であると、活性領域に対して架橋部におけるゲート電極60中を流れるゲート電流の密度が高くなってしまうことが分かる。このような場合に、架橋部の高い抵抗によってスイッチング速度が制限され、高速スイッチングが実現できなくなったり、さらに顕著な場合には架橋部の発熱で素子が破壊してしまったりするという別の問題が生じる可能性がある。このような問題が発生するのを避けるためには、ゲート電極60の架橋部の幅を活性領域に形成されるゲート電極60の幅よりも広くすることが望ましい。
しかしながら、ゲート電極60の架橋部の幅が広がると、架橋部によって活性領域の端部に沿う方向に分断される終端領域のSBD同士の距離も広がることから、架橋部に隣接する活性領域端部でのバイポーラ通電が生じやすくなってしまう。本実施の形態のように、チップ外周方向に沿って複数のSBDを終端構造に設け、第2ウェル領域31内に高密度のSBDを形成することにより、終端領域のSBD電流を増やすことができるため、ゲート電極60の架橋部近傍の活性領域端部でのバイポーラ通電を抑制しつつ、活性領域の端部に沿う方向に分断される終端領域SBD同士の距離を大きく設計することができ、結果的に、架橋部のゲート電極60の幅を大きくすることができ、高速スイッチングを実現することができる。
先にも説明したように、活性領域端部のSBDと終端領域の最も内側のSBDとの間の距離が活性領域内のSBD間の距離より大きくなるので、チップ外周に向かう方向に複数設けるなどの方法により終端領域内のSBD密度を高くすることによって、ゲート電極60の架橋部を含む終端領域の活性領域側のSBD電流密度を高めることができ、活性領域端部のSBD電流がチップ外周側に広がることを抑制することができる。その結果、活性領域端部の第1ウェル領域30とドリフト層20との間のpn接合に順方向電流であるバイポーラ電流が流れることを抑制でき、pn接合の積層欠陥の拡張およびこの積層欠陥の拡張による絶縁耐圧の低下を抑制できる。
図5および図6に記載されているように、終端領域の第2ショットキ電極73間の間隔は、活性領域の第1ショットキ電極71間の間隔より短い。また、終端領域の第2ショットキ電極73の密度は、活性領域の第1ショットキ電極71の密度より高い。
同様に、終端領域の第4離間領域24間の間隔は、活性領域の第1離間領域21間の間隔より短い。また、終端領域の第4離間領域24の密度は、活性領域の第1離間領域21の密度より高い。
さらに、終端領域のSBD間の間隔は、活性領域のSBD間の間隔より短い。終端領域のSBD密度は、活性領域のSBD密度より高い。
ここで、終端領域の第2ショットキ電極73の密度、第4離間領域24の密度、SBD密度は、終端領域の第2ウェル領域31内の密度、さらには、第2ウェル領域31の中の、上方にゲートコンタクトホール95が形成されている領域から活性領域側における密度であればよい。
なお、本実施の形態では第1ウェル領域30と第2ウェル領域31とが離間しているとして説明してきたが、第1ウェル領域30と第2ウェル領域31とがつながっていてもよい。また、第1ウェル領域30が複数あり、複数の第1ウェル領域30が互いに離間しているものとして説明したが、複数の第1ウェル領域30どうしがつながっていてもよい。図7に、第1ウェル領域30と第2ウェル領域31とがつながっており、かつ、複数の第1ウェル領域30どうしがつながっている場合の平面模式図を示す。
このような場合は、第1ウェル領域30は、第1ウェル領域30内のソース領域40、あるいは、第1ウェル領域30内の第1離間領域21上に設けられた第1ショットキ電極71のいずれかからの距離が50μm以内であるものとする。
また、図8は、本実施の形態の炭化珪素半導体装置の別の形態の、主に炭化珪素半導体部分を記載した平面模式図である。図8において、第2ウェル領域31の一部に、第2ウェル領域31とソース電極80とをオーミック接続する第2ウェル領域コンタクトホール92が形成されている。図9は、図8の第2ウェル領域コンタクトホール92が形成されている箇所を含む断面を示した断面模式図である。図9において、第2ウェル領域コンタクトホール92は、フィールド絶縁膜51および層間絶縁膜55を貫通して形成されている。また、第2ウェル領域コンタクトホール92の下部の第2ウェル領域31には、第2ウェル領域31よりp型不純物濃度が高く低抵抗な第2ウェルコンタクト領域36を設けてもよい。
第2ウェル領域コンタクトホール92は、第2ウェル領域31内の最短経路上で、第2コンタクトホール91から断面横方向に、10μm以上離れて形成されている。ここで、第2ウェル領域31内で第2ウェル領域コンタクトホール92から10μm以上はなれた箇所は、実質的に非オーミック接続されていると見なす。第2ウェル領域31内の最短経路上の第2コンタクトホール91と第2ウェル領域コンタクトホール92との距離は、より好ましくは、50μm以上であればよい。
図10と図11とは、本実施の形態の炭化珪素半導体装置のさらに別の形態の炭化珪素半導体装置の一部の断面模式図である。図10、図11において、第2ウェル領域31の表層の一部に、第1導電型の炭化珪素導電性層45を形成し、炭化珪素導電性層45とソース電極80とをオーミック接続するオーミック電極72を形成したこと以外は、それぞれ図2、図4と同様である。図12は、図10、図11の断面模式図の炭化珪素半導体装置に形成された炭化珪素導電性層45を形成する領域を説明する平面模式図である。
本実施の形態の炭化珪素半導体装置は、第2ウェル領域31の表層の一部に、第1導電型の炭化珪素導電性層45を形成しているので、上記効果に加えて、第2ウェル領域31の平面横方向の抵抗を低減でき、炭化珪素半導体装置がオン/オフするときに第2ウェル領域31に流れる変位電流による発生電圧を低減できる。したがって、より信頼性を高くすることができる。
なお、ここまで第4離間領域24、第2ショットキ電極73の平面形状として、正方形状のものが活性領域からチップ外周に向かって並んでいる例を示したが、これらの平面形状および配列方法は任意であり、例えば、図13と図14とにその半導体層とゲート電極60の構造とをそれぞれ示すように、第4離間領域24、第2ショットキ電極73の平面形状を、チップ外周方向に沿って形成された複数のストライプ状にしてもよい。また、図15と図16とにその半導体層とゲート電極60の構造とをそれぞれ示すように、第4離間領域24、第2ショットキ電極73の平面形状を、チップ外周に向かう方向に直交する方向に沿って形成された複数のストライプ形状にしてもよい。
なお、本実施の形態においては、各イオン注入を所定の順序で行なう例を示したが、イオン注入の順序は、適宜変更してもよい。また、裏面のオーミック電極、表面のオーミック電極70、第1ショットキ電極71、第2ショットキ電極73の形成順序は適宜変更してもよい。
本実施の形態においては、第1ショットキ電極71は、第1離間領域21と第1ウェル領域30の上のみに、また第2ショットキ電極73は第4離間領域24と第2ウェル領域31の上のみに形成される例を示したが、オーミック電極70や層間絶縁膜55の上に形成されていても良い。
また、本実施の形態はチャネル領域やショットキ電極面がウエハ平面と平行に形成されるプレーナ型を想定して説明されたが、チャネル領域やショットキ電極面がウエハ平面と斜め、もしくは垂直に形成されるトレンチ型においても有効である。この場合、本明細書で定義される表面とは、ウエハ平面のみならず、トレンチ形成面も含まれる。
さらに、本実施の形態においては、第1離間領域21は、ドリフト層20と同じn型で、ドリフト層20と同じ不純物濃度を有するものとしたが、第1離間領域21のn型不純物濃度は、ドリフト層20のn型不純物濃度より高くしてもよい。第2離間領域22、第4離間領域24についても、第1離間領域21と同様である。
また、第1の導電型と第2の導電型が、それぞれ、n型とp型として説明し、その反対であってもよいとして説明したが、第1の導電型がn型で、第2の導電型がp型である場合に、より効果を奏する。
実施の形態2.
実施の形態1の炭化珪素半導体装置の終端領域の第2ウェル領域31に形成されたSBDは、一つの第2コンタクトホール91内に一つの第2ショットキ電極73と一つの第4離間領域24を備えていたが、本実施の形態の炭化珪素半導体装置の終端領域のウェル領域に形成されたSBDは、複数の第4離間領域24間の間隔を活性領域の第1離間領域21間の間隔より小さくした上で、複数の第4離間領域24にまたがる第2コンタクトホール91と第2ショットキ電極73が形成されている。その他の点については、実施の形態1と同様であるので、詳しい説明を省略する。
図17は、実施の形態1の説明で使用した図1のソース電極80から炭化珪素半導体装置の外周部のゲート配線82にかけてのa−a’部分の断面を模式的に示す本実施の形態の炭化珪素半導体装置の断面模式図である。また、図18は、同じ領域の半導体層を主に記載した平面模式図である。
図17および図18に示す本実施の形態の炭化珪素半導体装置の終端領域において、第2導電型の第2ウェル領域31の平面上の内部には、炭化珪素で構成された第1導電型の第4離間領域24が複数形成されており、第4離間領域24の間の領域は、第2ウェル領域31と同じ第2導電型の補助領域38なっている。複数の第4離間領域24の上部には、これらの間の補助領域38の上部も含めて、第4離間領域24とショットキ接続する第2ショットキ電極73が形成されている。また、一つの第2ショットキ電極73の下部に形成された複数の第4離間領域24と第2ショットキ電極73とを含むように、ゲート絶縁膜50またはフィールド絶縁膜51と層間絶縁膜55を貫通して、第2コンタクトホール91が形成されている。第2コンタクトホール91内部には、第2ウェル領域31と第2ショットキ電極73と接するように、ソース電極80が形成されている。
本実施の形態の炭化珪素半導体装置の作製方法は実施の形態1と同様で、マスクパターンのみを変更して第2ショットキ電極73、第4離間領域24、第2コンタクトホール91を形成すればよい。
本実施の形態の炭化珪素半導体装置によれば、実施の形態1の炭化珪素半導体装置と同様の効果を奏しつつ、第2コンタクトホール91、第2ショットキ電極の分割数を減らすことができ、第4離間領域24間の距離を小さくすることができる。
したがって、第2ウェル領域31内のSBD密度をより高めることができ、より高密度のSBD電流を流すことができる。その結果、活性領域端部のバイポーラ通電をより強力に抑制することができる。
このとき、第2ショットキ電極73が第4離間領域24同士を区切る補助領域38と接触することになる。第2導電型の補助領域38が平面視で第2ウェル領域31と繋がっている場合、ソース電極80に電気的に接続された第2ショットキ電極73が補助領域38とオーミック接続されていてしまうと、第2ウェル領域31もソース電極80に対してオーミック接続されてしまうことから、本発明の効果である第2ウェル領域31のバイポーラ通電の抑制が実現できなくなる。したがって、本発明の第2ショットキ電極73は第4離間領域24のみならず、第2ウェル領域31、補助領域38に対してもショットキ特性を有する。これを実現するために、補助領域38および第2ショットキ電極73に接する第2ウェル領域31の表面濃度は1×1019cm−3以下であることが望ましく、さらに望ましくは1×1018cm−3以下であることが望ましい。
一方、補助領域38および第2ショットキ電極73に接する第2ウェル領域31の不純物面密度(深さ方向の体積密度の総和)が少ないと、オフ状態において空乏電界が補助領域で充分に終端せず、終端領域のSBDの界面に大きな電界が印加されてしまう。そうすると、ショットキリーク電流が増え、チップ発熱が増えたり、素子の信頼性が悪化したりする恐れがある。したがって、補助領域38および第2ショットキ電極73に接する第2ウェル領域31には、表面よりも深い領域に第2導電型不純物の濃度ピークを有するレトログレードプロファイルを有すことが望ましい。
実施の形態3.
実施の形態2では、補助領域38が第2ウェル領域31と繋がっている例を説明したが、本実施の形態では、補助領域38の代わりに接地補助領域39が形成され、接地補助領域39と第2ウェル領域31とが接続されておらず、第2ウェル領域31はソース電極80とオーミック接続されておらず、接地補助領域39はソース電極80とオーミック接続されている。また、接地補助領域39の内側または間には、n型の第4離間領域24が形成されている。その他の点については、実施の形態1、2と同様であるので、詳しい説明を省略する。
図19は、実施の形態1の説明で使用した図1のソース電極80から炭化珪素半導体装置の外周部のゲート配線82にかけてのa−a’部分の断面を模式的に示す本実施の形態の炭化珪素半導体装置の断面模式図である。また、図20は、同じ領域の半導体層を主に記載した平面模式図である。
図19、図20に示すように、本実施の形態の炭化珪素半導体装置においては、平面視、断面視のいずれにおいても接地補助領域39と第2ウェル領域31とが分離されている。接地補助領域39と第2ウェル領域31との間には、n型の第5離間領域25が形成されており、第5離間領域25の上には接地補助領域39と第2ウェル領域31に跨る第2ショットキ電極73が形成されている。また、接地補助領域39の炭化珪素表面側には、低抵抗p型の炭化珪素で構成される第2コンタクト領域33が、形成されており、第2コンタクト領域33および接地補助領域39の表面上には第2オーミック電極74が形成されており、接地補助領域39はソース電極80に対してオーミック接続されている。
接地補助領域39の内側または間には、第4離間領域24が形成されており、第2ショットキ電極73は、第4離間領域24および第5離間領域25に対してショットキ接続する。
第5離間領域25は、ドリフト層20と同じn型で、ドリフト層20と同じ不純物濃度を有するものとする。第5離間領域25のn型不純物濃度は、ドリフト層20のn型不純物濃度より高くしてもよい。
本実施の形態の炭化珪素半導体装置では、接地補助領域39がソース電極80にオーミック接続されているものの、その近傍に、第5離間領域25や第4離間領域24が、活性領域における第1離間領域21の間隔を下回る小さい間隔で形成されている。そのため、接地補助領域39の下層のドリフト層20には十分なSBD電流が流れることで、接地補助領域39とドリフト層20の間に形成されたpn接合にバイポーラ電流が流れることを避けることができる。
ここで、前述の通り、接地補助領域39と第2ウェル領域31とは平面視、断面視ともに分離されている。これに加えて、接地補助領域39と第2ウェル領域31とに跨る第2ショットキ電極73はそれぞれに対してショットキ接触を有する。そのため、接地補助領域39と第2ウェル領域31とは電気的に分離されている。したがって、実施の形態1、2と同様に、第2ウェル領域31はソース電極80とオーミック接続されず、還流動作時に第2ウェル領域31からバイポーラ電流が流れるのを防ぐことができる。
一方、本実施の形態では、接地補助領域39がソース電極80とオーミック接続されているため、還流動作時に接地補助領域39がチャージアップすることはなく、接地補助領域39に隣接する第4離間領域24と第5離間領域25とには、接地補助領域39側から空乏層が広がらない。従って、接地補助領域39がフローティングな場合に比べて、第4離間領域24と第5離間領域25を通して第2ショットキ電極73に大きなSBD電流を流すことができる。その結果、活性領域端部のバイポーラ通電をより強力に抑制することができる。
また、本実施の形態では、接地補助領域39、第4離間領域24、第5離間領域25、第2ショットキ電極73、第2オーミック電極74、第2コンタクト領域33が単一のコンタクトホールである第2コンタクトホール91の中に形成されており、これによって、複数のコンタクトホールに分けてこれらの構造を形成する場合に比べて、平面方向の占める面積を低減でき、素子サイズの拡大を抑制できる。
なお、接地補助領域39がソース電極80とオーミック接続されるために、本実施の形態では第2コンタクト領域33と第2オーミック電極74の両方を形成する例を示したが、第2コンタクト領域33、第2オーミック電極74のいずれか一方だけを形成しても、接地補助領域39がソース電極80とオーミック接続されればよい。
また、第2コンタクト領域33と活性領域のコンタクト領域32とは、同じイオン注入工程で同時に形成し、同じ不純物濃度にしてもよい。同様に、第2オーミック電極74は、活性領域のオーミック電極70と、同じ工程でシリサイドなどで形成してもよい。
このように、第2コンタクト領域33とコンタクト領域32、または、第2オーミック電極74とオーミック電極70を、それぞれ同じ工程で形成することにより、製造コストを低減することができる。
実施の形態4.
実施の形態1〜3の炭化珪素半導体装置の終端領域では、原則として活性領域内の第1ウェル領域30と終端構造の第2ウェル領域31とは離間していて、第2ウェル領域31はソース電極80とオーミック接続されていなものについて主に説明したが、本実施の形態では、終端構造の第2ウェル領域31が補助接続領域34を経由して第1ウェル領域30の一部と接続している。その他の構成については、実施の形態1〜3と同様であるので、詳しい説明は省略する。
図21は、本実施の形態の炭化珪素半導体装置の平面模式図であるが、図21において、活性領域の第1ウェル領域30と終端領域の第2ウェル領域31とが、第2導電型の補助接続領域34を介して接続されている。図21は、実施の形態1に適用した場合の図である。
第2導電型の補助接続領域34は、イオン注入マスクを変更することにより、第2ウェル領域31形成と同時に形成すればよい。
活性領域の第1ウェル領域30と終端構造の第2ウェル領域31とが完全に分離され、第2ウェル領域31が完全にフローティングな状態の場合、条件や構造によっては、第2ウェル領域31がチャージアップして、第2ウェル領域31上の絶縁膜が絶縁破壊される可能性があった。
本実施の形態の炭化珪素半導体装置によれば、第2ウェル領域31が補助接続領域34を介して第1ウェル領域30と接続されており、第2ウェル領域31上の絶縁膜の絶縁破壊の抑制をより確実なものにでき、より信頼性を高めることができる。
このとき、図21の炭化珪素半導体装置の各辺中央近傍の補助接続領域34に近い領域では、第3離間領域23を介さず補助接続領域34を通る電流が流れるため、耐圧劣化が起こる可能性がある。これに対して、図21の炭化珪素半導体装置の各コーナー部近傍の補助接続領域34に近い領域では、第2ウェル領域31を平面横方向に長く電流が流れ、第2ウェル領域31のシート抵抗による電圧降下が生じ、バイポーラ通電が抑制される。
実施の形態1の図7では、第1ウェル領域30と第2ウェル領域31とを多くの箇所で接続したが、本実施の形態では、第1ウェル領域30と第2ウェル領域31との接続箇所を限定したため、耐圧劣化が生じる可能性がある箇所も少なくなる。したがって、バイポーラ電流が第2ウェル領域31に流れることによる耐圧劣化も限られたものになる。
このように、本実施の形態の炭化珪素半導体装置によれば、第2ウェル領域31がフローティングになることにより発生する絶縁破壊の可能性を低減させ、かつ、第2ウェル領域31がバイポーラ通電することによる信頼性低下を最小限にすることができる。
なお、補助接続領域34を設ける領域は、第3離間領域23が形成された長さに対して短い方がよく、例えば第3離間領域23が形成された長さの1/10以下などにすればよい。このようにすることで、耐圧劣化が生じる可能性を約1/10以下に低減し、素子の信頼性を格段に高めることができる。
なお、実施の形態1〜4においては、n型(第1導電型)不純物としてNを用いたが、リンまたはヒ素であってもよい。p型(第2導電型)不純物としてAlを用いたが、ホウ素またはガリウムであってもよい。
また、実施の形態1〜4で説明したMOSFETにおいては、ゲート絶縁膜50は、必ずしも酸化珪素などの酸化膜である必要はなく、酸化膜以外の絶縁膜、または、酸化膜以外の絶縁膜と酸化膜とを組み合わせたものであってもよい。また、ゲート絶縁膜50として炭化珪素を熱酸化した酸化珪素を用いたが、CVD法による堆積膜の酸化珪素であってもよい。さらに、本発明は、スーパージャンクション構造を有するMOSFETにも用いることができる。
また、上記実施形態では、ゲート絶縁膜50を有するMOSFETについて説明したが、ユニポーラデバイスであれば本発明を適用することができ、例えば、ゲート絶縁膜50を有しないJFET(Junction FET)やMESFET(Metal−Semiconductor Field Effect Transistor)にも本発明を用いることができる。
さらに、上記実施形態では、ソース側のオーミック電極70と第1ショットキ電極71とが分離して作製されているが、同一材料で連続して形成されてもよいし、別材料で連続していてもよい。
また、第1ショットキ電極71と第2ショットキ電極73についても同一材料で形成されてもよいし、別材料で形成されてもよい。
また、上記実施形態では、結晶構造、主面の面方位、オフ角および各注入条件等、具体的な例を用いて説明したが、これらの数値範囲に適用範囲が限られるものではない。
実施の形態5.
本実施の形態は、上述した実施の形態1〜4にかかる炭化珪素半導体装置を電力変換装置に適用したものである。本発明は特定の電力変換装置に限定されるものではないが、以下、実施の形態5として、三相のインバータに本発明を適用した場合について説明する。
図22は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。
図22に示す電力変換システムは、電源100、電力変換装置200、負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図22に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201の各スイッチング素子を駆動する駆動信号を出力する駆動回路202と、駆動回路202を制御する制御信号を駆動回路202に出力する制御回路203とを備えている。
負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源100から供給される直流電力を交流電力に変換し、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路201の各スイッチング素子には、上述した実施の形態1〜のいずれかにかかる炭化珪素半導体装置を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。
駆動回路202は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路202に制御指令(制御信号)を出力する。駆動回路202は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
本実施の形態に係る電力変換装置では、主変換回路201のスイッチング素子として実施の形態1〜4にかかる炭化珪素半導体装置を適用するため、低損失、かつ、高速スイッチングの信頼性を高めた電力変換装置を実現することができる。
本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、本発明は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本発明を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本発明を適用することも可能である。
また、本発明を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
10 半導体基板、20 ドリフト層、21 第1離間領域、22 第2離間領域、23 第3離間領域、24 第4離間領域、25 第5離間領域、30 第1ウェル領域、31 第2ウェル領域、32 コンタクト領域、33 第2コンタクト領域、34 補助接続領域、37 JTE領域、38 補助領域、39 接地補助領域、40 ソース領域、45 炭化珪素導電性層、50 ゲート絶縁膜、51 フィールド絶縁膜、55 層間絶縁膜、60 ゲート電極、70 オーミック電極、74 第2オーミック電極、71 第1ショットキ電極、73 第2ショットキ電極、80 ソース電極,ソースパッド、81 ゲートパッド、82 ゲート配線、84 ドレイン電極、90 第1コンタクトホール、91 第2コンタクトホール、92 第2ウェル領域コンタクトホール、95 ゲートコンタクトホール、100 電源、200、電力変換装置、201 主変換回路、202 駆動回路、203 制御回路、300 負荷。

Claims (16)

  1. 第1導電型の炭化珪素の半導体基板と、
    前記半導体基板上に形成された第1導電型のドリフト層と、
    前記ドリフト層の表層に複数設けられた第2導電型の第1ウェル領域と、
    前記第1ウェル領域の表面から前記ドリフト層に至るまで前記第1ウェル領域に隣接して形成された複数の第1導電型の第1離間領域と、
    前記第1離間領域上に設けられ、前記第1離間領域とショットキ接合する第1ショットキ電極と、
    前記第1ウェル領域上に設けられたオーミック電極と、
    前記第1ウェル領域と別に前記ドリフト層の表層に設けられた第2導電型の第2ウェル領域と、
    前記第2ウェル領域の表面から前記ドリフト層に至るまで前記第2ウェル領域に隣接して形成された、複数の第1導電型の第4離間領域と、
    前記第4離間領域上に設けられ、前記第離間領域とショットキ接合する第2ショットキ電極と、
    前記第1ウェル領域の表層部に形成された第1導電型のソース領域と、
    前記第1ウェル領域上および前記第2ウェル領域上に形成されたゲート絶縁膜と、
    前記第1ウェル領域上および前記第2ウェル領域上の前記ゲート絶縁膜上に形成されたゲート電極と、
    前記ゲート電極と接続され、前記第2ウェル領域の上方に形成されたゲートパッドと、
    前記第1ショットキ電極、前記第2ショットキ電極、および、前記オーミック電極に電気的に接続され、前記第2ウェル領域と非オーミック接続されたソース電極と、
    前記第2ウェル領域と第1導電型の第5離間領域を介して隣接し、前記ソース電極にオーミック接続された第2導電型の接地補助領域と
    を備えたことを特徴とする炭化珪素半導体装置。
  2. 複数の前記第4離間領域の間隔が、複数の前記第1離間領域の間隔より短く形成されていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  3. 前記第4離間領域が、前記第1離間領域より平面方向に高密度に形成されていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  4. 前記第1ウェル領域と前記第2ウェル領域が離間している
    ことを特徴とする請求項1から3のいずれか1項に記載の炭化珪素半導体装置。
  5. 前記第2ウェル領域上に前記ゲート絶縁膜より膜厚が大きいフィールド絶縁膜を備え、前記フィールド絶縁膜を貫通して形成され、前記第2ショットキ電極と前記ソース電極とを接続する第2コンタクトホールを備えたことを特徴とする
    請求項1から4のいずれか1項に記載の炭化珪素半導体装置。
  6. 前記ゲート絶縁膜と前記フィールド絶縁膜との境界が、前記第1離間領域と前記第4離間領域との間にあることを特徴とする
    請求項5に記載の炭化珪素半導体装置。
  7. 前記第2ウェル領域の上層部に前記第2ウェル領域より抵抗率が低い炭化珪素導電性層を備えたことを特徴とする
    請求項1から6のいずれか1項に記載の炭化珪素半導体装置。
  8. 複数の前記第4離間領域の間の上方に、前記ゲート電極を備えたことを特徴とする
    請求項1から7のいずれか1項に記載の炭化珪素半導体装置。
  9. 前記第4離間領域の間の上方に形成された前記ゲート電極の幅は、前記第1ウェル領域近傍の前記第1離間領域間の上方に形成された前記ゲート電極の幅より大きいことを特徴とする
    請求項1から8のいずれか1項に記載の炭化珪素半導体装置。
  10. 前記第2ショットキ電極は、前記第2ウェル領域の一部の上に形成されており、
    前記第2ウェル領域の前記第2ショットキ電極と接する領域の不純物濃度は、前記第2ウェル領域の前記第2ショットキ電極から深さ方向に離れた領域の不純物濃度より低いことを特徴とする
    請求項1から9のいずれか1項に記載の炭化珪素半導体装置。
  11. 前記第2ショットキ電極は、平面視で前記第2コンタクトホール内に形成された複数の前記第4離間領域と、前記第4離間領域間に形成された第2導電型の補助領域との上に形成されており、
    前記補助領域の前記第2ショットキ電極と接する領域の不純物濃度は、前記補助領域の前記第2ショットキ電極から深さ方向に離れた領域の不純物濃度より低いことを特徴とする
    請求項5に記載の炭化珪素半導体装置。
  12. 前記接地補助領域の平面視上の内側または間に前記第4離間領域を備えたことを特徴とする請求項1から11のいずれか1項に記載の炭化珪素半導体装置。
  13. 前記第2ショットキ電極は、前記第2ウェル領域と前記第5離間領域と前記接地補助領域とを跨ぐように形成されたことを特徴とする
    請求項1から12のいずれか1項に記載の炭化珪素半導体装置。
  14. 前記接地補助領域と前記ソース電極との間に、第2オーミック電極を備えたことを特徴とする
    請求項1から請求項13のいずれか1項に記載の炭化珪素半導体装置。
  15. 前記接地補助領域の上部に前記接地補助領域より第2導電型不純物濃度が高い第2コンタクト領域を備えたことを特徴とする
    請求項1から請求項14のいずれか1項に記載の炭化珪素半導体装置。
  16. 請求項1から15のいずれか1項に記載の炭化珪素半導体装置を有し、入力される電力を変換して出力する主変換回路と、
    前記炭化珪素半導体装置を駆動する駆動信号を前記炭化珪素半導体装置に出力する駆動回路と、
    前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と、を備えた電力変換装置。
JP2019561112A 2017-12-19 2018-12-18 炭化珪素半導体装置および電力変換装置 Active JP6874158B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021071811A JP7170781B2 (ja) 2017-12-19 2021-04-21 炭化珪素半導体装置および電力変換装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017242643 2017-12-19
JP2017242643 2017-12-19
PCT/JP2018/046575 WO2019124378A1 (ja) 2017-12-19 2018-12-18 炭化珪素半導体装置および電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021071811A Division JP7170781B2 (ja) 2017-12-19 2021-04-21 炭化珪素半導体装置および電力変換装置

Publications (2)

Publication Number Publication Date
JPWO2019124378A1 JPWO2019124378A1 (ja) 2020-07-16
JP6874158B2 true JP6874158B2 (ja) 2021-05-19

Family

ID=66993584

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019561112A Active JP6874158B2 (ja) 2017-12-19 2018-12-18 炭化珪素半導体装置および電力変換装置
JP2021071811A Active JP7170781B2 (ja) 2017-12-19 2021-04-21 炭化珪素半導体装置および電力変換装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021071811A Active JP7170781B2 (ja) 2017-12-19 2021-04-21 炭化珪素半導体装置および電力変換装置

Country Status (5)

Country Link
US (1) US11049963B2 (ja)
JP (2) JP6874158B2 (ja)
CN (1) CN111466032B (ja)
DE (1) DE112018006456T5 (ja)
WO (1) WO2019124378A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054015B (zh) * 2019-12-26 2023-09-08 株洲中车时代半导体有限公司 碳化硅mosfet芯片
JP7334638B2 (ja) * 2020-02-07 2023-08-29 株式会社デンソー 半導体装置
CN115989585A (zh) * 2020-11-10 2023-04-18 住友电气工业株式会社 碳化硅半导体装置
WO2023281669A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置を用いた電力変換装置
IT202100024752A1 (it) * 2021-09-28 2023-03-28 St Microelectronics Srl Dispositivo di potenza in carburo di silicio con resistenza integrata e relativo procedimento di fabbricazione
CN114141884A (zh) * 2021-12-14 2022-03-04 上海集成电路制造创新中心有限公司 可重构肖特基二极管

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017701A (ja) 2001-07-04 2003-01-17 Denso Corp 半導体装置
US20120153303A1 (en) 2009-09-02 2012-06-21 Panasonic Corporation Semiconductor element and method for manufacturing same
JP5321377B2 (ja) * 2009-09-11 2013-10-23 三菱電機株式会社 電力用半導体装置
EP2610914B1 (en) 2010-10-29 2015-01-07 Panasonic Corporation Semiconductor element
JP2012216705A (ja) 2011-04-01 2012-11-08 Sanken Electric Co Ltd 半導体装置
JP6021246B2 (ja) * 2012-05-09 2016-11-09 ローム株式会社 半導体装置およびその製造方法
KR101638754B1 (ko) 2012-09-06 2016-07-11 미쓰비시덴키 가부시키가이샤 반도체 장치
JP2014175412A (ja) 2013-03-07 2014-09-22 Toshiba Corp 半導体基板及び半導体装置
DE112014001838T5 (de) * 2013-04-03 2015-12-17 Mitsubishi Electric Corporation Halbleitervorrichtung
JP6244762B2 (ja) * 2013-09-12 2017-12-13 住友電気工業株式会社 炭化珪素半導体装置
JP5735611B2 (ja) 2013-11-01 2015-06-17 ローム株式会社 SiC半導体装置
JP6022082B2 (ja) * 2014-07-11 2016-11-09 新電元工業株式会社 半導体装置及び半導体装置の製造方法
DE112015004515B4 (de) * 2014-10-01 2021-11-18 Mitsubishi Electric Corporation Halbleitervorrichtungen
CN107534054B (zh) 2015-04-22 2020-08-18 三菱电机株式会社 半导体装置以及半导体装置的制造方法
CN108886055B (zh) 2016-03-30 2021-06-04 三菱电机株式会社 半导体装置及其制造方法、电力变换装置
DE112016006723T5 (de) 2016-04-11 2018-12-20 Mitsubishi Electric Corporation Halbleitereinrichtung
US9947787B2 (en) * 2016-05-06 2018-04-17 Silicet, LLC Devices and methods for a power transistor having a schottky or schottky-like contact
WO2018155553A1 (ja) 2017-02-24 2018-08-30 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP6678810B2 (ja) 2017-02-24 2020-04-08 三菱電機株式会社 炭化珪素半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP7170781B2 (ja) 2022-11-14
US20200295177A1 (en) 2020-09-17
CN111466032A (zh) 2020-07-28
WO2019124378A1 (ja) 2019-06-27
JP2021108396A (ja) 2021-07-29
DE112018006456T5 (de) 2020-09-03
CN111466032B (zh) 2023-08-18
US11049963B2 (en) 2021-06-29
JPWO2019124378A1 (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6929404B2 (ja) 炭化珪素半導体装置および電力変換装置
JP6874158B2 (ja) 炭化珪素半導体装置および電力変換装置
JP7041086B2 (ja) 炭化珪素半導体装置および電力変換装置
JP7068916B2 (ja) 炭化珪素半導体装置、電力変換装置、および炭化珪素半導体装置の製造方法
US11063122B2 (en) Silicon carbide semiconductor device and power conversion device
JP6933274B2 (ja) 炭化珪素半導体装置および電力変換装置
WO2021014570A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
US20210135002A1 (en) Semiconductor device and power converter
JP6873273B2 (ja) 炭化珪素半導体装置および電力変換装置
JP6976489B2 (ja) 炭化珪素半導体装置および電力変換装置
WO2020188686A1 (ja) 炭化珪素半導体装置および電力変換装置
WO2024028995A1 (ja) 半導体装置および電力変換装置
JP7332812B2 (ja) 炭化珪素半導体装置および電力変換装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6874158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250