<1.細胞培養基材の細胞非接着部及び細胞接着部>
本開示の一以上の実施形態に係る細胞培養基材は、細胞培養部を含む表面を有する。
そして、前記細胞培養部が、細胞非接着部と、前記細胞非接着部の周縁に沿って連続的に又は断続的に延在し、前記細胞非接着部を囲う細胞接着部とを含む。
前記細胞培養部は、前記細胞培養基材の表面上に1以上含まれる。2以上の細胞培養部が含まれる場合、各々が前記特徴を備えていてもよい。
前記細胞培養部中の前記細胞非接着部は、前記細胞培養部以外の部分に存在する細胞非接着部(後述する第1の細胞非接着部)と区別するために、「第2の細胞非接着部」或いは「中央部」と称する場合がある。
すなわち、本開示の一以上の実施形態に係る細胞培養基材は、その表面に、細胞非接着部と細胞接着部とが、所定の形状となるように形成されたものである。
以下の説明では、本開示の一以上の実施形態に係る細胞培養基材の、細胞非接着部及び細胞接着部を含む細胞培養部以外の特徴を説明するために、前記細胞培養基材のうち前記細胞接着部以外の部分を指して「支持基材」と称する場合がある。すなわち、本開示の一以上の実施形態に係る細胞培養基材は、前記一以上の細胞接着部を含む表面を有する支持基材を含む、ということができる。
そこで先ず、支持基材の実施形態、並びに、細胞非接着部と細胞接着部の形状以外の特徴について以下に説明する。
細胞培養基材に用いられる支持基材としては、その表面に、細胞非接着部と細胞接着部を形成することが可能な材料で形成された支持基材であれば特に限定されるものではない。具体的には、ガラス、金属、セラミック、シリコン等の無機材料、エラストマー、プラスチック(例えば、ポリスチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂)で代表される有機材料を含む支持基材を挙げることができる。特に、ガラス基材を支持基材として用いることが好ましい。支持基材の形状も限定されず、例えば、平板、平膜、フィルム、多孔質膜等の平坦な形状や、シリンダ、スタンプ、マルチウェルプレート、マイクロ流路等の立体的な形状が挙げられる。
本開示において「細胞接着性」とは、細胞を接着する強度、すなわち細胞の接着しやすさを意味する。「細胞接着部」とは細胞接着性が良好な表面上の領域を意味し、「細胞非接着部」とは、細胞の接着性が悪い表面上の領域を意味する。従って、細胞接着部と細胞非接着部とが所定のパターンで配置された表面上に細胞を播種すると、細胞接着部には細胞が接着するが、細胞非接着部には細胞が接着しないため、細胞培養基材の表面に細胞がパターン状に配列されることになる。
「細胞接着部」は、実際に培養する細胞、好ましくは幹細胞又は癌細胞、を細胞培養基材に播種した際に接着する部分と定義され、「細胞非接着部」は、実際に培養する細胞、好ましくは幹細胞又は癌細胞、を播種した際に接着しない部分と定義される。細胞培養基材に細胞を播種する際に、細胞培養基材の表面は、タンパク質等でコーティングされ、細胞接着性が高められた状態であってもよい。「幹細胞」及び「癌細胞」の具体例は後述の通りである。細胞非接着部は、細胞接着部に接着し増殖した細胞により被覆されてもよい。
細胞接着部であるか細胞非接着部であるかを判断する指標として、実際に細胞培養した際の細胞接着伸展率を用いることができる。細胞接着性を有する細胞接着部の表面は、細胞接着伸展率が60%以上の表面であることが好ましく、細胞接着伸展率が80%以上の表面であることが更に好ましい。細胞接着伸展率が高いと、効率的に細胞を培養することができる。本開示における細胞接着伸展率は、播種密度が4000 cells/cm2以上30000 cells/cm2未満の範囲内で培養しようとする細胞を測定対象表面に播種し、37℃、CO2濃度5%のインキュベータ内に保管し、14.5時間培養した時点で接着伸展している細胞の割合({(接着している細胞数)/(播種した細胞数)}×100(%))と定義する。
上記測定において、細胞の播種は、10%FBS入りDMEM培地に懸濁させて測定対象表面上に播種し、その後、細胞ができるだけ均一に分布するよう、細胞が播種された測定対象表面をゆっくりと振とうすることにより行うものである。さらに、細胞接着伸展率の測定は、測定直前に培地交換を行って接着していない細胞を除去した後に行う。細胞接着伸展率の測定では、細胞の存在密度が特異的になりやすい箇所(例えば、存在密度が高くなりやすい所定領域の中央、存在密度が低くなりやすい所定領域の周縁)を除いた箇所を測定箇所とする。
一方、細胞非接着部は、細胞が接着しにくい性質(細胞非接着性)を有する表面の領域である。細胞非接着性は、表面の化学的性質や物理的性質等によって細胞の接着や伸展が起こりにくいか否かで決定される。細胞非接着部の表面は、上記で定義した細胞接着伸展率が60%未満の表面であることが好ましく、40%未満の表面であることがより好ましく、5%以下の表面であることが更に好ましく、2%以下の表面であることが最も好ましい。
細胞接着部は、支持基材の表面に細胞接着層が形成された領域であってもよいし、支持基材の表面が細胞接着性である場合(例えばガラス基材の表面)は、支持基材の表面が露出した領域であってもよいが、好ましくは、支持基材の細胞接着性の表面が露出した領域である。細胞非接着部は、支持基材の表面に細胞非接着層が形成された領域であることができる。細胞接着部および細胞非接着部は、種々の材料や方法により形成可能である。好ましくは、細胞非接着部は、支持基材の表面が、親水性ポリマー等の親水性有機化合物を含む層等の細胞非接着層により被覆された部分である。細胞非接着部を構成する細胞非接着層の平均厚さは、特許文献4に記載されているように、0.8nm〜500μmが好ましく、0.8nm〜100μmがより好ましく、1nm〜10μmがより好ましく、1.5nm〜1μmが最も好ましい。平均厚さが0.8nm以上であれば、タンパク質の吸着や細胞の接着において、支持基材の細胞非接着層で覆われていない領域の影響を受けにくいため好ましい。また、平均厚さが500μm以下であればコーティングが比較的容易である。特に、特許文献5に記載されているように、細胞非接着層を、ポリエチレングリコールの層により形成する場合、その膜厚の一例として5nm〜10nmが例示できる。親水性有機化合物の具体例は、後述する通りである。
細胞非接着層として親水性ポリマーとしてポリエチレングリコール(PEG)を含む細胞培養基材の製造方法としては、特許文献4及び非特許文献10に記載された方法を用いることができる。
細胞接着部および細胞非接着部の形成方法の特に好ましい形態として、以下の2つの形態が挙げられる。
第1の形態では、支持基材の表面に細胞非接着層を形成し、次いで、細胞非接着層の一部に所定の処理を施し、細胞接着性を発現させて細胞接着部とする形態である。具体的には、支持基材の表面に、親水性ポリマー等の親水性有機化合物を含む細胞非接着性の親水性膜を細胞非接着層として形成し、次いで、細胞非接着層である前記親水性膜の一部を選択的に、酸化処理及び/又は分解処理を施して、前記一部を、細胞接着性を有する細胞接着部に改質する例が挙げられる。この形態では細胞非接着性の親水性膜を形成し、次いで、細胞の接着が望まれる部位に対して、酸化処理及び/又は分解処理を施すことにより、当該部位を、細胞接着性を有する部位に転換して細胞接着部とする。第1の形態により形成された細胞培養基材では、細胞非接着部が、支持基材の表面が、親水性ポリマー等の親水性有機化合物を含む層により被覆された部分であり、細胞接着部が、親水性ポリマー等の親水性有機化合物を含む層が酸化処理及び/又は分解処理により除去されて支持基材の表面が露出した部分、或いは、親水性ポリマー等の親水性有機化合物を含む層が酸化処理及び/又は分解処理を受けて細胞接着性に改質された層(=細胞接着層)により被覆された部分である。
第2の形態は、支持基材の表面上での有機化合物の密度の高低によって細胞接着部および細胞非接着部とする形態である。第2の形態により形成された細胞培養基材では、細胞接着部が、親水性ポリマー等の親水性有機化合物の密度が低い(親水性有機化合物を含まない場合も包含する)表面であり、細胞非接着部が、親水性ポリマー等の親水性有機化合物の密度が高い表面である形態である。第2の形態は、親水性ポリマー等の親水性有機化合物を高密度で含む支持基材の表面が細胞非接着性を有するのに対して、前記化合物の密度が低い支持基材の表面が細胞接着性を有することを利用したものである。支持基材表面に前記化合物が結合しやすい第1領域と結合しにくい第2領域とを設け、該基材表面に前記化合物の膜を形成すると、第1領域は細胞非接着部となり、第2領域は細胞接着領域となる。或いは、支持基材表面の一部をフォトレジスト等で選択的にマスキングし、マスキングされていない領域に前記親水性有機化合物の膜を形成して細胞非接着部を形成し、その後マスキングを除去して支持基材の表面を露出させることで細胞接着部を形成することができる。
また、上記の形態に限らず、細胞非接着性の表面(細胞非接着性層の表面であってよい)を有する支持基材を用意し、前記表面の一部をコラーゲンやフィブロネクチンなどの細胞接着性タンパク質をパターニングして被覆し、細胞接着性のパターンを形成してもよい。或いは、細胞接着性の表面(細胞接着性層の表面であってもよい)を有する支持基材を用意し、前記表面の一部をシリコーンゴム(例えば三菱ケミカル製 珪樹(登録商標))等の細胞非接着性の樹脂により被覆し、残部を細胞接着性のパターンとしてもよい。或いは、表面に所定のパターンの導電性層が設けられた支持基材を用意し、該支持基材の表面に細胞非接着性層を積層し、前記導電性層への電圧印加により、前記導電性層上を被覆する前記細胞非接着性層を剥離させて、露出した前記導電性層を細胞接着部としてもよい(具体的には特開2012−120443号公報、特開2013−179910号公報参照)。
以下では、支持基材表面上に細胞接着部と細胞非接着部を形成して、細胞接着部と細胞非接着部とを含む表面を有する細胞培養基材を製造する上記の第1の形態及び第2の形態について、順に説明する。
まず、第1の形態について説明する。
第1の形態では、まず、支持基材表面に、細胞非接着層として、親水性有機化合物、好ましくは親水性ポリマー、を含む親水性膜を設ける。当該親水性膜は、水溶性や水膨潤性を有する薄膜であり、酸化及び/又は分解される前は細胞非接着性を有し、酸化及び/又は分解された後の支持基材の露出した表面、或いは、酸化処理及び/又は分解処理を受けて改質された薄膜の表面が細胞接着性を呈するものであれば特に限定されない。
細胞非接着層が、親水性有機化合物により形成される親水性膜である場合、支持基材の表面と親水性膜との間には、必要に応じて結合層を設けることが好ましい。結合層は、親水性膜の前記有機化合物が有する官能基と結合可能な官能基(結合性官能基)を有する材料を含む層であることが好ましい。結合層の材料が有する結合性官能基と、親水性有機化合物が有する官能基との組み合わせとしては、エポキシ基と水酸基、フタル酸無水物と水酸基、カルボキシル基とN−ハイドロキシスクシイミド、カルボキシル基とカルボジイミド、アミノ基とグルタルアルデヒド等が挙げられる。それぞれの組み合わせにおいて、いずれが結合層側の官能基であってもよい。これらの方法においては、親水性有機化合物によるコーティングを行う前に、支持基材上に、所定の官能基を有する材料により結合層を形成する。細胞非接着層における、親水性有機化合物の薄膜を形成する前の結合層の表面の水接触角は、結合性官能基を有する材料としてエポキシ基を末端に有するシランカップリング剤を使用する場合を例にとると、典型的には45°以上、望ましくは47°以上である。このような結合層は、結合性官能基を有する材料の被膜を支持基材の表面に形成することにより得られる。
親水性有機化合物としては、親水性ポリマー(親水性オリゴマーを包含する)、水溶性有機化合物、界面活性物質、両親媒性物質等が挙げられ、親水性ポリマーが特に好ましい。
具体的な親水性ポリマーとしては、ポリアルキレングリコール、リン脂質極性基を有する両性イオンポリマー、ポリアクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリビニルアルコール、多糖類等を挙げることができる。親水性ポリマーのこれらの具体例は、その誘導体の形態のものも包含する。親水性ポリマーの分子形状は、直鎖状、分岐を有するもの、デンドリマー等を挙げることができる。
ポリアルキレングリコールとしては具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体、例えば、Pluronic F108、Pluronic F127等が好ましい。
リン脂質極性基を有する両性イオンポリマーとしては具体的には、ポリ(メタクリロイルオキシエチルフォスフォリルコリン)(=MPCポリマー)、メタクリロイルオキシエチルフォスフォリルコリンとアクリルモノマーの共重合体等が好ましい。
ポリアクリルアミドとしては具体的にはポリ(N−イソプロピルアクリルアミド)が例示できる。
ポリメタクリル酸としては具体的にはポリ(2−ヒドロキシエチルメタクリレート)が例示できる。
多糖類としては具体的にはデキストラン、ヘパリン等が例示できる。
細胞非接着層を備える支持基材の表面は、細胞非接着層により被覆された状態では高い細胞非接着性を有し、細胞非接着層の酸化処理及び/又は分解処理後には、露出した支持基材の表面が、或いは、細胞非接着層が酸化処理及び/又は分解処理により改質されて形成される層の表面が細胞接着性を示すものであることが望ましい。
親水性ポリマーとしては特にポリエチレングリコール(PEG)が好ましい。PEGは、1つ以上のエチレングリコール単位((CH2)2−O)からなるエチレングリコール鎖(EG鎖)を少なくとも含むが、直鎖状でも分岐鎖状でもよい。エチレングリコール鎖は、例えば、次式:
−((CH2)2−O)m−
(mは重合度を示す整数である)
で表される構造を指す。mは、好ましくは1〜13の整数であり、より好ましくは1〜10の整数である。
PEGにはエチレングリコールオリゴマーも包含される。また、PEGには、官能基が導入されたものも包含される。官能基としては、例えば、エポキシ基、カルボキシル基、N−ハイドロキシスクシイミド基、カルボジイミド基、アミノ基、グルタルアルデヒド基、(メタ)アクリロイル基等が挙げられる。官能基は、場合によりリンカーを介して、好ましくは末端に導入されたものである。官能基が導入されたPEGとして、例えば、PEG(メタ)アクリレート、PEGジ(メタ)アクリレートが挙げられる。
細胞接着部は、支持基材の表面に形成された親水性有機化合物を含む細胞非接着層に酸化処理及び/又は分解処理を施して、細胞接着性を有する支持基材の表面を露出させる、或いは、細胞非接着層を改質して細胞接着層に転換することで形成することができる。
本開示において「酸化」とは狭義の意味であり、有機化合物が酸素と反応して酸素の含有量が反応以前よりも多くなる反応を意味する。
本開示において「分解」とは有機化合物の結合が切断されて1種の有機化合物から2種以上の有機化合物が生じる変化を指す。「分解処理」としては典型的には、酸化処理による分解、紫外線照射による分解などが挙げられるがこれらには限定されない。「分解処理」が酸化を伴う分解(つまり酸化分解)である場合、「分解処理」と「酸化処理」とは同一の処理を指す。また細胞非接着層を分解して除去することも「分解処理」に含まれる。
紫外線照射による分解とは、有機化合物が紫外線を吸収し、励起状態を経て分解することを指す。なお、有機化合物が、酸素を含む分子種(酸素、水など)とともに存在している系中に紫外線を照射すると、紫外線が化合物に吸収されて分解が起こる以外に、該分子種が活性化して有機化合物と反応する場合がある。後者の反応は「酸化」に分類できる。そして活性化された分子種による酸化により有機化合物が分解する反応は、「紫外線照射による分解」ではなく「酸化による分解」に分類できる。
以上のように「酸化処理」と「分解処理」は操作としては重複する場合があり、両者を明確に区別することはできない。そこで本明細書では「酸化処理及び/又は分解処理」という用語を使用する。
次に、第2の形態について説明する。第2の形態により形成される細胞培養基材では、支持基材の表面のうち、細胞接着部が、親水性ポリマー等の親水性有機化合物の密度が低い(親水性有機化合物を含まない場合も包含する)表面であり、細胞非接着部が、親水性有機化合物の密度が高い表面である。すなわち、細胞接着部と細胞非接着部とは、親水性有機化合物の密度が相違する。同密度が高いほど細胞は接着しにくくなる傾向がある。細胞接着部では、親水性有機化合物の密度が、細胞が接着できる程度に低い。親水性有機化合物及び親水性ポリマーの好ましい例は第1の形態について既述の通りである。
第2の形態では、細胞接着部及び細胞非接着部を、密度を制御した親水性膜により形成する場合には、支持基材との密着性を高めるために支持基材上に必要に応じて結合層を形成し、次いで親水性有機化合物からなる親水性膜を形成するのが好ましい。結合層は、親水性有機化合物が有する官能基と結合可能な官能基(結合性官能基)を含む材料を含む層であることが好ましい。結合層の材料が有する官能基と、親水性有機化合物が有する官能基との組み合わせとしては、エポキシ基と水酸基、フタル酸無水物と水酸基、カルボキシル基とN−ハイドロキシスクシイミド、カルボキシル基とカルボジイミド、アミノ基とグルタルアルデヒド等が挙げられる。それぞれの組み合わせにおいて、いずれが結合層側の官能基であってもよい。これらの方法においては、親水性材料によるコーティングを行う前に、支持基材上に、所定の官能基を有する材料により結合層を形成する。結合層における前記材料の密度は結合力を規定する重要な因子である。前記密度は、結合層の表面における水の接触角を指標として簡便に評価することができる。なお、水接触角は、協和界面科学社製 CA−Zを用い、マイクロシリンジから純水を滴下して30秒後に測定した値である。
細胞接着部の結合層における、結合性官能基を有する材料の密度は低い。細胞接着部における、親水性有機化合物の薄膜を形成する前の結合層の表面の水接触角は、結合層を構成する結合性官能基を有する材料として、エポキシ基を末端に有するシランカップリング剤を使用する場合を例にとると、典型的には、10°〜43°、望ましくは15°〜40°である。このような結合層を形成する方法としては、結合性官能基を有する材料の被膜(結合層)を支持基材の表面に形成した後、当該結合層の表面を酸化処理及び/又は分解処理する方法が挙げられる。結合層表面を酸化処理及び/又は分解処理する方法としては、結合層表面を紫外線照射処理する方法、光触媒処理する方法、酸化剤で処理する方法などが挙げられる。結合層表面の全面を酸化処理及び/又は分解処理してもよいし、部分的に処理してもよい。部分的な処理は、フォトマスクやステンシルマスク等のマスクを用いたり、スタンプを用いたりすることにより行うことができる。また、紫外線レーザー等のレーザーを用いた方式等の直描方式で酸化処理及び/又は分解処理を施してもよい。諸条件などについても、親水性膜の酸化処理及び/又は分解処理により細胞接着部を形成する方法の場合と同様の条件を適用できる。こうして形成された結合層上に親水性有機化合物の薄膜を形成することにより、細胞接着部が形成できる。
細胞非接着部の結合層における、結合性官能基を有する材料の密度は高い。細胞非接着部における、親水性有機化合物の薄膜を形成する前の結合層の表面の水接触角は、結合性官能基を有する材料としてエポキシ基を末端に有するシランカップリング剤を使用する場合を例にとると、典型的には45°以上、望ましくは47°以上である。このような結合層は、結合性官能基を有する材料の被膜を支持基材の表面に形成することにより得られる。結合層表面を部分的に酸化処理及び/又は分解処理した場合には、処理を受けない残余の部分が前記水接触角を有する結合層となる。こうして形成された結合層上に親水性有機化合物の薄膜を形成することにより、細胞非接着層が形成できる。
第2の形態ではまた、支持基材表面の一部を選択的に感光性フォトレジスト等によりマスキングし、マスキングされていない領域に前記親水性有機化合物の膜を形成して細胞非接着部を形成し、その後マスキングを除去して支持基材の表面を露出させることで細胞接着部を形成してもよい。
続いて、上記の第1の形態又は第2の形態、或いは他の方法により形成された細胞接着部と細胞非接着部の特徴について更に説明する。
細胞接着部(結合層が存在する場合には結合層も含む)の炭素量は、細胞非接着部(結合層が存在する場合には結合層も含む)の炭素量と比較して低いことが好ましい。具体的には、細胞接着部の炭素量が、細胞非接着部の炭素量に対して20〜99%であることが好ましい。この範囲内に該当することは、細胞接着部及び細胞非接着部に含まれる親水性有機化合物層の厚さ(結合層が存在する場合には結合層の厚さと親水性膜の厚さの合計)が10μm以下の場合に特に好適である。「炭素量(atomic concentration、%)」は下記に定義する通りである。
また、細胞接着部(結合層が存在する場合には結合層も含む)における炭素のうちで酸素と結合している炭素の割合(%)の値は、細胞非接着部(結合層が存在する場合には結合層も含む)における炭素のうちで酸素と結合している炭素の割合(%)の値に対して小さい値であることが好ましい。具体的には、細胞接着部における炭素のうちで酸素と結合している炭素の割合(%)の値が、細胞非接着部における炭素のうちで酸素と結合している炭素の割合(%)の値に対して35〜99%であることが好ましい。この範囲内に該当することは、親水性膜の厚さ(結合層が存在する場合には結合層の厚さと親水性膜の厚さの合計)が10μm以下の場合に特に好適である。「酸素と結合している炭素の割合(atomic concentration、%)」は下記に定義する通りである。
細胞接着部及び細胞非接着部に含まれる親水性有機化合物層(結合層が存在する場合には結合層も含む)の評価手法としては、接触角測定、エリプソメトリー、原子間力顕微鏡観察、電子顕微鏡観察、オージェ電子分光測定、X線光電子分光測定、各種質量分析法などを用いることができる。これらの手法の中で、最も定量性に優れているのはX線光電子分光測定(XPS/ESCA)である。この測定方法で求められるのは相対的定量値であり、一般的に元素濃度(atomic concentration、%)で算出される。以下、本開示におけるX線光電子分光分析方法を詳細に説明する。
細胞接着部及び細胞非接着部の「炭素量」は、「X線光電子分光装置を用いて得られるC1sピークの解析値から求められる炭素量」と定義される。また、本開示において細胞接着部及び細胞非接着部の「酸素と結合している炭素の割合」は、「X線光電子分光装置を用いて得られるC1sピークの解析値から求められる酸素と結合している炭素の割合」と定義される。具体的な測定は、特開2007−312736に記載されるとおりに実施できる。
<2.細胞培養基材の細胞培養部の形状の特徴>
本開示で用いる細胞培養基材の特徴について主に図1を参照して説明する。
本開示で用いる細胞培養基材1は、
細胞培養部20を含む表面Sを有する。
そして、細胞培養部20は、細胞非接着部(中央部)21と、細胞非接着部21の周縁Pに沿って連続的に又は断続的に延在し(図1では連続的に延在している例を示す)、細胞非接着部21を囲う細胞接着部22とを備える。本実施形態は、細胞培養基材1の表面S上に細胞培養部20が1以上含まれ、1以上の細胞培養部20の各々が、上記の特徴を有する例である。
図1に示す例では、1以上の細胞培養部20は、細胞非接着部10中に島状に点在している。この例では、細胞非接着部10を「第1の細胞非接着部」と称し、細胞接着部20の細胞非接着部21を「第2の細胞非接着部」と称する場合がある。また、以下の説明では「細胞非接着部21」を「中央部21」或いは「細胞非接着部である中央部21」と称する場合がある。第1の細胞非接着部10は必須の構成ではなく、第1の細胞非接着部10を備えていない細胞培養基材の例は図27〜29を参照して別途説明する。
また、細胞培養基材1のうち、第1の細胞非接着部10及び細胞接着部20が表面に配置される部分を「支持基材30」とする。
図1に示す例では、第1の細胞非接着部10、第2の細胞非接着部である中央部21は、支持基材30の表面上に積層された第1の細胞非接着層10A、第2の細胞非接着層21Aの表面である。
図1に示す例では、細胞接着部22は、露出した支持基材30の表面である。なお図21に示す例のように、細胞接着部22は、支持基材30の表面上に積層された細胞接着層22Aの表面であってもよい。
図1(B)及び図21(B)では、説明の便宜上、細胞非接着層10A、細胞非接着層21A及び細胞接着層22Aの厚さ、並びに、細胞接着部22と、細胞非接着層10A又は細胞非接着層21Aとの段差を強調して示しているが、培養される細胞及び細胞構造物の寸法に対して、前記厚さ及び段差は十分に小さいため、1以上の細胞培養部20を含む表面Sは実質的に平坦な表面として細胞を支持することができる。
図1(B)では、支持基材30と、第1の細胞非接着層10A、第2の細胞非接着層21Aとは直接接している例を示しているが、既述のように結合層が間に介在していてもよい。同様に、図21(B)では、支持基材30と、第1の細胞非接着層10A、第2の細胞非接着層21A、細胞接着層22Aとは直接接している例を示しているが、既述のように結合層が間に介在していてもよい。
支持基材30、第1の細胞非接着部10、第1の細胞非接着層10A、第2の細胞接着部21、第2の細胞非接着層21A、細胞接着部22、細胞接着層22Aの具体例及び製造方法は既述の通りである。
本発明者らは驚くべきことに、このような構造の細胞培養基材1上で細胞を培養するとき、細胞非接着部(中央部)21を囲う細胞接着部22に細胞が接着し増殖することで細胞が密に凝集した凝集部が形成され、袋状の細胞構造物(組織)が形成され易いことを見出した。上記構造の細胞培養基材を用いて細胞の培養を行うと、袋状の細胞構造物が比較的短時間で細胞培養基材から遊離し回収することができ、しかも、回収効率が極めて高いことを本発明者らは見出した。袋状の細胞構造物が形成できる細胞としては、幹細胞又は癌細胞が例示できる。例えば幹細胞を細胞培養基材1上で培養すると、細胞非接着部(中央部)21を囲う細胞接着部22に幹細胞が接着し増殖して凝集部が形成され、凝集部において幹細胞が栄養外胚葉細胞のマーカーを発現する腸上皮細胞に分化誘導され、得られた袋状の細胞構造物は、小腸上皮細胞を含み、腸オルガノイドとしての機能を有する。
細胞培養部20の形状及び寸法は特に限定されないが、好ましい実施形態では、中央部21の周縁Pと、中央部21の重心Cを通る直線Lとの二つの交点A1、A2の間の距離Xが、80μm超880μm以下であり、より好ましくは、180μm以上880μm以下、特に好ましくは180μm以上600μm以下、特に好ましくは180μm以上500μm以下である。距離Xが小さすぎると、増殖培養時に細胞によりすぐに中央部21が被覆されてしまい、細胞構造物の外周部に特異的な袋状構造が得られにくい。一方、距離Xが大きすぎると、細胞が増殖して中央部21を完全に被覆するまでの時間が長時間になるため、細胞構造物の生産効率が低下する。距離Xが上記の範囲にあるとき、袋状構造の細胞構造物を比較的短時間で高収率で培養することができる。前記距離Xは、中央部21の形状が図1及び図15Bに示すように円である場合は円の直径を指し、円が真円である場合は、直線Lをどのようにとっても距離Xは同じである。図15A、15C、15Dに示すように中央部21が矩形である場合は距離Xは、直線Lが対角線方向の場合に最大になり、直線Lが短手方向の場合に最小になる。本開示では好ましくは、全周に亘り(すなわち全ての直線Lに対して)距離Xが上記範囲である。
細胞培養部20の別の好ましい実施形態では、細胞接着部22の、中央部21の重心Cを通る直線Lに沿った方向の幅Wが、30μm超400μm以下であり、より好ましくは40μm以上400μm以下であり、特に好ましくは60μm以上300μm以下である。幅Wが小さすぎると培養中に細胞が剥離し易いという問題がある。また、袋状の細胞構造物の誘導のためには、細胞接着部22の幅方向に複数個の細胞が接着して凝集部を形成することが望ましく、そのためには幅Wは大きいほうが好ましいことから、上記の通り幅Wは40μm以上が好ましく、60μm以上がより好ましい。一方、幅Wが大きすぎると、細胞接着部22に接着した細胞の密度の偏りが生じ易く、幅方向に均一な細胞の凝集部が形成され難くなり、均一な構造の細胞構造物が得られにくい。幅Wが上記の範囲にあるとき、細胞構造物を比較的短時間に高収率で培養することができる。前記幅Wは、中央部21の形状が図1及び図15Bに示すように円である場合は円の直径方向の細胞接着部22の幅を指し、円が真円である場合は、直線Lをどのようにとっても幅Wは同じである。図15A、15C、15Dに示すように中央部21が矩形である場合は幅Wは、直線Lが対角線方向の場合に最大になり、直線Lが短手方向の場合に最小になる。本開示では好ましくは、全周に亘り(すなわち全ての直線Lに対して)幅Wが上記範囲である。
細胞培養部20の別の好ましい実施形態では、中央部21の周縁Pと、中央部21の重心Cを通る直線Lとの二つの交点A1、A2の間の距離Xの、細胞接着部22の前記直線Lに沿った方向の幅Wに対する比X/Wが、好ましくは0.5以上、より好ましくは1.0以上、より好ましくは1.3以上であり、好ましくは20.0以下、より好ましくは15.0以下、より好ましくは10.0以下である。前記比X/Wが上記の範囲にあるとき、細胞構造物を比較的短時間に高収率で培養することができる。本開示では好ましくは、全周に亘り(すなわち全ての直線Lに対して)前記比X/Wが上記範囲である。
上記の重心C、距離X、幅W、直線Lの代わりに下記の中間点C’、距離X’、幅W’、直線L’により細胞接着部22の形状及び寸法を規定することができる。中間点C’、距離X’、幅W’、直線L’について図15A及び図15Bを参照して説明する。細胞接着部22の内周Q上の、中央部21を間に介して対向する最も離れた二つの点A3,A4の中間点C’を通る直線を直線L’とする。この直線L’と、細胞接着部22の内周Qとの2つの交点A5,A6の間の距離を距離X’とする。また、細胞接着部22の、中間点C’を通る直線L’に沿った方向の幅を幅W’とする。
前記距離X’は、好ましくは80μm超880μm以下であり、より好ましくは、180μm以上880μm以下、特に好ましくは180μm以上600μm以下、特に好ましくは180μm以上500μm以下である。距離X’が小さすぎると、増殖培養時に細胞によりすぐに中央部21が被覆されてしまい、細胞構造物の外周部に特異的な袋状構造が得られにくい。一方、距離X’が大きすぎると、細胞が増殖して中央部21を完全に被覆するまでの時間が長時間になるため、細胞構造物の生産効率が低下する。距離X’が上記の範囲にあるとき、袋状構造の細胞構造物を比較的短時間で高収率で培養することができる。前記距離X’は、中央部21の形状が図1及び図15Bに示すように円である場合は円の直径を指し、円が真円である場合は、直線L’をどのようにとっても距離X’は同じである。図15A、15C、15Dに示すように中央部21が矩形である場合は、距離X’は、直線L’が対角線方向の場合に最大になり、直線L’が短手方向の場合に最小になる。本開示では好ましくは、全周に亘り(すなわち全ての直線L’に対して)距離X’が上記範囲である。
前記幅W’は、好ましくは30μm超400μm以下であり、より好ましくは40μm以上400μm以下であり、特に好ましくは60μm以上300μm以下である。幅W’が小さすぎると培養中に細胞が剥離し易いという問題がある。また、袋状の細胞構造物の誘導のためには、細胞接着部22の幅方向に複数個の細胞が接着して凝集部を形成することが望ましく、そのためには幅W’は大きいほうが好ましいことから、上記の通り幅W’は40μm以上が好ましく、60μm以上がより好ましい。一方、幅W’が大きすぎると、細胞接着部22に接着した細胞の密度の偏りが生じ易く、幅方向に均一な細胞の凝集部が形成され難くなり、均一な構造の細胞構造物が得られにくい。幅W’が上記の範囲にあるとき、細胞構造物を比較的短時間に高収率で培養することができる。前記幅W’は、中央部21の形状が図1及び図15Bに示すように円である場合は円の直径方向の細胞接着部22の幅を指し、円が真円である場合は、直線L’をどのようにとっても幅W’は同じである。図15A、15C、15Dに示すように中央部21が矩形である場合は幅W’は、直線L’が対角線方向の場合に最大になり、直線L’が短手方向の場合に最小になる。本開示では好ましくは、全周に亘り(すなわち全ての直線L’に対して)幅W’が上記範囲である。
比X’/W’は、好ましくは0.5以上、より好ましくは1.0以上、より好ましくは1.3以上であり、好ましくは20.0以下、より好ましくは15.0以下、より好ましくは10.0以下である。前記比X’/W’が上記の範囲にあるとき、細胞構造物を比較的短時間に高収率で培養することができる。本開示では好ましくは、全周に亘り(すなわち全ての直線L’に対して)前記比X’/W’が上記範囲である。
図1及び図15Bでは、中央部21が円形であり、細胞接着部22が円形の中央部21を同心円的に囲う環状形状であり、対称性が高いため、均一な細胞構造物を得るためには特に好ましい。しかし、このような例には限定されず、図15A、図15C、図15Dに示すように、中央部21が矩形(正方形又は長方形)であり、細胞接着部22が、矩形の中央部21の周縁Pに沿った、内郭と外郭が矩形の形状であってもよい。また、図示しないが、中央部が楕円形で、細胞接着部が、中央部に沿って延在する楕円の環状形状であってもよい。また、上記で挙げた例では、細胞接着部の内郭と外郭が相似形状であるが、それには限定されず、例えば細胞接着部の内郭(すなわち中央部の外郭)が矩形等の多角形であり、細胞培養部の外郭が円形又は楕円形であってもよいし、逆に、細胞接着部の内郭(すなわち中央部の外郭)が円形又は楕円形であり、細胞培養部の外郭が矩形等の多角形であってもよい。また、中央部21は、半円形状であってもよい。
図1、図15A、図15C、図15Dの例では、細胞接着部22は、細胞非接着部である中央部21の周縁Pに沿って連続的に延在し、全周に亘って中央部21を囲う。しかし、細胞接着部は、断続的に延在する形状であってもよい。具体的には図15B、図22の例に示すように、細胞接着部22は、細胞非接着部である中央部21の周縁Pに沿って断続的に延在し中央部21を囲う。このような構造であっても細胞接着部22上に接着した細胞は、増殖を経て、細胞接着部22の切れ目の部分を繋ぐような組織を形成することができる。細胞接着部22が、中央部21の周縁Pに沿って断続的に延在する実施形態では、中断部分は、1か所あたり、中央部21の周縁Pの全周の好ましくは2分の1以下、より好ましくは4分の1以下、より好ましくは6分の1以下、より好ましくは8分の1以下の長さであり、また、複数の中断部分を含む場合は、中断部分の合計が、中央部21の周縁Pの全周の好ましくは2分の1以下、より好ましくは4分の1以下、より好ましくは6分の1以下、より好ましくは8分の1以下の長さである。
本開示で用いる細胞培養基材では、細胞接着部が、細胞非接着性の中央部を囲うように延在している構造であることで、その上に細胞が接着し増殖すると細胞が密になり袋状の細胞構造物の誘導が促進され易い。
特に、本開示に係る細胞培養基材上で幹細胞を培養する場合、細胞接着部に幹細胞が接着し増殖すると細胞が密になり栄養外胚葉細胞の性質を有する細胞への分化が促進され易く、且つ、増殖した細胞が積層し易い。この結果、外周部に栄養外胚葉細胞の性質を有する細胞が分布した袋状の細胞構造物を効率的に得ることができる。
これに対して、特許文献2および非特許文献3に記載の手法では、細胞接着部が円形形状であるため、播種された細胞が増殖により内部にまで進展してしまい、外周部に細胞が凝集しにくいため、袋状の細胞構造物が形成され難い。
特に、特許文献2および非特許文献3に記載の、細胞接着部が円形形状である細胞培養基材上に幹細胞を培養した場合には、栄養外胚葉細胞の性質を有する細胞が増殖により内部にまで進展してしまい、外周部に栄養外胚葉細胞の性質を有する細胞が分布した袋状の細胞構造物が得られにくく、内胚葉系細胞にも分化誘導され難い。そのため後述する比較例1の結果の通り回収率が下がっていたと考えられる。また細胞接着部が円形形状である場合、細胞接着部の面積が大きいため凝集部を作るために時間を要していたと考えられる。
細胞培養基材1のように複数の細胞培養部20が存在する場合、それらは互いに隔離されており、好ましくは0.20mm以上、より好ましくは0.30mm以上互いに離れて配置されている。各細胞培養部20を一定距離以上隔離することにより、各細胞培養部20内の細胞が隣接する他の細胞培養部20の細胞と細胞間結合を形成することなく均一に一定間隔で培養され、再現性の高い実験系を構築できる。
図1、図15A、図15B、図15C、図15D、図21に示す実施形態に係る細胞培養基材1は、第1の細胞非接着部10中に、1以上の細胞培養部20が含まれた構造を有している。第1の細胞非接着部10を備えていない細胞培養基材の実施形態を、図27〜29を参照して別途説明する。
図27〜29に示す細胞培養基材1の、図1又は図21に示す細胞培養基材1との相違点について以下に説明する。図27〜29に示す細胞培養基材1における、細胞培養部20を構成する細胞非接着部(中央部)21及び細胞接着部22の特徴及び形成方法は、図1又は図21に示す細胞培養基材1における細胞非接着部21及び細胞接着部22と同様であるため、図27(B)、図28(B)及び図29(B)での細胞培養基材1の断面において、細胞非接着部21及び細胞接着部22の断面の特徴については描写を省略する。このほか、図27〜29に示す細胞培養基材1について言及しない特徴については図1及び図21に示す細胞培養基材1と同様であるため説明を省略する。
図27に示す本開示の一実施形態に係る細胞培養基材1は、細胞培養部20を含む表面Sを有する。そして、細胞培養部20は、細胞非接着部21と、細胞非接着部21の周縁Pに沿って連続的に又は断続的に延在し(図27では連続的に延在している例を示す)、細胞非接着部21を囲う細胞接着部22とを備える。図27に示す細胞培養基材1のうち、細胞接着部20が表面に配置される部分を「支持基材30」とする。
図27に示す細胞培養基材1は、1以上の突出部31を有する支持基材30を有し、各突出部31の上面Sに、細胞非接着部21とその周囲を囲う細胞接着部22とを含む。この実施形態では、突出部31の上面Sは円形であるが、他の形状を有していても良い。この実施形態では、平面視において、突出部31の上面Sの周縁部に細胞接着部22が存在し、細胞接着部22の外側には支持基材が存在しないため、細胞接着部22に接着した細胞は、培養されると、細胞接着部22よりも外側には広がらず、細胞接着部22及びその内側の細胞非接着部21上に広がり細胞構造物を形成する。
図27に示す実施形態によれば、水平方向に隔離した突出部31の上面Sに細胞培養部20(細胞非接着部21及び細胞接着部22からなる)が存在するため各細胞培養部20内の細胞が隣接する他の細胞培養部20の細胞と細胞間結合を形成することなく培養され、再現性の高い実験系を構築しやすい。本実施形態において突出部31が複数存在する場合、それらは、好ましくは0.20mm以上、より好ましくは0.30mm以上互いに離れて配置されている。
図28に示す本開示の一実施形態に係る細胞培養基材1は、細胞培養部20を含む表面Sを有する。そして、細胞培養部20は、細胞非接着部21と、細胞非接着部21の周縁Pに沿って連続的に又は断続的に延在し(図28では連続的に延在している例を示す)、細胞非接着部21を囲う細胞接着部22とを備える。図28に示す細胞培養基材1のうち、細胞接着部20が表面に配置される部分を「支持基材30」とする。
図28に示す細胞培養基材1は、1以上の窪み部32を有する支持基材30を有し、各窪み部32の底面Sに、細胞非接着部21とその周囲を囲う細胞接着部22とを含む。この実施形態では、窪み部32の底面Sは円形であるが、他の形状を有していても良い。この実施形態では、平面視において、窪み部32の底面Sの周縁部に細胞接着部22が存在し、細胞接着部22の外側は窪み部32の周壁面であるため、細胞接着部22に接着した細胞は、培養されると、細胞接着部22よりも外側には広がらず、細胞接着部22及びその内側の細胞非接着部21上に広がり細胞構造物を形成する。
図28に示す実施形態によれば、水平方向に隔離した窪み部32の底面Sに細胞培養部20(細胞非接着部21及び細胞接着部22からなる)が存在するため各細胞培養部20内の細胞が隣接する他の細胞培養部20の細胞と細胞間結合を形成することなく培養され、再現性の高い実験系を構築しやすい。本実施形態において窪み部32が複数存在する場合、それらは、好ましくは0.20mm以上、より好ましくは0.30mm以上互いに離れて配置されている。
図29に示す本開示の一実施形態に係る細胞培養基材1は、細胞培養部20を含む表面Sを有する。そして、細胞培養部20は、細胞非接着部21と、細胞非接着部21の周縁Pに沿って連続的に又は断続的に延在し(図29では連続的に延在している例を示す)、細胞非接着部21を囲う細胞接着部22とを備える。図29に示す細胞培養基材1のうち、細胞接着部20が表面に配置される部分を「支持基材30」とする。
図29に示す細胞培養基材1は、支持基材30の平坦な表面Sの全体に1つの細胞培養部20が形成されており、細胞接着部22は、表面Sの周縁部に配置されている。この実施形態では、支持基材30の表面Sは円形であるが、他の形状を有していても良い。この実施形態では、平面視において、支持基材30の表面Sの周縁部に細胞接着部22が存在し、細胞接着部22の外側には支持基材が存在しないため、細胞接着部22に接着した細胞は、培養されると、細胞接着部22よりも外側には広がらず、細胞接着部22及びその内側の細胞非接着部21上に広がり細胞構造物を形成する。
図29に示す実施形態によれば、1つの細胞培養基材1には細胞培養部20(細胞非接着部21及び細胞接着部22からなる)のみが存在するため、細胞培養部20内の細胞が他の細胞と細胞間結合を形成することなく培養され、再現性の高い実験系を構築しやすい。
<3.キット>
本開示の別の1以上の実施形態は、前記細胞培養基材を含む細胞培養用キットに関する。
前記キットにおける細胞培養基材の特徴は既述の通りである。
前記キットは、培地及びプレコート処理剤から選択される1種以上を更に含んでもよい。
培地としては、培養しようとする細胞、特に後述する幹細胞又は癌細胞、を培養するために用いることができる培地が好ましい。幹細胞を培養するための好ましい培地は、小腸上皮細胞を含む細胞構造物の製造方法に使用できる培地として例示する範囲から選択することができる。
プレコート処理剤とは、細胞培養基材に予め適用して、細胞接着部への細胞の接着を促進するための成分である。プレコート処理剤としては、細胞外マトリックス(コラーゲン、フィブロネクチン、プロテオグリカン、ラミニン、ビトロネクチン)、ゼラチン、リジン、ペプチド、それらを含むゲル状マトリックス、血清等が挙げられる。プレコート処理剤は適当な溶媒中に溶解又は懸濁された液体組成物としてキットに含まれてもよい。
<4.幹細胞>
本開示の1以上の実施形態で用いる幹細胞としては、小腸上皮細胞への分化能を有する幹細胞であればよいが、好ましくは、内胚葉系細胞(小腸上皮細胞等)、外胚葉系細胞及び中胚葉系細胞への分化能を有する幹細胞であり、より好ましくは、多能性幹細胞である。多能性幹細胞としては特に、胚性幹細胞(ES細胞)又は人工多能性幹細胞(iPS細胞)が好適である。
本開示の1以上の実施形態において使用される胚性幹細胞(ES細胞)は、好ましくは哺乳動物由来のES細胞であり、例えば、マウスなどのげっ歯類又はヒトなどの霊長類由来のES細胞などを使用することができる。特に好ましくは、マウス又はヒト由来のES細胞を使用する。ES細胞は、動物の発生初期段階である胚盤胞期の胚の一部に属する内部細胞塊より作られる幹細胞株を指し、生体外にて、理論上すべての組織に分化する分化多能性を保ちつつ、ほぼ無限に増殖させることができる。ES細胞としては、例えば、その分化の程度の確認を容易とするために、Pdx1遺伝子付近にレポーター遺伝子を導入した細胞を用いることができる。例えば、Pdx1座にLacZ遺伝子を組み込んだ129/Sv由来ES細胞株又はPdx1プロモーター制御下のGFPレポータートランスジーンをもつES細胞SK7株などを使用することができる。あるいは、Hnf3β内胚葉特異的エンハンサー断片制御下のmRFP1レポータートランスジーン及びPdx1プロモーター制御下のGFPレポータートランスジーンを有するES細胞PH3株を使用することもできる。また、国立成育医療研究センターの生殖・細胞医療研究部で樹立し、Akutsu H, et al. Regen Ther. 2015;1:18-29 に開示したES細胞株である、SEES1、SEES2、SEES3、SEES4、SEES5、SEES6又はSEES7や、これらのES細胞株に更なる遺伝子を導入した細胞株を使用することもできる。
本開示の1以上の実施形態において使用される人工多能性幹細胞(iPS細胞)は、体細胞を初期化することによって得られる多能性を有する細胞である。人工多能性幹細胞の作製は、京都大学の山中伸弥教授らのグループ、マサチューセッツ工科大学のルドルフ・ヤニッシュ(Rudolf Jaenisch)らのグループ、ウイスコンシン大学のジェームス・トムソン(James Thomson)らのグループ、ハーバード大学のコンラッド・ホッケドリンガー(Konrad Hochedlinger)らのグループなどを含む複数のグループが成功している。例えば、国際公開WO2007/069666号公報には、Octファミリー遺伝子、Klfファミリー遺伝子及びMycファミリー遺伝子の遺伝子産物を含む体細胞の核初期化因子、並びにOctファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子及びMycファミリー遺伝子の遺伝子産物を含む体細胞の核初期化因子が記載されており、さらに体細胞に上記核初期化因子を接触させる工程を含む、体細胞の核初期化により誘導多能性幹細胞を製造する方法が記載されている。
iPS細胞の作製に用いる体細胞の種類は特に限定されず、任意の体細胞を用いることができる。即ち、本開示で言う体細胞とは、生体を構成する細胞の内生殖細胞以外の全ての細胞を包含し、分化した体細胞でもよいし、未分化の幹細胞でもよい。体細胞の由来は、哺乳動物、鳥類、魚類、爬虫類、両生類の何れでもよく特に限定されないが、好ましくは哺乳動物(例えば、マウスなどのげっ歯類、又はヒトなどの霊長類)であり、特に好ましくはマウス又はヒトである。また、ヒトの体細胞を用いる場合、胎児、新生児又は成人の何れの体細胞を用いてもよい。体細胞の具体例としては、例えば、線維芽細胞(例えば、皮膚線維芽細胞)、上皮細胞(例えば、胃上皮細胞、肝上皮細胞、肺胞上皮細胞)、内皮細胞(例えば血管、リンパ管)、神経細胞(例えば、ニューロン、グリア細胞)、すい臓細胞、血球細胞、骨髄細胞、筋肉細胞(例えば、骨格筋細胞、平滑筋細胞、心筋細胞)、肝実質細胞、非肝実質細胞、脂肪細胞、骨芽細胞、歯周組織を構成する細胞(例えば、歯根膜細胞、セメント芽細胞、歯肉線維芽細胞、骨芽細胞)、腎臓・眼・耳を構成する細胞などが挙げられる。
iPS細胞は、所定の培養条件下(例えば、ES細胞を培養する条件下)において長期にわたって自己複製能を有し、また所定の分化誘導条件下において外胚葉、中胚葉及び内胚葉への多分化能を有する幹細胞のことを言う。また、本開示におけるiPS細胞はマウスなどの試験動物に移植した場合にテラトーマを形成する能力を有する幹細胞でもよい。
体細胞からiPS細胞を製造するためには、まず、少なくとも1種類以上の初期化遺伝子を体細胞に導入する。初期化遺伝子とは、体細胞を初期化してiPS細胞とする作用を有する初期化因子をコードする遺伝子である。初期化遺伝子の組み合わせの具体例としては、以下の組み合わせを挙げることができるが、これらに限定されるものではない。
(i)Oct遺伝子、Klf遺伝子、Sox遺伝子、Myc遺伝子
(ii)Oct遺伝子、Sox遺伝子、NANOG遺伝子、LIN28遺伝子
(iii)Oct遺伝子、Klf遺伝子、Sox遺伝子、Myc遺伝子、hTERT遺伝子、SV40 largeT遺伝子
(iv)Oct遺伝子、Klf遺伝子、Sox遺伝子
<5.幹細胞以外の細胞>
本開示の細胞培養基材又はキットを用いて培養する細胞は幹細胞には限定されず他の細胞であってもよい。例えば他の細胞は癌細胞であってもよい。
癌細胞の起源生物種は特に限定されない。例えばヒト由来細胞であれば大腸上皮癌由来Caco−2細胞、肝臓癌由来のHepG2細胞やHepaRG細胞、乳癌由来のMCF−7細胞、肺癌由来のA−549細胞、子宮頸癌由来のHeLa細胞、皮膚癌由来のA−431細胞等が挙げられる。特に生体内で嚢胞様袋状組織を形成しやすい癌細胞、例えば各種膵臓癌細胞、卵巣癌細胞、腎臓癌細胞等を用いることもできる。
<6.袋状の細胞構造物>
本開示の細胞培養基材又はキットを用いて細胞を培養することにより、袋状の細胞構造物を誘導することができる。
本開示の1以上の実施形態は、本開示の細胞培養基材上で細胞を培養するとき、細胞非接着部を囲うように延在する細胞接着部において細胞が高密度で凝集し、それが外周部に分布した袋状の細胞構造物が得られるという驚くべき知見に基づくものである。
特に、本開示の細胞培養基材上で幹細胞を培養した場合、外周部に小腸上皮細胞を含む袋状の細胞構造物を誘導することができる。幹細胞から分化誘導される小腸上皮細胞を含む袋状の細胞構造物は腸オルガノイドとして利用することができる。
また、本開示の細胞培養基材上で癌細胞を培養した場合にも、液状成分を内包する袋状の細胞構造物を誘導することができる。本開示の細胞培養基材上で癌細胞を培養して誘導される袋状の細胞構造物は、癌の嚢胞に類似した構造を有しているため、癌を予防又は治療するための薬剤の開発や、癌の病理研究に有用である。従来、癌細胞から嚢胞に類似した組織を培養するためには、三次元ゲル包埋培養を行う必要があったが、本開示の細胞培養基材上で癌細胞を培養するという簡便な方法で癌細胞から袋状の細胞構造物を誘導することができる。
本開示の細胞培養基材又はキットを用いて細胞を培養し分化誘導して製造される袋状の細胞構造物の全体の形状は特に限定されないが粒状であることが通常である。「粒状」は球状も包含する。
<7.袋状の細胞構造物の製造方法>
本開示の細胞培養基材を用いて、袋状の細胞構造物を製造することができる。この製造方法は、例えば、
上記の特徴を有する細胞培養基材上に細胞を播種すること、並びに
播種された前記細胞を培養して、袋状の細胞構造物を誘導することを含む。
前記細胞としては幹細胞又は癌細胞が例示できる。
細胞構造物の製造に用いる際、本開示の細胞培養基材は、細胞の細胞接着部への接着を促進する目的で、プレコート処理剤によりプレコート処理されていることが好ましい。プレコート処理剤の具体例は既述の通りである。プレコート処理を実施することにより、接着性の低い細胞の細胞接着部への接着を促進でき、細胞の接着培養を効果的に実施できる。
細胞培養基材に播種された細胞を培養して袋状の細胞構造物に分化させる工程は、細胞を増殖させ、袋状の細胞構造物に誘導することができる培地中で行えばよい。また培地は、血清含有培地であってもよいし、血清に代替する性質を有する既知成分を含有した無血清培地であってもよい。培地としては、MEM培地、BME培地、DMEM培地、DMEM−F12培地、αMEM培地、IMDM培地、ES培地、DM−160培地、Fisher培地、F12培地、WE培地及びRPMI1640培地等を用いることができる。培地には、各種増殖因子、抗生物質、アミノ酸などを加えてもよい。幹細胞を培養するための好ましい培地については後述する。
細胞培養基材への細胞の播種密度は常法に従えばよく特に限定されるものではない。例えば、細胞を細胞培養基材に対し3×104 cells/cm2以上の密度で播種することが好ましく、3×104〜5×105 cells/cm2の密度で播種することがより好ましく、3×104〜2.5×105 cells/cm2の密度で播種することがさらに好ましい。
培養温度は、通常37℃である。CO2細胞培養装置などを利用して、5%程度のCO2濃度雰囲気下で培養するのが好ましい。
細胞を細胞培養基材へ播種した後の培養期間は、細胞の初期播種密度や細胞接着部の形状、大きさによって差異が生じるが、2〜4週間程度であることが好ましい。
また本開示の細胞培養基材上で細胞から誘導された袋状の細胞構造物は細胞培養基材から自然に浮遊して剥離するが、細胞構造物を破壊しない温和な酵素処理(例えばAccutaseやTrypLEなど)やEDTA処理、培地等の液体の吹きかけ、スクレーパーによる物理的な剥離等の各種手法を用いて、細胞培養基材からの細胞構造物の剥離を促進してもよい。
袋状の細胞構造物が細胞培養基材から剥離した後、更に浮遊培養を継続してもよい。浮遊培養の期間は限定されない。
<8.幹細胞から分化誘導される小腸上皮細胞を含む細胞構造物>
腸は三胚葉(内胚葉、外胚葉、中胚葉)に由来する細胞を含む複雑な器官である。腸は、内胚葉に由来する小腸上皮細胞(腸細胞、杯細胞、内分泌細胞、刷子細胞、パネート細胞、M細胞等)、中胚葉に由来するリンパ組織、平滑筋細胞、カハール介在細胞、外胚葉に由来する腸管神経叢等が複雑に組み合わされて、分泌、吸収、蠕動運動等の機能を奏する。
特許文献1記載の方法で得られた組織は小腸上皮細胞のみを含む。また胚性幹細胞からの分化誘導にアクチビンを使用しているがゆえにほぼ単一の胚葉由来の細胞、ここでは内胚葉由来細胞しかできてない。このため、中胚葉や外胚葉由来の他種細胞を含む腸組織を得るためには、他種細胞を、非特許文献1にあるように別途分化誘導する必要があった。また特許文献1記載の方法は、上皮分化誘導のためにマトリゲルに包埋して培養する工程を含み、この点からも生産性に課題があった。
非特許文献2に記載の方法に関しても培養の手間が課題となっていた。
特許文献2に記載の方法で得られた組織もまた、小腸上皮細胞のみを含むため、特許文献1に記載の方法と同様の課題があった。
一方、特許文献3及び非特許文献3に記載の方法によれば、単一の培養により腸管上皮組織のみならず筋組織や神経組織なども分化誘導することができる。この方法はまた、多くのパターンが形成された一つの基材上で同時に多くの腸管組織を培養することできるため、生産効率が高い。また生物由来物質を用いずに培養を達成しているため移植用途にも適用しやすい。
しかしながら、特許文献3及び非特許文献3に記載の方法は、培養する細胞の種類によっては目的とする組織の収率が大幅に低下することが課題であり、培養法の改良により目的とする組織の収率を向上させる必要があった。
すなわち、小腸上皮細胞を含む細胞構造物を、培養細胞の起源に関わらず効率良く製造するための手段が求められていた。
そこで上記の課題を解決する手段として、本開示の1以上の実施形態は、本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して、小腸上皮細胞を含む細胞構造物を製造することを含む。
前記小腸上皮細胞は、典型的には、栄養外胚葉細胞マーカーを発現する小腸上皮細胞である。
本開示の1以上の実施形態は、幹細胞の培養時に、細胞非接着部(中央部)を囲うように延在する細胞接着部において細胞が高密度で凝集し、栄養外胚葉細胞マーカーを発現する小腸上皮細胞に分化し、それが外周部に分布した袋状構造の細胞構造物が得られるという驚くべき知見に基づくものである。実施例では、栄養外胚葉細胞のマーカーであるサイトケラチン7と、小腸上皮細胞及び栄養外胚葉細胞のマーカーであるCDX2とが、細胞接着部に凝集した細胞で強く発現していることを確認している。
なお、小腸上皮細胞は、細胞核に転写因子のCDX2及びHNF4、絨毛層にvillinが発現し、かつ内胚葉系マーカーのE−cadherinなどが発現していることを指標に確認することができる。これらのマーカーの存在は、抗体を使用した組織免疫染色やmRNAによるPCR評価などで検出可能である。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物の1以上の実施形態は、小腸上皮細胞を含んでおり、腸と同等の機能を有する腸オルガノイドとして有用である。「腸オルガノイド」とは、細胞の起源生物の腸、特にヒト等の哺乳動物の腸、特にヒト腸に類似した機能(具体的には、蠕動運動する機能、粘液分泌機能、物質吸収機能等)を有する細胞構造体(組織)を指す。本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物は、腸関連疾患を予防又は治療するための薬剤の開発や、腸関連疾患の病理研究に有用である。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物の全体の形状は特に限定されないが粒状であることが通常である。「粒状」は球状も包含する。
非特許文献4にあるようにマウスES細胞でCDX2が強く発現することで栄養外胚葉細胞に分化する事が示されている。本実施例においてもマーカーとなるCDX2やCytokeratin7が凝集部において強く発現していることが確認されており、同様に栄養外胚葉細胞の性質を有する細胞に分化していると考えられる。
さらにヒトiPS細胞からCDX2陽性細胞を含む袋状構造を有する組織が得られることは非特許文献5に記載されている。よって本開示の1以上の実施形態では、幹細胞の培養により細胞接着部上で細胞が密集した凝集部において、幹細胞からCDX2陽性細胞に分化し、それが同様に袋状構造の形成に寄与している可能性が考えられる。
また、ES細胞やiPS細胞が栄養外胚葉細胞への分化能を有することは非特許文献6〜8にも示されている。
以上の過去知見、並びに、後に示されるように本開示では細胞接着部に凝集した細胞ではOct3/4遺伝子の低下が観察されていることから、本開示の細胞培養基材を用いた培養では、幹細胞が細胞接着部に接着し増殖して凝集部を形成し、凝集部から栄養外胚葉細胞マーカーを発現する小腸上皮細胞に分化していることが推定される。
非特許文献9では、マウスES細胞を用いた検討ではOct遺伝子の発現が低下すると栄養外胚葉に分化することが示されており、本開示の細胞培養基材又はキットを用いて製造される細胞構造物でも同様の分化が生じていると推定される。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物は、より好ましくは、内胚葉系細胞、外胚葉系細胞及び中胚葉系細胞を含む。
内胚葉は消化管のほか肺、甲状腺、膵臓、肝臓などの器官の組織、消化管に開口する分泌腺の細胞、腹膜、胸膜、喉頭、耳管、気管、気管支、尿路(膀胱、尿道の大部分、尿管の一部)などを形成する。ES細胞又はiPS細胞から内胚葉系細胞への分化は、内胚葉に特異的な遺伝子の発現量を測定することにより確認することができる。内胚葉に特異的な遺伝子としては、例えば、AFP、SERPINA1、SST、ISL1、IPF1、IAPP、EOMES、HGF、ALBUMIN、PAX4、TAT等を挙げることができる。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物に含まれ得る内胚葉系細胞としては特に小腸上皮細胞が挙げられる。腸オルガノイドは、小腸上皮細胞として、腸細胞、杯細胞、腸管内分泌細胞及びパネート細胞から選択される1以上を含むことが好ましく、小腸上皮細胞として、腸細胞、杯細胞、腸管内分泌細胞及びパネート細胞を全て含むことが特に好ましい。本開示の細胞培養基材又はキットを用いて製造される細胞構造物に内胚葉系細胞が存在することは内胚葉系細胞のマーカーの発現が陽性であることに基づき判断できる。腸細胞マーカーとしてはCDX2、杯細胞マーカーとしてはMUC2、腸管内分泌細胞マーカーとしてはCGA、パネート細胞マーカーとしてはDEFA6が挙げられる。そのほか、ECAD、Na+/K+−ATPase、ビリンが腸上皮細胞のマーカーである。また、胚体内胚葉マーカーFOXA2、SOX17又はCXCR4も内胚葉系細胞を判別するためのマーカーとして利用できる。また、初期内胚葉及び中胚葉のマーカーであるGATA4、GATA6又はT(Brachyury)も、内胚葉系細胞を判別するためのマーカーとして利用できる。
外胚葉は皮膚の表皮や男性の尿道末端部の上皮、毛髪、爪、皮膚腺(乳腺、汗腺を含む)、感覚器(口腔、咽頭、鼻、直腸の末端部の上皮を含む、唾液腺)水晶体などを形成する。外胚葉の一部は発生過程で溝状に陥入して神経管を形成し、脳や脊髄などの中枢神経系のニューロンやメラノサイトなどの元にもなる。また末梢神経系も形成する。ES細胞又はiPS細胞から外胚葉系細胞への分化は、外胚葉に特異的な遺伝子の発現量を測定することにより確認することができる。外胚葉に特異的な遺伝子としては、例えば、β−TUBLIN、NESTIN、GALANIN、GCM1、GFAP、NEUROD1、OLIG2、SYNAPTPHYSIN、DESMIN、TH等を挙げることができる。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物に含まれ得る外胚葉系細胞としては特に腸管神経叢を構成する細胞が挙げられる。本開示の細胞培養基材又はキットを用いて製造される細胞構造物に外胚葉系細胞が存在することは外胚葉系細胞のマーカーの発現が陽性であることに基づき判断できる。外胚葉系細胞を判別するためのマーカーとしては腸管神経叢マーカーPGP9.5や、神経前駆細胞マーカーSOX1が利用できる。
中胚葉は体腔及びそれを裏打ちする中皮、筋肉、骨格、皮膚真皮、結合組織、心臓、血管(血管内皮も含む)、血液(血液細胞も含む)、リンパ管、脾臓、腎臓、尿管、性腺(精巣、子宮、性腺上皮)を形成する。ES細胞又はiPS細胞から中胚葉系細胞への分化は、中胚葉に特異的な遺伝子の発現量を測定することにより確認することができる。中胚葉に特異的な遺伝子としては、例えば、FLK−1、COL2A1、FLT1、HBZ、MYF5、MYOD1、RUNX2、PECAM1等を挙げることができる。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物に含まれ得る中胚葉系細胞としては特に平滑筋細胞、カハール介在細胞が挙げられる。腸オルガノイドに中胚葉系細胞が存在することは、中胚葉系細胞マーカーの発現が陽性であることに基づき判断できる。中胚葉系細胞マーカーとしては、平滑筋細胞マーカーのα−平滑筋アクチン(SMA)、カハール介在細胞マーカーのCD34及びCKIT(二重陽性の場合)が利用できる。また、初期内胚葉及び中胚葉のマーカーであるGATA4、GATA6又はT(Brachyury)も、中胚葉系細胞を判別するためのマーカーとして利用できる。
本開示の細胞培養基材又はキットを用いて幹細胞を培養し分化誘導して製造される細胞構造物は、好ましくは、外表面の少なくとも一部に小腸上皮細胞を含む。この実施形態によれば、細胞構造物の外側にある物質を、外表面の小腸上皮細胞を介して内部に吸収することができるため好ましい。
<9.小腸上皮細胞を含む細胞構造物の製造方法>
本開示の細胞培養基材を用いて、小腸上皮細胞を含む細胞構造物を製造することができる。この製造方法は、例えば、
上記の特徴を有する細胞培養基材上に幹細胞を播種すること、並びに
播種された前記幹細胞を培養して、前記幹細胞の一部を小腸上皮細胞に分化させることを含む。
細胞構造物の製造に用いる際、本開示の細胞培養基材は、幹細胞の細胞接着部への接着を促進する目的で、プレコート処理剤によりプレコート処理されていることが好ましい。プレコート処理剤の具体例は既述の通りである。プレコート処理を実施することにより、接着性の低い幹細胞の細胞接着部への接着を促進でき、細胞の接着培養及び分化誘導を効果的に実施できる。
幹細胞は、播種前に未分化性を維持した条件で培養することができる。このときの培養に用いる培地は、幹細胞を分化誘導させない培地であれば特に限定されないが、例えば、マウス胚性幹細胞及びマウス人工多能性幹細胞の未分化性を維持する性質を有していることが知られているleukemia inhibitory factorを含む培地や、ヒトiPS細胞の未分化性を維持する性質を有していることが知られているbasic FGFを含む培地等が挙げられる。
細胞培養基材に播種された幹細胞を培養してその一部を小腸上皮細胞に分化させる工程は、幹細胞を増殖させ、分化誘導することができる培地中で行えばよく、培地は特に限定されない。例えば、具体例として特許文献3、非特許文献3で使用した培地や、StemFit(味の素社)、StemFlex(Life Technologies社)、ReproFF(リプロセル社)などの市販の培地が挙げられる。また培地は、血清含有培地であってもよいし、血清に代替する性質を有する既知成分を含有した無血清培地であってもよい。
培地としては、MEM培地、BME培地、DMEM培地、DMEM−F12培地、αMEM培地、IMDM培地、ES培地、DM−160培地、Fisher培地、F12培地、WE培地及びRPMI1640培地等を用いることができる。培地には、各種増殖因子、抗生物質、アミノ酸などを加えてもよい。例えば、0.1〜2%のピルビン酸、0.1〜2%の非必須アミノ酸、0.1〜2%のペニシリン/ストレプトマイシン、0.1〜1%のグルタミン、0.1〜2%のβメルカプトエタノール、1mM〜20mMのROCK阻害剤(例えば、Y27632)を添加してもよい。
細胞培養基材への幹細胞の播種密度は常法に従えばよく特に限定されるものではない。例えば、幹細胞を細胞培養基材に対し3×104 cells/cm2以上の密度で播種することが好ましく、3×104〜5×105 cells/cm2の密度で播種することがより好ましく、3×104〜2.5×105 cells/cm2の密度で播種することがさらに好ましい。
培養温度は、通常37℃である。CO2細胞培養装置などを利用して、5%程度のCO2濃度雰囲気下で培養するのが好ましい。
幹細胞を細胞培養基材へ播種した後の培養期間は、細胞の初期播種密度や細胞接着部の形状、大きさによって差異が生じるが、2〜4週間程度であることが好ましい。本発明者らは、本明細書に記載の構造の細胞培養基材上で幹細胞を培養し分化誘導するとき、播種後2〜4週間で、分化誘導された小腸上皮細胞を含む細胞構造物が自然に浮遊して剥離し、回収できること、そしてこうして回収された細胞構造物の回収率は顕著に高いこと見出した。非特許文献3に記載の、円形の細胞接着部を有する基材上では30日以上経過後に細胞構造物が剥離し、しかもその回収率が非常に低いことと比較して、本開示の方法は有利である。
また本開示の細胞培養基材上で幹細胞から分化誘導された細胞構造物は細胞培養基材から自然に浮遊して剥離するが、細胞構造物を破壊しない温和な酵素処理(例えばAccutaseやTrypLEなど)やEDTA処理、培地等の液体の吹きかけ、スクレーパーによる物理的な剥離等の各種手法を用いて、細胞培養基材からの細胞構造物の剥離を促進してもよい。
細胞構造物が細胞培養基材から剥離した後、更に浮遊培養を継続してもよい。浮遊培養の期間は限定されない。
以下、具体的な実験結果を参照して本開示を説明するが、本開示の範囲は実験結果の範囲には限定されない。
<実施例1>
(細胞培養基材の作製)
細胞培養基材として、ガラス基材上に形成された、ポリエチレングリコール(PEG400)の層が酸化分解されて形成された領域である、内径180μm、280μm又は380μm且つ幅60μmの環状パターンからなる細胞接着部(図1参照)と、前記細胞接着部の環状パターンの内側及び外側の、ガラス基材の表面がポリエチレングリコール(PEG400)で被覆された領域である細胞非接着部とを備える細胞培養基材を作製した。前記細胞培養基材は、複数個の、300〜500μm間隔で形成された前記環状パターンからなる細胞接着部を備える(図1参照)。以下の説明では、環状パターンからなる細胞接着部を「環状細胞接着部」と称する。
細胞培養基材は、上記の特許文献及び非特許文献に記載の手順により作製した。以下にその概要を説明する。
(一段階目の反応)
トルエン39.0g、エポキシシランTSL8350(GE東芝シリコーン製)0.48g、トリエチルアミン0.97gを混合し、室温で10分間攪拌した。このシラン溶液にUV洗浄済みの10cm角のガラス基板を洗浄面が上向きとなるように浸漬した。室温で16時間放置した後、基板をエタノールと水で洗浄し、窒素ブローで乾燥させた。これにより、ガラス基板表面にエポキシ基を含む薄膜が形成された。
(二段階目の反応)
50gの平均分子量400のポリエチレングリコール(PEG400)を攪拌しながら25μlの濃硫酸を一滴ずつ添加した。そのまま数分間攪拌してから、全量をガラス皿に移した。ここに上記の基板を浸漬し、80℃で20分間反応させた。反応後、基板をよく水洗し、窒素ブローで乾燥させた。これにより、ガラス表面に均一な親水性薄膜が形成された。
(酸化処理)
表面全域に酸化チタン系光触媒を塗布したフォトマスクを作製した。フォトマスクは、複数個の、300〜500μm間隔で形成された上記寸法の環状細胞接着部に対応する形状の開口部が形成され、且つ、周囲に幅約1.5cmの開口部を有する5インチサイズのものを用いた。あらかじめ露光機の照度を350nmの波長で計測し、露光時間の設定の目安とした。このフォトマスクの光触媒層と基板表面の親水性薄膜を接触させ、フォトマスク側から光が照射されるよう露光機内に設置した。波長350nmの照度が20mW/cm2の水銀ランプで50秒間露光し、基板表面の親水性薄膜を部分的に酸化分解した。この基板を25mm×15mmの大きさに切断し、細胞接着基板として使用した。細胞培養に使用する前に、細胞培養基材に対しEOG滅菌処理を22時間施した。
前記細胞培養基材を、3.5cmペトリディッシュ(Corning社)の底面上に設置し、リン酸緩衝生理食塩水(PBS)で1/100希釈したビトロネクチン(Life Technologies社)と室温で30分間以上接触させてコーティングした後に、PBSで3回洗浄してから使用した。
こうして得られた細胞培養基材は図1(B)に示すような断面構造を有する。
(培養)
国立研究開発法人国立成育医療研究センターは、月経血から取得した細胞に山中4因子をセンダイウイルスベクターによって一過的に発現させて、ヒトiPS細胞株であるEdom iPS細胞を樹立している(PLoS Genet. 2011 May; 7(5): e1002085. Published online 2011 May 26. doi: 10.1371/journal.pgen.1002085PMCID: PMC3102737)。Edom iPS細胞を、ビトロネクチンコートした細胞培養用ディッシュ(Corning社)中でStemFit培地(味の素社)を用いてあらかじめ増殖させた。増殖した細胞を、PBSで1/1000に希釈したEDTA(Invitrogen社)を用いて37℃で10分間処理することにより前記ディッシュから剥離し、前記細胞培養基材に1×106個播種し培養した。培地として、非特許文献3記載のXF hESC培地を用いた。播種当日は前記培地にY27632を含ませたが、翌日培地交換しY27632を含まない前記培地で維持した。4日目以降、培地交換を3〜4日に1回行った。培養中、細胞培養基材から自然剥離した組織を回収し、別のペトリディッシュ内で同じ培地で浮遊培養させて維持した。
図2に、内径の異なる環状細胞接着部を有する各細胞培養基材を用いて培養したときの培養1日目、6日目、11日目、18日目の培養物の観察像を示す。培養1日目の写真は他の物と比較して拡大倍率が高い。先に環状細胞接着部で細胞が増殖し、続いて、環状細胞接着部で囲われた内側の細胞非接着部が増殖した細胞により被覆される様子が観察された。
図3に、培養3週の培養物の観察像を示す。図3に示す観察像は、各細胞培養基材上での培養により、袋状構造を有する組織が高い割合で形成されたことを示す。
この培養の結果、袋状構造を有する組織が培養開始後2〜3週間で表面から自然剥離し回収できることが示された。図4に、内径380μmの環状細胞接着部を有する基材上で形成され剥離した袋状構造を有する組織の観察像(左がディッシュ全体の写真、右が組織の観察像)を示す。図4の左の写真において、ディッシュに見える白い点状の物が、袋状構造を有する組織である。図4の右の写真は、本実施例で得た袋状構造を有する組織の顕微鏡による観察像である。本実施例で得た袋状構造を有する組織の観察像は、iPS細胞を類似した培地中で培養して得た、Uchida et al., JCI Insight 第2巻 e86492 2017年に記載の、腸機能を有する袋状の組織(腸オルガノイド)の観察像と類似していること及び後述する実施例4、実施例5の結果から、本実施例で得た袋状構造を有する組織もまた、腸オルガノイドであることが分かる。
細胞培養基材上の環状細胞接着部の数に対する、回収された袋状構造を有する組織の割合(以下「組織回収率」と称することがある)は80%以上であり、高収率であった。
<比較例1〜3>
比較例1として、Uchida et al., JCI Insight 第2巻 e86492 2017年に記載されている、ポリエチレングリコール層で被覆された領域である細胞非接着部と、ポリエチレングリコール層が酸化分解されて形成された直径1500μmの円形の複数の細胞接着部とが形成された細胞培養基材を用意した。
比較例2として、複数の円形の細胞接着部の各々の直径が282μmである点を除いて比較例1と同じ構造の細胞培養基材を用意した。
比較例1及び比較例2の細胞培養基材の製造方法は、実施例1の細胞培養基材の製造方法と同様であり、フォトマスクの開口部の形状を細胞接着部に応じて適宜変更すればよい。
比較例3として接着パターンが作られていないガラス基材を用意した。
比較例1〜3の各基材上で、実施例1と同様の条件で、Edom iPS細胞の播種及び培養を行った。
図5に、比較例1、比較例2、比較例3の各基材上での培養開始後3週間の培養物の顕微鏡観察像を示す。
比較例1では、袋状構造を有する組織の表面からの剥離開始が、培養開始後3〜4週間で観察され、組織回収率は4〜5%であった。前記実施例1と比較し比較例1では剥離までの培養期間が長く、組織回収率が低かった。
比較例2では、培養開始後2〜3週間で袋状構造を有する組織が得られたが、観察像が暗い細胞凝集塊が多く得られた。袋状構造を有する組織の組織回収率は10%以下であった。また、図5の「比較例2」にて矢印で示す組織のように、隣接する複数の円形パターンでの培養物が融合して形成される、寸法の大きな袋状構造を有する組織が形成されることもあった。
比較例3では、小さな袋状構造が1〜2個程度得られる場合もあったが、袋状構造を有する組織が形成されるまでに基材の表面全体での細胞増殖が必要であり培養に1ヶ月以上の時間を要し、形成される袋状構造を有する組織の数は、実施例1での場合と比較して著しく少なかった。なお細胞接着部のパターンの数が定められていないため、この場合では組織回収率の計算はできていない。
以上の結果は、実施例1のように、環状パターンからなる細胞接着部を複数備えた基材でのiPS細胞の培養により、袋状構造を有する組織を、短い培養期間で得ることができ、且つ、組織向上率が顕著に高いことを示す。
<実施例2>
実施例1でのパターン培養の経過観察を行うため、下記のタイムラプス観察を実施した。
実施例1で用いた内径380μm、幅60μmの環状細胞接着部を複数備えた細胞培養基材を、ディッシュの底面上に固定した器材を作製した、この器材を用いて、実施例1と同様の条件で、Edom iPS細胞の播種及び培養を行った。
培養4日目から21日目まで12時間おきにBioStation(ニコン社)を用いて撮影を行った。撮影作業は添付のマニュアルに従い、培地交換は2〜3日に1回行った。
図6に、培養4日目、9日目、13日目、20日目の各時点での1つの環状細胞接着部周辺の細胞の観察像を示す。これより、細胞はまず環状パターン上で増殖及び積層し、その後、培養21日目までに袋状構造を形成することが確認された。
<実施例3>
他の細胞種を用いて袋状構造を有する組織の形成を試みた。
ヒトES細胞のSEES2細胞株を、実施例1と同じ内径180μm、280μm又は380μm、幅60μmの環状細胞接着部を備えた細胞培養基材を用いて培養した。まず、1/1000で希釈したrhLIF(和光純薬工業社)を添加したStemFit培地(味の素社)を用い、ビトロネクチンコートした細胞培養用ディッシュ(Corning社)中で増殖培養した。増殖培養した細胞をAccutase(Life Technologies社)を37℃5分間処理することで剥離処理して回収し、前記基材に播種し、実施例1と同様の手順で培養した。
図7に、各細胞培養基材を用いた培養の1日目及び7日目の観察像と、内径280μmの環状細胞接着部を有する細胞培養基材を用いた培養で培養3週間後に回収された袋状構造を有する組織の観察像を示す。袋状構造を有する組織の観察像、及び、組織回収率はiPS細胞を用いた実施例1と同様であった。
この結果は、環状細胞接着部を含む細胞培養基材上での幹細胞の培養により袋状構造を有する組織が効率良く作成することができること、並びに、このような組織の形成は、ES細胞を用いた場合でも実施例1のようにiPS細胞を用いた場合と同様に生じ、多能性幹細胞の種類を問わないことを示す。
<実施例4>
実施例1での培養過程を検討するために、実施例1と同じ内径380μm、幅60μmの環状細胞接着部を備える細胞培養基材上で細胞培養を行い、マーカーの発現を免疫染色により調べた。
内径380μm、幅60μmの環状細胞接着部を備える細胞培養基材及び細胞培養の条件は実施例1に記載の通りである。
培養4日目、培養7日目または培養12〜14日目の組織を含む細胞培養基材を4%パラホルムアルデヒド(和光純薬社)により室温で20分間固定した後にPBSで洗浄し、1%BSAおよび0.1%Triton含有PBSにより室温で30分間ブロッキング操作を行った後に、前記基材を、マウスIgG1標識抗Cytokeratin7抗体(Abcam社 希釈率1/500)、マウスIgG3b標識抗Oct3/4抗体(SantaCruz Biotechnologies社 希釈率1/200)、ウサギIgG標識抗Ki67抗体(Abcam社 希釈率1/500)又はウサギIgG標識抗CDX2抗体(Abcam社 希釈率1/1000)と室温で1時間インキュベートした。インキュベート後の前記基材をPBSで3回洗浄し、次いで、PBSで希釈したAlexa488標識抗ウサギIgG抗体(Molecular Probes社 希釈率1/1000)またはAlexa546標識抗マウスIgG抗体(Molecular Probes社 希釈率1/1000)と室温で30分インキュベートした。インキュベート後の前記基材を更にPBSで3回洗浄し、次いで、前記基材上の細胞の細胞核をDAPI(Sigma社 希釈率1/1000)により室温で10分間染色させた後に封入し、共焦点顕微鏡で観察した。なお抗体の種類に関しては適切に取捨選択を行った。
図8に、培養4日目の観察像を示す。これより培養4日目の段階で、環状細胞接着部上に、Ki67陽性且つOct3/4陽性な、増殖能を有する未分化細胞が存在しており、凝集部が形成され得ることが示唆された。
図9に、培養7日目の観察像を示す。図9の上段の観察像は、主に内部に多分化能を有するOct3/4陽性の未分化細胞が存在し、外周部にCDX2陽性細胞が存在する組織が形成されたことを示す。図9の下段の観察像は、前記CDX2陽性細胞は、Cytokeratin7陽性の栄養外胚葉細胞であったことを示す。
以上の結果より、実施例1の環状細胞接着部を有する細胞培養基材上で多能性幹細胞を培養し形成される組織において、外周部の細胞が特に密な凝集部を形成する部分は栄養外胚葉細胞からなっており、その後増殖により未分化細胞が内部に浸潤していることが示唆された。
<実施例5>
実施例1において、内径280μm又は内径380μm、幅60μmの環状細胞接着部を備える細胞培養基材上での培養し、培養開始後3〜4週間で自然に剥離した組織を回収し、別のディッシュ内で培養開始後6週間まで浮遊培養して得られた袋状構造を有する組織について、組織中の腸細胞及び三胚葉由来細胞の有無を検討するために免疫染色による評価を行った。
iPGell(GenoStaff社)および4%パラホルムアルデヒド溶液(和光純薬工業社)を用いて組織を製品添付のプロトコールに従い1晩固定した。固定した組織をパラフィン包埋した後に厚さ4〜6μmの組織切片を作製した。Uchida et al., JCI Insight 第2巻 e86492 2017年に記載された方法で抗体染色を行った。抗体染色の方法は下記の通りである。
前記組織切片を、ウサギIgG標識抗CDX2抗体(Abcam社;希釈率1/1000)及びマウスIgG標識抗Villin抗体(SantaCruz Biotechnologies社;希釈率1/200)、又はマウスIgG標識抗Smooth Muscle Actin抗体(Sigma社;希釈率1/500)、又はウサギIgG標識抗PGP9.5抗体(DAKO社;希釈率1/200)と4℃で1晩インキュベートすることで1次抗体染色を行った。1次抗体染色後の前記組織切片を、PBSで5分3回洗浄した後にPBSで希釈したAlexa488標識抗ウサギIgG抗体及びAlexa546標識抗マウスIgG抗体(共にMolecular Probes社;希釈率1/1000)と室温で1時間インキュベートすることで2次抗体染色を行った。2次抗体染色後の前記組織切片をPBSで5分3回洗浄した後に細胞核を(DAPI;Sigma社;希釈率1/1000)で染色し、封入した。
図10に、実施例1において内径280μm又は380μm、幅60μmの環状細胞接着部を備える細胞培養基材上で培養し形成された組織の、抗CDX2抗体、抗Villin抗体及びDAPIによる染色の結果を示す。図10に示す結果は、実施例1で形成された組織が、細胞核がCDX2陽性かつ上皮がVillin陽性な、絨毛層を有する腸管上皮組織を含むことを示す。図11に、実施例1において内径380μm、幅60μmの環状細胞接着部を備える細胞培養基材上で培養し形成された組織の、抗平滑筋アクチン(Smooth Muscle Actin)抗体、抗PGP9.5抗体及びDAPIによる染色の結果を示す。図11に示す結果は、実施例1で形成された組織が、内胚葉由来の腸管上皮組織に加えて、中胚葉由来の平滑筋アクチン陽性な筋組織や、外胚葉由来のPGP9.5陽性な神経線維様組織を有することを示す。図10及び図11に示す結果は、実施例1で形成された組織が、三胚葉由来組織を含むことを示す。
<実施例6>
環状細胞接着部の適切なサイズ及び接着部の幅を検討するために下記の解析を行った。 内径と幅が異なる環状細胞接着部を備える細胞培養基材を、実施例1と同じ方法で作製し、実施例1と同じ方法でEdom iPS細胞の培養を行い、目視による評価で袋状構造を有する組織の出来具合により++(袋状構造を有する組織が効率良く得られている)、+(袋状構造を有する組織の分化は起きているが剥離が多い、或いは、組織の生成が比較例1と同等で遅い)、−(培養過程での細胞剥離や細胞増殖による被覆ができない等の理由で組織が得られない)の3段階に分類した。
代表的な例の観察像を図12に示す。図12は、各寸法の環状細胞接着部を備える細胞培養基材上での培養18日目の観察像である。評価が「++」の場合(左列)は、3週間以内に袋状構造を有する組織が剥離して回収できた。
結果を図13に示す。なお図13には、実施例1での解析結果内容も含まれている。この結果は、環状細胞接着部の内径は好ましくは180〜880μm、より好ましくは180〜600μmであることを示し、環状細胞接着部の幅は好ましくは30〜400μmの範囲であり、より好ましくは40〜400μmの範囲であり、特に好ましくは60〜300μmであることを示す。
内径580μm、幅60μmの環状細胞接着部を備える細胞培養基材上での培養により得られた袋状構造を有する組織の観察像を図14に示す。
<実施例7>
細胞接着部の形状に関して下記の検討を行った。
検討した実施例の細胞培養基材における細胞接着部の形状は図15A、図15B、図15C、図15Dの通りである。
(15A)内寸が一辺280μm〜300μmの正方形で、幅50〜60μmの細胞接着部
(15B)内径280μm、幅60μmの環状で、周方向の1/8が欠落している、細胞接着部
(15C)内寸が長辺600μm、短辺300μmの長方形で、幅50μmの細胞接着部
(15D)内寸が一辺600μmの正方形で、幅50μmの細胞接着部
細胞培養基材の製造方法及び細胞培養方法は実施例1に記載の通りである。
前記(15A)〜(15D)の形状の細胞接着部を備える細胞培養基材を用いてEdom iPS細胞を培養した培養物の観察像を図16A、16B、16C、16Dにそれぞれ示す。いずれの形状の細胞接着部を備える細胞培養基材を用いた場合も、他の実施例と同様に短期間で袋状構造を有する組織が得られた。また(15B)の、周方向の1/8が欠落した環状の細胞接着部であっても、欠落した部分が増殖した細胞に被覆されるため、全周に亘り完全な環状の細胞接着部と同様に、袋状構造を有する組織が形成された。
以上の結果より、細胞接着部の形状には特に制限は無く、必ずしも円形である必要はないことが分かる。また、培養によって閉鎖系になればよく、必ずしも初期パターンが閉鎖パターンでなくても良い。さらに細胞非接着部を囲う長方形の形状の細胞接着部でも同様に腸構造物が得られたことから、細胞接着部で囲われる細胞非接着部は、縦横の長さが等しくなくても良く、細胞接着部で囲われる細胞非接着部が例えば楕円や半円形状であってもよいことが示唆された。
<比較例>
細胞培養基材における細胞接着部の形状について以下の検討を行った。
比較例4の細胞培養基材として、図17Aに示す、細胞非接着領域101と、細胞非接着領域101中に200μmの間隔で並行に配置された幅30〜50μmの直線状の複数の細胞接着領域102とを備える表面を有する細胞培養基材100を用いた。
比較例5の細胞培養基材として、図17Bに示す、細胞非接着領域101’と、細胞非接着領域101’中に配置された幅50μmで内径600μmの環の周方向の過半が欠落している弧形状の複数の細胞接着領域102’とを備える表面を有する細胞培養基材100’を用いた。
比較例4の細胞培養基材100及び比較例5の細胞培養基材100’の製造方法は実施例1に記載の通りである。
比較例4の細胞培養基材100及び比較例5の細胞培養基材100’上で、実施例1と同様の条件で細胞培養を行った。
図17Cに、比較例4の細胞培養基材100上での細胞培養の1日目と20日目の写真を示す。図17Cの20日目の上段の写真のように、隣接する一対の細胞接着領域102に接着して形成された組織が融合して1つの袋状の細胞構造物を形成する場合や、1つの細胞接着領域102に接着して形成された組織が単独で1つの袋状の細胞構造物を形成する場合があった。しかし、多くの場合は、図17Cの20日目の中段又は下段の写真のように、比較例4の細胞培養基材100上では袋状の細胞構造物は形成されなかった。
図17Dに、比較例5の細胞培養基材100’上での細胞培養の1日目と20日目の写真を示す。図17Dの20日目の写真のように、比較例5の細胞培養基材100’上では袋状の細胞構造物は形成されなかった。比較例5の細胞培養基材100’では、弧形状の細胞接着領域102’上に接着し増殖した組織は閉じた細胞構造物を形成することができなかったのに対し、図15Bに示す、細胞非接着部の中央部21を断続的に囲う細胞接着部22を備える細胞培養基材1上では、細胞接着部22に接着し増殖した組織は、細胞接着部22が欠落した部分を跨ぐように閉じた細胞構造物を形成することができた。すなわち細胞非接着部である中央部の周囲を囲うように細胞接着部が配置されており、前記中央部の周囲に目的の細胞凝集体が形成できる構造の細胞培養基材であれば、袋構造物を得る目的は達成することができると言える。
<実施例8>
実施例1では細胞非接着部をポリエチレングリコールの被覆により形成した。本実施例では、ポリエチレングリコールの代わりに他の化合物を用いて同様の効果が得られるかを検討した。そこで、内径280μm又は380μm、幅60μmの複数の環状細胞接着部を備える細胞培養基材を以下の方法で作製した。
基材としてガラス(170μm厚)を125mm四方に切り出し、前洗浄としてアルカリ洗浄液であるパーケム(パーカーコーポレーション社、PK−LCG23)で48時間以上浸漬し、純水でリンスした。その後、窒素雰囲気中で真空紫外線(172nm)を6分照射した。次に、環状パターンの形成プロセスとして、前記洗浄したガラス基材上に感光性ドライフィルムレジスト(ニチゴー・モートン社、NIT915)を100℃のホットプレー上でラミネートし、5分間加熱保持した。その後、上記寸法の環状パターンと同寸法の開口を有するフォトマスクを介してUV光(ブロードバンド)を200mJ照射した。炭酸ナトリウム水溶液で2分処理することによりレジストでのパターンを形成し、100℃で5分のベーク後に180℃5分のステップベークを行った。この状態で、15mm×25mm四方に切り出し、別途99.5%エタノールに0.5wt%Lipidure(登録商標、日油株式会社)を溶解させた溶液を準備し、これを、切り出した前記基材上に200μl程度キャストコートにより被覆した。一日間の自然乾燥後、AZリムーバー100(東京応化社)中に5分間超音波を印加した状態で前記基材を浸漬し、レジストを除去後、リンスを行った。最後に、EOG滅菌処理を22時間行った。こうして、ガラス基材の表面が露出した内径280μm又は380μm、幅60μmの複数の環状細胞接着部と、環状細胞接着部の内側及び外側の、ガラス基材の表面がLipidure(登録商標)で被覆された細胞非接着部とを有する基材を得た。この実施例での細胞培養基材は実施例1と同様に図1(B)に示すような断面構造を有する。
前記基材を実施例1と同じく15mm×25mmサイズに切断しiPS細胞を播種して検討した。
なお、前記基材上の細胞非接着部を形成するLipidure(登録商標)の被膜の膜厚を段差計で測定したところ、平均288nmであった。
図18に各基材上での培養物の培養1日目、7日目、11日目の観察像を示す。なお培養1日目と7日目の観察像の拡大倍率は、培養11日目の観察像よりも高倍率である。図19に、3週間培養した後に得られた袋状構造を有する組織を示す。
実施例1等では、細胞接着を抑制する化合物であるポリエチレングリコールにより基材表面を被覆して細胞非接着部とした。本実験の結果は、細胞接着を抑制する化合物として、ポリエチレングリコール以外の物質を用いた場合でも、ポリエチレングリコールと同様に細胞非接着部を形成することができることを示す。
<実施例9>
実施例6で用いた内径600μm又は800μm、幅100μm又は200mの計4種類の寸法の環状細胞接着部を複数備えた細胞培養基材を実施例1と同じ方法で作製し用意した。これらの4種の実施例の細胞培養基材のそれぞれを、5cm四方の正方形に切り出し、直径10cmの円形の細胞培養用ディッシュ内に設置した。
比較例として、比較例1の、直径1500μmの円形の細胞接着部を複数備えた細胞培養基材を用意し、同様に、5cm四方の正方形に切り出し、直径10cmの円形の細胞培養用ディッシュ内に設置した。
培養する細胞として、ヒトT細胞より樹立されたiPS細胞(ケー・エー・シー社)、及び、ヒト線維芽細胞より樹立されたiPS細胞(日本ジェネティックス社)を用いた。
上記の細胞を、上記の各細胞培養基材が設置された細胞培養用ディッシュに、1×107個播種し、実施例1に記載の条件で培養を行った。
培養60日目における袋状構造物の組織回収率は、細胞として上記のどちらの細胞を用いた場合でも、比較例の細胞培養基材上での培養では0.1%であったのに対して、4種の実施例の細胞培養基材上での培養では1.0%以上であり、後者で収率の向上が確認された。
図20の「実施例」の写真は、ヒト線維芽細胞より樹立されたiPS細胞(日本ジェネティックス社)を、内径600μm、幅100μmの寸法の環状細胞接着部を複数備えた細胞培養基材上で培養して形成された袋状の細胞構造物の代表的な写真である。図20の「比較例」の写真は、同細胞を、直径1500μmの円形の細胞接着部を複数備えた比較例1の細胞培養基材上で培養して形成された袋状の細胞構造物の代表的な写真である。なお図20に示す各写真は共焦点顕微鏡(Leica社)により撮影した。
以上の結果より異なる細胞種を培養する場合でも、既存の円形の細胞接着部を有する細胞培養基材上での培養と比較して、本開示の環状の細胞接着部を有する細胞培養基材上での培養では、袋状の細胞構造物を高い組織回収率で得ることができた。なお実施例1等と比較して本実施例での組織回収率は低い傾向であるが、比較例での組織回収率も低いことから、本実施例での組織回収率の低さは、細胞の分化誘導の性質に起因すると考えられる。
<実施例10>
細胞接着部の形状が異なる細胞培養基材上で癌細胞を培養し、袋状の細胞構造物(嚢胞組織)を誘導した実験結果を以下に示す。
細胞培養基材として、細胞接着部が以下の形状を有する細胞培養基材を用いた。
(形状1)内径280μm、幅60μmの環状の細胞接着部(図1参照)
(形状2)内径280μm、幅60μmの環の周方向の1/2が欠落している半円弧形の細胞接着部(図22参照)
(形状3)内寸が一辺280μmの正方形で、幅60μmの細胞接着部(図15A参照)
(形状4)内径280μm、幅60μmの環の周方向の1/8が欠落しているC字形の細胞接着部(図15B参照)
細胞培養基材の製造方法は実施例1に記載の通りである。
癌細胞として大腸上皮癌由来Caco−2細胞を用いた。細胞培養は次の手順で行った。
Caco−2細胞は10%のウシ胎児血清(FBS)および1%Glutamax(Life Technologies社)を含むDMEM培地(Sigma社)により直径10cmの細胞培養ディッシュ(Corning社)で増殖させた。80%ほどコンフルエントに達した段階で0.25%トリプシン−EDTA溶液(富士フイルム和光純薬工業社)で2分処理する事で細胞を剥離した。続いて、ガラス基材上に形状1〜4の細胞接着部を複数有する5cm四方の正方形の細胞培養基材を内底面上に設置した直径10cmの円形の細胞培養ディッシュに、剥離した細胞を実施例9と同じ細胞濃度で播種し、培養を行った。なお使用培地はCaco−2細胞の増殖時に使用した培地と同じであり、前記細胞培養基材への細胞接着用のプレコートは実施していない。培地は2〜3日に1回全量交換し、18日間細胞を維持して、袋状の細胞構造物の形成の有無を見た。
図23に、上記の形状1の細胞接着部を有する細胞培養基材上でCaco−2細胞を培養した培養18日目の培養物の観察像を示す。
図24に、上記の形状2の細胞接着部を有する細胞培養基材上でCaco−2細胞を培養した培養18日目の培養物の観察像を示す。
図25に、上記の形状3の細胞接着部を有する細胞培養基材上でCaco−2細胞を培養した培養18日目の培養物の観察像を示す。
図26に、上記の形状4の細胞接着部を有する細胞培養基材上でCaco−2細胞を培養した培養18日目の培養物の観察像を示す。
いずれの形状の細胞接着部を有する細胞培養基材を用いた場合も、Caco−2細胞から袋状の細胞構造物を誘導することができた。
なお図示しないが、比較例1で記載した直径1500μmの円形の細胞接着部を複数備えた細胞培養基材を用いた以外は同様の条件で大腸上皮癌由来Caco−2細胞を培養した場合は袋状の細胞構造物を得ることはできなかった。
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。