JP6862488B2 - 呼吸装置の圧力センサ評価 - Google Patents

呼吸装置の圧力センサ評価 Download PDF

Info

Publication number
JP6862488B2
JP6862488B2 JP2019062988A JP2019062988A JP6862488B2 JP 6862488 B2 JP6862488 B2 JP 6862488B2 JP 2019062988 A JP2019062988 A JP 2019062988A JP 2019062988 A JP2019062988 A JP 2019062988A JP 6862488 B2 JP6862488 B2 JP 6862488B2
Authority
JP
Japan
Prior art keywords
pressure
altitude
pressure sensor
motor speed
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019062988A
Other languages
English (en)
Other versions
JP2019122813A (ja
Inventor
カペッリ,ジョエル
タラクチ,セム
ケニヨン,バートン・ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resmed Pty Ltd
Original Assignee
Resmed Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resmed Pty Ltd filed Critical Resmed Pty Ltd
Publication of JP2019122813A publication Critical patent/JP2019122813A/ja
Application granted granted Critical
Publication of JP6862488B2 publication Critical patent/JP6862488B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3365Rotational speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Emergency Medicine (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measuring Fluid Pressure (AREA)

Description

本技術は、圧力センサの正確さを判定する方法及び装置等の、呼吸装置のために使用さ
れるセンサの正確さをモニタする方法に関する。
[関連出願の相互参照]
本出願は、2012年6月29日に出願された米国仮特許出願第61/666,367
号の出願日の利益を主張し、その出願の開示内容は引用することにより本明細書の一部を
なすものとする。
睡眠呼吸障害、いびき、上気道気流制限、低呼吸、無呼吸、又は同様なもの等の呼吸障
害問題を有すると診断された患者は、開口気道を維持するのを補助するために、持続気道
陽圧(CPAP:continuous positive airway pressure)デバイス又は複相型(bi-leve
l)陽圧デバイス等の呼吸装置に頼る場合がある。他の形態の呼吸装置は人工呼吸器を含
む。人工呼吸器は、酸素を肺に提供し、二酸化炭素を身体から取り除くことによって患者
が呼吸するのを補助する。人工呼吸器は、例えば肺疾患のせいで自分自身で呼吸すること
ができないか又は呼吸する能力が減少している患者に使用することができる。
呼吸装置は、1つ又は複数の圧力で患者の気道に供給するための或る供給量の陽圧ガス
を生成するため、患者インタフェース(例えば、マスク又はカニューレ等)に結合した流
れ発生器を含むことができる。
呼吸装置はまた、患者に提供される呼吸可能なガスの、圧力等の特性をモニタする、圧
力センサ等の1つ又は複数のセンサを含むことができる。測定される特性に基づいて、装
置は、閉塞した又は部分的に閉塞した患者の気道をスプリント開口させる(splint open
)ため、大気圧を超えるよう処置圧力を変化させること、又は、ターゲット容積を満たす
換気を提供するための、圧補助(PS)の変化等によって呼吸パラメータに対する調整を
制御することができる。圧補助は吸気圧と呼気圧との差であるこのような調整は、流れ発
生器のモータ速度のコントローラによる設定若しくは調整、又はシステムの逃がし弁のア
パーチャについてのコントローラによる設定によって行うことができる。呼吸可能なガス
の制御に関わる任意のセンサによる偽りの読みは、呼吸可能なガスの不正確な制御をもた
らす場合があり、そして、それが、患者の呼吸、快適さ、又は安全性に悪い影響を及ぼす
場合がある。
呼吸装置による正確な性能を保証するために、圧力センサ等のセンサの正確さを、使用
する前に及び/又は使用中にモニタ若しくは検出する方法、又は、このようなセンサに関
する故障を検出する方法を開発することが望ましい場合がある。
本技術の幾つかの実施形態は、呼吸処置の制御に関わるセンサの正確さをモニタする方
法を含む。
本技術の幾つかの実施形態は、装置の制御に関わるセンサの正確さをモニタする呼吸装
置を含む。
幾つかの実施形態は、装置の下位の又は2次的な特性に基づいて圧力センサを評価する
ことができる。
幾つかの実施形態は、装置の高度に基づいて圧力センサを評価することができる。
幾つかの実施形態は、装置の大気圧又は装置がその中で動作する大気圧等の大気圧に基
づいて圧力センサを評価することができる。
幾つかのこのような実施形態は、冗長なセンサなしで、このようなモニタリングを達成
することができる。例えば、幾つかの実施形態は、更なる圧力センサなしで圧力センサを
評価することができる。幾つかの実施形態は、高度計無しで圧力センサを評価することが
できる。
本技術の幾つかの実施形態は、呼吸デバイス内の圧力センサの正確さを判定する方法を
含む。方法は、圧力センサを使用して、呼吸デバイスによって生成される呼吸可能なガス
の流れの圧力を測定することを含むことができる。方法はまた、測定される圧力及び呼吸
デバイスの高度に基づいて圧力センサの正確さを、プロセッサによって判定することを含
むことができる。
幾つかの場合、呼吸デバイスは、呼吸可能なガスの加圧された流れを生成するための、
内部にモータを含んでいる流れ発生器を含むことができる。呼吸デバイスの高度はユーザ
によって入力することができる。呼吸デバイスの高度は、呼吸デバイスの高度計によって
測定することができる。幾つかの場合、プロセッサは、呼吸デバイスの高度の推定値を計
算することができる。さらに、プロセッサは、計算された高度の評価に基づいて圧力セン
サの正確さを判定することができる。
幾つかの場合、プロセッサは、(a)圧力センサによって測定された圧力と、(b)(
1)呼吸可能なガスの流れの測定される流量、及び(b)(2)流れ発生器の測定された
モータ速度、の一方又は両方との関数として呼吸デバイスの高度を計算することができる
。任意選択的に、プロセッサは、呼吸可能なガスの流れの測定される温度の関数として呼
吸デバイスの高度を計算することができる。
プロセッサは、流れ発生器が、約20リットル/分等の一定の所定の流量、50リット
ル/分未満である一定の所定の流量、又は、約10リットル/分と約60リットル/分と
の間の範囲内である一定の所定の流量にガスを制御するときに呼吸デバイスの高度を計算
することができる。またさらに、プロセッサは、呼吸デバイスの高度を、流れ発生器が一
定の所定のモータ速度を制御するときに計算することができる。
幾つかの場合、プロセッサは、計算された高度を所定の範囲の高度と比較することによ
って計算された高度を評価することができる。幾つかの場合、所定の範囲の高度は、海面
上で0フィートと9000フィートとの間とすることができる。所定の範囲の高度は、海
面下500フィートと海面上10000フィートとの間とすることができる。プロセッサ
は、計算された高度が所定の範囲の高度の範囲内であるときに計算された高度を受入れ可
能であると見なすことができる。プロセッサは、計算された高度が所定の範囲の高度の範
囲外であるときに計算された高度を受入れ不可能であると見なすことができる。
幾つかの場合、プロセッサは、所定の期間にわたって所定の周波数で呼吸デバイスの高
度を計算することができる。所定の周波数は1ヘルツと2ヘルツとの間とすることができ
る。所定の期間は約5秒とすることができる。任意選択的に、プロセッサは、計算された
高度の平均に基づいて圧力センサを評価することができる。プロセッサは、計算された高
度の平均が閾値比較を満たすときに圧力センサが正確であると判定することができる。プ
ロセッサは、呼吸デバイスが患者に処置を提供する前の初期化プロセスにおいて圧力セン
サを評価することができる。幾つかの場合、プロセッサは、呼吸デバイスの高度をメモリ
に記憶することができる。
幾つかの変形形態では、プロセッサは、呼吸デバイスによって生成されるガスの予想圧
力を計算することと、測定された圧力を予想圧力と比較することとによって圧力センサの
正確さを評価することができる。プロセッサは、呼吸デバイスの高度、呼吸可能なガスの
流れの測定された流量、及び流れ発生器の測定されたモータ速度から予想圧力を計算する
ことができる。プロセッサは、呼吸可能なガスの流れの測定された温度から予想圧力を計
算することができる。プロセッサは、測定された圧力と予想圧力との差を所定の閾値と比
較することによって、圧力センサの正確さを判定することができる。所定の閾値は約5c
mHOとすることができる。プロセッサは、差が所定の閾値を超えているときに圧力セ
ンサを不正確であると判定することができる。プロセッサは、差が所定の閾値内にあると
きに圧力センサを正確であると判定することができる。幾つかの場合、圧力の測定、予想
圧力の計算、及び測定された圧力と予想圧力との比較は、所定の期間にわたって所定の周
波数で実施することができる。所定の周波数は1ヘルツと2ヘルツとの間とすることがで
きる。所定の期間は約5秒とすることができる。幾つかの場合、プロセッサは、測定圧力
と予想圧力との間の複数回の比較に基づいて圧力センサを不正確であると判定することが
できる。
幾つかの場合、呼吸デバイスの高度は第1の高度とすることができ、プロセッサは、呼
吸デバイスの第2の高度を計算することと、呼吸デバイスの第2の高度を呼吸デバイスの
第1の高度と比較することとによって圧力センサの正確さを判定することができる。プロ
セッサは、呼吸可能なガスの流れの測定された流量、流れ発生器の測定されたモータ速度
、及び圧力センサによって測定された圧力から呼吸デバイスの第2の高度を計算すること
ができる。プロセッサは、呼吸可能なガスの流れの測定された温度から呼吸デバイスの第
2の高度を計算することができる。プロセッサは、第1の高度と第2の高度との差を所定
の閾値と比較することによって、圧力センサの正確さを判定することができる。所定の閾
値は、例えば約600フィートとすることができる。プロセッサは、差が所定の閾値を超
えるときに圧力センサを不正確であると判定することができる。プロセッサは、差が所定
の閾値内にあるときに圧力センサを正確であると判定することができる。プロセッサは、
所定の期間にわたって所定の周波数で第2の高度を計算することができる。所定の周波数
は1ヘルツと2ヘルツとの間とすることができる。所定の期間は約5秒とすることができ
る。
幾つかの場合、プロセッサは、所定の期間中に計算される第2の高度の平均が所定の閾
値より大きいオフセットだけ第1の高度と異なるときに圧力センサを不正確であると判定
することができる。プロセッサは、所定の期間中に計算される第2の高度の平均が所定の
閾値以下のオフセットだけ第1の高度と異なるときに圧力センサを正確であると判定する
ことができる。
幾つかの変形形態では、本方法は、プロセッサが圧力センサを不正確であると判定する
ときに、測定される圧力に基づいて流れ発生器についてモータ速度を設定することを含む
ことができる。本方法はまた、速度制限閾値未満でモータ速度を維持することを含むこと
ができる。本方法はまた、モータ速度値と圧力値との間の所定の関連付けに基づいて、流
れ発生器によって生成される所望のガス圧力を決定し、流れ発生器について所望のモータ
速度を決定することを含むことができる。
本技術の幾つかの実施形態は呼吸装置を含む。本装置は、大気圧を超える圧力で患者イ
ンタフェース用の呼吸可能なガスを生成するブロワを内部に含んでいる流れ発生器を含む
ことができる。圧力センサは、流れ発生器に結合することができ、呼吸可能なガスの流れ
の圧力を測定するように構成することができる。本装置はまた、圧力センサに結合され、
測定される圧力及び呼吸装置の高度に基づいて圧力センサの正確さを判定するように構成
されるプロセッサを含むことができる。
呼吸装置はまた、呼吸可能なガスの流れの流量を測定するように構成される流量センサ
を含むことができる。呼吸装置はまた、流れ発生器のモータ速度を測定するように構成さ
れるモータ速度センサを含むことができる。呼吸装置はまた、ユーザによって入力される
呼吸装置の高度を受信するように構成されるユーザ入/出力(I/O)デバイスを含むこ
とができる。呼吸装置はまた、呼吸装置の高度を決定するための高度計を含むことができ
る。
プロセッサは、圧力センサを不正確であると判定するときにこの圧力センサによって測
定される圧力に基づくモータ速度に流れ発生器を設定するように構成することができる。
プロセッサは、速度制限閾値未満でモータ速度を維持するように構成することができる。
プロセッサは、モータ速度値と圧力値との間の所定の関連付けに基づいて、流れ発生器に
よって生成される所望のガス圧力を決定し、流れ発生器について所望のモータ速度を決定
するように構成することができる。
詳細な説明において用いられた見出し語は、読み手の参照を容易にするためにのみ含ま
れており、本開示又は特許請求の範囲全体を通じて見られる主題を限定するために用いら
れるべきではない。これらの見出し語は、特許請求の範囲の範囲又は特許請求の範囲の限
定事項を解釈する際に用いられるべきではない。
記述される例示的な実施形態の種々の態様は、更に別の実施形態を実現するために、或
る特定の他の例示的な実施形態の態様と組み合わせることができる。任意の1つの例の1
つ又は複数の特徴を、他の例の1つ又は複数の特徴と組合せることができることが理解さ
れる。さらに、任意の1つ又は複数の例における任意の単一の特徴又は特徴の組合せは、
特許可能な主題を構成することができる。
本技術の他の特徴は、以下の詳細な説明に含まれる情報を検討することから明らかにな
るであろう。
本明細書に組込まれ、本明細書の一部を構成する添付図面は、本開示の実施形態を示し
、以下に示す実施形態の詳細な説明とともに、本開示の原理を説明するのに役立つ。
本技術の例示的な呼吸装置を示す図である。 オプションの構成要素を有する図1の呼吸装置の例示的な構成のブロック図である。 コントローラが圧力センサの動作の正確さを判定する例示的な方法を示すフロー図である。 圧力センサ故障検出器の例示的な構成のブロック図である。 コントローラが圧力センサの正確さを判定する別の方法を示すフロー図である。 別の実施形態による圧力センサの正確さを判定する方法を示すフロー図である。 更に別の実施形態による圧力センサの正確さを判定する方法を示すフロー図である。 更に別の実施形態による圧力センサの正確さを判定する方法を示すフロー図である。 更に別の実施形態による圧力センサの正確さを判定する方法を示すフロー図である。 更に別の実施形態による圧力センサの正確さを判定する方法を示すフロー図である。 更に別の実施形態による圧力センサの正確さを判定する方法を示すフロー図である。 一実施形態による圧力センサ故障ハンドラによる方法のフロー図である。 別の実施形態による圧力センサ故障ハンドラによる方法のフロー図である。
例証を簡潔かつ明確にするため、図面において同様の参照符号を使用して、同一の又は
類似の構造要素を特定することができる。
図面においてフロー図を使用して、本明細書で開示される構成要素、デバイス、部品、
システム、又は装置によって実施されるプロセス、動作、又は方法を示すことができる。
フロー図は、適切に構成されたコントローラ又はプロセッサ等によって、個々のプロセス
、動作、又は方法において実施されるステップ又はアルゴリズムの例示的な例証に過ぎな
い。プロセスは、フロー図に示すまさにその順序で実施することができる。代替的に、種
々のステップは、同時に処理することができるか、又は、示すシーケンスと異なるシーケ
ンスで実施することができる。ステップはまた、別途述べられない限り、フロー図から省
略することができるか、又は、フロー図に付加することができる。
例示的なシステム構成要素
図1に示すように、本技術の例示的な実施形態は、呼吸装置100を含むことができる
。呼吸装置100は、限定はしないが、持続気道陽圧(CPAP)デバイス、自動気道陽
圧(APAP)デバイス、2相型気道陽圧(BPAP)デバイス、可変気道陽圧(VPA
P)デバイス、及び人工呼吸器を含む任意のタイプの呼吸装置とすることができる。
図2は、図1に示す呼吸装置100の例示的なバス構成を示すブロック図である。装置
100は、以下の構成要素、すなわち、ブロワ130、圧力センサ104(マスクに近接
して、ブロワに近接して、又は両方の場所に配置することができる)、流量センサ106
、モータ速度センサ108、温度センサ110、高度計112、ユーザI/Oデバイス1
14、プロセッサ116、メモリ118、圧力センサ故障検出器120、及び圧力センサ
故障ハンドラ122、また任意選択的に、第2の圧力センサ124、のうちの1つ又は複
数を含むことができる。これらの構成要素の1つ又は複数は、無線通信、物理的結合、及
び/又は、バス126等による電気的結合によって互いに動作可能に結合することができ
る。これらの構成要素の1つ又は複数は、他の構成要素の1つ又は複数に対しアナログ又
はデジタル信号で実行可能命令を送受信することができる。各構成要素に関する詳細は以
下に示される。
流れ発生器102は、ブロワ130(例えば、モータ及びインペラ)から患者に対して
患者インタフェース132を介して呼吸可能なガスを生成するように構成することができ
る。ブロワ130は、ボリュート内のブロワ等のサーボコントローラブロワとすることが
できる。流れ発生器102の出力は、患者インタフェース132、及び、生成された呼吸
可能なガスを、ブロワ130と患者インタフェース132との間で送るガス送出導管13
4に結合することができる。
流れ発生器102は、呼吸可能なガスを、異なる治療圧力レベル又は流量で生成するよ
うに構成することができる。適したコントローラを有する流れ発生器102は、モータに
供給される電流又は電圧を変化させることによってブロワ130出力を調整することがで
きる。本明細書でより詳細に説明するように、ブロワ130の動作の制御は、圧力制御ル
ープ(すなわち、ターゲットの/所望の圧力設定点を満たすための測定される圧力の制御
)、流量制御ループ(すなわち、ターゲットの/所望の流量設定点を満たすための測定さ
れる流量の制御)、及び/又は速度制御ループ(すなわち、ターゲットの/所望の速度設
定点を満たすためのブロワのモータの測定される速度の制御)により行うことができる。
そのため、装置100は、流れ発生器102内のガスの特性を観測又は検出するための
種々のセンサを含むことができる。装置100は、幾つかのセンサの1つ又は複数によっ
て提供される読み値に頼って、他のセンサの1つ又は複数の正確さを判定することができ
る。各センサによるこのようなモニタリングの詳細は、以下に示される。
例えば、装置100は、流れ発生器102によって送出されるガスの圧力を検出するた
めの圧力センサ104を含むことができる。圧力センサ104は、装置100の動作又は
使用に関連するガス圧力に比例する圧力信号を生成することができる圧力変換器とするこ
とができる。圧力センサ104は、ガス圧力を測定するため、患者インタフェース132
に、流れ発生器102の出口に、若しくはガス送出導管134に、又はその組合せの場所
に等、流れ発生器102に関して種々の位置に位置決めすることができる。例えば、図1
に示すように、圧力センサ104は、患者インタフェース132に位置決めされ、そして
、患者インタフェース132のガス圧力を測定することができる。代替的に、圧力センサ
104は、導管134に位置決めされ、そして、導管134内のガス圧力を測定すること
ができる。圧力センサ104はまた、流れ発生器102によって生成されてすぐのガス圧
力を測定することができるように、流れ発生器102の出口に位置決めすることができる
。任意選択的に、圧力測定値は、圧力センサが流れ発生器102のブロワ130の出口に
近接して圧力を測定するときにマスク圧力を推定する等のために、システム内の圧力降下
を反映するように調整することができる。このような配置構成では、空気送出チューブに
沿う圧力降下は、予め規定することができるか、推定することができるか、又は計算する
ことができる。
任意選択的に、装置100は、ブロワ130に起因する流量、任意のシステム又はマス
ク漏洩流量、及び/又は患者呼吸流量等の流量を検出する流量センサ106を含むことが
できる。流量センサ106は、呼吸流量計、差動圧力変換器、又は、流量信号若しくは流
量を示す流量の読み値を生成する他の同様なデバイスを含むことができる。
継続して図1を参照すると、装置100は、流れ発生器102内のモータの、モータ速
度、例えば回転速度を検出するモータ速度センサ108を含むことができる。モータ速度
センサ108は、ホール効果センサ又は同様なものを含むことができる。本技術に適する
モータ速度センサ108の更なる例は、その開示全体が引用することにより本明細書の一
部をなすものとする、2005年11月2日に出願されたPCT/AU2005/001
688において見出すことができる。幾つかの実施形態では、モータ速度、任意選択的に
、モータに供給される電流をモニタすることによって、装置100のコントローラは、流
量又はガス圧力を推定することができる。
一実施形態では、装置100は、任意選択的に、流れ発生器102によって送出される
ガスの温度を測定するための温度センサ110を含むことができる。温度センサ110は
、熱電対又は抵抗温度検出器(RTD)等の温度変換器を含むことができる。温度センサ
110の配置に応じて、温度センサ110は、流れ発生器102内の代替の位置のガス温
度を測定することができる。一実施形態では、図1に示すように、温度センサ110は、
流れ発生器102の流量センサ106の近く等、ブロワ130出口に位置決めすることが
でき、そして、流れ発生器102のブロワ130を出てすぐのガスの温度を測定すること
ができる。代替的に、温度センサ110は、ブロワの入口又は装置100の外部等、ブロ
ワの上流に位置決めされて、ブロワに入るガスの温度又は周囲温度を測定することができ
る。ブロワを去るガスの温度は、その後、測定されるこの入口又は周囲温度に基づいて推
定又は計算することができる。
継続して図1を参照すると、幾つかの実施形態では、装置100は高度計112を含む
ことができる。高度計112は、固定レベル、例えば海面に対する高度等の装置100の
高度を検出することができる。高度計112は、装置100上の又は装置100内の任意
の適した場所に位置決めすることができる。
装置100は、任意選択的に、装置100のユーザ操作を容易にするユーザI/Oデバ
イス114を含むことができる。装置100のユーザは、医師、看護師、臨床医、世話人
、又は患者とすることができる。ユーザI/Oデバイス114は、限定はしないが、キー
ボード、タッチパネル、制御ボタン、マウス、及びスイッチを含むユーザ入力デバイスの
1つ又は複数を含むことができる。例えば、このようなI/Oデバイスは、装置100の
高度等の、ユーザによって入力される入力を受入れるように実装することができる。
ユーザI/Oデバイス114は、ディスプレイ又はアラーム(図示せず)等のユーザ出
力デバイスを含むことができる。ディスプレイは、モニタ又はLCDパネルとすることが
できる。ディスプレイは、装置100のステータスに関する情報、例えば、圧力センサ1
04から得られる患者に送出されたガスの圧力を表示することができる。代替的に、ディ
スプレイはまた、センサの動作の試験に続く、正確さ又は故障に関するステータス又は警
告メッセージを表示することができる。アラームは、音及び/又は光、例えばLED光に
よって警告報知を提供して、故障状態を特定することができる。
上述した種々のセンサに加えて、装置100は、装置100に関連するプロセスの動作
を制御する、プロセッサ116等のコントローラを含むことができる。プロセッサ116
は、以下、すなわち、中央処理ユニット(CPU)、マイクロプロセッサ、デジタル信号
プロセッサ、フロントエンドプロセッサ、コプロセッサ、データプロセッサ、及び/又は
アナログ信号プロセッサ、のうちの1つ又は複数を含む単一プロセッサ又はプロセッサの
集合体を指すことができる。プロセッサ116は、1つ又は複数の特定用途向け集積回路
(ASIC)によって実装することができる。一態様では、装置100は、全体として、
プロセッサ116によって実行されるプログラム可能命令に従って、本明細書で述べる各
構成要素の行為をプロセッサ116に実施させることができる。代替的に、装置100の
1つ又は複数の個々の構成要素、例えば、圧力センサ故障検出器120及び圧力センサ故
障ハンドラ122はそれぞれ、構成要素固有の命令を実行するように構成される自分自身
のプロセッサを有することができる。
幾つかの態様では、プロセッサ116は、装置100内に物理的に搭載することができ
る。代替的に、プロセッサ116は、装置100から遠隔に配置することができ、ネット
ワーク(図示せず)によって装置100と通信することができる。プロセッサの集合体が
存在する場合、1つ又は複数のプロセッサ116は、装置100内に物理的に搭載され、
一方、残りのプロセッサは、ネットワークを介して装置100と遠隔で通信することがで
きる。
一実施形態では、装置100は、プロセッサ116によって実行可能なプログラム可能
命令を記憶するメモリ118を含むことができる。メモリ118は、揮発性メモリ、不揮
発性メモリ、又はその組合せを含むことができる。揮発性メモリは、ダイナミックランダ
ムアクセスメモリ(DRAM)又はスタティックランダムアクセスメモリ(SRAM)等
のRAM、又は、電気的に消去され再プログラムすることができる任意の他の形態の変更
可能なメモリを含むことができる。不揮発性メモリは、ROM、プログラム可能ロジック
アレイ、又は、修正できないか、若しくは、ゆっくりとしか若しくは困難を伴ってしか修
正できない他の形態の変更不能なメモリを含むことができる。不揮発性メモリはファーム
ウェアを含むことができる。
さらに、本技術の実施形態は、上述した1つ又は複数のセンサの正確さを評価するか又
は1つ若しくは複数のセンサ内で故障が起こったか否かを判定する1つ又は複数の検出器
を含むことができる。例えば、装置100は、圧力センサ104の正確さを評価するアル
ゴリズムを実装する圧力センサ故障検出器120を含むことができる。アルゴリズムは、
プロセッサ116によって実行可能なプログラム可能命令に実装することができる。プロ
グラム可能命令は、ファームウェア等のメモリ118若しくは装置100のデータストレ
ージ(図示せず)に記憶することができる、又は、1つ若しくは複数のASICとしてそ
の他の方法で実装することができる。
センサ評価
圧力センサ104の正確さを評価するため、検出器120は、上述したセンサ104〜
112の1つ又は複数から測定値を受信することができる。センサ104〜112の1つ
又は複数は、リアルタイムに、準リアルタイムに、又はオンデマンドで検出器120に測
定値を提供することができる。
図3は、圧力センサ104の正確さを評価するために検出器120によって実施される
、適したプロセスを示すフローチャート300である。本明細書で説明するステップが検
出器120を参照して行われるが、これらのステップの1つ又は複数は、プロセッサ11
6によって実施することができる。
302において、検出器120は、圧力センサ104から圧力測定量を取得することが
できる。304において、検出器120は、圧力測定量及び装置100の高度に基づいて
圧力センサ104の正確さを評価することができる。装置100の高度は、(1)装置1
00の事前の圧力測定量からの前もって計算される高度推定値、(2)装置100につい
ての予想高度又は高度範囲、(3)動作のために装置100に入力される実際の又は予想
される高度、及び/又は、(4)装置100の高度計112によって測定される高度、の
うちの1つ又は複数を含むことができる。検出器120は、圧力測定量に基づいて高度推
定値を計算し、高度推定値を、上述した高度(1)〜(4)の任意の1つ又は複数と比較
することができる。
任意選択的に、検出器120は、圧力測定量と、予め計算される高度推定値に基づく圧
力の計算される推定値とを比較することによって圧力センサ104の正確さを評価するこ
とができる。
比較に基づいて、検出器120は、センサ104の動作が正確であるか、又は故障して
いるかを判定することができる。例えば、比較される値が、同一であるか又は互いに実質
的に同様である場合、センサ104は正確であると見なすことができる。対照的に、比較
される値が異なるか又は実質的に異なる場合、センサは故障していると見なすことができ
る。
検出器120及びそのプロセスの種々の例示的な実施形態は、図4〜図12を参照して
本明細書でより詳細に説明される。
図4は、検出器120の例示的な構成を示すブロック図400である。幾つかの実施形
態では、検出器120は、以下の構成要素、すなわち、高度推定ユニット402、高度検
証ユニット404、圧力推定ユニット406、及び圧力検証ユニット408のうちの1つ
又は複数を含むことができる。これらのユニット402〜408の1つ又は複数は、セン
サ104〜112、すなわち、圧力センサ104、温度センサ110、モータ速度センサ
108、流量センサ106、及び高度計112のうちの1つ又は複数から測定値を取得す
ることができる。これらのユニット402〜408の1つ又は複数は、センサ104〜1
12の1つ又は複数から取得される測定値に基づいて圧力センサ104の正確さを評価す
ることができる。各ユニットに関する例示的な動作は次の通りである。
高度推定ユニット402は、センサ104〜110、すなわち、圧力センサ104、温
度センサ110、モータ速度センサ108、及び流量センサ106から取得される測定値
に基づいて装置100の高度を推定することができる。
一実施形態では、高度推定ユニット402は、装置100の動作中に、高度の推定値を
、以下、すなわち、圧力センサ104から取得されるガスの測定圧力、流量センサ106
から取得されるガスの測定流量、温度センサ110から取得される測定温度、及び、モー
タ速度センサ108から取得される測定モータ速度のうちの幾つか又は全ての関数として
計算することができる。例えば、高度推定ユニット402は、以下の関数に従って装置1
00の高度を計算することができる。
h=f(P,T及びω)
ここで、
hは推定高度であり、
Pは圧力の測定量であり、
Tは、幾つかの実施形態では省略することができるオプションの温度の測定量であり、
ωはモータ速度の測定量である。
は、適した試験データを使用してグレイボックスモデル(Gray Box Model)又はベ
ストフィットモデル(best fit model)等によって実験的に導出することができる、測定
値に適用される多項式関数(例えば、関数の定数及びパラメータに依存する、適した次数
のy=Ax+Bx+c)である。流量の測定量が、上記例に挙げた関数に実装されない
場合、関数に適用される測定値は、装置100の動作中に、装置100のコントローラ、
例えばプロセッサ116が、流量制御ループによってブロワ130を制御し、固定流量設
定点を設定すること等によって一定の流量を送出するよう、ブロワ130のモータを制御
している間に取得することができる。例示的な流量設定点は、20リットル/分の流量設
定点等、10リットル/分〜60リットル/分の範囲にあることができる。このような固
定動作は、任意選択的に、始動(start-up)又は前処置プロシージャとして装置100に
よって実施することができ、装置100が患者/ユーザによって使用されていない(すな
わち、患者に患者インタフェース132が載っていない)間に行うことができる。このよ
うな固定動作は、高度を計算するための関数のパラメータを簡略化するのに役立つことが
できる。代替的に、幾つかの実施形態では、測定動作は、検出器120が、一定流量を制
御するのではなく、一定モータ速度を制御する間に行うことができる。このような場合、
測定モータ速度ではなく、測定流量を、上記関数において利用することができるが、両方
を利用してもよい。
遠心ブロワについての送風機の法則(Fan Law)から、ゼロ流量での出口における圧力
Pは、
Figure 0006862488
で与えられる。
ωはモータ速度(例えば、回転速度)であり、
ρは空気密度であり、
bladeendはインペラブレードの終了によってトレースされる円の半径であり

bladestartはインペラブレードの開始によってトレースされる円の半径で
ある。
一定流量において上記送風機の法則から導出される圧力についての実験形式が、
Figure 0006862488
であると仮定する。
ここで、φ、δ及びθは定数である。
通常、遠心ブロワは、降下する送風機曲線(文献に見られる)を有し、したがって、任
意の流量(Q)の圧力は、
Figure 0006862488
として近似することができる。
ここで、φ、φ、φ、θ、θ、θ、δ、δ及びδは、高度、モータ速
度、流量、及び圧力の種々の組合せを含む試験データから実験的に決定することができる
湿度及び局所空気温度の効果を無視することによって、空気密度は、国際標準大気及び
一般ガス定数についての値を使用して高度の関数として書くことができる。
海面より上の高度(h)メートルにおける絶対温度(T)は、
Figure 0006862488
与えすることができる。
高度(h)における圧力(p)は、
Figure 0006862488
によって与えられる。
ここで、
は海面標準温度(例えば、288.15K)であり、
Lは温度経過率(例えば、0.0065K/m)であり、
Rは一般ガス定数(例えば、8.31447J/(mol*K))であり、
Mは乾燥空気のモル質量(例えば、0.0289644Kg/mol)であり、
は海面標準大気圧(例えば、101325Pa)であり、
gは地表重力加速度(例えば、9.80665m/s)である。
空気密度(ρ)(Kg/m)は、
Figure 0006862488
によって計算することができる。
幾つかの場合、この密度式は、高度の線形関数として密度を近似することによって簡略
化することができる。このような簡略化は、高度に関して線形な圧力モデル(A1)を維
持し、高価な計算についての必要性なしで、高度の計算を可能にするために実施すること
ができる。簡略化された空気密度近似は、低いエラー率を持つよう、すなわち、海面上の
9000フィート未満等、呼吸装置が一般に使用される高度の範囲内で十分に正確である
ように決定された。簡略化された空気密度近似は、次の通りである。
Figure 0006862488
ここで、
Figure 0006862488
及び
Figure 0006862488
である。
ρは空気密度(Kg/m)であり、
は海面標準大気圧(例えば、101325Pa)であり、
Mは乾燥空気のモル質量(例えば、0.0289644Kg/mol)であり、
Rは一般ガス定数(例えば、8.31447J/(molK))であり
は海面標準温度(例えば、288.15K)であり、
Lは温度経過率(例えば、0.0065K/m)である。
空気密度(A1)について上記簡略化を利用することによって、
Figure 0006862488
として書き直することができる。
装置100の高度を計算する関数fは、(A2)においてhについて解くことによっ
て、温度センサが装置100によって実装されない場合等、温度測定量が無い場合に実装
することができる。
Figure 0006862488
ここで、
hは推定高度であり、
Pは測定圧力であり、
Qは測定流量であり、
ωは測定モータ速度(例えば、回転速度)である。
φ、φ、φ、θ、θ、θ、δ、δ及びδは、高度、モータ速度、流
量、及び圧力の種々の組合せを含む試験データの集合によって実験的に予め決定される定
数とすることができる。
幾つかの実施形態では、装置100の高度を計算する関数fは温度を考慮することが
できる。具体的には、温度の影響下でのモータ速度ωtempは、式A1のωと置換する
ことができる。ここで、ωtempは、以下のように測定温度及び測定モータ速度の関数
とすることができる。
Figure 0006862488
ここで、
ωは測定モータ速度であり、
Tは測定温度である。
ここで、他の定数φ、φ、φ、θ、θ、θ、δ、δ及びδとともにχ
、χn−1、...χ、χは、高度、モータ速度、流量、及び圧力の種々の組合せ
を含む試験データから実験的に決定することができる。
幾つかの実施形態では、推定の正確さ又は信頼性を増加させるため、高度推定ユニット
402は、所定の回数、例えば、2回、3回、4回、5回、6回、7回、8回、9回、1
0回以上、装置100の高度を推定し、推定値の平均を計算することができる。例えば、
高度推定ユニット402は、所定の期間にわたって所定の周波数で、圧力センサ104、
流量センサ106、モータ速度センサ108、及び任意選択的に温度センサ110から測
定値を取得することができる。高度推定ユニット402は、同じ周波数の測定値に基づい
て推定高度を計算し、所定の期間にわたって推定高度の平均を計算することができる。平
均化プロセスは、入力センサ信号の変動性の影響を減少させることによって、また、信号
内のアーチファクトを減少させることによって推定の信頼性を改善することができる。高
度推定ユニット402は、高度検証ユニット404に平均推定値を提供し、そして、高度
検証ユニット404は、平均推定高度の妥当性又はもっともらしさを判定することができ
る。
装置100の高度を計算した後、高度推定ユニット402は、推定高度を高度検証ユニ
ット404に出力することができる。高度検証ユニット404は、その後、推定高度の妥
当性及びもっともらしさを評価することができる。例えば、高度検証ユニット404は、
推定値を閾値と比較することによって、推定高度の正確さ又はもっともらしさを評価(そ
れにより、センサを評価)することができる。もっともらしくないか若しくは不正確な推
定高度又は平均推定高度は、高度を計算するときに使用される1つのセンサから取得され
る少なくとも1つの測定値が誤っているという示唆であると考えることができる。流量セ
ンサ106、モータ速度センサ108、及び任意選択的に温度センサ110が正確である
と仮定される場合、不正確な又はもっともらしくない推定高度は、圧力センサ104から
取得される圧力測定値が不正であるか、又は、圧力センサ104が不正確であることを示
唆することができる。圧力センサ104のわずかな誤差が、推定高度の量に著しく影響を
及ぼす場合がある。
一例では、閾値試験は、最高高度及び最低高度を含む、装置100がその中で動作する
ことができる高度の範囲を含むことができる。このような場合、装置100は、高度計な
しで実装することができる。このような高度は、例えば、海面上0フィート〜9000フ
ィート、又は海面下500フィートから海面上10000フィートまでの範囲内にあるこ
とができる。このような範囲ベース閾値試験について他の範囲を使用することができる。
推定高度は高度範囲外になる場合、もっともらしくないと見なすことができ、そして、そ
のことが、圧力センサ104が不正確であることを示唆することができる。そうではなく
、推定高度が範囲内にある場合、圧力センサ104は、装置100によって圧力を制御す
るのに十分に正確であるか又は動作可能であると考えることができる。
別の例では、装置100が高度計を備える場合、閾値は、高度計112から取得される
高度の読み値とすることができる。高度検証ユニット404は、推定高度を高度計112
の高度の読み値と比較することによって、推定高度のもっともらしさを評価することがで
きる。推定高度が、所定の差、例えば、500フィート、600フィート、700フィー
ト、800フィート、又は900フィートより大きいオフセットだけ、高度の読み値と大
幅に異なるとき、推定高度は、不正確であると見なすことができ、そして、そのことが、
圧力センサ104が不正確であることを示唆することができる。推定高度が高度の読み値
から大幅に異ならない場合、圧力センサ104は、装置100によって圧力を制御するの
に十分に正確であるか又は動作可能であると考えることができる。
更なる例では、閾値は、高度計が実装されない場合等に、高度推定ユニット402によ
って前もって計算される高度とすることができる。前もって計算される高度推定値は、高
度検証ユニット404によって前もって検証されている場合がある。前もって計算される
高度推定値は、装置100の現在の高度として指定することができる。この点に関して、
前もって計算される高度推定値は、事前の検証の結果としてメモリ118に記憶されてい
る場合がある。この例では、高度検証ユニット404は、高度推定ユニット402によっ
て出力される推定高度を受信し、その推定高度を、装置100の現在の高度、例えば、前
もって計算される高度推定値と比較することができる。推定高度が同じでない場合、又は
、推定高度が、所定の差、例えば、400フィート、500フィート、600フィート、
700フィート、800フィート若しくは900フィートより大きいオフセットだけ、前
もって計算される高度推定値と異なる場合、推定高度は、不正確であると見なすことがで
き、そして、そのことが、圧力センサ104がもはや正確でないという示唆であると考え
ることができる。そうでなければ、推定高度が、前もって計算される高度推定値と同じで
ある場合、又は、推定高度が、前もって計算される高度推定値と大幅に異ならない場合、
圧力センサ104は、装置100によって圧力を制御するのに依然として十分に正確であ
るか又は動作可能であると考えることができる。
推定高度がもっともらしくないか又は不正確であると見なされる場合、高度検証ユニッ
ト404は、圧力センサ104が不正確であること、又は、圧力センサ104内で故障が
起こったことを示す信号を出力することができる。高度検証ユニット404は、更なる実
行のためにその信号を圧力センサ故障ハンドラ122に出力することができる。
推定高度がもっともらしいか又は正確であると見なされるとき、高度検証ユニット40
4は、圧力センサ104が正確であること、又は、圧力センサ104内で故障が起こって
いないことを示す信号を出力することができる。
継続して図4を参照すると、検出器120は、任意選択的に、圧力推定ユニット406
及び圧力検証ユニット408を含むことができる。圧力推定ユニット406は、圧力の予
想される推定値を計算することができる。圧力推定ユニット406は、種々のセンサ、す
なわち、温度センサ110、モータ速度センサ108、及び流量センサ106のうちの1
つ又は複数から取得される測定値から予想圧力を推定することができる。
例えば、圧力推定ユニット406は、以下、すなわち、流量センサ106から取得され
るガスの測定流量、モータ速度センサ108から取得される測定モータ速度、及び、前も
って計算される高度又は高度計112からの測定高度等の装置100の高度、のうちの幾
つか又は全てから予想圧力を推定することができる。圧力推定ユニット406は、関数
=f(h,Q,T及びω)
に従って予想圧力を計算することができる。
ここで、
は予想圧力の推定値であり、
hは高度の推定値、測定量、又は入力であり、
Qは流量の測定量であり、
Tは幾つかの実施形態では省略することができるオプションの温度の測定量であり、
ωはモータ速度の測定量である。
は、適した試験データを使用してグレイボックスモデル又はベストフィットモデル
等によって実験的に導出することができる、測定値に適用される多項式関数(例えば、関
数の定数及びパラメータに依存する、適した次数のy=Ax+Bx+c)である。この
ような関数による圧力の決定のためのこのような測定は、使用中又は処置中等、装置10
0の動作中に定期的に(例えば、1、2、3、4、5、6、7、8、9、又は10ヘルツ
レートの測定サイクルで)行うことができ、また任意選択的に、始動又は前処理プロシー
ジャとして装置100によって実施することができ、装置100が患者/ユーザによって
使用されていない(すなわち、患者に患者インタフェース132が載っていない)間に、
又は、患者の使用動作中と患者の非使用動作中との両方で行うことができる。
一例では、関数は、温度センサが実装されない場合等、温度測定量無しで、((A2)
から)以下の通りに実装することができる。
Figure 0006862488
ここで、
は予想圧力であり、
Qは測定流量であり、
ωは測定モータ速度であり、
hは高度であり、
αは上記式D2に従って規定され、
βは上記式D3に従って規定される。
上記関数において、φ、φ、φ、θ、θ、θ、δ、δ及びδは、高
度、モータ速度、流量、及び圧力の種々の組合せを含む試験データの集合から実験的に予
め決定される定数とすることができる。
一例では、hは、実装される場合、高度計112から取得される値とすることができる
。別の例では、hは、高度推定ユニット402によって前もって計算され、メモリ118
に記憶される装置100の高度とすることができる。前もって計算される高度は、高度検
証ユニット404によって検証し、装置100の現在の高度として指定することができる
温度の測定量が利用可能である場合等、関数の別の例では、圧力推定ユニット406は
、温度センサ110から取得されるガスの測定温度を考慮することができる。予想圧力は
、その後、式B1のωにωtempが代入された式B1等の関数に従って計算することが
できる。関数ωtempは、式A3で上述した測定温度T及び測定モータ速度ωの関数で
ある。
幾つかの実施形態では、圧力推定ユニット406は、以下、すなわち、流量、流量の微
分、モータ速度、及びモータ速度の瞬時加速度(すなわち、ロータ加速度)のうちの1つ
又は複数に基づく関数について、圧力、又は値の測定タイミングの推定を開始するように
構成することができる。例えば、圧力推定ユニット406の適用のための測定は、或る特
定のモータ速度、或る特定の流量、或る特定の流量の微分(例えば、呼気終末休止の検出
等の間、ほぼゼロ)、又はモータ速度の或る特定の加速度(例えば、ほぼゼロ)において
行うことができる。
1つのこのような例では、圧力推定ユニット406は、装置100が定常状態条件に達
すると、例えば、流れ発生器102が全体的に絶えず所定の速度で動作するとき、圧力の
推定を実施することができる。例えば、圧力推定ユニット406は、流れ発生器102の
瞬時加速度を決定することができる。瞬時加速度が小さいか又は無視できる場合、モータ
速度は定常状態であると見なすことができる。
予想圧力を計算した後、圧力推定ユニット406は、予想圧力を、圧力検証ユニット4
08に出力することができる。圧力検証ユニット408は、圧力センサ104から取得さ
れる実際の読み値、すなわち、測定圧力を、予想圧力に対して検証することができる。
圧力センサ104から取得される実際の読みが予想圧力から逸脱するとき、例えば、実
際の読みが等しくない場合、又は、その差が、所定の閾値、例えば5cmHOを超える
場合(例えば、(|Pmeas−Pest|)>5cmHOである場合)、圧力センサ1
04は不正確であると見なすことができる。圧力検証ユニット408は、更なる実行のた
めに、圧力センサ104が不正確であることを示す信号を、圧力センサ故障ハンドラ12
2に出力することができる。
しかし、測定圧力と予想圧力との差が所定の閾値以下である場合(例えば、(|Pme
as−Pest|)≦5cmHOである場合)、圧力センサ104は正確であると見な
すことができる。圧力検証ユニット408は、圧力センサ104が正確であること、又は
、圧力センサ104内に故障が起こらなかったことを示す信号を出力することができる。
所定の閾値が、1cmHO、2cmHO、3cmHO、4cmHO若しくは6
cmHO等の他の限界、又は同様のこのような限界を含むことができることが理解され
る。幾つかの場合、所定の閾値は、絶対値ではなく相対値から決定される限界を含むこと
ができる。例えば、閾値は、予想圧力又は測定圧力の関数とすることができる。例えば、
所定の閾値は、予想圧力の或る部分又は或るパーセンテージを使用して決定することがで
きる。本明細書で述べる他の閾値は、他の値の関数として同様に導出することができる。
例示的な実施形態では、検出器120は、患者に対する治療処置の前に、初期化プロシ
ージャの一部等、圧力センサ104の初期試験を実行することができる。その後、検出器
120は、治療処置が始まった後、圧力センサ104の1回又は複数回の定期的試験を実
行することができる。検出器120によって実施される種々の試験プロシージャの詳細な
実装態様は、図5〜図12を参照して以下に説明される。別途指示しない限り、以下に述
べるプロシージャの任意のプロシージャはいずれも、患者に対する治療処置の前に又は治
療処置中に実施することができる。さらに、別途指示しない限り、以下に述べるプロシー
ジャは、初期試験、定期的試験の1つ若しくは複数、又はその組合せにおいて実施するこ
とができる。
図5は、装置100用の初期化プロシージャとして検出器120によって実施すること
ができる試験プロシージャを示すフローチャート500である。502において、検出器
120は、流れ発生器102のブロワ130が送出するための所定の流量を設定すること
ができる。例えば、所定の流量は、20リットル/分の流量、又は、50リットル/分未
満である低い流量とすることができる。代替的に、所定の流量は、約10リットル/分と
約60リットル/分との間の範囲内にあることができる。一実施形態では、所定の流量は
、装置100の初期化時に、例えば、装置100が起動されるときに、ユーザによって手
作業で入力することができる。別の実施形態では、所定の流量は、メモリ118に記録さ
れた値等の、初期化プロシージャの方法用のプリセット式パラメータとすることができる
その後、504と508との間で、検出器120は、流れ発生器102を制御して、流
量センサ106から取得される測定流量が所定の流量に達するまで、モータ速度を調整す
ることができる。一実施形態では、装置100が起動された後、流れ発生器102は、モ
ータ速度を徐々に増加させることができる。具体的には、ステップ504において、流れ
発生器102は、所定の周波数で所定の増分でモータ速度を増加させることができる。各
増分後に、ステップ506において、検出器120は、測定流量を表す流量センサ106
からの読み値を取得することができる。ステップ508において、検出器120は、測定
流量を所定の流量と比較することができる。測定流量が所定の流量未満である場合、検出
器120は、元のステップ504に進むことができ、その時点で、流れ発生器102は、
モータ速度を連続して増加させることができる。
測定流量が所定の流量に達すると、検出器120の高度推定ユニット402は、次のス
テップ510に進むことができる。
ステップ502〜ステップ508は、ブロワ130を一定流量又は固定流量で動作させ
るため流れ制御ループを使用することによってブロワ130を制御するための一例である
。代替的に、上記で述べたように、ブロワ130を、モータ速度制御ループによって制御
して、一定流量又は固定流量ではなく一定/固定モータ速度を維持するようブロワ130
を動作させることができる。
ステップ510〜ステップ512において、検出器120は、圧力センサ104、モー
タ速度センサ108、及び任意選択的に温度センサ110を含む種々のセンサから測定を
行うことができる。その後、514において、高度推定ユニット402は、関数A1に基
づく関数等の適した関数、又は、このような関数から導出されるデータを有するルックア
ップテーブルを使用して、測定値から装置100の高度を求めるか又は計算することがで
きる。
その後、516において、高度検証ユニット404は、514において計算される高度
のもっともらしさを評価することができる。一例では、高度検証ユニット404は、51
4において計算される高度を所定の範囲の予想高度と比較することによって、計算される
高度を評価することができる。予想高度の例は上記に説明されている。このような場合、
装置100は、高度計なしで実装することができる。計算される高度は、所定の範囲外に
なる場合、もっともらしくないか又は不正確であると見なすことができる。そうでなく、
計算される高度が所定の範囲の予想高度内になる場合、計算される高度は、もっともらし
いと見なすことができ、圧力センサは、装置100の通常動作について受入れ可能である
と見なすことができる。
代替的に、高度検証ユニット404は、計算される高度を、実装される場合、装置10
0内の高度計112の読みと比較することによって、計算される高度のもっともらしさを
評価することができる。高度計112の読みは、装置100の高度の正確な測定値を示す
ことができる。514において計算される高度が、所定の量、例えば、600フィート又
は900フィートより大きい値だけ、測定高度と異なる場合、計算される高度は不正確で
あると考えることができ、圧力センサは、通常動作に適さないと見なすことができる。そ
うでない場合、計算される高度は受入れ可能であると考えることができ、そして、圧力セ
ンサは、通常動作に適すると見なすことができる。
別の実施形態では、高度検証ユニット404は、514において計算される高度のもっ
ともらしさを、装置100によって前のセッションから決定される高度等の前もって決定
される高度と計算された高度を比較することによって評価することができる。前もって決
定される高度は、メモリ118から読み出すことができる。前もって決定される高度は、
前の試験プロシージャにおいて高度推定ユニット402によって計算することができる。
前もって決定される高度は、前の試験において高度検証ユニット404によって検証され
ている場合がある。前もって決定される高度は、装置100の現在の高度を示すと考える
ことができる。514において計算される高度が、所定の量又は閾値、例えば、400フ
ィート、500フィート、600フィート、700フィート、800フィート又は900
フィートだけ、前もって決定される高度と異なる場合、現在計算される高度は、不正確で
あると考えることができ、圧力センサは、装置100の通常動作に適さないと見なすこと
ができる。そうでない場合、計算される高度は受入れ可能であると考えることができ、圧
力センサ104は、動作に適すると見なすことができる。
計算される高度が、もっともらしくないか又は許容不能であると見なされると、522
において、高度検証ユニット404は、圧力センサ104が不正確であるか又は通常動作
に適さないことを示す信号を出力することができる。対照的に、計算される高度が、もっ
ともらしいか又は受入れ可能であると見なされる場合、518において、高度検証ユニッ
ト404は、圧力センサ104が正確であるか又は通常動作に適することを示す信号を出
力することができる。計算される高度がもっともらしいと見なされるとき、検出器120
は、任意選択的に、ステップ520において、計算される高度をメモリ118に記憶する
ことができる。計算される高度は、その後、1回又は複数回の定期的試験プロシージャ中
にメモリ118から読み出すことができる。
図5に示す試験プロシージャの例示的なフローチャートでは、装置100のプロセスは
、以下、すなわち、圧力センサ104を使用して圧力測定値を取得すること、モータ速度
センサ108を使用してモータ速度測定値を取得すること、任意選択的に、温度センサ1
10を使用して温度測定値を取得すること、及び、これらの測定値に基づいて高度を計算
するか又は求め、この計算された高度を評価することのそれぞれの1つのインスタンスを
含むことができる、解析の1つのサイクルを使用して圧力センサ104を評価することが
できる。
図6は、図5に示す試験プロシージャに対する代替のフローチャート600を示す。こ
の実施形態では、検出器120は、平均を利用すること等によって、圧力センサ104の
正確さを評価するフォールトトレラントアプローチを採用することができる。例えば、検
出器120は、解析の複数のサイクルの共同的結果に基づいて圧力センサ104の正確さ
を判定することができる。解析の各サイクルは、図5に関して上述したサイクルと同一と
することができる。解析の各サイクルは所定の周波数で行うことができる。例えば、所定
の周波数は、1、2、3、4、5、6、7、8、9又は10ヘルツのサンプリングレート
等の1ヘルツと10ヘルツとの間とすることができる。共同的結果は、所定の期間内に起
こる解析の複数のサイクルから取得される計算される平均高度とすることができる。所定
の期間は、例えば、5、10、15、20、若しくは30秒又はそれより長いか若しくは
短い期間とすることができる。示す例では、検出器120は、解析について複数のサイク
ルをトリガするタイマを含むことができるか、又はその他の方法で、反復測定ループを実
装することができる。圧力センサ104は、複数のサイクルから求められた、計算された
高度の平均又は平均化済み測定値から計算された高度が上記で述べたように評価されると
き、通常動作に適するか否かを判定することができる。
図6に示すように、602〜608のプロセスは、図5の502〜508と同一とする
ことができる。610において、検出器120は、解析の複数のサイクルについてタイマ
を開始することができる。その後、高度推定ユニット402は、図5の510〜514を
参照して述べた方法で612〜616において実施することができる。612〜616の
繰返しは、解析の1サイクルであると考えることができる。検出器120は、所定の時間
量、例えば5秒が、タイマが開始してから経過したと、618において判定されるまで、
612〜616を反復的に繰返して、解析の複数のサイクルを実施することができる。
その後、620において、高度推定ユニット402は、解析の複数のサイクル中に計算
される高度の平均を計算することができる。高度推定ユニット402は、その平均を高度
検証ユニット404に出力することができる。
その後、622〜628において、高度検証ユニット404は、図5の516〜522
を参照して上記で述べたように、平均高度のもっともらしさに基づいて圧力センサ104
の適切性を判定することができる。
別の実施形態では、タイマ610は、サイクル数を計数するように構成されるカウンタ
によって置換することができ、ステップ618は、所望のサイクル数が実施されたか否か
を判定することができる。このような配置構成では、検出器120は、解析の所定の数の
サイクル、例えば、解析の少なくとも2つのサイクル、解析の5サイクル〜10サイクル
、又はそれ以上のサイクルに基づいて圧力センサ104の正確さを判定することができる
。所定の数のサイクルは、連続しても連続しなくてもよい。例えば、検出器120は、計
算される高度が、解析の5〜10の連続するサイクルのそれぞれにおいてもっともらしく
ないと見なされるとき、圧力センサ104が通常動作に適さないと結論付けることができ
る。代替的に、検出器120は、解析の5サイクル〜10サイクルにおいて計算される高
度の平均がもっともらしくないと判定されるとき、圧力センサ104が不正確であると結
論付けることができる。
初期化プロシージャに続いて、装置100が治療処置を患者に提供するにつれて、検出
器120は、1つ又は複数の試験プロシージャにおいて圧力センサ104の正確さを定期
的に(例えば、連続的に)モニタすることができる。図7は、1つのこのような実施形態
による定期的試験プロシージャのフローチャート700を示す。702において、検出器
120又は高度検証ユニット404は、所定の又は前もって決定される高度をメモリ11
8から読み出すことができる。メモリ118に前もって記憶されている所定の高度は、前
の試験中、例えば、初期化プロシージャ試験中に高度推定ユニット402によって計算す
ることができる。前もって決定される高度は、もっともらしいか又は受入れ可能であると
見なされている装置100の高度の推定値を示すことができる。代替的に、所定の高度は
、高度計112から取得される読み値とすることができる。読み値はまた、装置100の
高度の正確な推定値を示すことができる。
継続して図7を参照すると、704〜708のプロセスは、図5の510〜514のプ
ロセスと同一とすることができる。510〜514のプロセスでは、高度推定ユニット4
02は、圧力センサ104、モータ速度センサ108、及び任意選択的に、温度センサ1
10からの測定値を読み取り、これらの測定値及び上記で述べた関数又は式に基づいて装
置100の高度を計算する。
その後、710において、高度検証ユニット404は、708において高度推定ユニッ
ト402によって計算される高度を、ステップ702において取得される所定の高度と比
較することができる。708において計算される高度が、装置100の前もって決定され
る高度を適度に近似する場合、高度がそれに基づいて計算される測定値は、正しいと見な
すことができ、そのことは、圧力センサ104が正確であるか又は装置100の通常動作
に引き続き適していることを示唆することができる。例えば、計算される高度と所定の高
度との差が、所定の量又は閾値、例えば、400フィート、500フィート、600フィ
ート、700フィート、800フィート、又は900フィートを超えていない場合、圧力
センサ104は、適するか又は正確であると見なすことができる。結果として、高度検証
ユニット404は、714において、圧力センサ104が正確であることを示す信号を出
力することができる。
しかし、708において計算される高度が、装置100の前もって決定される高度を適
度に近似しない場合、圧力センサ104は、故障であると見なすことができる。例えば、
計算される高度と所定の高度との差が、所定の閾値、例えば、400フィート、500フ
ィート、600フィート、700フィート、800フィート、又は900フィートを超え
る場合、圧力センサ104は、不正確であると見なすことができる。高度検証ユニット4
04は、716において、圧力センサ104が不正確であることを示す信号を出力するこ
とができる。
図7に示す定期的試験プロジージャは、以下、すなわち、圧力センサ104を使用して
圧力測定値を取得すること、モータ速度センサ108を使用してモータ速度測定値を取得
すること、任意選択的に、温度センサ110を使用して温度測定値を取得すること、及び
、これらの測定値に基づいて高度を計算し評価することのそれぞれの1つのインスタンス
を含む、解析の1つのサイクルを使用して圧力センサ104を評価することができる。こ
のような定期的な試験プロシージャは、任意選択的に、1、2、3、4、5、6、7、8
、9又は10ヘルツのサンプリングレート等の1ヘルツ〜10ヘルツの周波数で実装する
ことができる。
図8は、図7に示す定期的試験プロシージャに対する代替のフローチャート800を示
す。この実施形態では、検出器120は、平均に基づいて圧力センサ104の正確さを評
価するフォールトトレラントアプローチを採用することができる。例えば、検出器120
は、解析の複数のサイクルの共同的結果又は平均に基づいて圧力センサ104の正確さを
判定することができる。解析の各サイクルは所定の周波数、例えば、1、2、3、4、5
、6、7、8、9又は10ヘルツのサンプリングレート等の1ヘルツと10ヘルツとの間
で行うことができる。
図8に示すように、802における処理は、702における処理と同一とすることがで
きる。804において、検出器120は、解析の複数のサイクルについてタイマを開始す
ることができる。その後、高度推定ユニット402は、図7の704〜708における処
理と同一とすることができる806〜810における処理を実施することができる。80
6〜810における処理の繰返しは、解析の1サイクルであると考えることができる。高
度推定ユニット402は、所定の時間量、例えば5、10、15、20、若しくは30秒
又はそれより長いか若しくは短い期間が、タイマが開始してから経過したと、812にお
いて判定されるまで、806〜810における処理を反復的に繰返して、解析の複数のサ
イクルを実施することができる。
その後、814において、高度推定ユニット402は、解析の複数のサイクル中に計算
される高度の平均又は複数のサイクルからの平均測定値の高度を計算することができる。
高度推定ユニット402は、その平均を高度検証ユニット404に出力することができる
その後、816〜822において、高度検証ユニット404は、平均高度の解析に基づ
いて圧力センサ104の正確さを判定することができる。この点に関して、816〜82
2における処理は、図7の710〜716における処理と同一とすることができる。
更なる実施形態では、タイマ804は、サイクル数を計数するように構成されるカウン
タによって置換され、ステップ812は、所望のサイクル数が実施されたか否かを判定す
ることができる。このような配置構成では、検出器120は、解析の所定の数のサイクル
、例えば、解析の少なくとも2つのサイクル、解析の5サイクル〜10サイクル、又はそ
れ以上のサイクルに基づいて圧力センサ104の正確さを評価することができる。所定の
数のサイクルは、連続しても連続しなくてもよい。例えば、検出器120は、計算される
高度と前もって決定される高度との差が、解析の少なくとも2つのサイクル又は5〜10
の連続するサイクルのそれぞれにおいて閾値量を超えるとき、圧力センサ104が不正確
であると結論付けることができる。代替的に、検出器120は、解析の少なくとも2つの
サイクル又は5〜10のサイクルから計算される平均高度が、所定の閾値より大きいオフ
セットだけ前もって決定される高度と異なるとき、圧力センサ104が不正確であると結
論付けることができる。
図9は、別の実施形態による定期的試験プロシージャのフローチャート900を示す。
902において、検出器120は、装置100の前もって決定される高度を読み出すこと
ができる。そのため、902における処理は、図7及び図8の702又は802における
処理とそれぞれ同一とすることができる。904において、検出器120又は圧力推定ユ
ニット406は、流量センサ106、モータ速度センサ108、及び任意選択的に、温度
センサ110から測定値を取得することができる。その後、906において、圧力推定ユ
ニット406は、上記で述べた関数(例えば、関数B1又は関数B1に基づくルックアッ
プテーブル)等によって、所定の高度並びに904における流量、モータ速度、及び/又
は温度に基づいて予想圧力を計算することができる。
その後、908〜910において、圧力検証ユニット408は、圧力センサ104から
圧力測定値を取得し、測定圧力を予想圧力と比較することができる。912において、測
定圧力と予想圧力との差が所定の閾値、例えば5cmHO以下である場合、圧力センサ
104は正確であると見なすことができる。その後、914において、圧力検証ユニット
408は、圧力センサ104が正確であること示す信号を出力することができる。上記で
述べたように、所定の閾値は、1cmHO、2cmHO、3cmHO、4cmH
O、若しくは6cmHO等の他の限界、又は同様のこのような限界を含むことができる
対照的に、測定圧力と予想圧力との差が所定の閾値を超える場合、圧力センサ104は
不正確であると見なすことができる。その後、916において、圧力検証ユニット408
は、圧力センサ104が通常動作に適さないこと示す信号を出力することができる。
図10は、図9に示す試験プロシージャに対する代替のフローチャート1000を示す
。この実施形態では、検出器120は、所定の期間にわたって解析の複数のサイクルに基
づいて圧力センサ104の正確さを評価するフォールトトレラントアプローチを採用する
ことができる。所定の期間は、例えば、5、10、15、20、若しくは30秒或いはそ
れより長いか又は短い期間とすることができる。検出器120は、解析の反復サイクルを
実装するためにタイマ又は他の繰返しプロシージャを含むことができる。解析の各サイク
ルは、所定の周波数、例えば、1、2、3、4、5、6、7、8、9又は10ヘルツ等の
1ヘルツと10ヘルツとの間で行うことができる。解析の各サイクルは、流量、モータ速
度、及び任意選択的に温度を測定すること、これらの測定値に基づいて予想圧力を計算す
ること、圧力センサ104の読み値を予想圧力と比較することを含むことができる。圧力
センサ104は、各圧力測定値が、所定の期間にわたって閾値量、例えば5cmHOを
超えるオフセットだけ予想圧力と異なるときに、不正確であるか又は通常動作に適さない
と判定することができる。
図10に示すように、1002〜1014における処理は、図9の902〜914にお
ける処理と同一とすることができる。1004〜1012における処理の繰返しは、解析
の1サイクルであると考えることができる。検出器120は、ステップ1004〜101
2を反復的に繰返して、解析の複数のサイクルを実施することができる。1012におい
て、測定圧力が、閾値量、例えば5cmHOを超えるオフセットだけ予想圧力と異なる
場合、検出器120は、1016に進むことができる。1016において、検出器120
は、解析の複数のサイクル用のタイマが開始したか否かを判定することができる。タイマ
が開始していない場合、検出器120は、1018においてタイマを開始し、その後、1
004に進んで、解析の新しいサイクルを開始することができる。タイマが既に開始して
いる場合、検出器120は、1020において、所定の時間量、例えば5、10、15、
20、又は30秒が、タイマが開始してから経過したか否かを判定することができる。経
過していない場合、検出器120は、1004に進んで、解析の新しいサイクルを開始す
ることができる。経過している場合、検出器120は、1022に進んで、圧力センサ1
04が不正確であることを示す信号を出力することができる。その時点で、検出器120
は、任意選択的に、タイマを停止又はリセットすることができる。上記で述べたように、
所定の閾値は、1cmHO、2cmHO、3cmHO、4cmHO、若しくは6
cmHO等の他の限界、又は同様のこのような限界を含むことができる。
解析の任意のサイクル中に、1012において、測定圧力と予想圧力との差が所定の閾
値を超えていない場合、検出器120は、1014において、圧力センサ104が正確で
あるか又は通常動作に適することを示す信号を出力することができる。
更なる実施形態では、タイマ1018は、サイクル数を計数するように構成されるカウ
ンタと置換することができ、ステップ1020は、所望のサイクル数が実施されたか否か
を判定することができる。このような配置構成では、検出器120は、解析の所定の数の
サイクル、例えば、解析の10サイクルに基づいて圧力センサ104の正確さを評価する
ことができる。所定の数のサイクルは、連続しても連続しなくてもよい。例えば、検出器
120は、計算される高度と所定の高度との差が、解析の10の連続するサイクルのそれ
ぞれにおいて閾値量を超える(例えば、(|Pmeas−Pest|)>5cmHO)と
き、圧力センサ104が不正確であると結論付けることができる。
幾つかの実施形態では、検出器120は、装置100が治療処置を患者に提供する前に
、図5又は図6に述べるステップに従って圧力センサ104の初期試験を実施することが
できる。装置100が、図7〜図10の任意の1つにおいて述べたプロシージャに従って
治療処置を患者に提供するにつれて、検出器120は、1回又は複数回の定期的試験にお
いて圧力センサ104の正確さを連続的にモニタすることができる。一実施形態では、ス
テップ702、802、902、及び1002の1つのステップにおいて読み出される所
定の高度は、初期試験において高度推定ユニット402によって計算される高度とするこ
とができる。別の実施形態では、所定の高度は、高度計112から取得される読み値とす
ることができる。代替的に、所定の高度は、或る範囲の予想高度(その例が上記で述べら
れている)とすることができる。
別の実施形態では、初期試験は、図7〜図10の任意の1つに述べるプロシージャを使
用して実装することができる。この実施形態では、プロセス702、802、902、及
び1002の任意の1つにおいて読み出される所定の高度は、前の治療処置に関連する前
の試験において高度推定ユニット402によって計算される高度とすることができる。代
替的に、所定の高度は、高度計112から取得される読み値とすることができる。所定の
高度はまた、装置100が動作することができる或る範囲の予想高度を表すことができる
更なる実施形態では、検出器120は、患者に対する治療処置の前に及び治療処理全体
を通して所定の間隔で図5〜図10の任意の1つに述べたプロシージャを実行することに
よって、圧力センサ104の正確さを絶えず試験することができる。
2重圧力センサ
本明細書で上記で述べた例は、第2の圧力センサを実装することなく、また、幾つかの
場合、高度計無しで、圧力センサの測定の評価を可能にするが、幾つかの代替の実施形態
では、第1の圧力センサの圧力をチェックするために、第2の又はバックアップの圧力セ
ンサの測定を実施することができる。例えば、装置100は、任意選択的に、図1に示す
第2の圧力センサ124を含むことができる。第2の圧力センサ124は、第1の圧力セ
ンサ104に非常に接近して位置決めされ、それにより、両方の圧力センサ104、12
4は、同じ場所のガスの圧力を測定することができる。例えば、両方の圧力センサ104
、124は、患者インタフェース132又はブロワ130に位置決めすることができる。
第1の圧力測定値が、所定の閾値、例えば5cmHOを超えるオフセットだけ第2の圧
力測定値と異なる場合、第1の圧力センサ104は、不正確であると見なすことができる
。そうでない場合、第1の圧力センサ104は、正確であると見なすことができる。
代替的に、第2の圧力センサ124は、第1の圧力センサ104に対して異なる場所に
位置決めすることができる。例えば、第1の圧力センサ104は患者インタフェース13
2に位置決めすることができ、第2の圧力センサ124はブロワ130に位置決めするこ
とができ、又は、その逆も同様である。2つの圧力センサ間の圧力降下は、第1の圧力セ
ンサ104及び第2の圧力センサ124から取得される圧力測定値を比較するときに2つ
の圧力センサ間の圧力降下が考慮されるよう、知ることも、推定することも、特徴付ける
こともできる。そのため、第1の圧力センサ104からの圧力測定値と第2の圧力センサ
124からの圧力測定値との差は、第1の圧力センサ104と第2の圧力センサ124と
の間の圧力降下の関数として決定される所定の閾値を超えないことができる。
図11は、上記実施形態に従って検出器120によって実施される方法のフローチャー
ト1100を示す。1102において、検出器120は、第1の圧力センサ104から第
1の圧力測定値を取得することができる。1104において、検出器120は、第2の圧
力センサ124から第2の圧力測定値を取得することができる。1106において、検出
器120は、第1の圧力測定値を第2の圧力測定値と比較することができる。その後、1
108において、検出器120は、第1の圧力測定値が、閾値量、例えば5cmHOよ
り大きいオフセットだけ第2の圧力測定値と異なるか否かを判定することができる。異な
らない場合、検出器120は、1110において、第1の圧力センサ104が正確である
ことを示す信号を発行することができる。異なる場合、検出器120は、1112におい
て、第1の圧力センサ104が不正確であることを示す信号を発行することができる。
上記で述べたように、所定の閾値は、1cmHO、2cmHO、3cmHO、4
cmHO、若しくは6cmHO等の他の限界、又は同様のこのような限界を含むこと
ができる。
故障のあるセンサ検出に対する応答
圧力センサ104が不正確であるか又は通常動作に適さないと検出器120が判定する
場合、圧力センサ104において故障が検出されている。
このような故障が無い場合、装置100は、(例えば、ブロワ130の制御及び患者の
処置について圧力センサ104からの圧力測定値に依存する圧力制御ループによって)通
常状態で動作することができる。
故障を検出すると、装置100は、自動シャットダウンによって応答して、更なる実行
を防止することができる。代替的に、装置100は、故障のデータを記録することができ
、及び/又は、ユーザI/Oデバイス114を介してユーザに警告又は故障メッセージを
発行することができる。例えば、ディスプレイ(図示せず)は、圧力センサ104が不正
確であり、置換される必要があるというメッセージをユーザに表示することができる。こ
のような場合、コントローラ、例えばプロセッサ116は、ブロワ130の動作を防止す
るように構成することができる。
幾つかの実施形態では、装置100は、圧力センサ104において故障が検出されると
、装置100を制御する圧力センサ故障ハンドラ122を含むことができる。これらの実
施形態では、装置100は、任意選択的に、故障を検出しても、安全モードで動作するこ
とを許容されてもよい。例えば、ハンドラ122は、装置100が動作することができる
2つの代替の動作安全モード、すなわち、圧力制御式速度制限モード又は速度制御式モー
ドを含むことができる。ハンドラ122は、圧力センサ104が通常動作に適していない
と判定されると、動作モードのいずれか一方を入力することができる。
圧力制御式速度制限モードでは、ハンドラ122は、圧力センサ104が不正確である
と見なされることによらず、圧力センサ104による圧力測定に頼る(例えば、圧力制御
ループを用いてブロワ130を制御する)ことによって流れ発生器102のモータ速度を
調整することができる。より具体的には、ハンドラ122は、圧力センサ104からの測
定圧力が所望の圧力レベルに達するまでモータ速度を増加させることができるが、いかな
る場合にも、モータ速度が所定の最大モータ速度を超えてはならない。このような場合、
最大モータ速度限界は、圧力制御ループからの圧力要求を無視するように作用して、圧力
設定点が圧力センサ104からの測定圧力に届かなくても、モータ速度が限界を超えて更
に増大することを防止することになる。
図12は、一実施形態による圧力制御式モードにおけるハンドラ122の動作を述べる
フローチャート1200を示す。1202において、ハンドラ122は、流れ発生器10
2によって達成されるガスについての所望の圧力レベル設定を決定することができる。所
望の圧力レベルは、患者に適用される所望の治療処置圧力とすることができる。一例では
、所望の圧力レベルは、ユーザI/Oデバイス114を介してユーザによって手作業で入
力することができる。別の例では、プロセッサ114又はハンドラ122は、患者の状態
に基づいて所望の圧力レベルを計算することができる。所望の圧力レベルは、1つの治療
処置セッション全体を通して維持されると予想される一定圧力値とすることができる。代
替的に、所望の圧力レベルは、1つの治療処置セッション全体を通して変動することがで
きる。例えば、1つの治療処置セッション中に、吸気中の所望の圧力レベルは呼気中の所
望の圧力レベルより大きくすることができる。さらに、所望の圧力レベルは、検出される
呼吸状態(例えば、閉塞性無呼吸、閉塞性低呼吸、流量制限、いびき、他の睡眠呼吸障害
事象等)に基づいて自動的に調整及び決定することができる。
1204において、ハンドラ122はモータ速度閾値を設定することができる。モータ
速度閾値は、流れ発生器102が達成することを許容される最高モータ速度を表すことが
でき、その速度を超えると、装置100の流れ発生器102又は他の構成要素は、劣化若
しくは誤動作する場合があるか、又は、患者にとって危険であると見なすことができる。
一例では、ハンドラ122は、モータ速度閾値を、20000RPM、30000RPM
、50000RPM、100000RPM、200000RPM、又は他の適した速度等
のRPM閾値に設定することができる。RPM閾値は、事前のシステム特徴付けからの所
望の圧力又は最大圧力を満たすために必要とされるおよその予想モータ速度に基づいて決
定することができ、例えば、装置のメモリのルックアップテーブルから取得することがで
きる。
1206において、ハンドラ122は、圧力センサ104から圧力の読み値を取得する
ことができる。1208において、ハンドラ122は、測定圧力を所望の圧力レベルと比
較することができる。測定圧力が所望の圧力レベルに達する場合、ハンドラ122は、調
整動作を終了することができる。そうでなければ、ハンドラ122は、1210において
、流れ発生器102用の次のモータ速度に変更することができる。一例では、次のモータ
速度は、現在のモータ速度から所定の増分だけ増加することができる。その後、1212
において、ハンドラ122は、次のモータ速度がモータ速度閾値を超えるか否かを判定す
ることができる。超える場合、ハンドラ122は調整動作を終了することができる。超え
ない場合、ハンドラ122は、1214において、その現在のモータ速度を次のモータ速
度に変更するよう流れ発生器102に指示することができる。その後、ハンドラ122は
、1206に進んで、圧力センサ104を使用して圧力を測定することができる。
速度制御式モードでは、装置100は、圧力制御ループによって動作するのではなく、
速度制御ループにおいて動作することができる。このようなモードでは、ハンドラ122
は、(圧力をモータ速度設定に関連付けるルックアップテーブル又は適した関数等によっ
て)所望の圧力レベルに関係がある流れ発生器102の所望のモータ速度を決定すること
ができ、それにより、流れ発生器102が所望のモータ速度で動作するとき、流れ発生器
102によって生成されるガスは、所望の圧力レベルにあると見なすことができる。その
ため、速度制御式モードでは、ハンドラ122は、圧力センサ104から取得される圧力
測定値を考慮することなく、所望のモータ速度を決定することができる。一例では、ハン
ドラ122は、複数の異なるモータ速度と複数の異なる圧力レベルとの間の相関を規定す
るルックアップテーブルを含むことができる。ルックアップテーブルは、複数の異なるモ
ータ速度と複数の異なる圧力レベルとの間に1対1のマッピングを規定することができる
。所望の圧力レベルが決定されると、ハンドラ122は、ルックアップテーブル内で、そ
の対応するモータ速度、すなわち所望のモータ速度を調べることができる。そして、ハン
ドラ122は、流れ発生器102を所望のモータ速度に設定することができる。
図13は、一実施形態による、速度制御式モードでのハンドラ122の動作を述べるフ
ローチャート1300を示す。1302において、ハンドラ122は、設定される所望の
圧力レベルを決定することができる。1302における処理は、1202における処理と
同一とすることができる。1304において、ハンドラ122は、ルックアップテーブル
内で、所望の圧力レベルに相関する所望のモータ速度を調べることができる。1306に
おいて、ハンドラ122は、速度制御ループ内で、流れ発生器102を所望のモータ速度
になるようサーボ制御することができる。
本発明は特定の実施形態を参照しながら本明細書において説明されてきたが、これらの
実施形態は本技術の原理及び応用形態を例示するにすぎないことは理解されたい。それゆ
え、本技術の趣旨及び範囲から逸脱することなく、例示的な実施形態に数多くの変更を加
えることができること、及び他の構成を考案することができることは理解されたい。
例えば、本明細書で述べる技術の変形形態は、高度(又は標高)が下位の又は2次的な
特性として役立つような方法論において、高度の決定、推定、又は測定に全体的に言及し
た。この下位の又は2次的な特性は、圧力から導出することができる、及び/又は、この
特性から、幾つかの測定されるシステム変数(複数の場合もある)を含むことができる幾
つかの計算可能な関数(複数の場合もある)によって圧力が導出可能である。しかし、本
技術の幾つかのバージョンが、上記で述べた方法の任意の方法における高度ではなく、幾
つかの他のこのような下位の又は2次的な特性の決定、推定、又は測定を行う構成要素を
代替的に実装することができることが理解されるであろう。
例えば、幾つかのこのようなバージョンでは、検出器120は、圧力センサ104から
圧力測定量を取得することができる。検出器120は、圧力測定量、及び、大気圧又は装
置100の外部の大気圧等の下位の又は2次的な特性に基づいて圧力センサ104の正確
さを評価することができる。装置100のこのような大気圧は、(1)装置100の事前
の圧力測定量(例えば、大気圧を超える圧力を生成する装置の流路内の圧力測定量)から
の前もって計算される大気圧推定値、(2)装置100についての予想大気圧又は大気圧
範囲、(3)動作のため装置100に入力される実際の又は予想される大気圧、及び/又
は、(4)気圧計等の装置100の外部センサによって測定される大気圧のうちの1つ又
は複数を含むことができる。検出器120は、圧力測定量に基づいて大気圧推定値を計算
し、大気圧推定値を、上述した大気圧(1)〜(4)の任意の1つ又は複数と比較するこ
とができる。更に他の2次的な特性もまた、本明細書で述べる方法の任意の方法論におい
て実施することができる。
例えば、下位の特性が大気圧である場合、高度推定ユニット402は、代わりに、大気
圧推定ユニットとすることができる。そのため、高度推定ユニット402は、装置100
の動作中に大気圧の推定値を、以下、すなわち、圧力センサ104から取得されるガスの
測定圧力、流量センサ106から取得されるガスの測定流量、温度センサ110から取得
される測定温度、及び、モータ速度センサ108から取得される測定モータ速度のうちの
幾つか又は全ての関数として計算することができる。例えば、大気圧推定ユニットは、以
下の関数に従って装置100の大気圧を計算することができる。
Figure 0006862488
ここで、
Atmは推定大気圧であり、
Pは圧力の測定量であり、
Qは流量の測定量であり、
Tは、幾つかの実施形態では省略することができるオプションの温度の測定量であり、
ωはモータ速度の測定量である。
は、適した試験データを使用してグレイボックスモデル又はベストフィットモデル
等によって実験的に導出することができる、測定値に適用される多項式関数(例えば、関
数の定数及びパラメータに依拠する、適した次数のy=Ax+Bx+c)とすることが
できる。他のこのような関数は、高度を参照して上記で述べた関数と同様に実装すること
ができる。同様に、高度検証ユニット404は、大気圧検証ユニットとして実装すること
ができる。
他の技術の例
例1.呼吸デバイス内の圧力センサの正確さを判定する方法であって、
圧力センサを使用して、呼吸デバイスによって生成される呼吸可能なガスの流れの圧力
を測定することと、
測定された圧力及び呼吸デバイスの下位の特性に基づいて圧力センサの正確さを、プロ
セッサによって判定することとを含む、呼吸デバイス内の圧力センサの正確さを判定する
方法。
例2. 呼吸デバイスは、ガスの流れを生成するモータを内部に含んでいる流れ発生器
を含む、例1の方法。
例3. 呼吸デバイスの下位の特性はユーザによって入力される、例1〜2のいずれか
1例による方法。
例4. 呼吸デバイスの下位の特性は、呼吸デバイスの高度計又は気圧計によって測定
される、例1〜2のいずれか1例による方法。
例5. プロセッサは、呼吸デバイスの下位の特性を計算する、例1〜4のいずれか1
例による方法。
例6. プロセッサは、計算された下位の特性の評価に基づいて圧力センサの正確さを
判定する、例5の方法。
例7. プロセッサは、(a)圧力センサによって測定された圧力と、(b)(1)呼
吸可能なガスの流れの測定された流量、及び(b)(2)流れ発生器の測定されたモータ
速度、の一方又は両方との関数として呼吸デバイスの下位の特性を計算する、例5〜6の
いずれか1例による方法。
例8. プロセッサは、呼吸可能なガスの流れの測定される温度の関数として呼吸デバ
イスの下位の特性を計算する、例7の方法。
例9. プロセッサは、流れ発生器が呼吸可能ガスを一定の所定の流量に制御するとき
に呼吸デバイスの下位の特性を計算する、例5〜8のいずれか1例による方法。
例10. 一定の所定の流量は20リットル/分である、例9の方法。
例11. 一定の所定の流量は50リットル/分未満である、例9の方法。
例12. 一定の所定の流量は約10リットル/分と約60リットル/分との間の範囲
にある、例9の方法。
例13. 呼吸デバイスの下位の特性は、流れ発生器が一定の所定のモータ速度を制御
するときに計算される、例5〜8のいずれか1例による方法。
例14. プロセッサは、計算された下位の特性を所定の範囲の下位の特性と比較する
ことによって計算された下位の特性を評価する、例6〜13のいずれか1例による方法の
方法。
例15. 所定の範囲の下位の特性は、海面上で0フィートと9000フィートとの間
の範囲に対応する、例14の方法。
例16. 所定の範囲の下位の特性は、海面下500フィートと海面上10000フィ
ートとの間の範囲に対応する、例14の方法。
例17. プロセッサは、計算された下位の特性が所定の範囲の下位の特性の範囲内で
あるときに計算された下位の特性を受入れ可能であると見なす、例14〜16のいずれか
1例による方法。
例18. プロセッサは、計算された下位の特性が所定の範囲の下位の特性の範囲外で
あるときに計算された下位の特性を受入れ不可能であると見なす、例14〜17のいずれ
か1例による方法。
例19. プロセッサは、所定の期間にわたって所定の周波数で呼吸デバイスの下位の
特性を計算する、例5〜18のいずれか1例による方法。
例20. 所定の周波数は1ヘルツと2ヘルツとの間である、例19の方法。
例21. 所定の期間は5秒である、例19〜20のいずれか1例による方法。
例22. プロセッサは、計算された下位の特性の平均に基づいて圧力センサを評価す
る、例19〜21のいずれか1例による方法。
例23. プロセッサは、計算された下位の特性の平均が閾値比較を満たすときに圧力
センサが正確であると判定する、例19〜22のいずれか1例による方法。
例24. プロセッサは、呼吸デバイスが患者に処置を提供する前の初期化プロセスに
おいて圧力センサを評価する、例1〜23のいずれか1例による方法。
例25. 呼吸デバイスの下位の特性をメモリに記憶することを更に含む、例1〜24
のいずれか1例による方法。
例26. プロセッサは、
呼吸デバイスによって生成されるガスの予想圧力を計算することと、
測定された圧力を予想圧力と比較することと、
によって圧力センサの正確さを評価する、例2〜25のいずれか1例による方法。
例27. プロセッサは、呼吸デバイスの下位の特性、呼吸可能なガスの流れの測定さ
れた流量、及び流れ発生器の測定されたモータ速度から予想圧力を計算する、例26の方
法。
例28. プロセッサは、呼吸可能なガスの流れの測定された温度から予想圧力を計算
する、例27の方法。
例29. プロセッサは、測定された圧力と予想圧力との差を所定の閾値と比較するこ
とによって、圧力センサの正確さを判定する、例26〜28のいずれか1例による方法。
例30. 所定の閾値は5cmHOである、例29の方法。
例31. プロセッサは、差が所定の閾値を超えているときに圧力センサを不正確であ
ると判定する、例29〜30のいずれか1例による方法。
例32. プロセッサは、差が所定の閾値内にあるときに圧力センサを正確であると判
定する、例29〜31のいずれか1例による方法。
例33. 圧力の測定、予想圧力の計算、及び測定された圧力と予想圧力との比較は、
所定の期間にわたって所定の周波数で実施される、例26〜32のいずれか1例による方
法。
例34. 所定の周波数は1ヘルツと2ヘルツとの間である、例33の方法。
例35. 所定の期間は5秒である、例33〜34のいずれか1例による方法。
例36. プロセッサは、測定された圧力と予想圧力との間の複数回の比較に基づいて
圧力センサを不正確であると判定する、例33〜35のいずれか1例による方法。
例37. 呼吸デバイスの下位の特性は第1の下位の特性であり、プロセッサは、
呼吸デバイスの第2の下位の特性を計算することと、
呼吸デバイスの第2の下位の特性を呼吸デバイスの第1の下位の特性と比較すること
と、
によって圧力センサの正確さを判定する、例2〜25のいずれか1例による方法。
例38. プロセッサは、呼吸可能なガスの流れの測定された流量、流れ発生器の測定
されたモータ速度、及び圧力センサによって測定された圧力から呼吸デバイスの第2の下
位の特性を計算する、例37の方法。
例39. プロセッサは、呼吸可能なガスの流れの測定された温度から呼吸デバイスの
第2の下位の特性を計算する、例38の方法。
例40. プロセッサは、測定される第1の下位の特性と第2の下位の特性との差を所
定の閾値と比較することによって、圧力センサの正確さを判定する、例37〜39のいず
れか1例による方法。
例41. 所定の閾値は600フィートに対応する、例40の方法。
例42. プロセッサは、差が所定の閾値を超えるときに圧力センサを不正確であると
判定する、例40〜41のいずれか1例による方法。
例43. プロセッサは、差が所定の閾値内にあるときに圧力センサを正確であると判
定する、例40〜42のいずれか1例による方法。
例44. プロセッサは、所定の期間にわたって所定の周波数で第2の下位の特性を計
算する、例37〜43のいずれか1例による方法。
例45. 所定の周波数は1ヘルツと2ヘルツとの間である、例44の方法。
例46. 所定の期間は5秒である、例44〜45のいずれか1例による方法。
例47. プロセッサは、所定の期間中に計算される第2の下位の特性の平均が所定の
閾値より大きいオフセットだけ第1の下位の特性と異なるときに圧力センサを不正確であ
ると判定する、例44〜46のいずれか1例による方法。
例48. プロセッサは、所定の期間中に計算される第2の下位の特性の平均が所定の
閾値以下のオフセットだけ第1の下位の特性と異なるときに圧力センサを正確であると判
定する、例44〜47のいずれか1例による方法。
例49. プロセッサが圧力センサを不正確であると判定するときに、測定された圧力
に基づいて流れ発生器についてモータ速度を設定することを更に含む、例2〜48のいず
れか1例による方法。
例50. 速度制限閾値未満でモータ速度を維持することを更に含む、例49の方法。
例51. モータ速度値と圧力値との間の所定の関連付けに基づいて、流れ発生器によ
って生成される所望のガス圧力を決定することと、流れ発生器について所望のモータ速度
を決定することとを更に含む、例2〜48のいずれか1例による方法。
例52. 呼吸装置であって、
大気圧を超える圧力で患者インタフェースに送達するための呼吸可能なガスの流れを生
成するブロワを内部に含んでいる流れ発生器と、
流れ発生器に結合した圧力センサであって、呼吸可能なガスの流れの圧力を測定するよ
うに構成される、圧力センサと、
圧力センサに結合したプロセッサであって、測定された圧力及び呼吸装置の下位の特性
に基づいて圧力センサの正確さを判定するように構成される、プロセッサと、
を備える、呼吸装置。
例53. 呼吸可能なガスの流れの流量を測定するように構成される流量センサを更に
備える、例52に記載の呼吸装置。
例54. 流れ発生器のモータ速度を測定するように構成されるモータ速度センサを更
に備える、例52〜53のいずれか1例による装置。
例55. ユーザによって入力される呼吸装置の下位の特性を受信するように構成され
るユーザI/Oデバイスを更に備える、例52〜54のいずれか1例による装置。
例56. 呼吸装置の下位の特性を求める高度計又は気圧計を更に備える、例52〜5
5のいずれか1例による装置。
例57. プロセッサは、呼吸装置の下位の特性を計算するように構成される、例52
〜56のいずれか1例による装置。
例58. プロセッサは、計算された下位の特性の評価に基づいて圧力センサの正確さ
を判定する、例57に記載の呼吸装置。
例59. プロセッサは、(a)圧力センサによって測定された圧力と、(b)(1)
呼吸可能なガスの流れの測定された流量及び(b)(2)流れ発生器の測定されたモータ
速度、の一方又は両方との関数として呼吸装置の下位の特性を計算する、例57〜58の
いずれか1例による装置。
例60. プロセッサは、呼吸可能なガスの流れの測定される温度の関数として呼吸装
置の下位の特性を計算する、例59に記載の呼吸装置。
例61. プロセッサは、流れ発生器がガスを一定の所定の流量に制御するときに呼吸
装置の下位の特性を計算する、例57〜60のいずれか1例による装置。
例62. 一定の所定の流量は20リットル/分である、例61に記載の呼吸装置。
例63. 一定の所定の流量は50リットル/分未満である、例61に記載の呼吸装置
例64. 一定の所定の流量は約10リットル/分と約60リットル/分との間の範囲
にある、例61に記載の呼吸装置。
例65. プロセッサは、流れ発生器が一定の所定のモータ速度を制御するときに呼吸
装置の下位の特性を計算する、例57〜60のいずれか1例による装置。
例66. プロセッサは、計算された下位の特性を所定の範囲の下位の特性と比較する
ことによって計算された下位の特性を評価する、例58〜65のいずれか1例による装置
例67. 所定の範囲の下位の特性は、海面上で0フィートと9000フィートとの間
に対応する範囲である、例66に記載の呼吸装置。
例68. 所定の範囲の下位の特性は、海面下500フィートと海面上10000フィ
ートとの間に対応する範囲である、例66に記載の呼吸装置。
例69. プロセッサは、計算された下位の特性が所定の範囲の下位の特性の範囲内で
あるときに計算された下位の特性を受入れ可能であると見なす、例66〜68のいずれか
1例による装置。
例70. プロセッサは、計算された下位の特性が所定の範囲の下位の特性の範囲外で
あるときに計算された下位の特性を受入れ不可能であると見なす、例66〜69のいずれ
か1例による装置。
例71. プロセッサは、所定の期間にわたって所定の周波数で呼吸装置の下位の特性
を計算する、例57〜70のいずれか1例による装置。
例72. 所定の周波数は1ヘルツと2ヘルツとの間である、例71に記載の呼吸装置
例73. 所定の期間は5秒である、例71〜72のいずれか1例による装置。
例74. プロセッサは、計算された下位の特性の平均に基づいて圧力センサを評価す
る、例71〜73のいずれか1例による装置。
例75. プロセッサは、計算された下位の特性の平均が閾値比較を満たすときに圧力
センサが正確であると判定する、例71〜74のいずれか1例による装置。
例76. プロセッサは、呼吸装置が患者に処置を提供する前の初期化プロセスにおい
て圧力センサを評価する、例52〜75のいずれか1例による装置。
例77. 呼吸装置の下位の特性を記憶するメモリを更に備える、例52〜76のいず
れか1例による装置。
例78. プロセッサは、
呼吸装置によって生成されるガスの予想圧力を計算することと、
予想圧力を圧力センサによって測定された圧力と比較することと、
によって圧力センサの正確さを評価する、例52〜77のいずれか1例による装置。
例79. プロセッサは、呼吸装置の下位の特性、呼吸可能なガスの流れの測定された
流量、及び流れ発生器の測定されたモータ速度を用いて予想圧力を計算する、例78に記
載の呼吸装置。
例80. プロセッサは、呼吸可能なガスの流れの測定された温度を用いて予想圧力を
計算する、例79に記載の呼吸装置。
例81. プロセッサは、予想圧力と測定された圧力との差を所定の閾値と比較するこ
とによって、圧力センサの正確さを判定する、例78〜80のいずれか1例による装置。
例82. 所定の閾値は5cmHOである、例81に記載の呼吸装置。
例83. プロセッサは、差が所定の閾値を超えているときに圧力センサを不正確であ
ると判定する、例81〜82のいずれか1例による装置。
例84. プロセッサは、差が所定の閾値内にあるときに圧力センサを正確であると判
定する、例81〜83のいずれか1例による装置。
例85. プロセッサは、所定の期間にわたって所定の周波数で、圧力センサからの圧
力の測定値を読み取り、予想圧力を計算し、予想圧力を測定された圧力と比較する、例7
8〜84のいずれか1例による装置。
例86. 所定の周波数は1ヘルツと2ヘルツとの間である、例85に記載の呼吸装置
例87. 所定の期間は5秒である、例85〜86のいずれか1例による装置。
例88. プロセッサは、測定された圧力と予想圧力との間の複数回の比較に基づいて
圧力センサを不正確であると判定する、例85〜87のいずれか1例による装置。
例89. 呼吸装置の下位の特性は第1の下位の特性であり、プロセッサは、
呼吸装置の第2の下位の特性を計算することと、
呼吸装置の第2の下位の特性を呼吸装置の第1の下位の特性と比較することと、
によって圧力センサの正確さを判定する、例52〜77のいずれか1例による装置。
例90. プロセッサは、呼吸可能なガスの流れの測定された流量、流れ発生器の測定
されたモータ速度、及び圧力センサによって測定された圧力から呼吸装置の第2の下位の
特性を計算する、例89に記載の呼吸装置。
例91. プロセッサは、呼吸可能なガスの流れの測定された温度から呼吸装置の第2
の下位の特性を計算する、例90に記載の呼吸装置。
例92. プロセッサは、測定される第1の下位の特性と第2の下位の特性との差を所
定の閾値と比較することによって、圧力センサの正確さを判定する、例89〜91のいず
れか1例による装置。
例93. 所定の閾値は600フィートである、例92に記載の呼吸装置。
例94. プロセッサは、差が所定の閾値を超えるときに圧力センサを不正確であると
判定する、例92〜93のいずれか1例による装置。
例95. プロセッサは、差が所定の閾値内にあるときに圧力センサを正確であると判
定する、例92〜94のいずれか1例による装置。
例96. プロセッサは、所定の期間にわたって所定の周波数で、圧力センサから圧力
の測定値を読み取り、測定値に基づいて第2の下位の特性を計算するように構成される、
例89〜95のいずれか1例による装置。
例97. 所定の周波数は1ヘルツと2ヘルツとの間である、例96に記載の呼吸装置
例98. 所定の期間は5秒である、例96〜97のいずれか1例による装置。
例99. プロセッサは、所定の期間中に計算される第2の下位の特性の平均が所定の
閾値より大きいオフセットだけ第1の下位の特性と異なるときに圧力センサを不正確であ
ると判定する、例96〜98のいずれか1例による装置。
例100. 圧力センサは、所定の期間中に計算される第2の下位の特性の平均が所定
の閾値より大きいオフセットだけ第1の下位の特性と異なるときに正確であると判定され
る、例96〜99のいずれか1例による装置。
例101. プロセッサは、このプロセッサが圧力センサを不正確であると判定すると
きに圧力センサによって測定される圧力に基づくモータ速度に流れ発生器を設定するよう
に更に構成される、例52〜100のいずれか1例による装置。
例102. プロセッサは、速度制限閾値未満でモータ速度を維持するように更に構成
される、例101に記載の呼吸装置。
例103. プロセッサは、モータ速度値と圧力値との所定の関連付けに基づいて、流
れ発生器によって生成される所望のガス圧力を決定し、流れ発生器について所望のモータ
速度を決定するように更に構成される、例52〜100のいずれか1例による装置。
例104. 下位の特性は高度である、例1〜103のいずれか1例による方法又は装
置。
例105. 下位の特性は、装置がその中で動作する大気圧である、例1〜104のい
ずれか1例による方法又は装置。
例106. 下位の特性は密度高度である、例1〜105のいずれか1例による方法又
は装置。
例107. 下位の特性は圧力高度である、例1〜106のいずれか1例による方法又
は装置。

Claims (52)

  1. 呼吸治療を生成する呼吸装置であって、
    患者インタフェースに対して大気圧より大きい圧力で呼吸ガスの流れを生成する、ブロアを有する流れ発生器と、
    前記圧力を測定する圧力センサと、
    前記圧力センサと前記流れ発生器とに結合したコントローラであって、前記圧力センサからの信号とともに圧力制御ループに従う第1のモードで、前記流れ発生器からの呼吸治療の生成を制御する、コントローラと
    を備えてなり、
    前記コントローラは、
    前記圧力センサの正確さを試験し、
    前記圧力センサが不正確であることを検出すると、前記流れ発生器を備えた前記呼吸治療の生成の制御を、第1のモードから動作安全モードに変更し、
    その後、前記動作安全モードに従う呼吸治療の生成を制御するものであり、ここで、前記動作安全モードは、(a)不正確であることを検出した前記圧力センサを用いた圧力制御モード、または(b)圧力制御用の圧力測定をしない速度制御モードのいずれかを含む
    ようにさらに構成されている、呼吸装置。
  2. 前記動作安全モードは前記圧力制御モードであり、前記コントローラは、
    流れ発生器の所望の圧力レベル設定を決定し、
    前記ブロアのモータ度を達成するコントローラが許可する最大モータ速度を表すモータ速度閾値を設定し、
    前記圧力センサから読み取った圧力を取得し、
    (i)前記読み取った圧力が前記所望の圧力レベル設定を超えておらず、(ii)次のモータ速度が前記最大モータ速度を超えていない場合には、前記流れ発生器のモータ速度を前記次のモータ速度に増加する
    ようにさらに構成される、請求項1に記載の呼吸装置。
  3. 前記最大モータ速度は、前記所望の圧力レベル設定に対応するモータ速度である、請求項2に記載の呼吸装置。
  4. 前記最大モータ速度は、最大圧力レベルに対応するモータ速度である、請求項2に記載の呼吸装置。
  5. 前記モータ速度を増加することによって、(i)前記読み取った圧力が前記所望の圧力レベル設定を超え場合、または(ii)前記次のモータ速度が前記最大モータ速度を超え場合になるまでは、前記コントローラは、前記流れ発生器の前記モータ速度を次のモータ速度に反復的に増加するように構成されている、請求項2から4のいずれか一項に記載の呼吸装置。
  6. 前記動作安全モードは前記速度制御モードであり、前記コントローラは、
    前記流れ発生器の所望の圧力レベル設定を決定し、
    前記所望の圧力レベル設定に基づいて所望のモータ速度を決定し、
    前記所望のモータ速度で呼吸治療の生成を制御する
    ように構成されている、請求項1に記載の呼吸装置。
  7. 複数の異なるモータ速度と複数の異なる圧力レベルとの間で1対1のマッピングを規定するためのルックアップテーブルを含むメモリをさらに含み、前記コントローラは、該ルックアップテーブルに基づいて前記所望のモータ速度を決定するように構成されている、請求項6に記載の呼吸装置。
  8. 前記所望の圧力レベル設定は、前記呼吸の治療のセッション全体を通じて維持される一定圧力値である、請求項6または7に記載の呼吸装置。
  9. 前記所望の圧力レベル設定は、1つ以上の検出された呼吸状態に基づいて、前記呼吸の治療のセッション全体を通じて変化するものである、請求項6または7に記載の呼吸装置。
  10. 前記コントローラは、測定された圧力と前記呼吸装置の高度とに基づいて、前記圧力センサの前記正確さを試験するように構成されている、請求項1に記載の呼吸装置。
  11. 前記コントローラは、(a)前記圧力センサによって測定された圧力と、(b1)呼吸可能なガスの流れの測定される流量及び(b2)前記流れ発生器の測定されたモータ速度の一方又は両方の関数として、前記呼吸装置の前記高度を計算するように構成されている、請求項10に記載の呼吸装置。
  12. 前記コントローラは、呼吸可能なガスの流れの測定された温度を関数として、前記呼吸装置の前記高度を計算するように構成されている、請求項11に記載の呼吸装置。
  13. 前記コントローラは、計算された前記高度の平均に基づいて、前記圧力センサの前記正確さを試験するように構成されている、請求項11に記載の呼吸装置。
  14. 前記コントローラは、計算された前記高度の平均が閾値比較を満たすときに、前記圧力センサが正確であると判定する、請求項13に記載の呼吸装置。
  15. 前記コントローラは、
    前記呼吸装置によって生成された前記ガスの予想圧力を計算し、
    前記圧力センサによって測定された前記圧力を、前記予想圧力と比較する
    ことによって、前記圧力センサの前記正確さを試験するように構成されている、請求項1に記載の呼吸装置。
  16. 前記コントローラは、前記呼吸装置の高度と、呼吸可能なガスの流れの測定された流量と、前記流れ発生器の測定されたモータ速度とを用いて、前記予想圧力を計算するように構成されている、請求項15に記載の呼吸装置。
  17. 前記コントローラは、呼吸可能なガスの流れの測定された温度を用いて、前記予想圧力を計算するように構成されている、請求項16に記載の呼吸装置。
  18. 前記コントローラは、前記予想圧力と前記圧力センサによって測定された圧力との差が所定の閾値を超えているときに、前記圧力センサが不正確であると検出するように構成されている、請求項16に記載の呼吸装置。
  19. 前記所定の閾値は490.333Paである、請求項18に記載の呼吸装置。
  20. 前記コントローラは、前記圧力センサからの測定圧力を読み取り、前記予想圧力を計算し、前記予想圧力と前記測定圧力とを所定の期間にわたって所定の周波数で比較するように構成されている、請求項15に記載の呼吸装置。
  21. 前記コントローラは、測定圧力と予想圧力との複数回の比較に基づいて、前記圧力センサが不正確であると検出するように構成されている、請求項20に記載の呼吸装置。
  22. 前記呼吸装置の高度は第1の高度であり、前記コントローラは、
    呼吸可能なガスの流れの測定された流量と、前記流れ発生器の測定されたモータ速度と、前記圧力センサによって測定された圧力とを用いて、前記呼吸装置の第2の高度を計算し、
    前記呼吸装置の前記第2の高度を、前記呼吸装置の前記第1の高度と比較する
    ことによって、前記圧力センサの正確さを試験するように構成されている、請求項10に記載の呼吸装置。
  23. 前記コントローラは、前記第1の高度と前記第2の高度との差が所定の閾値を超えているときに、前記圧力センサが不正確であると検出するように構成されている、請求項22に記載の呼吸装置。
  24. 前記所定の閾値は182.88メートルである、請求項23に記載の呼吸装置。
  25. 前記コントローラは、前記圧力センサからの測定圧力を読み取り、所定の期間にわたる所定の周波数での測定に基づいて、前記第2の高度を計算するように構成されている、請求項22に記載の呼吸装置。
  26. 前記コントローラは、前記所定の期間中に計算される前記第2の高度の平均が所定の閾値より大きいオフセットだけ前記第1の高度と異なるときに前記圧力センサを不正確であると検出するように構成されている、請求項25に記載の呼吸装置。
  27. 呼吸治療を生成するように構成された呼吸装置における制御方法であって、
    圧力センサからの信号とともに圧力制御ループに従う第1のモードで呼吸治療を生成する流れ発生器の動作のための設定を制御するステップと、
    前記圧力センサの正確さを試験するステップと、
    前記圧力センサが不正確であることを検出すると、前記流れ発生器を備えた前記呼吸装置についての動作モードを、前記第1のモードから動作安全モードに変更し、
    その後、前記動作安全モードに従って動作を制御するステップであって、前記動作安全モードは、(a)不正確であることを検出した前記圧力センサを用いた圧力制御モード、または(b)圧力制御用の圧力測定をしない速度制御モードのいずれかを含む、動作を制御するステップと
    を含んでなる、制御方法。
  28. 前記動作安全モードは前記圧力制御モードであり、前記制御方法は、
    流れ発生器の所望の圧力レベル設定を決定するステップと、
    前記ブロアのモータ度を達成するコントローラが許可する最大モータ速度を表すモータ速度閾値を設定するステップと、
    前記圧力センサから読み取った圧力を取得するステップと、
    (i)前記読み取った圧力が前記所望の圧力レベル設定を超えておらず、(ii)次のモータ速度が前記最大モータ速度を超えていない場合には、前記流れ発生器のモータ速度を前記次のモータ速度に増加するステップと
    をさらに含む、請求項27に記載の制御方法。
  29. 前記最大モータ速度は、前記所望の圧力レベル設定に対応するモータ速度である、請求項28に記載の制御方法。
  30. 前記最大モータ速度は、最大圧力レベルに対応するモータ速度である、請求項28に記載の制御方法。
  31. 前記制御方法は、前記モータ速度を増加することによって、(i)前記読み取った圧力が前記所望の圧力レベル設定を超え場合、または(ii)前記次のモータ速度が前記最大モータ速度を超え場合になるまでは、前記コントローラは、前記流れ発生器の前記モータ速度を次のモータ速度に反復的に増加するステップをさらに含む請求項28から30のいずれか一項に記載の制御方法。
  32. 前記動作安全モードは前記速度制御モードであり、前記制御方法は、
    前記流れ発生器の所望の圧力レベル設定を決定するステップと、
    前記所望の圧力レベル設定に基づいて所望のモータ速度を決定するステップと、
    前記所望のモータ速度で呼吸治療の生成を制御するステップと
    をさらに含む、請求項27に記載の制御方法。
  33. 前記所望のモータ速度を決定するステップは、複数の異なるモータ速度と複数の異なる圧力レベルとの間で1対1マッピングを規定しているルックアップテーブルにさらに基づくものである、請求項32に記載の制御方法。
  34. 前記所望の圧力レベル設定は、前記呼吸の治療のセッション全体を通じて維持される一定圧力値である、請求項28から33のいずれか一項に記載の制御方法。
  35. 前記所望の圧力レベル設定は、1つ以上の検出された呼吸状態に基づいて、前記呼吸の治療のセッション全体を通じて変化するものである、請求項28から33のいずれか一項に記載の制御方法。
  36. 前記圧力センサの正確さを試験するステップは、測定された圧力と前記呼吸装置の高度とに基づくものである、請求項27に記載の制御方法。
  37. (a)前記圧力センサによって測定された圧力と、(b1)呼吸可能なガスの流れの測定される流量及び(b2)前記流れ発生器の測定されたモータ速度の一方又は両方の関数として、前記呼吸装置の前記高度を計算するステップをさらに含む、請求項36に記載の制御方法。
  38. 呼吸可能なガスの流れの測定された温度を関数として、前記呼吸装置の前記高度を計算するステップをさらに含む、請求項37に記載の制御方法。
  39. 計算された前記高度の平均に基づいて、前記圧力センサの前記正確さを試験するステップをさらに含む、請求項37に記載の制御方法。
  40. 計算された前記高度の平均が閾値比較を満たすときに、前記圧力センサが正確であると判定するステップをさらに含む、請求項39に記載の制御方法。
  41. 前記呼吸装置によって生成された前記ガスの予想圧力を計算し、
    前記圧力センサによって測定された前記圧力を、前記予想圧力と比較する
    ことによって、前記圧力センサの前記正確さを試験するステップをさらに含む、請求項37に記載の制御方法。
  42. 前記呼吸装置の高度と、呼吸可能なガスの流れの測定された流量と、前記流れ発生器の測定されたモータ速度とを用いて、前記予想圧力を計算するステップをさらに含む、請求項41に記載の制御方法。
  43. 呼吸可能なガスの流れの測定された温度を用いて、前記予想圧力を計算するステップをさらに含む、請求項42に記載の制御方法。
  44. 前記予想圧力と前記圧力センサによって測定された圧力との差が所定の閾値を超えているときに、前記圧力センサが不正確であると検出するステップをさらに含む、請求項42に記載の呼吸装置。
  45. 前記所定の閾値は490.333Paである、請求項44に記載の制御方法。
  46. 前記圧力センサからの測定圧力を読み取り、前記予想圧力を計算し、前記予想圧力と前記測定圧力とを所定の期間にわたって所定の周波数で比較するステップをさらに含む、請求項41に記載の制御方法。
  47. 測定圧力と予想圧力との複数回の比較に基づいて、前記圧力センサが不正確であると検出するステップをさらに含む、請求項46に記載の制御方法。
  48. 前記呼吸装置の高度は第1の高度であり、
    呼吸可能なガスの流れの測定された流量と、前記流れ発生器の測定されたモータ速度と、前記圧力センサによって測定された圧力とを用いて、前記呼吸装置の第2の高度を計算し、
    前記呼吸装置の前記第2の高度を、前記呼吸装置の前記第1の高度と比較する
    ことによって、前記圧力センサの正確さを試験するステップをさらに含む、請求項46に記載の制御方法。
  49. 前記第1の高度と前記第2の高度との差が所定の閾値を超えているときに、前記圧力センサが不正確であると検出するステップをさらに含む、請求項48に記載の制御方法。
  50. 前記所定の閾値は182.88メートルである、請求項49に記載の制御方法。
  51. 前記圧力センサからの測定圧力を読み取り、所定の期間にわたる所定の周波数での測定に基づいて、前記第2の高度を計算するステップをさらに含む、請求項48に記載の制御方法。
  52. 前記所定の期間中に計算される前記第2の高度の平均が所定の閾値より大きいオフセットだけ前記第1の高度と異なるときに前記圧力センサを不正確であると検出するステップをさらに含む、請求項51に記載の制御方法。
JP2019062988A 2012-06-29 2019-03-28 呼吸装置の圧力センサ評価 Active JP6862488B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261666367P 2012-06-29 2012-06-29
US61/666,367 2012-06-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018109998A Division JP6506870B2 (ja) 2012-06-29 2018-06-08 呼吸装置及びその操作方法

Publications (2)

Publication Number Publication Date
JP2019122813A JP2019122813A (ja) 2019-07-25
JP6862488B2 true JP6862488B2 (ja) 2021-04-21

Family

ID=49781953

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015518728A Active JP6353830B2 (ja) 2012-06-29 2013-06-27 呼吸装置の圧力センサ評価
JP2018109998A Active JP6506870B2 (ja) 2012-06-29 2018-06-08 呼吸装置及びその操作方法
JP2019062988A Active JP6862488B2 (ja) 2012-06-29 2019-03-28 呼吸装置の圧力センサ評価

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015518728A Active JP6353830B2 (ja) 2012-06-29 2013-06-27 呼吸装置の圧力センサ評価
JP2018109998A Active JP6506870B2 (ja) 2012-06-29 2018-06-08 呼吸装置及びその操作方法

Country Status (7)

Country Link
US (3) US10569035B2 (ja)
EP (2) EP3357530B1 (ja)
JP (3) JP6353830B2 (ja)
CN (3) CN107261270B (ja)
AU (1) AU2013284348B2 (ja)
NZ (3) NZ630740A (ja)
WO (1) WO2014000039A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10569035B2 (en) * 2012-06-29 2020-02-25 ResMed Pty Ltd Pressure sensor evaluation for respiratory apparatus
NZ717147A (en) 2013-10-21 2017-08-25 Resmed Ltd Methods of detecting a quantity of water in a humidifier
USD743556S1 (en) * 2014-02-19 2015-11-17 Resmed Limited Positive airway pressure delivery console
CN106310472B (zh) * 2015-06-23 2019-02-22 湖南明康中锦医疗科技发展有限公司 呼吸机校准设备及呼吸机校准系统
EP3316949B1 (en) * 2015-06-30 2021-11-17 Koninklijke Philips N.V. Barometric pressure sensor for variable resistance positive airway pressure device circuit compensation
US11266801B2 (en) * 2015-10-09 2022-03-08 University Of Utah Research Foundation Ventilation devices and systems and methods of using same
CA3054590A1 (en) * 2016-04-05 2017-10-12 Fathom Systems Inc. Automatic pressure sensor output calibration for reliable altitude determination
CN106512113A (zh) * 2016-08-23 2017-03-22 广州市亿福迪医疗科技有限公司 连续式程控多罐组合加热拔火罐治疗装置
SG11201901186TA (en) * 2016-10-11 2019-03-28 Fisher & Paykel Healthcare Ltd An integrated sensor assembly of a respiratory therapy system
WO2018089789A1 (en) 2016-11-10 2018-05-17 The Research Foundation For The State University Of New York System, method and biomarkers for airway obstruction
WO2018085901A1 (en) * 2016-11-14 2018-05-17 Helium 3 Resources Pty Ltd A therapeutic device
US10987475B2 (en) * 2017-10-25 2021-04-27 General Electric Company Systems for feedback control of anesthetic agent concentration
US11883594B2 (en) 2017-11-22 2024-01-30 Fisher & Paykel Healthcare Limited Respiratory rate monitoring for respiratory flow therapy systems
CN109939315A (zh) * 2017-12-20 2019-06-28 北京谊安医疗系统股份有限公司 一种呼吸机涡轮压力控制的自动海拔补偿方法
US20220362498A1 (en) 2019-07-30 2022-11-17 ResMed Pty Ltd Methods and apparatus for respiratory therapy
CN110823447B (zh) * 2019-11-15 2021-10-15 武汉杰开科技有限公司 气压检测装置的存储方法以及相关装置、系统
EP4065930A4 (en) * 2019-11-27 2023-05-17 Nextnav, LLC GROUND HEIGHT ESTIMATION AND CALIBRATION OF A MOBILE DEVICE
CN112545851A (zh) * 2020-11-03 2021-03-26 未来穿戴技术有限公司 按摩方法及装置、电子设备、计算机可读存储介质
KR20230013352A (ko) * 2021-07-19 2023-01-26 엘지전자 주식회사 마스크 장치 및 그 제어방법
KR20230013364A (ko) * 2021-07-19 2023-01-26 엘지전자 주식회사 마스크 장치 및 그 제어방법
KR20230013491A (ko) * 2021-07-19 2023-01-26 엘지전자 주식회사 마스크 장치 및 그 제어방법

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2465775A (en) * 1945-08-10 1949-03-29 Morris C White Altimeter
US4263804A (en) * 1979-09-10 1981-04-28 Seemann Robert A Apparatus for directly measuring density altitude in an aircraft
GB8921344D0 (en) * 1989-09-21 1989-11-08 Normalair Garrett Ltd Aircraft aircrew life support apparatus
FR2692152B1 (fr) * 1992-06-15 1997-06-27 Pierre Medical Sa Appareil d'aide a la respiration, notamment pour traiter l'apnee du sommeil.
JPH07246240A (ja) * 1994-03-08 1995-09-26 Boc Group Inc:The 医療用換気装置
US5598838A (en) * 1995-04-07 1997-02-04 Healthdyne Technologies, Inc. Pressure support ventilatory assist system
US5603315A (en) * 1995-08-14 1997-02-18 Reliable Engineering Multiple mode oxygen delivery system
US5686664A (en) * 1996-06-26 1997-11-11 Pearcy; Lee R. Atmospheric tide and air density detector
US6220244B1 (en) * 1998-09-15 2001-04-24 Mclaughlin Patrick L. Conserving device for use in oxygen delivery and therapy
AUPP693398A0 (en) * 1998-11-05 1998-12-03 Resmed Limited Fault diagnosis in CPAP and NIPPV devices
US6266583B1 (en) * 2000-03-30 2001-07-24 Litton Systems, Inc. System and method for improving the accuracy of pressure altitude determinations in an inertial navigation system
US6349724B1 (en) 2000-07-05 2002-02-26 Compumedics Sleep Pty. Ltd. Dual-pressure blower for positive air pressure device
US6701282B2 (en) * 2001-09-20 2004-03-02 General Motors Corporation Fault identification diagnostic for intake system sensors
JP3810669B2 (ja) * 2001-11-19 2006-08-16 セイコーインスツル株式会社 移動検出型高度計
DE10210878B4 (de) * 2002-03-12 2018-01-04 Drägerwerk AG & Co. KGaA Vorrichtung zur Atemunterstützung
KR100428295B1 (ko) * 2002-04-12 2004-04-28 현대자동차주식회사 차량에서 맵 센서 고장 진단장치 및 방법
US7621879B2 (en) * 2002-05-14 2009-11-24 Pacesetter, Inc. System for calibrating implanted sensors
US6712876B2 (en) * 2002-08-27 2004-03-30 Litton Systems, Inc. Oxygen concentrator system with altitude compensation
US9180266B1 (en) * 2003-07-17 2015-11-10 Zoll Medical Corporation Automatic patient ventilator system and method
US20050019164A1 (en) 2003-07-25 2005-01-27 Delano Andrew D. Technique for sensing altitude from fan speed
US7343917B2 (en) 2003-09-22 2008-03-18 Resmed Limited Clear cycle for ventilation device
JP4977477B2 (ja) * 2004-02-11 2012-07-18 レスメド・リミテッド 睡眠呼吸障害を処置するための装置のセッション毎の調整
US7694674B2 (en) 2004-09-21 2010-04-13 Carleton Life Support Systems, Inc. Oxygen generator with storage and conservation modes
CN101060878B (zh) * 2004-11-04 2013-04-10 雷斯梅德有限公司 使用pap设备中的电动机转速估计流量
US8561611B2 (en) * 2005-06-21 2013-10-22 Ric Investments, Llc Respiratory device measurement system
CN101454040B (zh) 2005-06-21 2012-06-20 Ric投资有限公司 呼吸装置测量系统
US8256417B2 (en) * 2005-11-23 2012-09-04 Curative (Beijing) Medical Technology Co., Ltd. Method and apparatus for providing positive airway pressure to a patient
JP2007246240A (ja) 2006-03-17 2007-09-27 Yasuhisa Choshoin 立体多段収容庫
US7369757B2 (en) 2006-05-24 2008-05-06 Nellcor Puritan Bennett Incorporated Systems and methods for regulating power in a medical device
JP2009539433A (ja) * 2006-06-05 2009-11-19 レスメド・リミテッド 睡眠呼吸障害を治療する較正不要な装置または低コストの較正装置のためのシステムおよび/または方法
US20100010755A1 (en) * 2006-07-20 2010-01-14 Christoph Paulitsch Method for diagnosing an impulse line blockage in a pressure trasducer, and pressure transducer
US8424362B2 (en) 2006-11-09 2013-04-23 Abbott Medical Optics Inc. Methods and apparatus for calibrating a vacuum component of a phacoemulsification system
US8794235B2 (en) * 2007-06-08 2014-08-05 Ric Investments, Llc System and method for treating ventilatory instability
JP5149025B2 (ja) 2008-01-31 2013-02-20 テルモ株式会社 酸素濃縮装置
US8185285B2 (en) * 2008-04-08 2012-05-22 GM Global Technology Operations LLC Transmission hydraulic pressure sensor based altitude measurement
US20090266361A1 (en) * 2008-04-29 2009-10-29 Bilger Adam S Respiratory breathing devices, methods and systems
US7752002B2 (en) * 2008-05-30 2010-07-06 Pacesetter, Inc. Methods and apparatus for non-invasive implantable pressure sensor calibration
US8302602B2 (en) * 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
WO2010044035A1 (en) 2008-10-16 2010-04-22 Koninklijke Philips Electronics, N.V. Ventilator with limp mode
CN102333560B (zh) 2008-10-17 2014-05-07 皇家飞利浦电子股份有限公司 医疗通气机中的入口气流组件
WO2010090060A1 (ja) * 2009-02-06 2010-08-12 本田技研工業株式会社 大気圧推定装置
AU2010201032B2 (en) * 2009-04-29 2014-11-20 Resmed Limited Methods and Apparatus for Detecting and Treating Respiratory Insufficiency
CN101543655A (zh) * 2009-04-29 2009-09-30 江苏万泰科技股份有限公司 一种脉冲供氧时探测呼吸状态的方法
US9283339B2 (en) * 2009-05-18 2016-03-15 Zoll Medical Corporation Life support and monitoring apparatus with malfunction correction guidance
GB2472592A (en) 2009-08-11 2011-02-16 3M Innovative Properties Co A control unit for respirator
RU2540151C2 (ru) * 2009-09-01 2015-02-10 Конинклейке Филипс Электроникс Н.В. Система и способ количественного определения растяжимости легких у субъекта, самостоятельно осуществляющего вентиляцию
GB2474917B (en) * 2009-11-02 2015-12-23 Scott Health & Safety Ltd Improvements to powered air breathing apparatus
DE102010031754B4 (de) 2010-07-21 2012-08-23 Dräger Safety AG & Co. KGaA Atemschutzgerät mit Kompensation des Umgebungsdruckes
CN102397616B (zh) * 2010-09-07 2014-11-05 北京航天长峰股份有限公司 一种呼吸机传感器的自动校准方法
CN202013269U (zh) * 2011-02-24 2011-10-19 第二炮兵装备研究院第六研究所 空气呼吸器性能检测仪
US9726167B2 (en) 2011-06-27 2017-08-08 Q-Core Medical Ltd. Methods, circuits, devices, apparatuses, encasements and systems for identifying if a medical infusion system is decalibrated
US9808656B2 (en) * 2012-01-09 2017-11-07 Honeywell International Inc. System and method of oxygen deficiency warning in a powered air purifying respirator
EP2819728B1 (en) * 2012-02-29 2019-07-31 Koninklijke Philips N.V. Compensating for variations in air density in a pressure support device
US10569035B2 (en) * 2012-06-29 2020-02-25 ResMed Pty Ltd Pressure sensor evaluation for respiratory apparatus

Also Published As

Publication number Publication date
CN107261270A (zh) 2017-10-20
AU2013284348B2 (en) 2016-01-14
WO2014000039A1 (en) 2014-01-03
EP2866869A1 (en) 2015-05-06
NZ722191A (en) 2018-01-26
JP2015521502A (ja) 2015-07-30
NZ630740A (en) 2016-08-26
EP3357530A1 (en) 2018-08-08
EP2866869A4 (en) 2016-03-09
US10569035B2 (en) 2020-02-25
NZ738443A (en) 2019-06-28
CN104540539A (zh) 2015-04-22
US11730905B2 (en) 2023-08-22
US20230347083A1 (en) 2023-11-02
CN107261270B (zh) 2021-03-02
US20150165140A1 (en) 2015-06-18
US20200147329A1 (en) 2020-05-14
EP2866869B1 (en) 2018-03-07
JP2019122813A (ja) 2019-07-25
CN113181488A (zh) 2021-07-30
AU2013284348A1 (en) 2014-11-13
JP6353830B2 (ja) 2018-07-04
JP6506870B2 (ja) 2019-04-24
CN104540539B (zh) 2017-06-09
EP3357530B1 (en) 2019-12-04
JP2018171461A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6862488B2 (ja) 呼吸装置の圧力センサ評価
JP5199082B2 (ja) 呼吸用気体測定装置
JP5995942B2 (ja) 人工呼吸器リーク補償
AU2009233596B2 (en) Method and Device for Carrying Out a Signal-Processing Viewing of a Measurement Signal that is Correlated to the Respiratory Activity of an Individual
US8746248B2 (en) Determination of patient circuit disconnect in leak-compensated ventilatory support
JP5231256B2 (ja) Cpap治療中の無呼吸/低呼吸の決定
WO2009124198A2 (en) Clinical monitoring in open respiratory airways
JP2004532666A (ja) マスクシステムの特性付け
JP2004167252A (ja) 肺ストレスを評価するための方法及び呼吸装置
CN106073717B (zh) 一种无创呼吸机的阻塞性呼吸暂停判断方法
EP2747644A1 (en) Non-invasive ventilation measurement
BR112012028515B1 (pt) Sistema para administrar um fluxo de gás em uma via respiratória de um paciente
US11497870B2 (en) Systems and methods for estimating flow in positive airway pressure therapy
AU2023202934A1 (en) An integrated sensor assembly of a respiratory therapy system
US20230017943A1 (en) Monitoring the operation of respiratory systems
CN114748748A (zh) 一种通气设备及呼气流量的修正方法
CN113663187A (zh) 一种医用呼吸机控制方法
CN116115870A (zh) 压力控制方法及其系统、主控设备及呼吸机
GB2619457A (en) Monitoring the operation of respiratory systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250