JP6865506B2 - 組み込みリフレッシュによるドリフト低減 - Google Patents

組み込みリフレッシュによるドリフト低減 Download PDF

Info

Publication number
JP6865506B2
JP6865506B2 JP2020535074A JP2020535074A JP6865506B2 JP 6865506 B2 JP6865506 B2 JP 6865506B2 JP 2020535074 A JP2020535074 A JP 2020535074A JP 2020535074 A JP2020535074 A JP 2020535074A JP 6865506 B2 JP6865506 B2 JP 6865506B2
Authority
JP
Japan
Prior art keywords
voltage
memory cell
read
memory
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535074A
Other languages
English (en)
Other versions
JP2021508908A (ja
Inventor
インノチェンツォ トルトレッリ
インノチェンツォ トルトレッリ
アゴスティーノ ピロヴァーノ
アゴスティーノ ピロヴァーノ
アンドレア レダエッリ
アンドレア レダエッリ
ファビオ ペッリッツェル
ファビオ ペッリッツェル
ホンメイ ワン
ホンメイ ワン
Original Assignee
マイクロン テクノロジー,インク.
マイクロン テクノロジー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー,インク., マイクロン テクノロジー,インク. filed Critical マイクロン テクノロジー,インク.
Publication of JP2021508908A publication Critical patent/JP2021508908A/ja
Application granted granted Critical
Publication of JP6865506B2 publication Critical patent/JP6865506B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0033Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0097Erasing, e.g. resetting, circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/52Protection of memory contents; Detection of errors in memory contents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0052Read process characterized by the shape, e.g. form, length, amplitude of the read pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Description

クロス・リファレンス
本特許出願は、2017年12月28日に出願され、「Drift Mitigation with Embedded Refresh」という名称のTortorelliらによる米国特許出願第15/857,125号の優先権を主張する、2018年12月11日に出願され、「Drift Mitigation with Embedded Refresh」という名称のTortorelliらによるPCT出願番号PCT/US2018/064928号の優先権を主張し、それらの各々は本願の譲受人に譲渡され、また、それらの各々は参照によりその全体が本明細書に明示的に組み込まれる。
以下は、一般にはメモリ・セルの論理状態を判断することに関し、より詳細には、組み込みリフレッシュによるドリフト低減に関する。
メモリ・デバイスは、コンピュータ、無線通信デバイス、カメラ、デジタル・ディスプレイなどの様々な電子デバイスにおいて情報を記憶するために広く使用されている。情報は、メモリ・デバイスの異なる状態をプログラミングすることによって記憶される。例えば、バイナリ・デバイスは、論理1または論理0によって示されることが多い、2つの状態を有する。他のシステムでは、3つ以上の状態が記憶されることがある。記憶された情報にアクセスするために、電子デバイスの構成要素が、メモリ・デバイスに記憶されている状態を読み取りまたはセンスすることができる。情報を記憶するために、電子デバイスの構成要素が、メモリ・デバイスに状態を書き込み、またはプログラムすることができる。
磁気ハード・ディスク、ランダム・アクセス・メモリ(RAM)、読み取り専用メモリ(ROM)、ダイナミックRAM(DRAM)、シンクロナス・ダイナミックRAM(SRAM)、強誘電RAM(FeRAM)、磁気RAM(MRAM)、抵抗変化型RAM(RRAM)、フラッシュ・メモリ、相変化メモリ(PCM)などを含む、様々な種類のメモリ・デバイスが存在する。メモリ・デバイスは、揮発性または不揮発性の場合がある。PCMなどの不揮発性メモリは、記憶された論理状態を外部電源がなくても長期間維持することができる。DRAMなどの揮発性メモリは、外部電源によって定期的にリフレッシュされないと時間の経過とともに記憶された状態を失うことがある。
メモリ・デバイスの改良には、一般に、他の指標の中でも特にメモリ・セル密度の高密度化、読み取り/書き込み速度の高速化、信頼性の向上、データ保持の向上、電力消費の低減、または製造コストの削減が含まれ得る。アクセス操作は、メモリ・セルの閾値電圧の変化(例えばドリフト)を生じさせることがある。そのような変化の結果、メモリ・セルのその後の読み取りに関する信頼性を低下させる可能性があり、場合によってはデータ損失を生じさせることがある。
本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応するメモリ・アレイの一実施例を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応する例示のメモリ・アレイを示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応する例示のタイミング図を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応する例示のタイミング図を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応する例示のタイミング図を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応するデバイスのブロック図を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応するメモリ・アレイを含むシステムのブロック図を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減方法を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減方法を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減方法を示す図である。 本開示の実施例による、組み込みリフレッシュによるドリフト低減方法を示す図である。
本開示の実施例によると、第1の極性を使用してメモリ・セルに書き込むことができ、第2の、異なる(例えば逆の)極性を使用してメモリ・セルを読み取ることができる。読み取り操作などのメモリ・セルに関するアクセス操作は、特定の論理状態を記憶するときにメモリ・セルの閾値電圧の変化を生じさせることがあり、そのような変化は後続の読み取り操作において記憶論理状態の読み取りの信頼性を低下させる可能性がある。実施例によっては、この変化の結果、メモリ・セルの完全な、または部分的なデータ損失が生じることがある。したがって、メモリ・セルの元の閾値電圧をリフレッシュすることによってメモリ・セルの閾値電圧の変化を防止または低減することができるプロセスが、操作(例えば読み取り操作)時の信頼性の向上を可能にすることができ、メモリ・セルのデータ損失を防止することができる。
第1の実施例では、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに第1の書き込み電圧を印加することができる。メモリ・セルは、メモリ記憶素子とセレクタ・デバイスとを含むことができるか、または他の実施例では、メモリ・セルは、(例えば、セレクタとメモリ素子の両方として機能するように構成可能な単一の自己選択物質を含む)自己選択メモリ・セルとすることができる。実施例によっては、(例えばメモリ・セルに論理状態を書き込む)書き込み電圧の印加後に、メモリ・セルに第1の読み取り電圧を印加することができる。第1の読み取り電圧は、例えば、第1の極性で印加することができ、書き込み電圧の印加後に印加することができる。実施例によっては、第1の極性は正極性とすることができ、他の実施例では、第1の極性は負極性とすることができる。メモリ・セルへの第1の読み取り電圧の印加後、メモリ・セルに第2の読み取り電圧(実施例によってはリフレッシュ操作を伴い得る)を印加することができる。第2の読み取り電圧は、第2の極性とは異なる第1の極性で印加することができ、実施例によっては、メモリ・セルの組成を前の状態に復帰させるかまたは復帰を促進することができる。例えば、第2の読み取り電圧の印加は、メモリ・セルの組成を前の書き込み操作と同じ状態に復帰させることができる。
別の実施例では、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに第1の書き込み電圧を印加することができる。上述のように、メモリ・セルは、メモリ記憶素子とセレクタ・デバイスとを含み得る。書き込み電圧の印加後、メモリ・セルに第1の読み取り電圧を印加することができる。第1の読み取り電圧は、例えば第1の極性で印加することができ、書き込み電圧後に印加することができる。実施例によっては、第1の極性は正極性とすることができ、他の実施例では、第1の極性は負極性とすることができる。メモリ・セルへの第1の読み取り電圧の印加後、第2の読み取り電圧(実施例によってはメモリ・セルのリフレッシュ操作を開始することができる)をメモリ・セルに印加することができる。第2の読み取り電圧は第1の極性とは異なる第2の極性で印加することができ、実施例によっては、メモリ・セルの組成の前の状態への復帰を支援することができる。第2の読み取り電圧の印加後、メモリ・セルに第1の極性で第3の読み取り電圧を印加することができる。第3の読み取り電圧は、メモリ・セルの組成を前の状態に復帰させるか、または復帰を促進することができる。例えば、第3の読み出し電圧の印加は、メモリ・セルの組成を書き込み操作後と同じ状態に復帰させることができる。
さらに別の実施例では、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに第1の書き込み電圧を印加することができ、メモリ・セルはメモリ記憶素子とセレクタ・デバイスとを含む。書き込み電圧の印加後、第1の極性でメモリ・セルに第1の読み取り電圧を印加することができる。第1の読み取り電圧は、書き込み電圧の後に印加することができる。実施例によっては、第1の極性は正極性とすることができ、他の例では、第1の極性は負極性とすることができる。メモリ・セルへの第1の読み取り電圧の印加後、メモリ・セルに第2の読み取り電圧(メモリ・セルのリフレッシュ操作を開始することができる)を印加することができる。第2の読み取り電圧は、第1の極性とは異なる第2の極性で印加することができ、実施例によっては、メモリ・セルの組成の前の状態への復帰を支援することができる。第2の読み取り電圧の印加後、第1の極性で第3の読み取り電圧をメモリ・セルに印加することができる。第3の読み取り電圧は、メモリ・セルの組成の前の状態への復帰をさらに支援することができる。第3の読み取り電圧の印加後、メモリ・セルに第4の電圧を印加することができ、第4の読み取り電圧はメモリ・セルの組成を前の状態に復帰させるか、または復帰を促進することができる。例えば、第3の読み取り電圧は、メモリ・セルの組成を書き込み操作後と同じ状態に復帰させることができる。
上記で概説した本開示のさらなる特徴について、以下に、組み込みリフレッシュによるドリフト低減に対応するメモリ・アレイの文脈で説明する。本開示の上記およびその他の特徴について、組み込みリフレッシュによるドリフト低減に関するタイミング図、装置図、システム図、およびフローチャートによってさらに図示し、参照しながら説明する。
図1に、本開示の様々な実施例による、組み込みリフレッシュによるドリフト低減に対応するメモリ・アレイ100を示す。メモリ・アレイ100は、電子メモリ装置とも呼ぶ場合がある。メモリ・アレイ100は、異なる論理状態を記憶するようにプログラム可能なメモリ・セル105を含む。各メモリ・セル105は、2つの論理状態を記憶するようにプログラム可能とすることができ、この2つの状態は論理0と論理1として示すことができる。場合によっては、メモリ・セル105は、3つ以上の論理状態を記憶するように構成することもできる。
実施例によっては、メモリ・セル105は、異なる論理状態を表す可変の設定可能電気抵抗を有する、メモリ素子またはメモリ記憶素子と呼ぶ場合がある物質部分を含み得る。例えば、結晶原子配位またはアモルファス原子配位の形態をとることができる(例えば、室温などの動作温度範囲にわたって結晶状態またはアモルファス状態を維持することができる)物質は、原子配位に応じて異なる電気抵抗を有し得る。この物質のより結晶質な状態(例えば、単結晶、またはほぼ結晶質の比較的大型の結晶粒子の集合)は、相対的に低い電気抵抗を有することができ、「セット」論理状態と呼ぶことができる。この物質のよりアモルファスな状態(例えば、完全にアモルファスな状態、またはほぼアモルファスである比較的小型の結晶粒子の何らかの分散)は、相対的に高い電気抵抗を有することができ、「リセット」論理状態と呼ぶことができる。したがって、このようなメモリ・セル105に印加された電圧の結果、メモリ・セル105のこの物質部分がより結晶質な状態であるかよりアモルファスな状態であるかに応じて異なる電流が流れ得る。したがって、メモリ・セル105への読み取り電圧の印加の結果として生じる電流の大きさを使用して、メモリ・セル105によって記憶されている論理状態を判断することができる。
実施例によっては、メモリ素子を、(例えばそれぞれのメモリ・セル105の3つ以上の論理状態をサポートする)異なる論理状態を表すことができる中間抵抗を結果として生じさせ得る結晶質領域とアモルファス領域との様々な比率(例えば原子秩序と原子乱れとの異なる度合い)で設定することができる。また、実施例によっては、材料またはメモリ素子が、アモルファス配位と2つの異なる結晶配位などの、3つ以上の原子配位を有することができる。本明細書では、異なる原子配位の電気抵抗に関連して説明するが、メモリ・デバイスは原子配位または原子配位の組み合わせに対応する記憶論理状態を判断するためにメモリ素子の他の何らかの特性を使用してもよい。
場合によっては、よりアモルファスな状態のメモリ素子は閾値電圧を伴うことができ、メモリ素子において閾値電圧を超えると、メモリ素子に電流が流れる。よりアモルファスな状態のメモリ素子に印加された電圧が閾値電圧より低い場合、メモリ素子には電流が流れることができない。場合によっては、より結晶質な状態のメモリ素子は閾値電圧を伴わず(例えば、閾値電圧ゼロを伴い得る)、メモリ素子が非ゼロ電圧であることに応答してメモリ素子を電流が流れることができる。以下で詳述するように、このようなメモリ素子を有するメモリ・セル105の論理状態は、メモリ素子を特定の原子配位または原子配位の組み合わせの形成を支援する温度プロファイルまで経時的に加熱することによって設定することができる。したがって、実施例によっては、メモリ・セル105はメモリ記憶素子とセレクタ・デバイスとを含み得る。他の実施例では、メモリ・セル105は、単一の、自己選択物質を含む自己選択メモリ・セルとすることができる。
メモリ・アレイ100は、2次元(2D)メモリ層(例えば「階層」)が上下に重なり合って形成された3次元(3D)メモリ・アレイとすることができる。このような層の配置は、2Dアレイと比較して1つのダイ上または基板上に形成可能なメモリ・セル105の数を増加させることができ、それによって、製造コストを削減することができるか、またはメモリ・アレイのパフォーマンスを向上させることができるか、あるいはその両方が可能になる。図1に示す実施例によると、メモリ・アレイ100はメモリ・セル105の2つの階層を含み、したがって、3Dメモリ・アレイとみなすことができる。本開示による他の実施例またはメモリ・アレイ100は、単一の層または3層以上の層を有してもよい。実施例によっては、メモリ・セル105が階層間で互いにほぼ位置合わせされてメモリ・セル・スタック145を形成することができるように、各階層が位置合わせまたは位置決めされてもよい。
メモリ・アレイ100のこの実施例では、メモリ・セル105の各行が複数の第1のアクセス線110(例えばワード線)のうちの1つに接続され、メモリ・セル105の各列が第2の複数のアクセス線115(例えばビット線)のうちの1つに接続される。アクセス線110および115は、アクセス線のアレイを形成するように互いにほぼ直角とすることができる。図1に示すように、メモリ・セル・スタック145の2つのメモリ・セル105は、別々のアクセス線110によってアクセスすることができ、共通のアクセス線115を共用することができる。すなわち、アクセス線115を、上層メモリ・セル105−aの下部電極と下層メモリ・セル105−bの上部電極とに結合(例えば電子的に連通させる)することができる。他の構成も可能である。例えば、第3の層がアクセス線110を下部層と共用してもよい。
一般に、アクセス線110とアクセス線115との交差点に1つのメモリ・セル105を配置する(例えば間に結合する)ことができる。この交差点を、メモリ・セル105のアドレスと呼ぶことがある。目標メモリ・セル105は、通電されたアクセス線110と通電されたアクセス線115との交差点に位置するメモリ・セル105とすることができる。言い換えると、アクセス線110とアクセス線115との交差点にあるメモリ・セル105に読み取りまたは書き込みを行うために、アクセス線110とアクセス線115とを通電またはその他の方法で選択することができる。同じアクセス線110または115と電子的に連通する(例えば接続されている)他のメモリ・セル105を、非目標メモリ・セル105と呼ぶことがある。
実施例によっては、メモリ・セル105とアクセス線110の間に、またはメモリ・セル105とアクセス線115との間に、電極を結合することができる。電極という用語は、構成要素間の導体またはその他の電気的インターフェースを指すことがあり、場合によっては、メモリ・セル105との電気接点として採用することができる。電極は、メモリ・アレイ100の素子間または構成要素間に導電経路を設けるトレース、配線、導線、導電層、導電パッドなどとすることができる。
アクセス線110および115をアクティブにするかまたはその他の方法で選択することによって、メモリ・セル105に対して読み取りおよび書き込みなどの操作を行うことができる。ワード線、ビット線、ディジット線、またはこれらに類する表現は、理解または作用を損なわずに互いに置き換えて使用可能である。アクセス線110またはアクセス線115をアクティブにすることまたは選択することは、それぞれのアクセス線に電圧を印加することを含み得る。アクセス線110およびアクセス線115は、金属(例えば、銅(Cu)、アルミニウム(Al)、金(Au)、タングステン(W)など)、金属合金、炭素、導電性にドープされた半導体、またはその他の導電物質、合金、化合物などの導電物質からなり得る。
アーキテクチャによっては、セルの論理記憶部(例えばキャパシタまたは抵抗変化型メモリ素子)は、選択構成要素によってアクセス線から電気的に分離することができる。例えば、アクセス線110は、そのような選択構成要素(例えばメモリ・セル105の選択構成要素)に接続可能であり、制御することができる。実施例によっては、選択構成要素はトランジスタとすることができ、アクセス線110は、トランジスタのゲートに接続することができる。したがって、アクセス線110をアクティブにすることによって、メモリ・セル105の論理記憶部とそれに対応するアクセス線115との間に電気接続または閉回路を生じさせることができる。次に、メモリ・セル105の読み取りまたは書き込みのためにアクセス線115にアクセスすることができる。メモリ・セル105を選択した後、その結果の信号を使用して、メモリ・セル105によって記憶されている論理状態を判断することができる。例えば、メモリ・セル105に電圧を印加することができ、その結果の電流を使用して、メモリ・セル105の相変化物質の原子配位(例えば抵抗状態)を識別することができる。場合によっては、第1の論理状態が、無電流または無視可能な微小電流に対応してよく、第2の論理状態が、何らかの有限の電流に対応してもよい。
メモリ・セル105へのアクセスは、行デコーダ120と列デコーダ130とによって制御することができる。例えば、行デコーダ120は、メモリ・コントローラ140から行アドレスを受信することができ、受信した行アドレスに基づいて適切なアクセス線110をアクティブにするかまたはその他の方法で選択することができる。同様に、列デコーダ130が、メモリ・コントローラ140から列アドレスを受信し、適切なアクセス線115をアクティブにするかまたはその他の方法で選択することができる。
メモリ・コントローラ140は、様々な構成要素(例えば、行デコーダ120、列デコーダ130およびセンス構成要素125)を介して、メモリ・セル105の操作(例えば、読み取り操作、書き込み操作、再書き込み操作、リフレッシュ操作、または放電操作)を制御することができる。場合によっては、行デコーダ120、列デコーダ130、およびセンス構成要素125のうちの1つまたは複数が、メモリ・コントローラ140と同一の場所にあってもよい。メモリ・コントローラ140は、所望のアクセス線110とアクセス線115とをアクティブにするために、行アドレス信号と列アドレス信号とを生成することができる。メモリ・コントローラ140は、メモリ・アレイ100の動作中に使用される様々な電圧または電流も生成または制御することができる。例えば、メモリ・コントローラ140は、1つまたは複数のメモリ・セル105にアクセスした後、アクセス線110またはアクセス線115に放電電圧を印加することができる。
一般に、本開示による印加電圧、電流または電荷の振幅、形状または存続期間は調整または変更可能であり、メモリ・アレイ100の操作において、記載されている様々な操作ごとに異なり得る。また、メモリ・アレイ100内の1つ、複数またはすべてのメモリ・セル105が同時にアクセスすることができる。例えば、すべてのメモリ・セル105またはメモリ・セル105のグループが単一の論理状態に設定されるリセット操作時に、メモリ・アレイ100の複数またはすべてのメモリ・セル105にアクセスすることができる。
メモリ・セル105の記憶された状態を判断するためにメモリ・セル105がアクセスされると、メモリ・セル105をセンス構成要素125によって読み取る(例えばセンスする)ことができる。例えば、メモリ・セル105にアクセス後、メモリ・セル105の論理記憶部が放電するか、またはその他の方法によりそれに対応するアクセス線115を介して電流を流れさせることができる。このような電流は、メモリ・アレイ100の1つまたは複数の電圧源(図示せず)からメモリ・セル105にバイアスをかけるかまたは電圧を印加することによって生じさせることができ、このような電圧源はセンス構成要素125または他の何らかの構成要素(例えばバイアス構成要素)の一部とすることができる。実施例によっては、メモリ・セル105の放電によって、アクセス線115の電圧に変化を生じさせることができ、メモリ・セル105の記憶された状態を判断するためにそれをセンス構成要素125が基準電圧と比較することができる。実施例によっては、(例えば対応するアクセス線110とアクセス線115とを使用して)メモリ・セル105に電圧を印加することができ、その結果の電流の存在は、印加電圧と、メモリ・セル105のメモリ素子の抵抗状態とに依存し得る。
場合によっては、メモリ・セル105を読み取るときに、複数の電圧(例えば読み取り操作の複数の電圧)を印加することができる。例えば、印加された読み取り電圧の結果、電流が流れなかった場合、センス構成要素125によって電流が検出されるまで他の読み取り電圧を印加することができる。電流の流れを生じさせた読み取り電圧を判定することによって、メモリ・セル105の記憶論理状態を判断することができる。場合によっては、センス構成要素125によって電流の流れが検出されるまで、読み取り電圧の大きさを徐々に上昇させてもよい。他の場合には、電流が検出されるまで、所定の読み取り電圧を順次に印加してもよい。同様に、メモリ・セル105に読み取り電流を印加することができ、読み取り電流を生じさせるための電圧の大きさはメモリ・セル105の電気抵抗または合計閾値電圧に依存し得る。
センス構成要素125は、読み取り信号の差(例えば、メモリ・アレイ100の構成要素間で共用される読み取り電圧、読み取り電流または読み取り電荷)を検出し、増幅するために、様々なトランジスタまたは増幅器を含むことができ、これを実施例によってはラッチと呼ぶことがある。センス構成要素125は、読み取り操作に応答してメモリ・セル105を流れる電流または電荷をセンスし、メモリ・セル105によって記憶されている論理状態を示す出力信号を出力するように構成可能である。センス構成要素125は、メモリ・アレイ100を含むメモリ・デバイスに組み込むことができる。例えば、センス構成要素125は、メモリ・アレイ100に結合可能なメモリの他の読み取りおよび書き込み回路、デコーディング回路、またはレジスタ回路とともに組み込むことができる。実施例によっては、メモリ・セル105の検出された論理状態は、列デコーダ130を介して出力135として出力することができる。実施例によっては、センス構成要素125は列デコーダ130または行デコーダ120の一部であってもよい。実施例によっては、センス構成要素125は、列デコーダ130または行デコーダ120と接続されるかまたはその他の方法で電子的に連通していてもよい。
実施例によっては、第1の論理状態(例えば、より結晶質の原子配位に伴うセット状態)を記憶するメモリ素子を有するメモリ・セル105に読み取りパルス(例えば読み取り電圧)が印加され、その読み取りパルスがメモリ・セル105の閾値電圧を超えるため、メモリ・セルは電流を通す。したがって、センス構成要素125は記憶されている論理状態の判断の一端としてメモリ・セル105を流れる電流を検出することができる。第2の論理状態(例えば、よりアモルファスな原子配位に伴うリセット状態)を記憶するメモリ素子を有するメモリ・セル105に読み取りパルスの印加が行われると、その読み取りパルスがメモリ・セルの閾値電圧を超えないため、メモリ・セルは電流を通すことができない。したがって、センス構成要素125は、記憶された論理状態の判断の一端としてメモリ・セル105の電流をほとんどまたはまったく検出することができない。
実施例によっては、メモリ・セル105によって記憶されている論理状態をセンスするために閾値電流を定義することができる。閾値電流は、メモリ・セル105が読み取りパルスに応答して閾値に達しない場合にメモリ・セル105を流れることができる電流を上回るが、メモリ・セル105が読み取りパルスに応答して閾値を超えるとメモリ・セル105を流れると見込まれる電流以下に設定することができる。例えば、閾値電流は、関連付けられたアクセス線110または115の漏れ電流よりも高くすることができる。実施例によっては、メモリ・セル105によって記憶されている論理状態は、読み取りパルスによって駆動された電流の結果として生じる(例えばシャント抵抗の)電圧に基づいて判断することができる。例えば、結果の電圧を基準電圧と比較してもよく、基準電圧よりも低い結果の電圧が第1の論理状態に対応し、基準電圧よりも高い結果の電圧が第2の論理状態に対応してもよい。
メモリ・アーキテクチャによっては、メモリ・セル105にアクセスすると、記憶されている論理状態を劣化させるかまたは破壊する可能性があり、メモリ・セル105に元の論理状態を戻すように再書き込みまたはリフレッシュ操作が行われることがある。例えば、DRAMまたはFeRAMでは、メモリ・セル105のキャパシタが、センス操作時に部分的にまたは完全に放電され、それによって記憶論理状態を破損させることがある。例えば、PCMでは、センス操作がメモリ・セル105の原子配位に変化を生じさせ、それによってメモリ・セル105の抵抗状態を変化させることがある。したがって、実施例によっては、メモリ・セル105に記憶されている論理状態をアクセス操作後に再書き込みしてもよい。また、単一のアクセス線110または115をアクティブにすると、その結果としてそのアクセス線110または115に結合されているすべてのメモリ・セル105が放電することがある。したがって、アクセス操作のアクセス線110または115に結合されている一部または全部のメモリ・セル105(例えば、アクセスされた行のすべてのセルまたはアクセスされた列のすべてのセル)を、アクセス操作後に再書き込みしてもよい。
実施例によっては、メモリ・セル105の読み取りは非破壊的な場合がある。すなわち、メモリ・セル105が読み取られた後でメモリ・セル105の論理状態を再書き込みしなくてもよい。例えば、PCMなどの不揮発性メモリでは、メモリ・セル105にアクセスしても論理状態を破壊せず、したがって、メモリ・セル105はアクセス後の再書き込みを必要としない場合がある。しかし、様々な実施例では、アクセス操作がない場合に、メモリ・セル105の論理状態のリフレッシュが必要な場合も不要な場合もあり得る。例えば、記憶論理状態を維持するために、適切な書き込みパルスまたはリフレッシュ・パルスを印加することによって、メモリ・セル105によって記憶されている論理状態が周期的にリフレッシュされてもよい。メモリ・セル105のリフレッシュにより、電荷漏洩またはメモリ素子の原子配位の経時的変化による読み取り阻害エラーまたは論理状態破損を低減するかまたはなくすことができる。
メモリ・セル105は、該当するアクセス線(例えばアクセス線110およびアクセス線115)をアクティブにするかまたはその他の方法で選択することによって、論理状態を書き込むことができる。言い換えると、メモリ・セル105に対応するアクセス線110および115を介した書き込み操作により、メモリ・セル105に論理値を記憶することができる。メモリ・セル105に書き込まれるデータを列デコーダ130または行デコーダ120が(例えば入力/出力135を介して)受け付けることができる。PCMの場合、メモリ・セル105のメモリ素子に電流を通してメモリ素子を加熱することによってメモリ・セル105に書き込むことができる。メモリ・セル105に電流を印加するために使用される電圧は、メモリ素子の様々な閾値電圧と、場合によっては選択構成要素に付随する閾値電圧とに依存し得る。
実施例によっては、メモリ・セルは、自己選択記憶物質を含むことができる。すなわち、メモリ・セルは、セレクタとメモリ素子の両方として機能するように構成可能な単一の自己選択物質を含み得る。場合によっては、自己選択メモリは、一例として、位相変化を受けないカルコゲナイド物質であるかまたはそれを含むことができる。自己選択メモリを含むメモリ・セルの場合、メモリ・セル105は、メモリ・セル105に異なる極性のプログラミング・パルスを印加することによってプログラムすることができる。例えば、論理「1」状態をプログラムするために第1の極性を印加することができ、論理「0」状態をプログラムするために第2の極性を印加することができる。第1の極性と第2の極性とは互いに逆の極性とすることができる。
自己選択メモリ記憶素子を有するメモリ・セル105を読み取るために、メモリ・セル105に電圧を印加し、その結果の電流、または電流が流れ始める閾値電圧が、論理「1」状態または論理「0」状態を表すことができる。実施例によっては、セルの閾値電圧は、セルをプログラムするために使用される極性に依存し得る。例えば、1つの極性でプログラムされた自己選択メモリ・セルは、特定の抵抗特性、したがって1つの閾値電圧を有することができる。さらに、その自己選択メモリ・セルを、セルの異なる抵抗特性、したがって異なる閾値電圧を結果として生じさせることが可能な、異なる極性でプログラムすることができる。したがって、自己選択メモリ・セルをプログラムすると、セル内の元素が分離してイオン移動を生じさせ得る。イオンは、与えられたセルの極性に応じて特定の電極に向かって移動し得る。例えば、自己選択メモリ・セルにおいて、一部のセルが負電極に向かって移動し得る。次に、そのメモリ・セルに電圧を印加してイオンがそこに向かって移動した電極をセンスすることによって、そのメモリ・セルを読み取ることができる。
場合によっては、メモリ・セル105に書き込むときに複数の電圧を印加することができる。例えば、異なる論理状態に関連付けられた異なる原子配位を有するメモリ素子に書き込む場合、メモリ・セルを流れる関係する電流によって生じる加熱が1つの原子配位から別の原子配位への遷移を生じさせるように、書き込み電圧を印加することができる。一実施例では、より結晶質な原子配位を伴う論理状態を書き込むために、書き込み操作の第1の書き込み電圧が、まず不規則な原子配位の形成を伴い(例えば、材料を比較的ランダムな、場合によっては不安定な原子分布に全体的に「溶融させる」のに比較的高い温度を支援する)、書き込み操作の第2の書き込み電圧が、より結晶質な原子配位の形成を伴う(例えば、相対的に規則的な原子配位の安定した形態の核生成と成長とを支援する相対的に中程度の温度を支援する)ことができる。
関連付けられたアクセス線110またはアクセス線115のうちの一方または両方に書き込み電圧を印加することによって、メモリ・セル105に論理状態を書き込むことができる。例えば、メモリ・セル105に第1の極性(例えば正極性)を有する書き込み電圧を印加することによって、メモリ・セル105に論理状態を書き込むことができる。第1の極性を有する書き込み電圧を印加するために、第1の電圧(例えば正電圧)を関連付けられたアクセス線115に印加することができ、関連付けられたアクセス線110は接地されるか、またはその他の方法でより低い電圧または負電圧を有し得る。他の実施例では、メモリ・セル105に負極性などの異なる極性を有する書き込み電圧を印加することによって、メモリ・セル105に論理状態を書き込むことができる。この異なる極性の書き込み電圧を印加するために、第2の電圧(例えば正電圧)をアクセス線110に印加することができ、アクセス線115は接地されるかまたはその他の方法でより低い電圧または負電圧を有し得る。メモリ・セル105の書き込み後、メモリ・セル105の記憶された状態を読み取るために後続の読み取り電圧を印加することができる。
本開示の実施例によると、書き込み操作はメモリ・セル105にわたり異なる電圧極性を有する異なる部分に分割することができる。実施例によっては、メモリ・セル105に第1の極性を有する第1の書き込み電圧を印加することと、メモリ・セル105に第1の極性とは異なる極性(例えば、逆極性)である第2の極性を有する第2の書き込み電圧を印加することとを含む書き込み操作を行うことによって、メモリ・セル105に論理状態を書き込むことができる。実施例によっては、このような書き込み操作は、書き込み操作時にアクセス線110とアクセス線115との間で電圧印加の極性を切り替えることによって、対応するアクセス線110と対応するアクセス線115とを介してメモリ・セル105に複数の書き込み電圧を印加することを含み得る。一実施例では、本開示による書き込み操作が、アクセス線110における電圧がアクセス線115における電圧より高い状態で第1の書き込み電圧を印加することと、その後、アクセス線110における電圧がアクセス線115における電圧よりも低い状態で第2の書き込み電圧を印加することとを含み得る。別の実施例では、本開示による書き込み操作は、アクセス線110の電圧でアクセス線115の電圧より低い第1の書き込み電圧を印加し、その後、アクセス線115の電圧より高いアクセス線110の電圧で第2の書き込み電圧を印加することを含み得る。逆の極性または別様に異なる極性を有する少なくとも2つの書き込み電圧を印加することを含む書き込み操作を行うことで、同じ極性の書き込み電圧のみを含む書き込み操作よりも高速の書き込み操作を支援することができる。
メモリ・セル105への書き込み操作(例えば、メモリ・セル105に単一の極性の1つまたは複数の電圧を印加する書き込み操作、またはメモリ・セル105に複数の極性の1つまたは複数の電圧を印加する書き込み操作)の後、メモリ・セル105の記憶された状態を読み取るために読み取り操作を行うことができる。実施例によっては、読み取り操作は、メモリ・セル105に異なる極性を有する異なる読み取り電圧を印加することを含み得る。実施例によっては、メモリ・セル105は、メモリ・セル105に、正極性または負極性とすることができる第1の極性を有する第1の読み取り電圧を印加することを含み得る。実施例によっては、第1の読み取り電圧は、前の書き込み操作の書き込み電圧よりも小さい大きさを有する。第1の読み取り電圧の印加後、読み取り操作はメモリ・セル105に第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することをさらに含む。第2の極性は、第1の極性とは逆の極性、または別様に第1の極性とは異なる極性とすることができる。したがって、実施例によっては、第1の極性はメモリ・セル105にわたって正極性とすることができ、第2の極性は負極性とすることができる。他の実施例では、メモリ・セル105の第1の極性は負極性とすることができ、第2の極性は正極性とすることができる。逆の極性または別様に異なる特性を有する少なくとも2つの読み取り電圧を印加することを含む読み取り操作を行うことで、同じ極性の読み取り電圧のみを含む読み取り操作と比較して、メモリ・セル105にわたる電圧分布の変化の低減を支援することができる。
実施例によっては、上述のようにメモリ・コントローラ140は、(アクセス線110または115をイネーブルにするか、またはその他の方法で1つまたは複数の電圧源をメモリ・セル105に結合することによって)読み取り電圧と書き込み電圧とを印加するように動作可能とすることができる。例えば、メモリ・コントローラ140は、異なる極性の書き込み電圧を含む書き込み操作を行うように動作可能とすることができる。別の言い方をすれば、メモリ・コントローラ140は、まず、メモリ・セル105に第1の極性を有する第1の書き込み電圧を印加し、その後、第1の書き込み電圧の印加後、メモリ・セル105に第2の極性(例えば第1の極性とは逆の極性)を有する第2の書き込み電圧を印加するように動作可能とすることができる。実施例によっては、メモリ・コントローラ140は、異なる極性の読み取り電圧を含む読み取り操作を実行するように動作可能とすることができる。別の言い方をすると、メモリ・コントローラ140は、まず、メモリ・セル105に第1の極性を有する第1の読み取り電圧を印加し、その後、第1の読み取り電圧の印加後にメモリ・セル105に第2の極性(例えば、第1の極性とは逆の極性)を有する第2の読み取り電圧を印加するように動作可能とすることができる。メモリ・コントローラ140による異なる極性の読み取り電圧の印加により、センス構成要素125が異なる極性の電圧の印加に少なくとも部分的に基づいてメモリ・セル105の論理状態を判断しやすくすることができる。実施例によっては、メモリ・コントローラ140は、メモリ・セル105の論理状態を判断するためにセンス構成要素125を起動するか、またはセンス構成要素125に標識を送信することができる。
本開示による様々な実施例では、異なる電圧極性を有する読み取り操作または書き込み操作を支援するために、異なるアクセス線または異なる電圧源を使用することができる。例えば、読み取り操作または書き込み操作の第1の電圧がメモリ・セルを通る第1の方向に印加され、読み取り操作または書き込み操作の第2の電圧が第2の、異なる方向(例えば直交方向)に印加されるように、メモリ・セル105に第3のアクセス線(図示せず)を結合することができる。したがって、本開示による異なる極性を有する電圧の印加は、逆極性に限定される必要はない。逆に、実施例によっては、そのような電圧の印加は、2Dまたは3D座標系の異なる方向にメモリ・セル105に電界が印加されることをより広く指すことができる。
図2に、本開示の様々な実施例による、例示のメモリ・アレイ200を示す。メモリ・アレイ200は、図1に関連したメモリ・アレイ100の実施例とすることができる。メモリ・アレイ200は、複数のメモリ・セル(例えばメモリ・セル105−a)と、複数のアクセス線110(例えばアクセス線110−a)と、複数のアクセス線110(例えばアクセス線115−a)とを含み、これらは図1を参照しながら説明したメモリ・セル105、アクセス線110、およびアクセス線115の実施例とすることができる。場合によっては、複数のメモリ・アレイ200を上下に積層することによって3Dメモリ・アレイが形成されてもよい。2つの積層アレイは、実施例によっては、図1を参照しながら説明したように各階層がアクセス線110またはアクセス線115を共用することができるように共通の導線を有し得る。
メモリ・アレイ200のこの実施例では、メモリ・セル105−aが、本明細書に記載のような相変化メモリ素子の一実施例とすることができるメモリ素子220を含む。メモリ・セル105−aは、上部電極と呼ぶこともある(例えばメモリ素子220とアクセス線115−aとの間に結合された)第1の電極205−aと、下部電極と呼ぶこともある(例えばメモリ素子220とアクセス線110−aとの間に結合された)第2の電極210も含む。実施例によっては、メモリ・セル105−aは、セレクタ・デバイス215も含み得る。そのような実施例では、メモリ・セル105−aは、中央電極と呼ぶこともある(例えばメモリ素子220とセレクタ・デバイス215との間に結合された)電極205−cを含み得る。他の実施例(図示せず)では、メモリ・セル105−aは、それぞれ下部電極と上部電極の間に自己選択メモリを含み得る。メモリ・セル105−aは、自己選択メモリと、アクセス線110−aまたは115−aのうちの一方との間に結合することができる。
本開示の実施例によると、メモリ素子220の原子配位(例えば電気抵抗)を設定することによってメモリ・セル105−aにより論理状態を記憶することができる。場合によっては、この設定は、メモリ・セル105−aを加熱する(例えばメモリ素子220を加熱する)ように、書き込み操作に伴う電流をメモリ・セル105−aに流すことを含むことができ、これにより、メモリ素子220において異なる原子配位を全面的にまたは部分的に形成する(例えばアモルファス相を形成するか、結晶相を形成するか、またはアモルファス相と結晶相との組み合わせを形成する)ことができる。
メモリ・アレイ200は、クロスポイント・アーキテクチャと呼ばれることがある。また、メモリ・アレイ200はピラー構造とも呼ばれることもあり、ピラーは第1の導線(例えばアクセス線110−a)と第2の導線(例えばアクセス線115−a)とに接触可能である。例えば、図2に示すように、ピラーは第2の電極210(例えば下部電極)と、セレクタ・デバイス215と、第3の電極205−a(例えば中央電極)と、メモリ素子220と、第1の電極205(例えば上部電極)とを含み得る。このようなピラー・アーキテクチャは、他のメモリ・アーキテクチャと比べて、比較的高密度のデータ記憶をより低い製造コストで提供することができる。
実施例によっては、メモリ・セル105−aにアクセスする前に、アクセス線110−aとアクセス線115−aとを抑止電圧(例えば、メモリ・セル放電を防止するかまたはその他の方法で制限する電圧)に維持してもよい。例えば、アクセス線110−aとアクセス線115−aの両方を、接地または仮想接地と同等の抑止電圧に維持することができる(例えば、アクセス線110−aとアクセス線115−aとを接地電圧源または仮想接地電圧源に結合してもよい)。メモリ・セル105−aにアクセスするために、アクセス線110−aまたはアクセス線115−aの一方または両方に電圧を印加することによってこれらのアクセス線に通電することができ、目標メモリ・セル105−aに印加された結果の電圧はセル・アクセス電圧と呼ばれることがある。実施例によっては、アクセス線110−aとアクセス線115−aとに印加されるアクセス電圧は、アクセス線110−aとアクセス線115−aとに印加される電圧の大きさがメモリ・セル105−aにわたって加法的となるように、接地または仮想接地と比較して逆の極性を有することができる。
実施例によっては、アクセス線110−aまたはアクセス線115−aの一方または両方に電圧を印加することによって、メモリ・セル105−aに書き込み電圧を印加することができる。書き込み電圧は、メモリ・セル105−aに正極性または負極性で印加することができる。例えば、正極性で書き込み電圧を印加する場合、アクセス線115−aに正電圧を印加することができ、アクセス線110−aを接地またはそうでなければアクセス線115−aに印加される正電圧より低い電圧とすることができる。負極性で書き込み電圧を印加する場合、アクセス線110−aに正電圧を印加することができ、アクセス線115−aを接地またはそうでなければアクセス線110−aに印加される正電圧よりも低くすることができる。
実施例によっては、抑止電圧は、中間電圧(例えば中間バイアス電圧)とすることができる。実施例によっては、仮想接地を基準にして正のアクセス線アクセス電圧と負のアクセス線アクセス電圧とを印加する代わりに、このような中間電圧を基準にしてアクセス線110または115に電圧を印加してもよい。例えば、メモリ・アレイ200は、正電圧源(例えば接地または仮想接地を基準として)のみを使用して動作させることができ、中間電圧は正電圧源と接地または仮想接地との間とすることができる。
実施例によっては、アクセス線110またはアクセス線115に印加される電圧は、メモリ・セル105−aのアクセス操作の前に中間電圧に維持されてもよい。例示のアクセス操作時に、アクセス線115−aに印加される電圧を(例えば正電源レールに)上昇させ、一方、アクセス線110−aに印加される電圧を(例えば仮想接地に)降下させることができ、それによってメモリ・セル105−aに(例えば正極性の)電圧を生成してもよい。
場合によっては、メモリ素子220と導線(例えばアクセス線110−aまたはアクセス線115−aのうちの少なくとも一方)との間にセレクタ・デバイス215を直列接続することができる。例えば、メモリ・アレイ200に図示するように、セレクタ・デバイス215を第2の電極210(例えば下部電極)と第3の電極250−a(例えば中間電極)との間に配置する。したがって、セレクタ・デバイス215はメモリ素子220とアクセス線110−aとの間に直列に配置(例えば間に結合)される。他の構成も可能である。例えば、メモリ素子220とアクセス線115−aとの間にセレクタ・デバイス215を直列に配置してもよい。他の実施例では、セレクタ・デバイス215は、メモリ・セル105の一部ではなく、メモリ・セル105とアクセス線(例えばアクセス線110または115)の間に他の方法で結合されてもよい。
セレクタ・デバイス215は、特定のメモリ・セル105を選択するのを助けることができ、または選択されたメモリ・セル105に隣接した非選択メモリ・セル105に漂遊電流が流れるのを防ぐ役割を果たすことができる。セレクタ・デバイス215は、非目標メモリ・セル105のバイアス(例えば電圧)を低減することもできる。例えば、セレクタ・デバイス215は、閾値電圧が満たされるかまたは超えられるとセレクタ・デバイス215を電流が流れるような閾値電圧を有し得る。
セレクタ・デバイス215は、金属・絶縁体・金属(MIM)接合、またはオボニック閾値スイッチ(OTS)、金属・半導体・金属(MSM)スイッチなどの電気的に非線形の構成要素(例えば非オーム構成要素)とすることができるが、ダイオードなどの他の種類の2端子選択構成要素であってもよい。場合によっては、セレクタ・デバイス215は、カルコゲナイド膜、例えばセレン(Se)とヒ素(As)とゲルマニウム(Ge)との合金を含む。セレクタ・デバイス215は、第3の電極205−aなどの電極によってメモリ素子220から物理的に分離することができる。したがって、第3の電極205−aは電気的に浮遊状態とすることができ、すなわち、電気的接地または仮想接地、または電気的に接地可能な他の構成要素に直接接続されなくてもよいため、第3の電極205−aで電荷が蓄積することができる。
メモリ・アレイ200は、材料形成と除去の様々な組み合わせ(例えばアディティブ法およびサブトラクティブ法)によって形成することができる。例えば、アクセス線110もしくは115、電極205、セレクタ・デバイス215、またはメモリ素子220に対応する材料の層を堆積させることができる。次に、材料をメモリ・アレイ200に図示するピラー構造などの所望のフィーチャを形成するように選択的に除去することができる。例えば、フォトリソグラフィを使用してフォトレジストをパターン形成することによってフィーチャを画定することができ、次にエッチングなどの技術によって材料を除去することができる。次に、例えば、材料の層を堆積させ、メモリ・アレイ200に図示する線構造を形成するように選択的にエッチングすることによって、アクセス線115を形成することができる。場合によっては、電気的絶縁領域または層を形成または堆積させてもよい。電気的絶縁領域は、シリコン酸化物、シリコン窒化物などの酸化物材料または窒化物材料、またはその他の電気的絶縁材料を含み得る。
メモリ・アレイ200の材料または構成要素を形成するために様々な技法を使用することができる。これには、例えば、化学気相成長(CVD)、有機金属化学気相成長(MOCVD)、物理気相成長(PVD)、スパッタ堆積、原子層堆積(ALD)、または分子線エピタキシ(MBE)、その他の薄膜成長技法が含まれる。いくつかの技法を使用して材料を除去することができ、これには、例えば、化学エッチング(「ウェット・エッチング」とも呼ばれる)、プラズマ・エッチング(「ドライ・エッチング」とも呼ばれる)、または化学機械平坦化が含まれ得る。
上述のように、メモリ・アレイ200のメモリ・セル105は、設定可能原子配位(例えば設定可能抵抗)を伴うメモリ素子220を含み得る。設定可能抵抗をサポートする材料には、例えば、金属酸化物、カルコゲナイドなどが含まれ得る。カルコゲナイド物質は、硫黄(S)、テルル(Te)、またはセレン(Se)元素のうちの少なくとも1つを含む物質または合金である。メモリ素子220の設定可能抵抗をサポートするために多くのカルコゲナイド合金を使用することができる。例えば、メモリ素子220は、ゲルマニウム−アンチモン−テルル合金(Ge−Sb−Te)を含み得る。ここで明示的に記載していないその他のカルコゲナイド合金も、メモリ素子220において採用可能である。
PCMシステムは、特定の相変化物質における原子配位間の(例えば、より結晶質な状態とよりアモルファスな状態との間の)比較的大きな抵抗の差を利用することができる。例えば、結晶状態のそのような物質は、相対的に規則的で周期的な構造に配置された原子を有することができ、これは相対的に低い電気抵抗(例えばセット状態)を伴い得る。それに対して、アモルファス状態のそのような物質は、周期的な原子構造をまったく、または比較的わずかしか持たない(例えば比較的ランダムな原子構造である)ことがあり、これは相対的に高い電気抵抗(例えばリセット状態)を伴い得る。
材料のよりアモルファスな状態とより結晶質な状態との電気抵抗の差は大きい場合がある。例えば、アモルファス状態の物質は、その結晶状態の物質の抵抗より1桁以上大きい抵抗を有し得る。場合によっては、アモルファス状態は閾値電圧を超えるまで電流が物質中を流れることができないような閾値電圧を伴い得る。場合によっては、物質はアモルファス部分と液晶部分との分布を有することがあり、その物質の抵抗は、完全な結晶状態に伴う抵抗と完全なアモルファスな状態に伴う抵抗との間である場合がある。実施例によっては、物質をバイナリ記憶用途以外の記憶用途にも使用することができる(例えば、物質に記憶可能な論理状態の数を3つ以上とすることができる)。
メモリ・セル105−aに特定の論理状態を書き込むために、その特定の論理状態に関連付けられた特定の原子配位または原子配位の特定の組み合わせを選択的に形成するようにメモリ素子220を加熱することができる。実施例によっては、このような加熱は、メモリ・セル105−aに電流を流すことによって行うことができる。有限抵抗を流れる電流によって生じる加熱をジュール加熱またはオーム加熱と呼ぶ場合がある。したがって、メモリ・セル105−aにおけるジュール加熱は、電極205、メモリ素子220、セレクタ・デバイス215、またはこれらの様々な組み合わせの電気抵抗に関係する。他の実施例では、メモリ素子220をジュール加熱以外の手段で(例えば、レーザまたはその他の放射、摩擦、または音響振動によって)加熱してもよい。
記憶素子220の材料内に形成される原子配位は、書き込み操作による経時的な材料の温度に関係し得る。例えば、よりアモルファスな原子配位に伴う高抵抗状態(例えばリセット状態)を設定するために、材料をまず、材料のアモルファスな状態の形成を伴う温度より高い温度まで加熱することができ、この温度は溶融温度または臨界温度と呼ぶことができる。材料が溶融温度または臨界温度を超えると、材料は相対的に不規則な原子配位となり得る。書き込み操作完了後に不規則な原子配位を維持するために、材料の温度が比較的急速に降下するように、メモリ素子220に加えられた加熱を比較的迅速に除去することができる。したがって、材料の原子はほぼ規則的になるのに十分な時間がなく(例えばほぼ結晶状態になる時間がなく)、材料はよりアモルファスな状態に伴う不規則配位に相対的に「ロック」または「凍結」され得る。本明細書で使用されている「よりアモルファスな」状態または原子配位とは、完全にアモルファスな状態または、相対的にほとんど結晶化度を持たないほぼアモルファスな状態(例えば、材料元素の相対的に少数の部分または相対的に小さい部分あるいはその両方の部分が原子規則性を有する)を指し得る。
実施例によっては、リセット操作においてメモリ素子220に印加される電流は、「リセット」パルスに関連付けられるかまたはその他によりリセット・パルスと言うことができ、リセット・パルスを除去すると、メモリ素子220において220のよりアモルファスな状態を形成するのに十分に急速な冷却を生じさせることができる。したがって、実施例によっては、リセット状態のための書き込み操作は、書き込み操作のための後続の書き込みパルスがない単一のリセット・パルス(例えば単一の書き込み電流印加または電圧印加)を含み得る。
別の実施例では、より結晶質な原子配位に伴う低抵抗状態(例えばセット状態)を設定するために、やはり材料をまず、材料のアモルファスな状態の形成を伴う温度(溶融温度または臨界温度)より高温に加熱する。より規則的な原子配位(例えばより結晶質な状態)を形成するために、記憶素子220に加えられた加熱は、材料の温度が比較的緩慢に降下するように比較的緩慢に除去することができる。比較的緩慢な冷却は、結晶相の「核形成」および「成長」、または単に「結晶化」と呼ぶ場合がある、材料の元素の相対的に規則的な状態の形成を支援することができる。言い換えると、不規則な状態の形成に付随する上昇温度からの比較的緩慢な冷却により、低抵抗状態を書き込むためにメモリ素子220においてより結晶質な状態が形成され得る。本明細書で使用されている「より結晶質な」状態または原子配位とは、完全な結晶状態(例えば単結晶)または、相対的に十分な結晶化度を有する(例えば材料元素の相対的に大きな部分が原子規則性を有する)ほぼ結晶質な状態を指し得る。
冷却の速度に応じて、メモリ素子220のうちの相対的により多くの部分またはより少ない部分に結晶原子構造の核形成が起こり、それによってメモリ素子が、「結晶粒」と呼ばれ得る結晶物質の離散的な部分を形成することがある。実施例によっては、メモリ素子220全体のこのような結晶粒の相対的な大きさまたは結晶粒の相対的な数あるいはその両方が、メモリ素子220の抵抗の異なるレベルに寄与し得る。実施例によっては、結晶原子配位のそのような粒度を、メモリ素子における3つ以上の論理状態をサポートするように明確に設定することができる。
実施例によっては、セット操作においてメモリ素子220に印加される初期電流を、「リセット・パルス」(例えばリセット書き込み操作で印加されるのと同じパルス)に関連付けられるかまたはその他により「リセット・パルス」とも呼ぶことができる。しかし、セット操作では、リセット・パルスの後に、「セット・パルス」に関連付けられるかまたはその他により「セット・パルス」と呼ぶことができる後続の電流または電圧のメモリ素子220への印加が続き、セット・パルスはメモリ素子220においてより結晶質な状態を形成するのに十分に緩慢なメモリ素子220の冷却を支援することができる。したがって、実施例によっては、セット状態のための書き込み操作はリセット・パルス(例えば単一の書き込み電流印加または電圧印加)を含み得るとともに、それに続くセット・パルスも含み得る。
このような加熱プロファイルと冷却プロファイルを支援するようにメモリ素子220を流れる電流は、(例えばアクセス線110およびアクセス線115を介して)メモリ・セル105−aに電圧を印加することによって生じさせることができる。実施例によっては、印加電圧はメモリ素子220の閾値電圧またはセレクタ・デバイス215の閾値電圧、あるいはこれらの組み合わせに基づき得る。例えば、メモリ素子220がリセット状態である場合、印加電圧がセレクタ・デバイス215とメモリ素子220の閾値電圧の合計を上回らない限り、メモリ・セル105−aに電流が流れることができない。
書き込み電圧(例えばリセット・パルス、またはリセット・パルスとセット・パルス)の印加後、メモリ・セル105−aに読み取り電圧を印加することによってメモリ・セル105−aを読み取ることができる。書き込み電圧の印加と同様に、読み取り電圧の印加の結果、メモリ・セル105−aを電流が流れることができる。電流の大きさは、メモリ素子220の(例えば、よりアモルファスな状態に書き込むとき、またはより結晶質な状態に書き込むときの)抵抗に依存し、したがって電流の大きさを使用して、メモリ・セル105−aに記憶されている論理状態を判断することができる。
図3に、本開示の様々な実施例による、組み込みリフレッシュによるドリフト低減に対応するタイミング図300の一例を示す。タイミング図300は、時間を表す横軸と、メモリ・セル(例えば図2を参照しながら説明したメモリ・セル105−a)に流れる電流を表す縦軸とを含み得る。タイミング図300は、書き込み操作を伴う期間301と、センス操作を伴う期間310と、セットバック操作を伴う期間315も含むことができ、期間310と期間315とはまとめて読み取り操作に関連付けることができる。実施例によっては、期間301に関連付けられた書き込み電圧または電流を書き込みパルスと呼ぶことがあり、期間310に関連付けられたセンス電圧または電流をセンス・パルスと呼ぶことがあり、期間315に関連付けられたセットバック電圧またはセットバック電流をセットバック・パルスと呼ぶことがある。他の実施例では、センス電圧またはセンス電流を読み取り操作の第1の読み取り電圧、第1の読み取り電流、または第1の読み取りパルスと呼ぶことがあり、セットバック電圧を、読み取り操作の第2の読み取り電圧、第2の読み取り電流、または第2の読み取りパルスと呼ぶことがある。
実施例によっては、メモリ・セルはメモリ素子(例えば図2を参照しながら説明したメモリ素子220)を含むことができ、第1のアクセス線(例えば図1および図2を参照しながら説明したアクセス線110)と第2のアクセス線(例えば図1および図2を参照しながら説明したアクセス線115)とに結合可能である。実施例によっては、メモリ・セルは、セレクタ・デバイス(例えば図2を参照しながら説明したセレクタ・デバイス215)をさらに含み得る。他の実施例では、メモリ・セルは、図1および図2を参照しながら上述したような自己選択メモリを含み得る。
期間301中に、第1のアクセス線と第2のアクセス線とを介して印加可能な書き込み電圧をメモリ・セルに印加することによって、メモリ・セルに論理状態を書き込むことができる。期間301の書き込み電圧は、メモリ・セルを流れる電流を駆動することができ、その結果、メモリ・セルのメモリ素子をより結晶質な状態、よりアモルファスな状態、またはこれらの何らかの組み合わせによって構成することができる。メモリ素子の組成(例えばアモルファスの度合いまたは結晶化度あるいはその両方、または結晶粒子の粒度)は、異なる論理状態(例えば論理1、論理0)に対応し得る。
メモリ・セルを流れる電流の流れの方向は、期間301中に印加される書き込み電圧の極性に依存し得る。例えば、(タイミング図300に示すように)メモリ・セルに正電流で書き込むために、期間301中に第2のアクセス線に最大書き込み電圧(例えばVMAX)を印加し、第1のアクセス線に接地または仮想接地電圧を印加するかまたは他の何らかの相対的により低い電圧を第1のアクセス線に印加することによって、メモリ・セルに正極性の電圧を印加することができる。したがって、メモリ・セルの正極性を有する書き込み電圧の結果として、メモリ・セルに正電流が流れることができる。実施例によっては、期間301中に書き込み電圧を印加した後、期間305中にその書き込み電圧を除去してもよい。別の言い方をすると、期間305中にはメモリ・セルに正味電圧が印加されなくてもよい。別の実施例では、読み取り操作は期間305から直接(例えばメモリ・セルに印加されるゼロ電圧の期間なしに)、期間310に進むことができる。
メモリ・セルは、その後、期間310中に第1の読み取り電圧(例えばセンス電圧)を印加することによって読み取る(例えばセンスする)ことができる。第1の読み取り電圧はメモリ・セルにおいて第1の極性を有することができ、場合によっては、第1の極性は期間310の書き込み電圧の極性と比較して、メモリ・セルにおいて逆または別様に異なる極性とすることができる。例えば、図3に示すように、第1の読み取り電圧を、期間301の正極性とは逆であってもよい負極性でメモリ・セルに印加することができる。メモリ・セルに負極性の第1の読み取り電圧を印加するために、最大読み取り電圧(例えばVMAX)を第1のアクセス線に印加し、第2のアクセス線を接地することができる。他の実施例(図示せず)では、第1の読み取り電圧は前の書き込み電圧と異なる極性を有していなくてもよい。例えば、別の実施形態では、第2のアクセス線にVMAXを印加し、第1のアクセス線を接地することによって、第1の読み取り電圧を正極性で印加してもよい。いずれの実施例でも、メモリ・セルに印加される電圧の結果として、メモリ・セルに電流が流れることができる。図3に示すように、期間310中に第1の読み取り電圧の結果としてメモリ・セルに流れる電流は、メモリ・セルによって記憶されている特定の論理状態を示すことができる。
期間310の第1の読み取り電圧の印加時、センス増幅器またはセンス構成要素(例えば、図1を参照しながら説明したセンス構成要素125)を起動してもよい。起動期間中、センス増幅器はメモリ・セルに印加された読み取り電圧の差を検出し、増幅することができ、これをラッチと呼ぶことがある。したがって、(例えば期間310中に)メモリ・セル105への第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルによって記憶されている論理状態を判断することができる。
実施例によっては、期間315中に(例えばメモリ・セル105の論理状態を判断した後)、メモリ・セル105に第2の読み取り電圧を印加することができる。第2の読み取り電圧は、第1の極性とは異なる第2の極性でメモリ・セルに印加することができる。例えば、図3に示すように、第2の読み取り電圧は、期間310に印加される第1の読み取り電圧の極性とは逆の正極性で印加することができる。様々な実施例において、期間315中に印加される第2の読み取り電圧は、期間301中に印加される書き込み電圧と同じ極性を有してよく、または期間301中に印加される書き込み電圧とは異なる極性を有してもよい。第2の読み取り電圧の大きさは、書き込み電圧の大きさと異なり得る。例えば、期間315中にメモリ・セルに印加される第2の読み取り電圧の大きさは、期間301中にメモリ・セルに印加される書き込み電圧の大きさより小さくてもよい。
期間315は、メモリ・セル105のリフレッシュ操作を伴い得る。実施例によっては、第2の読み取り電圧はセットバック電圧と呼ぶことがあり、結果としてメモリ・セルに電流が流れることができる。電流は、実施例によっては、メモリ・セルの元の状態を再導入またはその他によりリフレッシュすることができる。例えば、期間315中のセットバック電圧の印加によって、メモリ・セルを、期間310中に第1の読み取り電圧が印加される前と同じ、よりアモルファスな状態またはより結晶質な状態に復帰させることができる。例えば、メモリ・セルは、期間301の書き込み電圧の印加によって形成されたのと同じ、より結晶質またはよりアモルファスな状態に復帰することができる。メモリ・セルを第1の読み取り電圧が印加される前の直前書き込み状態(例えばよりアモルファスな状態またはより結晶質な状態)に復帰させることにより、第1の読み取り電圧の印加によって生じるメモリ・セルの原子配位(例えばアモルファス領域または結晶領域の組成、または結晶粒度)の変化(例えばドリフト)を低減することができる。別の言い方をすると、書き込み電圧とは逆の極性を有する第1の読み取り電圧の印加によって、読み取り電圧の逆極性効果のためにそのメモリ・セルの電圧分布が変化することがある。したがって、第2の電圧の印加によって、メモリ・セルの分布を書き込み操作後と同様の状態にリフレッシュ(例えば「スナップ・バック」)することができる。実施例によっては、第2の読み取り電圧は、期間310中に印加された第1の読み取り電圧とは逆の正極性で印加することができる。上述のように、メモリ・セルは自己選択メモリを含むことができ、したがって期間315はリフレッシュ操作を伴い得る。
メモリ・セルを第1の読み取り電圧が印加された後の元のアモルファスまたは結晶状態に復帰させることによって、第1の読み取り電圧の印加によって生じるメモリ・セルの電圧分布の変化(例えばドリフト)を低減することができる。別の言い方をすると、書き込み電圧とは逆の極性の第1の読み取り電圧の印加により、そのメモリ・セルの電圧分布が読み取り電圧の逆極性効果のために変化することがある。したがって、第2の電圧の印加によってメモリ・セルの分布を書き込み操作後と同様の状態にリフレッシュ(例えば「スナップ・バック」)することができる。
別の実施例(図示せず)では、当業者にはわかるであろうように、メモリ・セルの書き込み電圧と読み取り電圧の極性を逆にしてもよい。例えば、メモリ・セルに書き込み電圧を負極性で印加することができ、これは正極性を有する第1の読み取り電圧を印加することと、負極性を有する第2の読み取り電圧を印加することとによって行うことができる。このような実施例では、別の実施例を参照しながら上述したのと同じ利点(例えば、メモリ・セルの電圧分布の変化の低減)を実現することができる。
期間301中に印加される書き込み電圧は、電圧の階段状変化として図示されているが、書き込み操作(例えば極性調整メモリ・セル書き込み操作)の様々な実施例は、異なるプロフィルを有する1つまたは複数の電圧の経時的な印加を含み得る。例えば、書き込み電圧は、電圧の階段状変化、電圧の矩形状変化、電圧の方形状変化、電圧の傾斜状変化、電圧の三角形状変化、電圧の線形または非線形変化、電圧の指数関数的変化、電圧の対数的変化、電圧の異なる変化の何らかの組み合わせ、または任意のその他のプロファイルで印加されてもよい。
また、タイミング図300で示されている電圧は、メモリ・セル(例えば図1を参照しながら説明したメモリ・セル105)を含む回路の様々な部分を指し得る。例えば、図の電圧は、メモリ・セルの端子間、メモリ・セルのメモリ素子(例えば図2を参照しながら説明したメモリ素子220)両端間、メモリ・セルの電極(例えば図2を参照しながら説明した電極205)間、第1のアクセス線(例えば図1を参照しながら説明したアクセス線115)の位置と第2のアクセス線(例えば図1を参照しながら説明したアクセス線110)の位置との間の電圧、またはメモリ・セル105に結合された電源電圧(例えば、メモリ・セルと電子的に連通している2つの電圧源間の差)を指し得る。
図4に、本開示の様々な実施例による、組み込みリフレッシュによるドリフト低減に対応するタイミング図400の一例を示す。タイミング図400は、時間を表す横(例えば「X」)軸と、メモリ・セル(例えば図2を参照しながら説明したメモリ・セル105−a)を流れる結果の電流を表す縦(例えば「Y」)軸とを含み得る。タイミング図400は、図3を参照しながら説明した期間301の書き込み電圧の一例とすることができる期間401の書き込み電圧と、図3を参照しながら説明した期間310のセンス電圧の一例とすることができる期間410のセンス電圧と、期間415の成長電圧と、図3を参照しながら説明した期間315のセットバック電圧の一例とすることができる期間420のセットバック電圧と、期間425のビット線電圧も含み得る。
実施例によっては、期間401の書き込み電圧を書き込みパルスと呼ぶことがあり、期間410のセンス電圧をセンス・パルスと呼ぶことがあり、期間415の成長電圧を成長パルスと呼ぶことがあり、期間420のセットバック電圧をセットバック・パルスと呼ぶことがある。他の実施例では、センス電圧を第1の読み取り電圧または第1の読み取りパルスと呼ぶことがあり、成長電圧を第2の読み取り電圧または第2の読み取りパルスと呼ぶことがあり、セットバック電圧を第3の読み取り電圧または第3の読み取りパルスと呼ぶことがある。
書き込み期間401中に書き込み電圧を印加することによって、メモリ・セル(例えば図2を参照しながら説明したメモリ・セル105−a)に書き込むことができる。メモリ・セルは、実施例によっては、メモリ素子(例えば図2を参照しながら説明したメモリ素子220)と、セレクタ・デバイス(例えば図2を参照しながら説明したセレクタ・デバイス215)とを含むことができ、第1のアクセス線(例えば図2を参照しながら説明したワード線110−a)と第2のアクセス線(例えば図2を参照しながら説明したディジット線115−a)とに結合することができる。
期間401に、(書き込み電圧の極性に応じて)第1のアクセス線または第2のアクセス線のうちの一方に書き込み電圧を印加することができ、その結果としてメモリ・セルは結晶領域またはアモルファス領域の組み合わせを有し得る。メモリ・セルの組成(セルのアモルファス性または結晶性あるいはその両方の組み合わせの組成)は、異なる論理状態(例えば論理「1」または論理「0」)に対応し得る。メモリ・セルに正極性で書き込むために、図4に示すように、期間401中に第2のアクセス線に最大書き込み電圧(例えばVMAX)を印加することができ、第1のアクセス線を接地することができる。第2のアクセス線に印加される電圧の結果、メモリ・セルに電流が流れることができ、それによってメモリ・セルの組成(例えばアモルファス性または結晶性)を変えることができる。実施例によっては、期間401中に書き込み電圧を印加した後、期間405中に書き込み電圧を除去することができる。別の言い方をすると、期間405中はメモリ・セルに電圧が印加されなくてよい。
実施例によっては、期間410に第1の読み取り電圧を印加することによって、メモリ・セルを後で読み取る(例えばセンスする)ことができる。第1の読み取り電圧は、第1の極性を有してよく、場合によっては、第1の極性は、書き込み電圧の極性と同じ極性であってもよい。例えば、図4に示すように、書き込み電圧は正極性で印加することができ、第1の読み取り電圧も正極性で印加することができる。他の実施例(図示せず)では、第1の書き込み電圧と第1の読み取り電圧とを逆の極性で印加してもよい。負極性の第1の読み取り電圧を印加するために、第1のアクセス線に最大読み取り電圧(例えばVMAX)を印加することができ、第2のアクセス線を接地することができる。他の実施例(図示せず)では、第2のアクセス線にVMAXを印加し、第1のアクセス線を接地することによって第1の読み取り電圧を正極性で印加してもよい。いずれの実施例でも、印加電圧の結果、メモリ・セルに電流が流れることができる。したがって、図4に示すようにメモリ・セルを流れる電流の増加によってメモリ・セルの特定の論理状態を示すことができる。
期間410の第1の読み取り電圧の印加時、センス増幅器またはセンス構成要素(例えば図1を参照しながら説明したセンス構成要素125)が起動されてもよい。起動期間中、センス増幅器はメモリ・セルに印加された読み取り電圧の差を検出し、増幅することができ、これをラッチと呼ぶことがある。その後、例えば、第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。メモリ・セルの論理状態の判断後、期間415中に第2の読み取り電圧を印加することができる。
実施例によっては、期間415中に第2の読み取り電圧を印加することができる。第2の読み取り電圧は、例えば、メモリ・セルに第1の極性とは異なる第2の極性で印加することができる。例えば、図4に示すように、書き込み電圧を正極性で印加し、第1の読み取り電圧を正極性で印加し、第2の読み取り電圧を負極性で印加してもよい。実施例によっては、第1の読み取り電圧と第2の読み取り電圧の大きさは、それぞれ、書き込み電圧の大きさと異なっていてもよい(または図4の例ではより低くてもよい)。
期間415に、メモリ・セルのリフレッシュ操作が開始し得る。実施例によっては、第2の読み取り電圧を成長電圧と呼ぶことがあり、その結果としてメモリ・セルに電流が流れることができる。電流は、実施例によっては、メモリ・セルの状態のよりアモルファスな状態からより結晶質な状態への遷移を開始させることができる。例えば、第1の読み取りパルスの印加時、メモリ・セルの組成がよりアモルファスになり得る。したがって、第2の読み取り電圧の印加によって、メモリ・セルの組成がより結晶質からよりアモルファスに戻り得る。第1の読み取り電圧とは逆の極性を有する第2の読み取り電圧の印加により、メモリ・セルはアモルファス相から結晶相により効果的に遷移することができる。実施例によっては、第2の読み取り電圧は、期間410に印加される第1の読み取り電圧とは逆の正極性で印加可能である。上述のように、メモリ・セルは自己選択メモリを含むことができ、したがって期間415はリフレッシュ操作を伴い得る。
期間420で、メモリ・セルのリフレッシュ操作が継続し得る。例えば、期間420中、メモリ・セルに第1の極性を有する第3の読み取り電圧を印加することができる。別の言い方をすると、第2の読み取り電圧の印加後、期間420に、第1の極性を有する第3の読み取り電圧をメモリ・セルに印加することができ、第3の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴い得る。実施例によっては、第3の読み取り電圧をセットバック電圧と呼ぶことがあり、これによりメモリ・セルの元の状態を再導入することができる。例えば、セットバック電圧はメモリ・セルを第1の読み取り信号が印加された後と同じアモルファス状態または結晶状態に復帰させることができる。セットバック電圧は、メモリ・セルの結晶状態を向上させ、メモリ・セルのセレクタ・デバイスの元の状態を再導入することもできる。
第1の読み取り電圧が印加された後の元のアモルファス状態または結晶状態にセルを復帰させることによって、第1の読み取り電圧の印加によって生じるメモリ・セルの電圧分布の変化(例えばドリフト)を低減することができる。別の言い方をすると、書き込み電圧とは逆の極性を有する第1の読み取り電圧の印加によって、そのメモリ・セルの電圧分布が読み取り電圧の逆極性効果のために変化し得る。したがって、第2の電圧の印加は、メモリ・セルの分布を書き込み操作後と同様の状態にリフレッシュ(「スナップ・バック」)することができる。実施例によっては、期間425中に、第2のアクセス線を接地することができ、その結果、メモリ・セルの電流がすべて除去される(例えば電流が0Aに戻る)。
別の実施例(図示せず)では、当業者にはわかるであろうように、書き込み電圧と読み取り電圧の極性を逆にしてもよい。例えば、書き込み電圧を負極性で印加してもよく、その結果、第1の読み取り電圧は負極性で印加され、第2の読み取り電圧は正極性で印加され、第3の読み取り電圧は負極性で印加される。このような実施例では、別の実施例を参照しながら上述したのと同じ利点(例えば、メモリ・セルの電圧分布の変化の低減)を実現することができる。
期間401中に印加される書き込み電圧は電圧の階段状変化として示しされているが、書き込み操作(例えば極性調整メモリ・セル書き込み操作)の様々な実施例は、経時的に異なるプロファイルを有する1つまたは複数の電圧を印加することを含み得る。例えば、書き込み電圧は、電圧の階段状変化、電圧の矩形または方形状の変化、電圧の傾斜状変化、電圧の三角形状変化、電圧の線形または非線形変化、電圧の指数関数的変化、電圧の対数的変化、電圧の異なる変化の何らかの組み合わせ、または任意のその他のプロファイルとして印加されてもよい。
また、タイミング図400で示されている電圧は、メモリ・セル(例えば図1を参照しながら説明したメモリ・セル105)を含む回路の様々な部分を指し得る。例えば、図の電圧は、メモリ・セルの端子間、メモリ・セルのメモリ素子(例えば図2を参照しながら説明したメモリ素子220)両端間、メモリ・セルの電極(例えば図2を参照しながら説明した電極205)間、第1のアクセス線(例えば図1を参照しながら説明したアクセス線115)の位置と第2のアクセス線(例えば図1を参照しながら説明したアクセス線110)の位置との間の電圧、またはメモリ・セル105に結合された電源電圧(例えば、メモリ・セルと電子的に連通している2つの電圧源間の差)を指し得る。
図5に、本開示の様々な実施例による、組み込みリフレッシュによるドリフト低減に対応するタイミング図500の一例を示す。タイミング図500は、時間を表す横(例えば「X」)軸と、メモリ・セル(例えば図2を参照しながら説明したメモリ・セル105−a)を流れる結果の電流を表す縦(例えば「Y」)軸とを含み得る。タイミング図500は、図4を参照しながら説明した期間401の書き込み電圧の一例とすることができる期間501の書き込み電圧と、図4を参照しながら説明した期間410のセンス電圧の一例とすることができる期間510のセンス電圧と、期間515の中間電圧と、図4を参照しながら説明した期間415の成長電圧の一例とすることができる期間520の成長電圧と、図4を参照しながら説明した期間420のセットバック電圧の一例とすることができる期間525のセットバック電圧と、図4を参照しながら説明した期間425のビット線電圧の一例とすることができる期間530のビット線電圧も含み得る。
実施例によっては、期間501の書き込み電圧を書き込みパルスとも呼ぶことがあり、期間510のセンス電圧をセンス・パルスと呼ぶことがあり、期間515の中間電圧を中間パルスと呼ぶことがあり、期間520の成長電圧を成長パルスと呼ぶことがあり、期間525のセットバック電圧をセットバック・パルスと呼ぶことがある。他の実施例では、期間510のセンス電圧を第1の読み取り電圧または第1の読み取りパルスと呼ぶことがあり、期間515の中間電圧を第2の読み取り電圧または第2の読み取りパルスと呼ぶことがあり、期間520の成長電圧を第3の読み取り電圧または第3の読み取りパルスと呼ぶことがあり、セットバック電圧を第4の読み取り電圧または第4の読み取りパルスと呼ぶことがある。
期間501中に書き込み電圧を印加することによって、メモリ・セル(例えば図2を参照しながら説明したメモリ・セル105−a)に書き込むことができる。メモリ・セルは、実施例によっては、メモリ素子(例えば図2を参照しながら説明したメモリ素子220)と、セレクタ・デバイス(例えば図2を参照しながら説明したセレクタ・デバイス215)とを含むことができ、第1のアクセス線(例えば図2を参照しながら説明したワード線110−a)と第2のアクセス線(例えば図2を参照しながら説明したディジット線115−a)とに結合することができる。
期間501中に、(書き込み電圧の極性に応じて)第1のアクセス線または第2のアクセス線のうちの一方に書き込み電圧を印加することができ、その結果としてメモリ・セルは結晶領域および/またはアモルファス領域の組み合わせを有し得る。メモリ・セルの組成(セルのアモルファス性または結晶性あるいはその両方の組み合わせの組成)は、異なる論理状態(例えば論理「1」または論理「0」)に対応し得る。メモリ・セルに正極性で書き込むために、図5に示すように、期間501に第2のアクセス線に最大書き込み電圧(例えばVMAX)を印加することができ、第1のアクセス線を接地することができる。第2のアクセス線に印加される電圧の結果、メモリ・セルに電流が流れることができ、それによってメモリ・セルの組成(例えばアモルファス性または結晶性)を変えることができる。実施例によっては、期間501中に書き込み電圧を印加した後、期間505中に書き込み電圧を除去することができる。別の言い方をすると、期間505中はメモリ・セルに電圧が印加されなくてよい。
実施例によっては、期間510に第1の読み取り電圧を印加することによって、メモリ・セルを続いて読み取る(例えばセンスする)ことができる。第1の読み取り電圧は第1の極性を有してよく、場合によっては、第1の極性は書き込み電圧の極性の逆または異なっていてもよい。例えば、図5に示すように、書き込み電圧を正極性で印加することができ、第1の読み取り電圧を負極性で印加することができる。負極性の第1の読み取り電圧を印加するために、第1のアクセス線に最大読み取り電圧(例えばVMAX)を印加することができ、第2のアクセス線を接地することができる。他の実施例(図示せず)では、第2のアクセス線にVMAXを印加し、第1のアクセス線を接地することによって第1の読み取り電圧を正極性で印加してもよい。いずれの実施例でも、印加電圧の結果、メモリ・セルに電流が流れることができる。したがって、図5に示すようにメモリ・セルを流れる電流の増加によってメモリ・セルの特定の論理状態を示すことができる。
期間510の第1の読み取り電圧の印加時、センス増幅器またはセンス構成要素(例えば図1を参照しながら説明したセンス構成要素125)が起動されてもよい。起動期間中、センス増幅器はメモリ・セルに印加された読み取り電圧の差を検出し、増幅することができ、これをラッチと呼ぶことがある。その後、例えば、第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。メモリ・セルの論理状態の判断後、期間515中に第2の読み取り電圧を印加することができる。
実施例によっては、期間515中に第2の読み取り電圧を印加することができる。第2の読み取り電圧は、例えば、メモリ・セルに第1の極性とは異なる第2の極性で印加することができる。例えば、図5に示すように、書き込み電圧を正極性で印加し、第1の読み取り電圧を正極性で印加し、第2の読み取り電圧を負極性で印加してもよい。実施例によっては、第1の読み取り電圧と第2の読み取り電圧の大きさは、それぞれ、書き込み電圧の大きさと異なっていてもよい(または図5の例ではより低くてもよい)。
期間515に、メモリ・セルのリフレッシュ操作が開始し得る。実施例によっては、第2の読み取り電圧を中間電圧または逆スパイク電圧と呼ぶことがあり、第1の読み取り電圧によって生じた組成変化に基づいてメモリ・セルを再分布させることができる。別の言い方をすると、期間515中に、中間電圧が、第1の読み取り電圧によって生じたアモルファス相偏析を再分布させることができ、その結果として後の段階におけるメモリ・セルの結晶化を改善することができる。
期間520で、メモリ・セルのリフレッシュ操作が継続することができ、メモリ・セルに第3の読み取り電圧を印加することができる。実施例によっては、第3の読み取り電圧は、第1の極性を有することができ、第2の読み取り電圧の印加後に印加することができる。第3の読み取り電圧を成長電圧と呼ぶことがあり、その結果としてメモリ・セルに電流が流れることができる。電流は、実施例によっては、よりアモルファスな状態からより結晶質な状態へのメモリ・セルの状態の遷移を開始させることができる。例えば、第1の読み取りパルスの印加時、メモリ・セルの組成がよりアモルファスになり得る。第2の読み取り電圧の印加は、メモリ・セルの組成が結晶相に戻る遷移を促進することができる。さらに、第3の読み取り電圧の印加によって、メモリ・セルの組成がよりアモルファスからより結晶質に戻ることができる。第2の読み取り電圧の逆の極性を有する(または第1の読み取り電圧と同じ極性を有する)第3の読み取り電圧の印加によって、メモリ・セルはアモルファス相から結晶相により効果的に遷移することができる。
期間525中に、メモリ・セルのリフレッシュ操作が継続し得る。例えば、期間525にメモリ・セルに第1の極性を有する第4の読み取り電圧を印加することができる。別の言い方をすると、第3の読み取り電圧の印加後、期間525にメモリ・セルに第1の極性を有する第4の読み取り電圧を印加することができる。実施例によっては、第4の読み取り電圧をセットバック電圧と呼ぶことがあり、これによってメモリ・セルの元の状態を再導入することができる。例えば、セットバック電圧は成長パルスからメモリ・セルの結晶性をさらに向上させることができる。
第1の読み取り電圧が印加された後の元のアモルファス状態または結晶状態にセルを復帰させることによって、第1の読み取り電圧の印加によって生じるメモリ・セルの電圧分布の変化(例えばドリフト)を低減することができる。別の言い方をすると、書き込み電圧とは逆の極性を有する第1の読み取り電圧の印加によって、そのメモリ・セルの電圧分布が読み取り電圧の逆極性効果のために変化し得る。したがって、第2の電圧の印加は、メモリ・セルの分布を書き込み操作後と同様の状態にリフレッシュ(「スナップ・バック」)することができる。実施例によっては、期間530に、第2のアクセス線を接地することができ、その結果、メモリ・セルの全ての電流が除去される(例えば電流が0Aに戻る)。実施例によっては、期間530中に、第2のアクセス線を接地することを第4の読み取り電圧を第5の電圧に低下させることを指すことがある。したがって、メモリ・セルの論理状態の判断後に、第4の読み取り電圧を第5の電圧に低下させることができる。
別の実施例(図示せず)では、当業者にはわかるであろうように、書き込み電圧と読み取り電圧の極性を逆にしてもよい。例えば、書き込み電圧を負極性で印加してもよく、その結果、第1の読み取り電圧は負極性で印加され、第2の読み取り電圧は正極性で印加され、第3の読み取り電圧は負極性で印加され、第4の読み取り電圧は負極性で印加される。このような実施例では、別の実施例を参照しながら上述したのと同じ利点(例えば、メモリ・セルの電圧分布の変化の低減)を実現することができる。
期間501中に印加される書き込み電圧は電圧の階段状変化として示しされているが、書き込み操作(例えば極性調整メモリ・セル書き込み操作)の様々な実施例は、経時的に異なるプロファイルを有する1つまたは複数の電圧を印加することを含み得る。例えば、書き込み電圧は、電圧の階段状変化、電圧の矩形または方形状の変化、電圧の傾斜状変化、電圧の三角形状変化、電圧の線形または非線形変化、電圧の指数関数的変化、電圧の対数的変化、電圧の異なる変化の何らかの組み合わせ、または任意のその他のプロファイルとして印加されてもよい。
また、タイミング図500で示されている電圧は、メモリ・セル(例えば図1を参照しながら説明したメモリ・セル105)を含む回路の様々な部分を指し得る。例えば、図の電圧は、メモリ・セルの端子間、メモリ・セルのメモリ素子(例えば図2を参照しながら説明したメモリ素子220)両端間、メモリ・セルの電極(例えば図2を参照しながら説明した電極205)間、第1のアクセス線(例えば図1を参照しながら説明したアクセス線115)の位置と第2のアクセス線(例えば図1を参照しながら説明したアクセス線110)の位置との間の電圧、またはメモリ・セル105に結合された電源電圧(例えば、メモリ・セルと電子的に連通している2つの電圧源間の差)を指し得る。
図6に、本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応するメモリ・コントローラ605のブロック図600を示す。メモリ・コントローラ605は、図1を参照しながら説明したメモリ・コントローラ140の態様の一実施例とすることができる。メモリ・コントローラ605は、バイアス構成要素610と、タイミング構成要素615と、印加構成要素620と、判断構成要素625と、降圧構成要素630と、接地構成要素635とを含み得る。これらのモジュールのそれぞれが(例えば1つまたは複数のバスを介して)互いに直接または間接的に通信することができる。
印加構成要素620は、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込み電圧を印加することができる。実施例によっては、メモリ・セルは、メモリ記憶素子とセレクタ・デバイスとを含み得る。他の実施例では、印加構成要素620は、書き込み電圧の印加後にメモリ・セルに第1の極性を有する第1の読み取り電圧を印加することができる。これに加えて、またはこれに代えて、例えば、印加構成要素620は、第1の読み取り電圧の印加後にメモリ・セルに第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することができる。実施例によっては、印加構成要素620は、第2の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第3の読み取り電圧を印加することができる。第3の読み取り電圧の印加は、メモリ・セルのリフレッシュ操作を伴い得る。他の実施例では、印加構成要素620は、第3の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第4の読み取り電圧を印加することができる。第4の読み取り電圧の印加は、メモリ・セルのリフレッシュ操作を伴い得る。実施例によっては、印加構成要素620は、読み取り電圧のいずれかを同時に印加することができる。他の実施例では、印加構成要素620は、読み取り電圧のいずれかを順次に印加することができる。さらに別の実施例では、印加構成要素620は、読み取り電圧のいずれかを正極性または負極性で印加することができる。上記に加えて、または上記に代えて、例えば読み取り電圧のいずれかがメモリ・セルのリフレッシュ操作を伴い得る。
他の実施例では、印加構成要素620は、第2の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第3の読み取り電圧を印加することができる。実施例によっては、第2の読み取り電圧は、第3の読み取り電圧より大きくてよい。別の実施形態では、第3の読み取り電圧は、メモリ・セルのリフレッシュ操作を伴い得る。他の実施例では、印加構成要素620は、第3の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第4の読み取り電圧を印加することができる。実施例によっては、第3の読み取り電圧は第4の読み取り電圧より大きくてよい。他の実施例では、第4の読み取り電圧は、メモリ・セルのリフレッシュ操作を伴い得る。
別の実施例では、印加構成要素620は、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込みパルスを印加することができる。実施例によっては、メモリ・セルは、メモリ記憶素子とセレクタ・デバイスとを含み得る。別の実施例では、印加構成要素620は、書き込みパルスの印加に少なくとも部分的に基づいてメモリ・セルに書き込みパルスとは反対の極性を有する第1の読み取りパルスを印加することができる。実施例によっては、第1の読み取りパルスはセンス操作を伴い得る。上記に加えて、または上記に代えて、例えば、印加構成要素620は、第1の読み取りパルスの印加に少なくとも部分的に基づいてメモリ・セルに書き込みパルスと同じ極性を有する第2の読み取りパルスを印加することができる。他の実施例では、印加構成要素620は、第2の読み取りパルスの印加に少なくとも部分的に基づいてメモリ・セルに書き込みパルスと同じ極性を有する第3の読み取り電圧を印加することができる。実施例によっては、印加構成要素620は、第3の読み取りパルスの印加後にメモリ・セルに書き込みパルスと同じ極性を有する第4の読み取りパルスを印加することができる。第3の読み取りパルスと第4の読み取りパルスとはそれぞれ、メモリ・セルのリフレッシュ操作を伴い得る。
判断構成要素625は、第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。他の実施例では、判断構成要素625は、第1の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。
降圧構成要素630は、メモリ・セルの論理状態の判断後、第4の電圧を第5の電圧に低下させることができる。
接地構成要素635は、第4の読み取りパルスの印加後、第1のアクセス線または第2のアクセス線のうちの少なくとも一方を接地することができる。
図7に、本開示の実施例による、組み込みリフレッシュによるドリフト低減に対応するデバイス705を含むシステム700の図を示す。デバイス705は、例えば図1および図2を参照しながら上述したようなメモリ・アレイ100または200の構成要素の一実施例であるか、または含むものとすることができる。デバイス705は、メモリ・コントローラ715、メモリ・セル720、ベーシック・インプット/アウトプット・システム(BIOS)構成要素725、プロセッサ730、I/Oコントローラ735、および周辺構成要素740を含む、通信の送信および受信のための構成要素を含む、双方向音声およびデータ通信のための構成要素を含み得る。これらの構成要素は、1つまたは複数のバス(例えばバス710)を介して電子的に連通し得る。
メモリ・コントローラ715は、本明細書に記載されているように1つまたは複数のメモリ・セルを操作することができる。具体的には、メモリ・コントローラ715は、組み込みリフレッシュによるドリフト低減をサポートするように構成可能である。場合によっては、メモリ・コントローラ715は、本明細書に記載のような行デコーダ、列デコーダまたはその両方を含み得る(図示せず)。
メモリ・セル720は、本明細書に記載のように情報(すなわち、メモリ・セル720のそれぞれによって記憶された論理状態の形態の情報)を記憶することができる。
BIOS構成要素725は、様々なハードウェア構成要素を初期化し、稼働させることができるファームウェアとして動作させられるBIOSを含むソフトウェア構成要素とすることができる。BIOS構成要素725は、プロセッサと様々な他の構成要素、例えば、周辺構成要素、入力/出力制御構成要素などとの間のデータ・フローの管理も行うことができる。BIOS構成要素725は、読み取り専用メモリ(ROM)、フラッシュ・メモリ、または任意のその他の不揮発性メモリに記憶されたプログラムまたはソフトウェアを含み得る。
プロセッサ730は、インテリジェント・ハードウェア・デバイス(例えば、汎用プロセッサ、DSP、中央処理装置(CPU)、マイクロコントローラ、ASIC、FPGA、プログラマブル・ロジック・デバイス、ディスクリート・ゲートまたはトランジスタ・ロジック構成要素、ディスクリート・ハードウェア構成要素、またはこれらの任意の組み合わせ)を含み得る。場合によっては、プロセッサ730は、メモリ・コントローラを使用してメモリ・アレイを操作するように構成可能である。他の例では、メモリ・コントローラがプロセッサ730に組み込まれてもよい。プロセッサ730は、様々な機能(例えば、組み込みリフレッシュによるドリフト低減をサポートする機能またはタスク)を実行するために、メモリに記憶されているコンピュータ可読命令を実行するように構成可能である。
I/Oコントローラ735は、デバイス705の入力信号と出力信号を管理することができる。I/Oコントローラ735は、デバイス705に内蔵されていない周辺装置も管理することができる。場合によっては、I/Oコントローラ735は、外部周辺装置への物理接続またはポートに相当し得る。場合によっては、I/Oコントローラ735は、iOS(登録商標)、ANDROID(登録商標)、MS−DOS(登録商標)、MS−WINDOWS(登録商標)、OS/2(登録商標)。UNIX(登録商標)、LINUX(登録商標)、またはその他の知られているオペレーティング・システムなどの、オペレーティング・システムを利用することができる。他の例では、I/Oコントローラ735は、モデム、キーボード、マウス、タッチ・スクリーン、または同様のデバイスに相当するかまたはこれらと相互連絡することができる。場合によっては、I/Oコントローラ735は、プロセッサの一部として実装可能である。場合によっては、ユーザがI/Oコントローラ735を介して、またはI/Oコントローラ735によって制御されるハードウェア構成要素を介して、デバイス705と対話することができる。
周辺構成要素740は、任意の入力デバイスまたは出力デバイスを含むことができ、またはそのようなデバイスのためのインターフェースであってもよい。例としては、ディスク・コントローラ、サウンド・コントローラ、グラフィクス・コントローラ、Ethernetコントローラ、モデム、ユニバーサル・シリアル・バス(USB)コントローラ、シリアルまたはパラレル・ポート、または、ペリフェラル・コンポーネント・インターコネクト(PCI)スロットまたはアクセラレーテッド・グラフィクス・ポート(AGP)スロットなどのペリフェラル・カード・スロットが含まれる。
入力745は、デバイス705またはその構成要素に入力を供給する、デバイス705の外部のデバイスまたは信号に相当する。これは、ユーザ・インターフェースまたは、他のデバイスとのインターフェースまたは他のデバイス間のインターフェースを含み得る。場合によっては、入力745はI/Oコントローラ735によって管理されてもよく、周辺構成要素740を介してデバイス705と相互連絡してもよい。
出力750も、デバイス705またはその構成要素のいずれかから出力を受信するように構成された、デバイス705の外部のデバイスまたは信号に相当し得る。出力750の例には、ディスプレイ、音声スピーカ、印刷装置、別のプロセッサまたはプリント回路基板などが含まれ得る。場合によっては、出力750は、周辺構成要素740を介してデバイス705とインターフェースする周辺要素であってもよい。場合によっては、出力750はI/Oコントローラ735によって管理されてもよい。
デバイス705の構成要素は、それぞれの機能を実行するように設計された回路を含み得る。これには、本明細書に記載の機能を実行するように構成された、様々な回路素子、例えば、導線、トランジスタ、キャパシタ、インダクタ、抵抗器、増幅器またはその他の能動素子もしくは非能動素子が含まれる。デバイス705は、コンピュータ、サーバ、ラップトップ・コンピュータ、ノートブック・コンピュータ、タブレット・コンピュータ、携帯電話、ウェアラブル電子デバイス、パーソナル電子デバイスなどとすることができる。あるいは、デバイス705は、このようなデバイスの一部または一態様であってもよい。
図8に、本開示の実施例による組み込みリフレッシュによるドリフト低減の方法800を示すフローチャートを示す。方法800の操作は、本明細書に記載のようなメモリ・コントローラまたはその構成要素によって実装または容易にされ得る。例えば、方法800の操作は、図1ないし図7を参照しながら説明したメモリ・コントローラによって実行可能である。実施例によっては、メモリ・コントローラは、本明細書に記載の機能(例えば、目標メモリ・セルと連通するアクセス線の活性化、電圧源の起動または制御、目標メモリ・セル105と連通するアクセス線への電圧源の結合、センス構成要素との通信など)を実行するようにデバイスの機能要素を制御するための命令のセットを実行することができる。これに加えて、またはこれに代えて、メモリ・コントローラは専用ハードウェアを使用して以下に記載する機能の態様を実行することができる。
805で、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに、書き込み電圧を印加することができる。805の操作は、本明細書に記載の方法に従って(例えば、図3ないし図5を参照しながら説明したタイミング図300、400、および500の態様に従って)実行可能である。特定の実施例では、805の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
810で、書き込み電圧の印加後のメモリ・セルに第1の極性を有する第1の読み取り電圧を印加することができる。810の操作は、本明細書に記載の方法に従って(例えば、図3ないし図5を参照しながら説明したタイミング図300、400および500に従って)実行可能である。特定の実施例では、805の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
815で、第1の読み取り電圧の印加後のメモリ・セルに第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することができる。815の操作は、本明細書に記載の方法に従って(例えば、図3ないし図5を参照しながら説明したタイミング図300、400および500に従って)実行可能である。特定の実施例では、810の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
820で、メモリ・コントローラは、第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。820の操作は、本明細書に記載の方法に従って(例えば、図3ないし図5を参照しながら説明したタイミング図300、400および500に従って)実行可能である。特定の実施例では、820の操作の態様は、図1を参照しながら説明したようなセンス構成要素125によって、または図6を参照しながら説明したような判断構成要素によって実行可能である。
実施例によっては、第2の読み取り電圧はメモリ・セルのリフレッシュ操作を伴い得る。他の実施例では、この方法は、第1の読み取り電圧の印加後に、メモリ・セルに第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することを含み得る。上記に加えて、または上記に代えて、この方法は、第1の読み取り電圧の印加に少なくとも部分的に基づいてメモリ・セルの論理状態を判断することを含み得る。
場合によっては、この方法は、第2の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第3の読み取り電圧を印加することを含み得る。実施例によっては、第3の読み取り電圧はメモリ・セルのリフレッシュ操作を伴い得る。他の場合では、この方法は、第3の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第4の読み取り電圧を印加することを含み得る。実施例によっては、第4の読み取り電圧はメモリ・セルのリフレッシュ操作を伴い得る。場合によっては、この方法は、メモリ・セルの論理状態の判断後に、第4の電圧を第5の電圧に低下させることも含み得る。
他の実施例では、この方法は、書き込み電圧の印加後にメモリ・セルに第1の極性を有する第1の読み取り電圧を印加することを含み得る。場合によっては、第3の読み取り電圧は、第4の読み取り電圧よりも大きくてよい。実施例によっては、第1の極性は正極性とすることができ、第2の極性は負極性とすることができる。他の場合では、第1の極性は負極性とすることができ、第2の極性は正極性とすることができる。場合によっては、書き込み電圧は第2の極性とすることができる。上記に加えて、または上記に代えて、例えば、メモリ・セルは、カルコゲナイドを含むマルチ・レベル・セル(MLC)とすることができる。他の場合では、書き込み電圧は第1の読み取り電圧、第2の読み取り電圧、第3の読み取り電圧、および第4の読み取り電圧より大きくてよい。
装置について説明する。装置は、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込み電圧を印加する手段と、書き込み電圧の印加後にメモリ・セルに第1の極性を有する第1の読み取り電圧を印加する手段と、第1の読み取り電圧の印加後にメモリ・セルに第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加する手段と、第1の読み取り電圧の印加に基づいてメモリ・セルの論理状態を判断する手段とを含み得る。
本明細書に記載の装置の一部の実施例は、第2の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第3の読み取り電圧を印加する手段をさらに含み、第3の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴い得る。本明細書に記載の装置の一部の実施例は、第3の読み取り電圧の印加後にメモリ・セルに第1の極性を有する第4の読み取り電圧を印加する手段をさらに含み、第4の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴い得る。
本明細書に記載の装置の一部の実施例は、メモリ・セルの論理状態の判断後に第4の電圧を第5の電圧に低下させる手段をさらに含み得る。本明細書に記載の装置の一部の実施例では、書き込み電圧は、第1の読み取り電圧、第2の読み取り電圧、第3の読み取り電圧、および第4の読み取り電圧より大きくてよい。本明細書に記載の装置の一部の実施例では、第3の読み取り電圧は第4の読み取り電圧より大きくてよい。
本明細書に記載の装置の一部の実施形態では、第1の極性は正極性を含み、第2の極性は負極性を含む。本明細書に記載の装置の一部の実施例では、第1の極性は負極性を含み、第2の極性は正極性を含む。本明細書に記載の装置の一部の実施形態では、書き込み電圧は第1の極性を有し得る。本明細書に記載の装置の一部の実施例では、書き込み電圧は第2の極性を有し得る。本明細書に記載の装置の一部の実施例では、メモリ・セルは、カルコゲナイドを含むマルチ・レベル・セル(MLC)を含む。本明細書に記載の装置の一部の実施例では、第2の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴い得る。本明細書に記載の装置の一部の実施例では、メモリ・セルはメモリ記憶素子とセレクタ・デバイスとを含む。
図9に、本開示の実施例による、組み込みリフレッシュによるドリフト低減方法900を示すフローチャートを示す。方法900の操作は、本明細書に記載のようなメモリ・コントローラまたはその構成要素によって実装され得る。例えば、方法900の操作は、図1ないし図7を参照しながら説明したメモリ・コントローラによって実行可能である。実施例によっては、メモリ・コントローラは、以下に記載の機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行することができる。これに加えて、またはこれに代えて、メモリ・コントローラは専用ハードウェアを使用して以下に記載する機能の態様を実行することができる。
905で、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込みパルスを印加することができる。905の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、905の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
910で、書き込みパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと同じ極性を有する第1の読み取りパルスを印加することができる。実施例によっては、第1の読み取りパルスはセンス操作を伴い得る。910の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、910の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
915で、第1の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと逆の極性を有する第2の読み取りパルスを印加することができる。915の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、915の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
920で、第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。920の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、920の操作の態様は、図6を参照しながら説明したような判断構成要素によって実行可能である。
装置について説明する。装置は、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込みパルスを印加する手段と、書き込みパルスの印加に基づいてメモリ・セルに書き込みパルスと同じ極性を有し、センス操作を伴う第1の読み取りパルスを印加する手段と、第1の読み取りパルスの印加に基づいてメモリ・セルに書き込みパルスと逆の極性を有する第2の読み取りパルスを印加する手段と、第1の読み取りパルスの印加に基づいてメモリ・セルの論理状態を判断する手段とを含み得る。
本明細書に記載の装置の一部の実施例は、第2の読み取りパルスの印加に基づいてメモリ・セルに書き込みパルスと同じ極性を有する第3の読み取りパルスを印加し、第3の読み取り電圧の印加後にメモリ・セルに書き込みパルスと同じ極性を有する第4の読み取りパルスを印加する手段をさらに含むことができ、第3の読み取りパルスと第4の読み取りパルスの印加はメモリ・セルのリフレッシュ操作を伴い得る。
本明細書に記載の装置の一部の実施例は、第4の読み取りパルスの印加後に、第1のアクセス線または第2のアクセス線のうちの少なくとも一方を接地する手段をさらに含み得る。
場合によっては、この方法は、書き込みパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと同じ極性を有する第1の読み取りパルスを印加することを含み得る。実施例によっては、第1の読み取りパルスはセンス操作を伴い得る。他の場合では、この方法は、第1の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと逆の極性を有する第2の読み取りパルスを印加することを含み得る。実施例によっては、この方法は、第1の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することを含み得る。上記に加えて、または上記に代えて、例えば、この方法は、第2の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと同じ極性を有する第3の読み取りパルスを印加することを含み得る。実施例によっては、この方法は、第3の読み取りパルスの印加後にメモリ・セルに書き込みパルスと同じ極性を有する第4の読み取りパルスを印加することを含み得る。第3の読み取りパルスと第4の読み取りパルスとはメモリ・セルのリフレッシュ操作を伴い得る。実施例によっては、第4の読み取りパルスの印加後に第1のアクセス線または第2のアクセス線のうちの少なくとも一方を接地することを含み得る。
図10に、本開示の実施例による、組み込みリフレッシュによるドリフト低減方法1000を示すフローチャートを示す。方法1000の操作は、本明細書に記載のようなメモリ・コントローラまたはその構成要素によって実行可能である。例えば、方法1000の操作は、図1を参照しながら説明したようなメモリ・コントローラによって実行可能である。実施例によっては、コントローラは以下に説明する機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行することができる。上記に加えて、または上記に代えて、cは専用ハードウェアを使用して以下に説明する機能の態様を実行してもよい。
1005で、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込み電圧を印加することができる。1005の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1005の操作の態様は、図1を参照しながら説明したように、コントローラによって実行可能である。
1010で、書き込み電圧の印加後のメモリ・セルに第1の極性を有する第1の読み取り電圧を印加することができる。1010の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1010の操作の態様は、図6を参照しながら説明したように、印加構成要素によって実行可能である。
1015で、第1の読み取り電圧の印加後のメモリ・セルに第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することができる。1015の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1015の操作は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1020で、第2の読み取り電圧の印加後のメモリ・セルに第1の極性を有する第3の読み取り電圧を印加することができ、第3の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴い得る。1020の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1020の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1025で、第3の読み取り電圧の印加後のメモリ・セルに第1の極性を有する第4の読み取り電圧を印加し、第4の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴い得る。1025の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1025の操作は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1030で、第1の読み取り電圧の印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。1030の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1030の操作の態様は、図6を参照しながら説明したような判断構成要素によって実行可能である。
図11に、本開示の実施例による、組み込みリフレッシュによるドリフト低減方法1100を示すフローチャートを示す。方法1100の操作は、本明細書に記載のようなメモリ・コントローラまたはその構成要素によって実装され得る。例えば、方法1100の操作は、図1を参照しながら説明したメモリ・コントローラによって実行可能である。実施例によっては、メモリ・コントローラは、以下に説明する機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行することができる。これに加えて、またはこれに代えて、メモリ・コントローラは専用ハードウェアを使用して、以下に説明する機能の態様を実行してもよい。
1105で、第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに、書き込みパルスを印加することができる。1105の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1105の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1110で、書き込みパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと同じ極性を有する第1の読み取りパルスを印加することができ、第1の読み取りパルスはセンス操作を伴う。1110の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1110の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1115で、第1の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと逆の極性を有する第2の読み取りパルスを印加することができる。1115の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1115の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1120で、第2の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルに書き込みパルスと同じ極性を有する第3の読み取りパルスを印加することができる。1120の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1120の操作の態様は、図6を参照しながら説明したような印加構成要素によって実行可能である。
1125で、第3の読み取りパルスの印加後のメモリ・セルに書き込みパルスと同じ極性を有する第4の読み取りパルスを印加することができ、第3の読み取りパルスと第4の読み取りパルスの印加はメモリ・セルのリフレッシュ操作を伴う。1125の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、図6を参照しながら説明したような印加構成要素によって実行可能である。
1130で、第4の読み取りパルスの印加後に第1のアクセス線または第2のアクセス線のうちの少なくとも一方を接地することができる。1130の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1130の操作の態様は、図6を参照しながら説明したような接地構成要素によって実行可能である。
1135で、第1の読み取りパルスの印加に少なくとも部分的に基づいて、メモリ・セルの論理状態を判断することができる。1135の操作は、本明細書に記載の方法に従って実行可能である。特定の実施例では、1135の操作の態様は、図6を参照しながら説明したような判断構成要素によって実行可能である。
装置について説明する。実施例によっては、装置は、メモリ・セルと、メモリ・セルに結合された第1のアクセス線と、メモリ・セルに結合された第2のアクセス線と、メモリ・セルに書き込み電圧を印加する手段と、書き込み電圧の印加後のメモリ・セルに第1の極性を有する第1の読み取り電圧を印加する手段と、第1の読み取り電圧の印加後のメモリ・セルに第2の極性を有する第2の読み取り電圧を印加する手段と、第1の読み取り電圧の印加に少なくとも部分的に基づいてメモリ・セルの論理状態を判断する手段とを含み得る。
実施例によっては、書き込み電圧は第1の極性または第2の極性を含む。実施例によっては、装置は、第2の読み取り電圧の印加後のメモリ・セルに第1の極性を有する第3の読み取り電圧を印加する手段を含むことができ、第2の読み取り電圧は第3の読み取り電圧より大きく、第3の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴う。
実施例によっては、装置は、第3の読み取り電圧の印加後のメモリ・セルに第1の極性を有する第4の読み取り電圧を印加する手段を含むことができ、第3の読み取り電圧は第4の読み取り電圧より大きく、第4の読み取り電圧の印加はメモリ・セルのリフレッシュ操作を伴う。実施例によっては、メモリ・セルはマルチ・レベル・セル(MLC)を含む。
なお、上記の方法は、考えられる実施例について説明していることと、操作およびステップは並べ替えるかまたはその他の方法で修正が可能であることと、他の実施例も可能であることとに留意されたい。また、上記の方法のうちの2つ以上の実施例を組み合わせてもよい。
本明細書の説明は、実施例を示すものであり、特許請求の範囲に記載されている範囲、適用可能性または実施例を限定するものではない。本開示の範囲から逸脱することなく、説明されている要素の機能および配置構成に変更を加えることができる。様々な実施例が、様々な手順または構成要素を適宜、省略、代替、または追加することができる。また、一部の実施例に関連して記載されている特徴を他の実施例において組み合わせてもよい。
本明細書に記載の情報および信号は、様々な異なる技術および技法のうちのいずれかを使用して表すことができる。例えば、上記の説明全体を通して言及されている場合がある、データ、命令、コマンド、情報、信号、ビット、シンボルおよびチップは、電圧、電流、電磁波、磁界または磁性粒子、光場または光粒子、あるいはこれらの任意の組み合わせによって表すことができる。一部の図面は、信号を単一の信号として示している場合がある。しかし、当業者には、信号は信号のバスを表すこともでき、バスは様々なビット幅を有することができることがわかるであろう。
本明細書で使用されている「仮想接地」という用語は、約ゼロ・ボルト(0V)の電圧に維持される電気回路のノードを指すか、またはより一般的に、接地に直接接続されている場合もされていない場合もある、電気回路または電気回路を含むデバイスの基準電圧を表す。したがって、仮想接地の電圧は、一時的に変動することがあるが、定常状態で約0Vまたはほぼ0Vに戻り得る。仮想接地は、オペアンプと抵抗器とからなる分圧器などの、様々な電子回路素子を使用して実装することができる。他の実施例も可能である。「仮想接地する」または「仮想接地された」とは、約0Vまたはデバイスの他の何らかの基準電圧に接続されていることを意味する。
「電子的に連通」および「結合されている」という用語は、構成要素間の電子の流れをサポートする、構成要素間の関係を指す。これには、構成要素間の直接接続または結合が含まれ得るか、または中間要素が含まれ得る。言い換えると、「〜と接続されている」または「〜と結合されている」構成要素は、互いに電子的に連通している。電子的に連通している構成要素は、電子または信号をアクティブに交換することができる(例えば通電回路)場合もあれば、電子または信号をアクティブに交換できない(例えば非通電回路)場合もあるが、回路が通電されると電子または信号を交換するように構成され、動作可能とすることができる。例えば、スイッチ(例えばトランジスタ)を介して物理的に接続または結合された2つの構成要素は、スイッチの状態(すなわち開か閉か)にかかわらず電子的に連通している。
「分離されている」という用語は、構成要素間にその時点では電子が流れることができない構成要素間の関係を指し、構成要素間に開回路がある場合、構成要素は互いに分離されている。例えば、スイッチによって物理的に結合されている2つの構成要素は、スイッチが開かれると互いに分離され得る。
本明細書で使用されている「短絡」という用語は、2つの対象構成要素間の単一の介在構成要素の起動により当該構成要素間に導電経路が確立される、構成要素間の関係を指す。例えば、第2の構成要素に短絡された第1の構成要素は、その2つの構成要素間のスイッチが閉じられると第2の構成要素と電子を交換することができる。したがって、短絡は電子的に連通している構成要素(または線路)間の電圧の印加または電荷の流れあるいはその両方を可能にする動的操作であり得る。
本明細書で使用されている「電極」という用語は導電体を指すことがあり、場合によっては、メモリ・アレイのメモリ・セルまたはその他の構成要素との電気接点として採用可能である。電極は、メモリ・アレイ100の要素または構成要素間に導電経路を設けるトレース、配線、導線、導電層などを含み得る。
本明細書で使用されている「端子」という用語は、必ずしも回路素子の物理的境界または接続点を示唆するとは限らない。そうではなく、「端子」は回路素子に関連する回路の基準点を指すことがあり、これを「ノード」または「基準点」と言うこともある。
本明細書で使用されている「層」という用語は、幾何構造の階層またはシートを指す。各層は、3つの次元(例えば高さ、幅および深さ)を有することができ、表面の一部または全部を覆い得る。例えば、層は、2つの次元が第3の次元よりも大きい3次元構造、例えば薄膜であってもよい。層は、異なる要素、構成要素または材料あるいはこれらの組み合わせを含み得る。場合によっては、1つの層が2つ以上の副層からなってもよい。添付図面の一部では、例示のために3次元層の2つの次元が図示されている。しかし、当業者には、それらの層が実際は3次元であることがわかるであろう。
カルコゲナイド物質は、S、Se、およびTe元素のうちの少なくとも1つを含む物質または合金であり得る。本明細書で説明している相変化物質はカルコゲナイド物質とすることができる。カルコゲナイド物質は、S、Se、Te、Ge、As、Al、Sb、Au、インジウム(In)、ガリウム(Ga)、スズ(Sn)、ビスマス(Bi)、パラジウム(Pd)、コバルト(Co)、酸素(O)、銀(Ag)、ニッケル(Ni)、プラチナ(Pt)の合金を含み得る。例示のカルコゲナイド物質および合金は、Ge−Te、In−Se、Sb−Te、Ga−Sb、In−Sb、As−Te、Al−Te、Ge−Sb−Te、Te−Ge−As、In−Sb−Te、Te−Sn−Se、Ge−Se−Ga、Bi−Se−Sb、Ga−Se−Te、Sn−Sb−Te、In−Sb−Ge、Te−Ge−Sb−S、Te−Ge−Sn−O、Te−Ge−Sn−Au、Pd−Te−Ge−Sn、In−Se−Ti−Co、Ge−Sb−Te−Pd、Ge−Sb−Te−Co、Sb−Te−Bi−Se、Ag−In−Sb−Te、Ge−Sb−Se−Te、Ge−Sn−Sb−Te、Ge−Te−Sn−Ni、Ge−Te−Sn−Pd、またはGe−Te−Sn−Ptを含み得るが、これらには限定されない。本明細書で使用されているハイフンで連結された化学組成表記は、特定の化合物または合金に含まれる元素を示し、示されている元素に関わるすべての化学量論を表すことを意図している。例えば、Ge−Teは、GeTeを含むことができ、ここでxおよびyは任意の正の整数とすることができる。可変抵抗物質のその他の例には、2つ以上の金属、例えば遷移金属、アルカリ土類金属、または希土類金属あるいはこれらの組み合わせを含む、二成分金属酸化物材料または混合原子価酸化物が含まれる。例はメモリ・セルのメモリ素子に関連する1つまたは複数の特定の可変抵抗物質には限定されない。例えば、メモリ素子を形成するために可変抵抗物質の他の例を使用することもでき、カルコゲナイド物質、巨大磁気抵抗物質、またはポリマー基材などが含まれ得る。
図1および図2を参照しながら説明したメモリ・アレイ100および200を含む本明細書に記載のデバイスは、シリコン、ゲルマニウム、シリコン−ゲルマニウム合金、ゲルマニウム・ヒ素、ガリウム窒化物などの半導体基板上に形成することができる。場合によっては、基板は半導体ウエハである。他の場合には、基板は、シリコン・オン・グラス(SOG)またはシリコン・オン・サファイア(SOP)などのシリコン・オン・インシュレータ(SOI)基板、または、別の基板上の半導体物質のエピタキシャル層とすることができる。基板、または基板の小領域の導電率は、リン、ボロン、またはヒ素を含むがこれらには限定されない様々な化学種を使用したドーピングによって制御することができる。ドーピングは、イオン注入またはその他の任意のドーピング手段によって基板の初期形成または成長時に行うことができる。
本明細書に記載の1つまたは複数のトランジスタは、電界効果トランジスタ(FET)とすることができ、ソース、ドレインおよびゲートを含む3端子デバイスを含み得る。これらの端子は、導電性材料、例えば金属を介して他の電子要素に接続可能である。ソースとドレインは導電性とすることができ、高濃度ドープされた、例えば縮退半導体領域を含むことができる。ソースとドレインは、低濃度ドープされた半導体領域またはチャネルによって分離することができる。チャネルがn型である(すなわち、多数キャリアが電子である)場合、FETはn型FETと呼ばれることがある。チャネルがp型である(すなわち、多数キャリアが正孔である)場合、FETはp型FETと呼ばれることがある。チャネルは、絶縁ゲート酸化物によって被覆することができる。チャネルの導電性は、ゲートに電圧を印加することによって制御することができる。例えば、n型FETまたはp型FETにそれぞれ正電圧または負電圧を印加すると、チャネルは導電し得る。トランジスタは、トランジスタのゲートにトランジスタの閾値電圧以上の電圧が印加されると「オン」または「アクティブ」にすることができる。トランジスタは、トランジスタのゲートにトランジスタの閾値電圧未満の電圧が印加されると「オフ」または「非アクティブ」にすることができる。
本明細書に記載の説明は、添付図面とともに、例示の構成を説明しており、実装可能な、または特許請求の範囲内にあるすべての実施例を表すものではない。本明細書で使用されている「例示の」という用語は、「例、事例または例示となる」ことを意味し、「好ましい」または「他の実施例よりも有利である」ことを意味しない。詳細な説明には、記載されている技術を理解することができるように具体的な詳細が含まれている。しかし、これらの技術はこれらの具体的な詳細がなくても実施可能である。場合によっては、記載されている実施例の概念が不明瞭にならないように、周知の構造およびデバイスはブロック図の形態で示されている。
添付図面において、同様の構成要素または特徴が同じ参照符号を有する場合がある。また、同じ種類の様々な構成要素を、参照番号の後にダッシュと、類似の構成要素を互いに区別する第2の符号とを付けて区別している場合がある。本明細書において第1の参照符号のみが使用されている場合、その説明は第2の参照符号に関係なく、同じ第1の参照符号を有する類似の構成要素のうちの任意の1つに適用可能である。
本明細書において本開示に関連して記載されている様々な例示のブロックおよびモジュールは、本明細書に記載の機能を実行するように設計された、汎用プロセッサ、DSP、ASIC、FPGAまたはその他のプログラマブル・ロジック・デバイス、ディスクリート・ゲートまたはトランジスタ・ロジック、ディスクリート・ハードウェア構成要素、またはこれらの任意の組み合わせにより実装または実行可能である。汎用プロセッサは、マイクロプロセッサとすることができるが、別の態様では、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態マシンであってもよい。プロセッサは、コンピューティング・デバイスの組み合わせ(例えば、デジタル・シグナル・プロセッサ(DSP)とマイクロプロセッサ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つまたは複数のマイクロプロセッサ、または任意のその他の同様の構成)として実装することもできる。
本明細書に記載の機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはこれらの任意の組み合わせとすることができる。プロセッサによって実行されるソフトウェアで実装される場合、機能は、コンピュータ可読媒体上で1つまたは複数の命令またはコードとして記憶されるかまたは送信されてもよい。他の実施例または実装形態も本開示および添付の特許請求の範囲の範囲に含まれる。例えば、ソフトウェアの性質のため、上述の機能を、プロセッサ、ハードウェア、ファームウェア、ハード配線または任意のこれらの組み合わせによって実行されるソフトウェアを使用して実装することができる。機能を実装する特徴は、機能の各部分が異なる物理的場所において実装されるように分散されることを含む、様々な位置に物理的に配置することも可能である。また、特許請求の範囲を含む本明細書で使用されている、項目の列挙(例えば、「〜のうちの少なくとも1つ」または「〜のうちの1つまたは複数」などの語句の前の項目の列挙)で使用されている「または」は、例えば、A、BまたはCのうちの少なくとも1つという列挙がAまたはBまたはCまたはABまたはACまたはBCまたはABC(すなわちAとBとC)を意味するように、包含的な列挙を示す。
本明細書で使用されている「ほぼ」という用語は、修飾されている特性(例えば、「ほぼ」という用語によって修飾されている動詞または形容詞)が、必ずしも絶対的ではなく、その特性の利点を実現するのに十分に近接していることを意味する。
本明細書で使用されている「基づく」という語句は、条件の閉集合を指すものと解釈すべきではない。例えば、「条件Aに基づく」として記載されている例示のステップは、本開示の範囲から逸脱することなく、条件Aと条件Bの両方に基づき得る。言い換えると、本明細書で使用されている「基づく」という用語は、「少なくとも部分的に基づく」という語句と同様に解釈すべきである。
本明細書の説明は、当業者が本開示を製作または使用することができるようにするために示されている。当業者には本開示の様々な修正が容易にわかるであろうし、本明細書で定義されている一般原理は、本開示の範囲から逸脱することなく他の変形態様にも適用可能である。したがって、本開示は本明細書に記載されている実施例および設計には限定されず、本明細書で開示されている原理および新規な特徴と整合する最も広い範囲が与えられるべきである。

Claims (40)

  1. 第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに、書き込み電圧を印加することと、
    前記書き込み電圧の印加後に、前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと、
    前記第1の読み取り電圧の印加後に、前記メモリ・セルに前記第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することであって、前記第2の読み取り電圧の印加は前記メモリ・セルのリフレッシュ操作を伴い、かつ前記第2の読み取り電圧の印加は前記第1の読み取り電圧から直接、前記第2の読み取り電圧に進むことと、
    前記第1の読み取り電圧の印加に少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断することとを含むことを特徴とする方法。
  2. 第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに、書き込み電圧を印加することと、
    前記書き込み電圧の印加後に、前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと、
    前記第1の読み取り電圧の印加後に、前記メモリ・セルに前記第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することであって、前記第2の読み取り電圧の印加は前記メモリ・セルのリフレッシュ操作を伴うことと、
    前記第2の読み取り電圧の印加後に前記メモリ・セルに前記第1の極性を有する第3の読み取り電圧を印加することであって、前記第3の読み取り電圧の印加は前記メモリ・セルの前記リフレッシュ操作を伴うことと、
    前記第1の読み取り電圧の印加に少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断することとを含むことを特徴とする方法。
  3. 第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに、書き込み電圧を印加することと、
    前記書き込み電圧の印加後に、前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと、
    前記第1の読み取り電圧の印加後に、前記メモリ・セルに前記第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することと、
    前記第2の読み取り電圧の印加後に、前記メモリ・セルに前記第1の極性を有する第3の読み取り電圧を印加することであって、前記第3の読み取り電圧の印加は前記メモリ・セルのリフレッシュ操作を伴うことと、
    前記第3の読み取り電圧の印加後に、前記メモリ・セルに前記第1の極性を有する第4の読み取り電圧を印加することであって、前記第4の読み取り電圧の印加は前記メモリ・セルの前記リフレッシュ操作を伴うことと、
    前記第1の読み取り電圧の印加に少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断することとを含むことを特徴とする方法。
  4. 前記メモリ・セルの前記論理状態の判断後に、前記第4の読み取り電圧を第5の電圧に低下させることをさらに含むことを特徴とする、請求項3に記載の方法。
  5. 前記書き込み電圧は、前記第1の読み取り電圧、前記第2の読み取り電圧、前記第3の読み取り電圧、および前記第4の読み取り電圧より大きいことを特徴とする、請求項3に記載の方法。
  6. 前記第3の読み取り電圧は、前記第4の読み取り電圧より大きいことを特徴とする、請求項3に記載の方法。
  7. 前記第1の極性は正極性を含み、前記第2の極性は負極性を含むことを特徴とする、請求項1に記載の方法。
  8. 前記第1の極性は負極性を含み、前記第2の極性は正極性を含むことを特徴とする、請求項1に記載の方法。
  9. 前記書き込み電圧は前記第1の極性を有することを特徴とする、請求項1に記載の方法。
  10. 前記書き込み電圧は前記第2の極性を有することを特徴とする、請求項1に記載の方法。
  11. 第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに、書き込み電圧を印加することと、
    前記書き込み電圧の印加後に、前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと、
    前記第1の読み取り電圧の印加後に、前記メモリ・セルに前記第1の極性とは異なる第2の極性を有する第2の読み取り電圧を印加することであって、前記第2の読み取り電圧の印加は前記メモリ・セルのリフレッシュ操作を伴うことと、
    前記第1の読み取り電圧の印加に少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断することとを含み、
    前記メモリ・セルは、カルコゲナイドを含むマルチ・レベル・セル(MLC)を含むことを特徴とする方法。
  12. 前記メモリ・セルは、メモリ記憶素子とセレクタ・デバイスとを含むことを特徴とする、請求項1に記載の方法。
  13. メモリ・デバイスであって、
    メモリ・セルと、
    前記メモリ・セルに結合された第1のアクセス線と、
    前記メモリ・セルに結合された第2のアクセス線と、
    前記第1のアクセス線と前記第2のアクセス線とに結合されたメモリ・コントローラとを含み、
    前記メモリ・コントローラは、
    前記メモリ・セルに書き込み電圧を印加し、ここで、前記書き込み電圧は、第1の極性又は第2の極性を有し、
    前記書き込み電圧の印加後に前記メモリ・セルに前記第1の極性を有する第1の読み取り電圧を印加し、
    前記第1の読み取り電圧の印加後に前記メモリ・セルに前記第2の極性を有する第2の読み取り電圧を印加し、
    前記第2の読み取り電圧の印加後に前記メモリ・セルに前記第1の極性を有する第3の読み取り電圧を印加し、ここで、前記第2の読み取り電圧は前記第3の読み取り電圧より大きく、前記第3の読み取り電圧の印加は前記メモリ・セルのリフレッシュ操作を伴い、
    前記第1の読み取り電圧の印加に少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断するように動作可能であることを特徴とする、メモリ・デバイス。
  14. 前記メモリ・コントローラは、
    前記第3の読み取り電圧の印加後に前記メモリ・セルに前記第1の極性を有する第4の読み取り電圧を印加するようにさらに動作可能であり、前記第3の読み取り電圧は前記第4の読み取り電圧より大きく、前記第4の読み取り電圧の印加は前記メモリ・セルの前記リフレッシュ操作を伴うことを特徴とする、請求項13に記載のメモリ・デバイス。
  15. 前記メモリ・セルはカルコゲナイドを含むことを特徴とする、請求項13に記載のメモリ・デバイス。
  16. 前記メモリ・セルはマルチ・レベル・セル(MLC)を含むことを特徴とする、請求項13に記載のメモリ・デバイス。
  17. 前記メモリ・セルは、メモリ素子とセレクタ・デバイスとを含むことを特徴とする、請求項13に記載のメモリ・デバイス。
  18. 第1のアクセス線と第2のアクセス線とに結合されたメモリ・セルに書き込みパルスを印加することと、
    前記書き込みパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに、前記書き込みパルスと同じ極性を有し、センス操作を伴う第1の読み取りパルスを印加することと、
    前記第1の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに前記書き込みパルスと逆の極性を有する第2の読み取りパルスを印加することと、
    前記第2の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに前記書き込みパルスと同じ極性を有する第3の読み取りパルスを印加することと、
    前記第3の読み取りパルスの印加後に前記メモリ・セルに前記書き込みパルスと同じ極性を有する第4の読み取りパルスを印加することであって、前記第3の読み取りパルスと前記第4の読み取りパルスの印加は前記メモリ・セルのリフレッシュ操作を伴うことと、
    前記第1の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルの論理状態を判断することとを含むことを特徴とする方法。
  19. 前記第4の読み取りパルスの印加後に前記第1のアクセス線または前記第2のアクセス線のうちの少なくとも一方を接地することをさらに含むことを特徴とする、請求項18に記載の方法。
  20. 前記メモリ・セルはメモリ記憶素子とセレクタ・デバイスとを含むことを特徴とする、請求項18に記載の方法。
  21. メモリ記憶素子とセレクタ・デバイスとを含むメモリ・セルに書き込み電圧を印加することと、
    前記書き込み電圧の印加後に前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと
    前記第1の読み取り電圧の印加後に前記メモリ・セルに第2の極性を有する第2の読み取り電圧を印加することであって、前記第1の読み取り電圧と前記第2の読み取り電圧は同じアクセス操作の間に印加され、前記第2の読み取り電圧の印加は前記第1の読み取り電圧から直接、前記第2の読み取り電圧に進むことと、
    前記第1の読み取り電圧又は前記第2の読み取り電圧又はその両方の印加に少なくとも部分的に基づいて、前記メモリ・セルの論理状態を判断することと、を含むことを特徴とする方法。
  22. メモリ記憶素子とセレクタ・デバイスとを含むメモリ・セルに書き込み電圧を印加することと、
    前記書き込み電圧の印加後に前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと、
    前記第1の読み取り電圧の印加後に前記メモリ・セルに第2の極性を有する第2の読み取り電圧を印加することであって、前記第1の読み取り電圧と前記第2の読み取り電圧は同じアクセス操作の間に印加されることと、
    前記第1の読み取り電圧又は前記第2の読み取り電圧又はその両方の印加に少なくとも部分的に基づいて、前記メモリ・セルの論理状態を判断することと、
    前記メモリ・セルへの第3の読み取り電圧の印加によって前記第2の読み取り電圧の印加後に前記メモリ・セルをリフレッシュすることと、を含むことを特徴とする方法。
  23. 前記メモリ・セルをリフレッシュすることは、前記第3の読み取り電圧の印加後に前記メモリ・セルに第4の読み取り電圧を印加することをさらに含むことを特徴とする、請求項22に記載の方法。
  24. 前記第3の読み取り電圧と前記第4の読み取り電圧は、前記第1の極性を有することを特徴とする、請求項23に記載の方法。
  25. 前記メモリ・セルへの前記第4の読み取り電圧の印加に少なくとも部分的に基づいて、前記メモリ・セルに結合されたアクセス線を接地することと、
    前記アクセス線の接地に少なくとも部分的に基づいて、前記メモリ・セルに第5の電圧を印加することと、をさらに含むことを特徴とする、請求項23に記載の方法。
  26. 前記第5の電圧の印加に少なくとも部分的に基づいて、前記メモリ・セルへ印加された前記第4の読み取り電圧を低下させることであって、ここで、前記メモリ・セルへの前記第5の電圧の印加は、前記メモリ・セルへ印加された前記第4の読み取り電圧の低下に少なくとも部分的に基づく、ことをさらに含むことを特徴とする、請求項25に記載の方法。
  27. 前記書き込み電圧は正極性を有し、前記第1の読み取り電圧と前記第2の読み取り電圧の少なくとも一方は負極性を有することを特徴とする、請求項21に記載の方法。
  28. 前記第1の読み取り電圧の前記第1の極性は、前記書き込み電圧の極性と比べて反対の極性を有することを特徴とする、請求項21に記載の方法。
  29. 前記第2の読み取り電圧の印加は、前記メモリ・セルをリフレッシュすることを特徴とする、請求項21に記載の方法。
  30. メモリ記憶素子とセレクタ・デバイスとを含むメモリ・セルに書き込み電圧を印加することと、
    前記書き込み電圧の印加後に前記メモリ・セルに第1の極性を有する第1の読み取り電圧を印加することと、
    前記第1の読み取り電圧の印加後に前記メモリ・セルに第2の極性を有する第2の読み取り電圧を印加することであって、前記第1の読み取り電圧と前記第2の読み取り電圧は同じアクセス操作の間に印加されることと、
    前記第1の読み取り電圧又は前記第2の読み取り電圧又はその両方の印加に少なくとも部分的に基づいて、前記メモリ・セルの論理状態を判断することと、を含み、
    前記メモリ・セルは、カルコゲナイド物質を含むことを特徴とする方法。
  31. メモリ素子とセレクタ・デバイスとを含むメモリ・セルと、
    前記メモリ・セルに結合された第1のアクセス線と、
    前記メモリ・セルに結合された第2のアクセス線と、
    前記第1のアクセス線と前記第2のアクセス線とに結合されたメモリ・コントローラと、を含み、
    前記メモリ・コントローラは、
    前記メモリ・セルに第1の極性を有する第1の電圧を、読み取り操作の間に、印加し、
    前記第1の電圧の印加後に前記メモリ・セルに第2の極性を有する第2の電圧を、前記読み取り操作の間に、印加し、ここで、前記第2の電圧の印加は、前記メモリ・セルのリフレッシュ操作を伴い、かつ前記第2の電圧の印加は、前記第1の電圧から直接、前記第2の電圧に進み、
    前記第1の電圧の印加と前記第2の電圧の印加とに少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断するように動作可能であることを特徴とする、メモリ・デバイス。
  32. 前記メモリ・コントローラは、
    前記メモリ・セルに書き込み電圧を印加するように動作可能であり、ここで、前記メモリ・コントローラは、前記書き込み電圧の印加に少なくとも部分的に基づいて前記第1の極性を有する前記第1の電圧を印加するように動作可能である
    ことを特徴とする、請求項31に記載のメモリ・デバイス。
  33. メモリ素子とセレクタ・デバイスとを含むメモリ・セルと、
    前記メモリ・セルに結合された第1のアクセス線と、
    前記メモリ・セルに結合された第2のアクセス線と、
    前記第1のアクセス線と前記第2のアクセス線とに結合されたメモリ・コントローラと、を含み、
    前記メモリ・コントローラは、
    前記メモリ・セルに第1の極性を有する第1の電圧を、読み取り操作の間に、印加し、
    前記第1の電圧の印加後に前記メモリ・セルに第2の極性を有する第2の電圧を、前記読み取り操作の間に、印加し、ここで、前記第2の電圧の印加は、前記メモリ・セルのリフレッシュ操作を伴い、
    前記第1の電圧の印加と前記第2の電圧の印加とに少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断し、
    前記第2の電圧の印加後に前記メモリ・セルに第3の電圧を印加し、
    前記第3の電圧の印加後に前記メモリ・セルに第4の電圧を印加するように動作可能であり、ここで、前記第3の電圧と前記第4の電圧は、同じ極性を有し、前記メモリ・セルのリフレッシュ操作を伴うことを特徴とするメモリ・デバイス。
  34. 前記メモリ・コントローラは、
    前記メモリ・セルへの前記第4の電圧の印加に少なくとも部分的に基づいて、前記メモリ・セルを接地するように動作可能であることを特徴とする、請求項33に記載のメモリ・デバイス。
  35. メモリ素子とセレクタ・デバイスとを含むメモリ・セルであって、ここで、前記メモリ・セルは、カルコゲナイド物質を含むマルチ・レベル・セル(MLC)を含み、
    前記メモリ・セルに結合された第1のアクセス線と、
    前記メモリ・セルに結合された第2のアクセス線と、
    前記第1のアクセス線と前記第2のアクセス線とに結合されたメモリ・コントローラと、を含み、
    前記メモリ・コントローラは、
    前記メモリ・セルに第1の極性を有する第1の電圧を、読み取り操作の間に、印加し、
    前記第1の電圧の印加後に前記メモリ・セルに第2の極性を有する第2の電圧を、前記読み取り操作の間に、印加し、ここで、前記第2の電圧の印加は、前記メモリ・セルのリフレッシュ操作を伴い、
    前記第1の電圧の印加と前記第2の電圧の印加とに少なくとも部分的に基づいて前記メモリ・セルの論理状態を判断するように動作可能であることを特徴とするメモリ・デバイス。
  36. メモリ素子とセレクタ・デバイスとを含むメモリ・セルと、
    前記メモリ・セルに結合された第1のアクセス線と、
    前記メモリ・セルに結合された第2のアクセス線と、
    前記第1のアクセス線と前記第2のアクセス線とに結合されたメモリ・コントローラと、を含み、
    前記メモリ・コントローラは、
    前記メモリ・セルに書き込みパルスを印加し、
    前記書き込みパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに前記書き込みパルスとは異なる極性を有する第1の読み取りパルスを印加し、
    前記第1の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに前記書き込みパルスと同じ極性を有する第2の読み取りパルスを印加し、ここで、前記第2の読み取りパルスの印加は前記メモリ・セルのリフレッシュ操作を伴い、かつ前記第2の読み取りパルスの印加は前記第1の読み取りパルスから直接、前記第2の読み取りパルスに進み、
    前記第1の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルの論理状態を判断するように動作可能であることを特徴とする、装置。
  37. メモリ素子とセレクタ・デバイスとを含むメモリ・セルと、
    前記メモリ・セルに結合された第1のアクセス線と、
    前記メモリ・セルに結合された第2のアクセス線と、
    前記第1のアクセス線と前記第2のアクセス線とに結合されたメモリ・コントローラと、を含み、
    前記メモリ・コントローラは、
    前記メモリ・セルに書き込みパルスを印加し、
    前記書き込みパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに前記書き込みパルスとは異なる極性を有する第1の読み取りパルスを印加し、
    前記第1の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに前記書き込みパルスと同じ極性を有する第2の読み取りパルスを印加し、ここで、前記第2の読み取りパルスの印加は前記メモリ・セルのリフレッシュ操作を伴い、
    前記第1の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルの論理状態を判断し、
    前記メモリ・セルへの第3の読み取りパルスの印加と前記第3の読み取りパルスの印加後の前記メモリ・セルへの第4の読み取りパルスの印加とによって、前記第2の読み取りパルスの印加後に前記メモリ・セルをリフレッシュするように動作可能であることを特徴とする、装置。
  38. 前記メモリ・コントローラは、
    前記メモリ・セルへの前記第4の読み取りパルスの印加に少なくとも部分的に基づいて、前記メモリ・セルに結合されたアクセス線を接地し、
    前記アクセス線の接地に少なくとも部分的に基づいて、前記第4の読み取りパルスの大きさを低下させるように動作可能であることを特徴とする、請求項37に記載の装置。
  39. 前記第3の読み取りパルスの大きさは、前記第4の読み取りパルスの大きさよりも大きいことを特徴とする、請求項37に記載の装置。
  40. 前記メモリ・コントローラは、
    前記メモリ・セルに関連するアクセス操作の間に、前記第1の読み取りパルスを印加し、
    前記メモリ・セルに関連する前記アクセス操作の間に、前記第2の読み取りパルスを印加するように動作可能であることを特徴とする、請求項36に記載の装置。
JP2020535074A 2017-12-28 2018-12-11 組み込みリフレッシュによるドリフト低減 Active JP6865506B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/857,125 2017-12-28
US15/857,125 US10269442B1 (en) 2017-12-28 2017-12-28 Drift mitigation with embedded refresh
PCT/US2018/064928 WO2019133243A1 (en) 2017-12-28 2018-12-11 Drift mitigation with embedded refresh

Publications (2)

Publication Number Publication Date
JP2021508908A JP2021508908A (ja) 2021-03-11
JP6865506B2 true JP6865506B2 (ja) 2021-04-28

Family

ID=66174981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535074A Active JP6865506B2 (ja) 2017-12-28 2018-12-11 組み込みリフレッシュによるドリフト低減

Country Status (6)

Country Link
US (3) US10269442B1 (ja)
EP (1) EP3732686B1 (ja)
JP (1) JP6865506B2 (ja)
KR (1) KR102219285B1 (ja)
CN (1) CN111512380B (ja)
WO (1) WO2019133243A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662826B (zh) * 2018-03-23 2019-06-11 華邦電子股份有限公司 金鑰產生裝置及方法
EP3621122B1 (en) * 2018-09-04 2021-11-17 IMEC vzw Memory selector, memory cell and random access memory
US11335402B2 (en) * 2018-12-19 2022-05-17 Micron Technology, Inc. Systems and techniques for accessing multiple memory cells concurrently
TWI684980B (zh) * 2019-05-03 2020-02-11 華邦電子股份有限公司 電阻式記憶體裝置及其操作方法
KR20200144000A (ko) * 2019-06-17 2020-12-28 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법
US10867671B1 (en) * 2019-07-02 2020-12-15 Micron Technology, Inc. Techniques for applying multiple voltage pulses to select a memory cell
US10964385B1 (en) * 2019-11-14 2021-03-30 Micron Technology, Inc. Restoring memory cell threshold voltages
JP2023504504A (ja) * 2019-12-03 2023-02-03 マイクロン テクノロジー,インク. メモリセルを読み出すためのシステム及び方法
KR20210103701A (ko) 2020-02-14 2021-08-24 삼성전자주식회사 메모리 장치 및 그 동작 방법
US11430509B2 (en) * 2020-02-21 2022-08-30 Micron Technology, Inc. Varying-polarity read operations for polarity-written memory cells
US11139016B1 (en) 2020-04-07 2021-10-05 Micron Technology, Inc. Read refresh operation
US11404120B2 (en) * 2020-05-13 2022-08-02 Micron Technology, Inc. Refresh operation of a memory cell
US11222668B1 (en) * 2020-08-27 2022-01-11 Micron Technology, Inc. Memory cell sensing stress mitigation
US20220113892A1 (en) * 2020-10-12 2022-04-14 Intel Corporation Multi-level memory programming and readout
US11430518B1 (en) 2021-03-30 2022-08-30 Micron Technology, Inc. Conditional drift cancellation operations in programming memory cells to store data
US11456036B1 (en) 2021-04-02 2022-09-27 Micron Technology, Inc. Predicting and compensating for degradation of memory cells
US11482284B1 (en) * 2021-04-22 2022-10-25 Micron Technology, Inc. Parallel drift cancellation
US11805713B2 (en) 2021-12-02 2023-10-31 International Business Machines Corporation Drift mitigation for resistive memory devices
US11823761B2 (en) * 2021-12-23 2023-11-21 Micron Technology, Inc. Pre-read in opposite polarity to evaluate read margin
CN114284312B (zh) * 2021-12-24 2024-05-14 华中科技大学 一种ots选通管的操作方法
US12014774B2 (en) * 2022-02-07 2024-06-18 Taiwan Semiconductor Manufacturing Co., Ltd. Memory selector threshold voltage recovery
US11972787B2 (en) 2022-05-25 2024-04-30 Sandisk Technologies Llc Cross-point array refresh scheme

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768665B2 (en) * 2002-08-05 2004-07-27 Intel Corporation Refreshing memory cells of a phase change material memory device
US6856534B2 (en) * 2002-09-30 2005-02-15 Texas Instruments Incorporated Ferroelectric memory with wide operating voltage and multi-bit storage per cell
JP2006179560A (ja) 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd 記憶素子の再生方法およびメモリ回路
US7313047B2 (en) * 2006-02-23 2007-12-25 Hynix Semiconductor Inc. Dynamic semiconductor memory with improved refresh mechanism
JP4143094B2 (ja) * 2006-03-07 2008-09-03 株式会社東芝 強誘電体記憶装置
JP5159224B2 (ja) * 2007-09-21 2013-03-06 株式会社東芝 抵抗変化メモリ装置
DE102008003637B4 (de) * 2008-01-09 2010-05-12 Qimonda Ag Integrierter Schaltkreis, Verfahren zum Programmieren einer Speicherzellen-Anordnung eines Integrierten Schaltkreises, und Speichermodul
US8027209B2 (en) * 2008-10-06 2011-09-27 Sandisk 3D, Llc Continuous programming of non-volatile memory
US7859932B2 (en) * 2008-12-18 2010-12-28 Sandisk Corporation Data refresh for non-volatile storage
WO2011133139A1 (en) * 2010-04-19 2011-10-27 Hewlett-Packard Development Company, L.P. Refreshing memristive systems
US8958233B2 (en) * 2011-10-18 2015-02-17 Micron Technology, Inc. Stabilization of resistive memory
JP5602175B2 (ja) * 2012-03-26 2014-10-08 株式会社東芝 不揮発性半導体記憶装置及びそのデータ書き込み方法
US8867256B2 (en) * 2012-09-25 2014-10-21 Palo Alto Research Center Incorporated Systems and methods for writing and non-destructively reading ferroelectric memories
US9484089B2 (en) * 2014-10-20 2016-11-01 Sandisk Technologies Llc Dual polarity read operation
US10134470B2 (en) 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US9613676B1 (en) * 2016-06-29 2017-04-04 Micron Technology, Inc. Writing to cross-point non-volatile memory
US10446226B2 (en) 2016-08-08 2019-10-15 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
US9799381B1 (en) * 2016-09-28 2017-10-24 Intel Corporation Double-polarity memory read
US10157670B2 (en) 2016-10-28 2018-12-18 Micron Technology, Inc. Apparatuses including memory cells and methods of operation of same

Also Published As

Publication number Publication date
US20200372966A1 (en) 2020-11-26
JP2021508908A (ja) 2021-03-11
US10777291B2 (en) 2020-09-15
US11217322B2 (en) 2022-01-04
US10269442B1 (en) 2019-04-23
EP3732686B1 (en) 2024-04-17
WO2019133243A1 (en) 2019-07-04
CN111512380B (zh) 2021-08-06
EP3732686A4 (en) 2021-09-08
EP3732686A1 (en) 2020-11-04
US20190206506A1 (en) 2019-07-04
CN111512380A (zh) 2020-08-07
KR102219285B1 (ko) 2021-02-24
KR20200090269A (ko) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6865506B2 (ja) 組み込みリフレッシュによるドリフト低減
JP6859491B2 (ja) 極性調整メモリ・セル書き込み操作
JP6872653B2 (ja) クロスポイント不揮発性メモリに対する書き込み
US11120870B2 (en) Mixed cross point memory
JP6894052B2 (ja) 結合容量を用いた自己参照センシング・スキーム
JP2021122054A (ja) メモリダイ領域の有効利用
TWI694591B (zh) 具水平存取線之自選擇記憶體陣列
JP2020519010A (ja) 自己選択メモリにおけるプログラミング改良
JP2021527341A (ja) 遷移金属ドープのゲルマニウム−アンチモン−テルル(gst)メモリデバイスコンポーネント及び組成物
JP2021515956A (ja) メモリ・セルを検知するための差動アンプ・スキーム
JP2022009165A (ja) カルコゲナイドメモリデバイスの構成要素及び組成物
KR20200067295A (ko) 칼코게나이드 메모리 디바이스 컴포넌트들 및 조성물
KR20210082541A (ko) 칼코게나이드 메모리 디바이스 컴포넌트들 및 조성물

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200821

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6865506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250