JP6855697B2 - 直列型電圧調整装置 - Google Patents

直列型電圧調整装置 Download PDF

Info

Publication number
JP6855697B2
JP6855697B2 JP2016148467A JP2016148467A JP6855697B2 JP 6855697 B2 JP6855697 B2 JP 6855697B2 JP 2016148467 A JP2016148467 A JP 2016148467A JP 2016148467 A JP2016148467 A JP 2016148467A JP 6855697 B2 JP6855697 B2 JP 6855697B2
Authority
JP
Japan
Prior art keywords
voltage
output
sssc
value
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016148467A
Other languages
English (en)
Other versions
JP2018019517A (ja
Inventor
亮太 小田崎
亮太 小田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016148467A priority Critical patent/JP6855697B2/ja
Publication of JP2018019517A publication Critical patent/JP2018019517A/ja
Application granted granted Critical
Publication of JP6855697B2 publication Critical patent/JP6855697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本発明は、配電系統に直列に接続され二次側の電圧を制御する直列型電圧調整装置に関する。
配電系統の電圧は、配電用変電所に設置された負荷時タップ切替変圧器(LRT:Load Ratio Control Transformer)によるタップ位置切替、配電線路(フィーダ)に設置された自動電圧調整器(SVR:Step Voltage Regulator)によるタップ位置切替、配電線路に設置された静的同期直列補償装置(SSSC:Static Synchronous Series
Compensator)等によって制御される。LRT、SVRは、ステップ型の直列型電圧調整装置であり、SSSCは連続型の直列型電圧調整装置である。以後これらを総称して直列型電圧調整装置という。
ところで、近年の配電系統では太陽光発電装置(PV:Photovoltaics)を備えた需要家が増大している。太陽光発電装置の発電出力は天候変動に左右され配電系統の急激な電圧変動を生じさせる原因となっている。これに対し、高速な無効電力出力制御によって電圧変動を迅速に抑制する機能を持つ静止型無効電力補償装置(SVC:Static Var Compensator)、無効電力補償装置(STATCOM:Static Synchronous Compensator)を配電系統に接続し、急激な電圧変動を抑制することが期待されている。以後これらを総称して並列型電圧調整装置という。直列型電圧調整装置の制御対象区間に設置される機器は配電線上において直列型電圧調整装置との関係では隣接機器として扱うことができる。並列型電圧調整装置の他にも配電線路に接続されるセンサ機器は隣接機器に含まれる。
直列型電圧調整装置が変電所側(送出し側)に設置され、並列型電圧調整装置が配電線路の末端側に設置される。並列型電圧調整装置は、直列型電圧調整装置よりも高速で動作するので、電圧変動に対して、直列型電圧調整装置よりも先に動作する。並列型電圧調整装置が直列型電圧調整装置に先行して電圧制御するため、直列型電圧調整装置が動作しない現象が発生することが懸念される。並列型電圧調整装置が設置点電圧を適正範囲内に収束させるように動作すると、並列型電圧調整装置は最大出力で運転し続ける可能性があり、急峻な電圧変動を抑制するための出力余裕がなくなる。その結果、急峻な電圧変動の抑制という並列型電圧調整装置の本来の機能が果たせなくなる恐れがある。
そこで、直列型電圧調整装置と並列型電圧調整装置を協調して適切に動作させる電力制御システムが提案されている(例えば、特許文献1参照)。特許文献1に記載の電力制御システムでは、SVRは、SVCの出力現在値または出力履歴情報を把握し、その情報を元にSVCが出力なしの場合を想定した目標電圧を推定する。目標電圧の推定には、例えばSVCの出力電流と配電用変電所側の短絡リアクタンスに相当するパラメータとを用いて、電圧補正量ΔVsを計算する。電圧補正量ΔVsは、SVCが出力なしの場合と、出力ありの場合とで生じる電圧差分を示している。SVCの出力による電圧変動分を含んでいるタップ動作判定基準値Vsから電圧補正量ΔVsを差し引いて、SVCの出力による電圧変動分の影響分を除外し、この補正電圧がSVRの目標電圧点において適正電圧を逸脱していた場合、無効電力補償装置SVCの出力を減ずるように自動電圧調整器SVRを動作させることが開示されている。
特開2014−33492号公報
しかしながら、特許文献1の電力制御システムでは、電圧補正量ΔVsを差し引いた補正電圧が、直列型電圧調整装置であるSVRの目標電圧点において、適正範囲を逸脱しない限り、並列型電圧調整装置であるSVCの指令値が変更されず、SVCの出力を減ずる機会が発生しない事態が生じる。その結果、隣接機器であるSVCが出力余裕の無い状態に陥る問題がある。
本発明は、このような問題に鑑みてなされたもので、隣接機器の出力を0に近づけつつ当該隣接機器の設置点電圧を適正範囲に維持できる直列型電圧調整装置を提供することを目的とする。
本発明の一態様の直列型電圧調整装置は、配電線路対して直列に接続され、出力電圧を電圧管理幅内に調整する直列型電圧調整装置であって、前記配電線路に対して並列に接続される並列型電圧調整装置から出力された無効電力を0に近づけるための第1出力指令値を算出し、前記第1出力指令値が前記電圧管理幅の上限値以上のとき、前記上限値に基づいて前記出力電圧を調整し、前記第1出力指令値が前記電圧管理幅の下限値以下のとき、前記下限値に基づいて前記出力電圧を調整し、前記第1出力指令値に設定された場合の前記直列型電圧調整装置の二次電圧及び目標電圧が前記電圧管理幅の範囲から逸脱するかどうかを判断し、前記電圧管理幅の範囲から逸脱しないと判断した場合に前記第1出力指令値に基づいて前記出力電圧を調整することを特徴とする。
本発明によれば、隣接機器の出力を0に近づけつつ当該隣接機器の設置点電圧を適正範囲に維持できる直列型電圧調整装置を提供できる。
配電系統の全体構成の一例を示す図である。 隣接機器となるSVCからSSSCへの入力情報の様子を示す図である。 SSSCの構成例を示す図である。 第1の実施の形態におけるSSSCの制御内容を示す図である。 隣接機器がSVCである場合にSSSCにおける制御内容を伝達関数で示す図である。 SSSCでの協調制御動作を説明する図である。 第1の実施の形態におけるSSSCでの保護動作を説明する図である。 第1の実施の形態におけるSSSCでのフロー図である。 隣接機器がセンサ機器である場合にSSSCにおける制御内容を伝達関数で示す図である。 第1の実施の形態においてセンサ機器の仮想出力の演算方法の一例を説明する図である。 第2の実施の形態の直列型電圧調整装置におけるリミッタ機構を示す図である。
(第1の実施の形態)
以下、添付図面を参照して本実施の形態の直列型電圧調整装置について説明する。図1は本実施の形態の直列型電圧調整装置が設置された配電系統の構成例を示す図である。図1に示す配電系統は、変電所に定電圧電源11が設置され、変電所のバンクの送り出しにLRT12が設置されている。LRT12の二次側に接続された母線には複数本の配電線路13が並列に接続される(図1では1系統のみ示している)。配電線路13には、配電線路13に対して直列に接続される直列型電圧調整装置となるSSSC14が接続され、SSSC14の下位側に配電線路13に対して並列に接続される隣接機器であるSVC15が接続される。また、SSSC14の下位側となる配電線路13には別の隣接機器となるセンサ機器16が設置されている。SVC15は、SSSC14の制御対象区間に設置される隣接機器であり、かつ配電線路13に対して並列に接続される並列型電圧調整装置である。センサ機器16は、SSSC14の制御対象区間に設置される隣接機器であり、センサ設置点の情報(例えば、電圧、電流、位相の少なくとも1つ)を検出するセンサである。センサ機器16は、センサ単体でもよいし、センサ機能を内蔵した開閉器、センサ機能を内蔵したSSSC又はセンサ機能を内蔵した電圧潮流計等で構成されても良い。なお、SSSC14の制御対象区間にある配電線路13には需要家17及び太陽光発電装置18が接続されている。本例では、直列型電圧調整装置となるSSSC14から隣接機器となるSVC15までの区間又はSSSC14から隣接機器となるセンサ機器16までの区間に着目して説明する。
図2に示すように、直列型電圧調整装置となるSSSC14と隣接機器となるSVC15とは通信ネットワーク21を介して通信可能に接続されており、SVC15の出力情報(無効電力、電流等)がSSSC14へ通知される。別の隣接機器となるセンサ機器16は、図示されていないがSVC15と同様に、直列型電圧調整装置となるSSSC14と通信ネットワーク21を介して通信可能に接続されていて、センサ機器16の出力情報がSSSC14へ通知されている。センサ機器16の出力情報は、例えばセンサ機器16の設置点の電圧(以下、センサ点電圧という)である。SSSC14は電圧指令値を変更することにより、図2に図示した目標電圧(例えば、SSSC14とSVC15の中間地点P1)を制御する、LDC(LineDrop Compensator)制御を行う。LDC制御については既存の技術であるので、詳細は省略する。
図3はSSSC14の構成例を示している。SSSC14は、直列変圧器14aと自励式変換器14bとを有しており、直列変圧器14aが配電線路13に直列に接続されている。SSSC14は、自励式変換器14bで電圧調整することで制御対象区間の電圧を変化させる。また、SVC15は、例えば降圧用変圧器、直列リアクトル、進相コンデンサ、高電圧大容量サイリスタ装置で構成され、サイリスタを用いた高速制御により、負荷状態において無効電力を連続的に変化させて、応答速度の速い無効電力補償を行う。
次に、直列型電圧調整装置のSSSC14が隣接機器であるSVC15を協調制御する場合のSSSC14における制御内容について具体的に説明する。
SSSC14は、ローカル制御により制御対象区間の目標電圧が適正電圧(電圧管理幅)に収まるように出力指令値を決定して電圧制御を行う。SSSC14の目標電圧は、SSSC14の制御対象区間の中間点P1(図2参照)における電圧の目標値である。SVC15はローカル制御によりSVC制御点の電圧が設定値になるように出力を制御している。SVC制御点は、SVC15と配電線路13との接続点P2(図2参照)である。
本例では、SSSC14は、自端及びSVC15の出力情報からSVC15の出力を0(又は所定値)に近づけるように出力指令値を変更する。SSSC14がSVC15の出力を0に近づけるように出力指令値を決定すれば、SVC15をできるだけ動作させることなく、SSSC14の出力によってSVC制御点の電圧を設定値に維持できる。この結果、SVC15を、出力余力が最大限に確保された状態に保つことができる。
図4は直列型電圧調整装置であるSSSC14の制御内容を示す図である。SSSC14は、隣接機器のSVC15から今回取り込まれた出力(無効電力)と目標値(図4では目標値=0)との偏差を比例制御又は比例積分制御して出力指令値(電圧指令値)を決定している。図4に示すように目標値を0にすれば、隣接機器であるSVC15の出力が0に近づくようにSSSC14の電圧指令値が制御される。すなわち、SSSC14は、SVC15が出力無しの状態になるように、SVC15の負担を担うように動作する。SVC15が出力無の状態に近づく分だけ、SVC15の出力余力を確保できる。なお、目標値は必ずしも0でなくても良い。例えば、隣接機器のSVC15の出力(無効電力)が0でなくても、所要の出力余力を確保できるレベルまで下げることができれば支障がない場合もあり得る。
図5はSSSC14の制御内容を伝達関数で実現した一例を示している。SVC15の出力目標は0に設定されている。比例要素31において、今回のSVC出力と目標値(=0)との偏差にゲインKを掛けて電圧指令値変更量を決定し、遅延要素(Z−1)32を介して前回の電圧指令値を取り込み、加算要素33において前回の電圧指令値と今回の電圧指令値変更量を加算して新しい電圧指令値に変換する。新しい電圧指令値は保護リミッタ34を通して最終的な電圧指令値として出力する。
ゲインKは偏差の大きさに比例して変化させる制御を適用してもよい。偏差に掛けるゲインKを大きくすれば、SSSC14の出力に対し電圧指令値変更量は大きくなり、SSSC14の反応速度が上がる。逆に、偏差に掛けるゲインKを小さくすれば、SSSC14の出力に対し電圧指令値変更量は小さくなり、SSSC14の反応速度が下がる。このようにゲインKを偏差の大きさに応じて制御することで、偏差が大きい状態ではSSSC14の反応速度を上げて高速で目標値に近づけることができ、一方で偏差が小さい状態になれば目標値近傍であるので、SSSC14の反応速度を下げて安定化することができる。また、前回の電圧指令値を遅延要素(Z−1)32で遅延させてから今回の電圧指令値変更量に加算することで、積分制御を実現している。積分制御については必須ではないが、図5のように伝達関数に積分制御を組み込むことにより、偏差が小さい状況であっても、偏差を繰り返し加算して電圧指令値を出力するので、偏差が残らない制御が実現される。保護リミッタ34は、SSSC14の目標電圧及び二次電圧がSSSC14の適正範囲内に収まるように上限値及び下限値が設定される。例えば、SSSC14の二次電圧が上限逸脱する場合、保護リミッタ34の上限値を低下させて、新しい電圧指令値を低下させる。
図6及び図7を参照して、本実施の形態の直列型電圧調整装置(SSSC14)による具体的な動作について説明する。図6及び図7において、横軸はSSSC14及びSVC15に対応した配電線路13上の各位置を示しており、縦軸は各位置での電圧を示している。図6はSSSC14による協調動作前の電圧プロファイルを実線で示し、協調動作後の電圧プロファイルを点線で示している。SSSC14による協調動作前は、SSSC14は目標電圧(P1)が適正電圧の範囲内にあり、SVC15はSVC制御点(P2)の電圧が適正範囲上限の直前まで上昇している。SVC15は、ローカル制御により決定した出力ΔQにより制御点電圧を適正範囲上限付近に抑え込んでいる状況である。従来のローカル制御では、SSSC14は目標電圧が適正電圧の範囲内にあるので制御対象区間の電圧を下げる方向に動作することはなかった。本実施の形態では、目標電圧が適正電圧の範囲内にあったとしても、SSSC14がSVC15の現在の出力(SVC出力=ΔQ)を取得し、SVC出力(ΔQ)を0に近づけるようにSSSC14を動作させる。この結果、SSSC14の制御対象区間の電圧が全体として下げられ、図6に点線で示すようにSVC制御点(P2)の電圧は適正電圧の中央値付近まで下げられる。SVC15における自端での制御では、SVC出力に依らずにSVC制御点(P2)の電圧が適正電圧の中央値になれば、SVC出力ΔQを0にして出力無しの状態になる。したがって、上記協調動作を繰り返すことで、SVC15を動作させることなくSSSC14の目標電圧(P1)及びSVC15の制御点(P2)電圧を適正範囲に維持でき、SVC15を出力無しの状態にして出力余力を確保した状態にすることができる。
図7はSSSC14の保護リミッタ34による保護動作を示す図である。SSSC14による協調動作(図6参照)では、SSSC14はSVC15の出力を0に近づけるように動作するが、その際のSSSC14の動作範囲は、SSSC14の二次電圧が適正電圧を超えないように制限される。図7に示す動作例では、SSSC14による協調動作によってSVC15の出力を0に近づけるため、SSSC14が制御対象区間の全体の電圧を下げる方向に制御しているが、SVC出力ΔQを0にする前に、SSSC14の二次電圧が適正電圧の下限値に到達している。例えば、図5に示す加算要素33から出力される電圧指令値がSVC出力ΔQを0にする数値であったとしても、保護リミッタ34で適正電圧の下限値に相当する電圧指令値に変更されて出力される。これにより、SSSC14は、二次電圧が適正電圧の下限値まで下げるように動作し、その結果、SVC15では、SVC制御点(P2)の電圧が下げられた分だけ、SVC出力ΔQが抑制される。
図8は、SSSC14における上記協調動作のフロー図である。SSSC14は、SVC15の出力情報を通信周期毎に取得する(ステップS1)。SSSC14は、取得したSVC15の出力情報から、電圧指令値をどの程度変更すべきか計算する(ステップS2)。ステップS2で決定した電圧指令値変更量は、SVC15の出力と0(SVC出力無し)の偏差をゲインKにより電圧量へ換算したものである。次に、現在の電圧指令値に、ステップS2で計算した電圧指令値変更量を加算し、新たな電圧指令値とする(ステップS3)。SVC15が正の出力を行っていれば、電圧指令値変更量は正となり、これを現在の電圧指令値に加算することにより、電圧指令値が上昇する。その結果、SVC15のSVC制御点の電圧が上昇し、SVC15は出力を低下させることが出来る。よって、SSSC14はSVC15の出力がSVC制御点の電圧を持ち上げる方向であれば、自らも電圧指令値を上昇させ、SVC15の電圧制御を支援し、SVC15の代わりに電圧制御を行うことで、SVC15の出力を減少させる。また、SSSC14は、保護リミッタ34に上限値及び下限値を設定して、SSSC14の二次電圧及び目標電圧が適正範囲から逸脱しないように動作範囲を制限している。ステップS3で計算した新たな電圧指令値でSSSC14が動作すると仮定した場合のSSSC14の二次電圧及び目標電圧が適正範囲から逸脱しないか判断する(ステップS4)。二次電圧及び目標電圧が適正範囲から逸脱しないと判断した場合は、電圧指令値をステップS3で計算した新たな電圧指令値に変更する(ステップS5)。一方、ステップS4において、二次電圧及び目標電圧が適正範囲から逸脱すると判断した場合は、電圧指令値を変更することなくステップS1の処理へ移行する(ステップS6)。
次に、直列型電圧調整装置のSSSC14が隣接機器のセンサ機器16を協調制御する場合のSSSC14における制御内容について具体的に説明する。
図4に示す通り、隣接機器の出力情報を除けば、直列型電圧調整装置であるSSSC14による協調制御の制御内容はSVC15の場合と概略は同様である。隣接機器がセンサ機器16の場合は、センサ機器16の仮想出力と目標値(0)との偏差が無くなるようにSSSC14の電圧指令値が決定される。SSSC14は、センサ機器16から出力情報としてセンサ点電圧を取得する。取得したセンサ点電圧の適正範囲からの逸脱量を演算し、逸脱量の積算値をセンサ機器16の仮想出力とみなすことができる。SSSC14は、隣接機器のセンサ機器16から取り込まれたセンサ点電圧から計算される仮想出力と目標値(図4では目標値=0)との偏差を比例制御又は比例積分制御して出力指令値(電圧指令値)を決定している。図4に示すように目標値を0にすれば、隣接機器であるセンサ機器16の仮想出力が0に近づくようにSSSC14の電圧指令値が制御される。センサ機器16の仮想出力が0であるということは、センサ機器16のセンサ点電圧の適正範囲からの逸脱が無くなることを意味している。
図9はSSSC14がセンサ機器16を協調制御するための制御内容を伝達関数で実現した一例を示している。センサ機器16の仮想出力の出力目標は0に設定されている。比例要素31において、今回のセンサ機器仮想出力と目標値(=0)との偏差にゲインKを掛けて電圧指令値変更量を決定し、遅延要素(Z−1)32を介して前回の電圧指令値を取り込み、加算要素33において前回の電圧指令値と今回の電圧指令値変更量を加算して新しい電圧指令値に変換する。新しい電圧指令値は保護リミッタ34を通して最終的な電圧指令値として出力する。
図10を参照して、センサ機器16の仮想出力の演算方法の一例を説明する。直列型電圧調整装置であるSSSC14は、隣接機器であるセンサ機器16のセンサ点電圧が適正範囲の上限値を逸脱した場合には負の仮想出力を演算し、また隣接機器であるセンサ機器16のセンサ点電圧が適正範囲の下限値を逸脱した場合には正の仮想出力を演算するように構成されている。SSSC14は、隣接機器であるセンサ機器16のセンサ点電圧の適正範囲(上限値及び下限値)が与えられている。先ず、上限値逸脱に基づく仮想出力演算について説明する。SSSC14は、センサ機器16のセンサ点電圧を取得し、第1の加減算器41において取得したセンサ点電圧をマイナス、センサ点電圧の適正範囲上限値をプラスとして加減算する。その演算結果は、第1の積分器42において複数周期分を積算する。センサ機器16のセンサ点電圧が適正範囲の上限値を逸脱している状況であれば、第1の積分器42から出力される積算値は負の値になる。またセンサ機器16のセンサ点電圧が適正範囲の上限値を逸脱していない状況であれば、第1の積分器42から出力される積算値は正の値になる。第1のリミッタ器43は、第1の積分器42から出力される積算値が負の値であれば(センサ点電圧が上限値逸脱した状態)、負の積算値を出力するが、第1の積分器42から出力される積算値が正の値であれば(センサ点電圧が上限値逸脱していない状態)、0を出力する。これにより、隣接機器であるセンサ機器16のセンサ点電圧が適正範囲の上限値を逸脱した場合には負の仮想出力が出力される。次に下限値逸脱に基づく仮想出力演算について説明する。SSSC14は、センサ機器16のセンサ点電圧を取得し、第2の加減算器44において取得したセンサ点電圧をマイナス、センサ点電圧の適正範囲下限値をプラスとして加減算する。その演算結果は、第2の積分器45において複数周期分を積算する。センサ機器16のセンサ点電圧が適正範囲の下限値を逸脱している状況であれば、第2の積分器45から出力される積算値は正の値になる。またセンサ機器16のセンサ点電圧が適正範囲の下限値を逸脱していない状況であれば、第2の積分器45から出力される積算値は負の値になる。第2のリミッタ器46は、第2の積分器45から出力される積算値が正の値であれば(センサ点電圧が下限値逸脱した状態)、正の積算値を出力するが、第2の積分器45から出力される積算値が負の値であれば(センサ点電圧が下限値逸脱していない状態)、0を出力する。これにより、隣接機器であるセンサ機器16のセンサ点電圧が適正範囲の下限値を逸脱した場合には正の仮想出力が出力される。第1及び第2のリミッタ器43、46の出力(0、負の値、正の値)が加算器47に入力され、0、負の値、正の値のいずれかが仮想出力として後段の処理へ与えられる。センサ機器16のセンサ点電圧が適正範囲内にあるときは仮想出力として0が出力され、センサ点電圧が上限値逸脱している状態であれば仮想出力として電圧を下げるように働く「負の値」が出力され、センサ点電圧が下限値逸脱している状態であれば仮想出力として電圧を上げるように働く「正の値」が出力される。
(第2の実施の形態)
次に、隣接機器となるセンサ機器のセンサ点電圧を保護機構により適正範囲に保つ直列型電圧調整装置の実施の形態について説明する。本実施の形態の直列型電圧調整装置(例えば、SSSC)は、隣接機器であるセンサ機器の適正電圧からの電圧逸脱量を計算し、電圧逸脱量を0(又は所定値)に近づけるように出力指令値を更新するように構成されている。具体的には、センサ機器におけるセンサ点電圧の適正範囲からの電圧逸脱量に応じて、保護機構の上下限値を変更することで、センサ点電圧の電圧逸脱量が0に近づけられるように出力指令値を更新する。電圧指令値に対する保護動作については、第1の実施の形態で説明したSSSC14の二次電圧が上限逸脱する際の動作と同様である。電力系統の全体構成は、図1に示す構成例に基づいて説明するが、本発明は図1に示す構成例に限定されるものではない。直列型電圧調整装置となるSSSC14が、隣接機器となるセンサ機器16のセンサ点電圧を取得できる協調制御システムを構築する。
図11は本実施の形態の直列型電圧調整装置となるSSSC14における保護機構を示している。
直列型電圧調整装置となるSSSC14は、センサ機器16におけるセンサ点電圧の適正範囲の上限値及び下限値の情報を入手している。SSSC14は、隣接機器となるセンサ機器16のセンサ点電圧をある通信周期で取得する。取得したセンサ点電圧をマイナス、隣接機器となるセンサ機器16の上限値をプラスとして第1の加減算器51へ入力する。取得したセンサ点電圧がセンサ機器16の上限値を逸脱していれば負の値を第1の比例積分要素52において比例積分演算してからリミッタ上限値としてリミッタ53へ与える。一方、取得したセンサ点電圧をマイナス、隣接機器となるセンサ機器16の下限値をプラスとして第2の加減算器54へ入力する。取得したセンサ点電圧がセンサ機器16の下限値を逸脱していれば正の値を第2の比例積分要素55において比例積分演算してからリミッタ上限値としてリミッタ53へ与える。リミッタ53は、SSSC14における電圧指令値の動作範囲を適正範囲に制限する保護機構であり、適正範囲の上限がリミッタ上限値として動的に指示され、適正範囲の下限がリミッタ下限値として動的に指示される。かかるリミッタ機構では、センサ点電圧がセンサ機器16の上限値を逸脱している状況ではリミッタ53のリミッタ上限値が下げられてSSSC14の電圧指令値は低下する。SSSC14の電圧指令値が低下すれば、SSSC14の制御対象区間にあるセンサ機器16のセンサ点を含めて制御対象区間全体の電圧が低下するため、センサ機器16のセンサ点電圧が上限値から逸脱した状態から適正範囲に戻される。一方、センサ点電圧がセンサ機器16の下限値を逸脱している状況ではリミッタ53のリミッタ下限値が上げられてSSSC14の電圧指令値は上昇する。SSSC14の電圧指令値が上昇すれば、SSSC14の制御対象区間にあるセンサ機器16のセンサ点を含めて制御対象区間全体の電圧が上昇するため、センサ機器16のセンサ点電圧が下限値から逸脱した状態から適正範囲に戻される。
このように、直列型電圧調整装置となるSSSC14における電圧指令値に対するリミッタ53のリミッタ上限値及びリミッタ下限値を、センサ機器16におけるセンサ点電圧の逸脱状態に応じて制御することで、隣接機器となるセンサ機器16のセンサ点電圧を適正範囲に保つことができる。
なお、上記本実施の形態において、直列型電圧調整装置としてSSSC14を例に説明したが、LRT,SVR等のその他の直列型電圧調整装置に対しても同様に適用できる。
11 定電圧電源
12 LRT
13 配電線路
14 SSSC
15 SVC
16 センサ機器
17 需要家
18 太陽光発電装置
31 比例要素
32 遅延要素
33 加算要素
34 保護リミッタ
41、51 第1の加減算器
42 第1の積分器
43 第1のリミッタ器
44、54 第2の加減算器
45 第2の積分器
46 第2のリミッタ器
47 加算器
52 第1の比例積分要素
55 第2の比例積分要素
53 リミッタ

Claims (2)

  1. 配電線路対して直列に接続され、出力電圧を電圧管理幅内に調整する直列型電圧調整装置であって、
    前記配電線路に対して並列に接続される並列型電圧調整装置から出力された無効電力を0に近づけるための第1出力指令値を算出し、
    前記第1出力指令値が前記電圧管理幅の上限値以上のとき、前記上限値に基づいて前記出力電圧を調整し、
    前記第1出力指令値が前記電圧管理幅の下限値以下のとき、前記下限値に基づいて前記出力電圧を調整し、
    前記第1出力指令値に設定された場合の前記直列型電圧調整装置の二次電圧及び目標電圧が前記電圧管理幅の範囲から逸脱するかどうかを判断し、前記電圧管理幅の範囲から逸脱しないと判断した場合に前記第1出力指令値に基づいて前記出力電圧を調整することを特徴とする直列型電圧調整装置。
  2. 前記並列型電圧調整装置から出力された無効電力と目標値との偏差から比例制御又は比例積分制御に基づいて前記第1出力指令値を算出することを特徴とする請求項1記載の直列型電圧調整装置。
JP2016148467A 2016-07-28 2016-07-28 直列型電圧調整装置 Active JP6855697B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016148467A JP6855697B2 (ja) 2016-07-28 2016-07-28 直列型電圧調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148467A JP6855697B2 (ja) 2016-07-28 2016-07-28 直列型電圧調整装置

Publications (2)

Publication Number Publication Date
JP2018019517A JP2018019517A (ja) 2018-02-01
JP6855697B2 true JP6855697B2 (ja) 2021-04-07

Family

ID=61076770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148467A Active JP6855697B2 (ja) 2016-07-28 2016-07-28 直列型電圧調整装置

Country Status (1)

Country Link
JP (1) JP6855697B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686184B2 (ja) * 1991-04-15 1997-12-08 三菱電機株式会社 電圧変動補償装置
JP2001119860A (ja) * 1999-10-19 2001-04-27 Toshiba Corp 電力系統電圧調整方法及び装置
JP2003174725A (ja) * 2001-12-04 2003-06-20 Kansai Electric Power Co Inc:The 配電系統の電圧制御方法
JP2004056931A (ja) * 2002-07-22 2004-02-19 Mitsubishi Electric Corp 配電線電圧調整装置
US7847527B2 (en) * 2004-12-16 2010-12-07 Abb Research Ltd. Apparatus and method for improved power flow control in a high voltage network
JP5673241B2 (ja) * 2011-03-11 2015-02-18 株式会社明電舎 配電系統の電圧制御装置
JP6071310B2 (ja) * 2012-08-01 2017-02-01 株式会社日立製作所 配電系統の電圧調整装置、電圧調整方法および電力制御システム
JP5710082B1 (ja) * 2013-08-12 2015-04-30 三菱電機株式会社 変圧器型の電圧制御装置、無効電力調整型の電圧制御装置、および配電系統電圧制御システム

Also Published As

Publication number Publication date
JP2018019517A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
AU2016200826B2 (en) System and method for controlling ramp rate of solar photovoltaic system
JP6071310B2 (ja) 配電系統の電圧調整装置、電圧調整方法および電力制御システム
CN107086578B (zh) 一种光伏配电网的区域电压分层分布式协同控制系统
JP5592290B2 (ja) 配電系統の電圧調整装置および電力制御システム
US20180076622A1 (en) Expanded Reactive Following for Distributed Generation and Loads of Other Reactive Controller(s)
JP5978088B2 (ja) 無効電力補償装置
WO2016140034A1 (ja) 配電系統の電圧調整装置および電圧調整方法
JP2013183578A (ja) 制御装置、及び制御方法
CN111911950B (zh) 锅炉水冷壁温度控制方法、装置及电子设备
JP5939894B2 (ja) 配電系統の電圧調整装置、電圧調整方法および電力制御システム
CN114172163A (zh) 电力系统稳定化系统以及电力系统稳定化方法
CN108988349A (zh) 含分布式可再生能源的配电网多层级无功电压控制方法
JP6855697B2 (ja) 直列型電圧調整装置
JP6855696B2 (ja) 並列型電圧調整装置及び電圧調整システム
JP4875547B2 (ja) 無効電力補償装置及びその制御方法
JP2006166683A (ja) 電圧変動を抑制する方法および電圧変動抑制システム
CN110571801B (zh) 变压器分接开关与分布式电源协调控制的低电压治理方法
CN110994669B (zh) 一种针对光伏电站集中式逆变器的控制方法及系统
JP2018170931A (ja) 電力変換装置、電力変換システム
JP5912957B2 (ja) 電力制御システムおよび電力制御方法
JP7341966B2 (ja) 同期機の界磁制御装置及び界磁制御方法
JP6573546B2 (ja) 再生可能エネルギ発電装置の電力変動制御装置
JP2020188614A (ja) 無効電力補償装置の制御方法及び制御回路
CN109149592B (zh) 基于母线电压变化值的调相机无功自适应控制系统及方法
CN114552647A (zh) 一种分布式光伏电站的过电压抑制方法及系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250