JP6844762B2 - 全固体電池用外装材、全固体電池及びその製造方法 - Google Patents

全固体電池用外装材、全固体電池及びその製造方法 Download PDF

Info

Publication number
JP6844762B2
JP6844762B2 JP2020561838A JP2020561838A JP6844762B2 JP 6844762 B2 JP6844762 B2 JP 6844762B2 JP 2020561838 A JP2020561838 A JP 2020561838A JP 2020561838 A JP2020561838 A JP 2020561838A JP 6844762 B2 JP6844762 B2 JP 6844762B2
Authority
JP
Japan
Prior art keywords
layer
solid
state battery
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020561838A
Other languages
English (en)
Other versions
JPWO2020184692A1 (ja
Inventor
美帆 佐々木
美帆 佐々木
高萩 敦子
敦子 高萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2021029131A priority Critical patent/JP7548058B2/ja
Application granted granted Critical
Publication of JP6844762B2 publication Critical patent/JP6844762B2/ja
Publication of JPWO2020184692A1 publication Critical patent/JPWO2020184692A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

本開示は、全固体電池用外装材、全固体電池及びその製造方法に関する。
電解質が固体電解質である全固体電池が知られている。全固体電池は、電池内に有機溶媒を用いないことから、安全性が高く、作動温度範囲が広いといった利点を有している。
一方、全固体電池は、充放電に伴う負極や正極の膨張・収縮により、固体電解質と、負極活物質層や正極活物質層との間で剥離しやすく、電池の劣化が進行しやすいことが知られている。
固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制する方法として、全固体電池を高圧プレスした状態で拘束する技術が知られている。例えば、特許文献1には、正極集電体、正極層、電解質層、負極層、及び負極集電体を該順序で備えた積層体を作製する積層工程と、積層工程で作製した積層体を積層方向に加圧する加圧工程と、加圧工程の後、0.1MPa以上100MPa以下の圧力にて所定の時間の間、積層体を積層方向に加圧したまま拘束する拘束工程とを含む電池の製造方法が開示されている。
特開2012−142228号公報
全固体電池の使用環境において、固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制するためには、全固体電池を外装材の外側からの高圧プレスによって、固体電解質と、負極活物質層および正極活物質層とを拘束し続けることが望まれる。
一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、全固体電池には、多様な形状が要求されると共に、薄型化や軽量化が求められる。しかしながら、従来、電池に多用されている金属製の外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。そこで、多様な形状に加工が容易で、薄型化や軽量化を実現し得る外装材として、基材/金属箔層/熱融着性樹脂層が順次積層されたフィルム状の外装材が提案されている。
このようなフィルム状の外装材においては、一般的に、袋状に成形されるか、金型を用いた成形により、電池素子を収容する空間が設けられ、当該空間に電極や固体電解質などの電池素子を配し、熱融着性樹脂層同士を熱融着させることにより、外装材の内側に電池素子が収容された全固体電池が得られる。
このようなフィルム状の外装材を全固体電池の外装材に適用することにより、電気自動車、ハイブリッド電気自動車などの軽量化が期待される。
前記の通り、固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制するためには、使用時においても、全固体電池を外装材の外側からの高圧プレスによって拘束し続けることが望まれる。しかしながら、全固体電池の外装材の外側から固体電解質と負極活物質層や正極活物質層とを高圧の状態で拘束し続けると、外装材が電池素子に強く押しつけられ、外装材の厚みが薄くなり、外装材に積層されているバリア層と、負極や正極との間で短絡が生じる可能性がある。特に、本開示の発明者らは、全固体電池の外装材の外側から固体電解質と正極活物質層とを、高温かつ高圧プレスに供し、さらに高圧の状態で拘束し続けると、熱融着性樹脂層が電池素子に強く押しつけられ、外装材の熱融着性樹脂層(内層)の厚みが薄くなり、外装材に積層されているバリア層と、正極との間で短絡が生じる可能性が高くなることを見出した。
このような状況下、本開示は、全固体電池の短絡を効果的に抑制することができる、全固体電池用外装材を提供することを主な目的とする。
本開示の発明者らは、前記課題を解決すべく、鋭意検討を行った。その結果、少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体から構成された全固体電池用外装材において、熱融着性樹脂層の基材層側とは反対側(すなわち、電池素子側)に絶縁層を設け、全固体電池を平面視した場合に、全固体電池の正極活物質層の全面を覆うようにして当該絶縁層を設けることにより、全固体電池を外装材の外側から高温かつ高圧プレスに供され、さらに固体電解質と負極活物質層および正極活物質層とを高圧で拘束し続けた場合にも、全固体電池の短絡が効果的に抑制されることを見出した。
本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成された、全固体電池用外装材であり、
正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子を、前記全固体電池用外装材により形成された包装体中に収容した全固体電池を平面視した場合に、前記絶縁層は、前記全固体電池の前記正極活物質層の全面を覆う位置に配置されている、全固体電池用外装材。
本開示によれば、全固体電池の短絡を効果的に抑制することができる、全固体電池用外装材を提供することができる。また、本開示によれば、全固体電池及びその製造方法を提供することもできる。
本開示の全固体電池用外装材が適用される全固体電池の断面構造の一例を示す模式図である。 本開示の全固体電池用外装材が適用される全固体電池の断面構造の一例を示す模式図である。 本開示の全固体電池用外装材が適用される全固体電池の断面構造の一例を示す模式図である。 本開示の全固体電池用外装材が適用される全固体電池の断面構造の一例を示す模式図である。 本開示の全固体電池用外装材が適用される全固体電池の一例の模式的平面図である。 本開示の全固体電池用外装材の積層構造の一例を示す模式的断面図である。 本開示の全固体電池用外装材の積層構造の一例を示す模式的断面図である。 本開示の全固体電池用外装材の積層構造の一例を示す模式的断面図である。 本開示の全固体電池用外装材の積層構造の一例を示す模式的断面図である。
本開示の全固体電池用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成されており、正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子を、前記全固体電池用外装材により形成された包装体中に収容した全固体電池を平面視した場合に、前記絶縁層は、前記全固体電池の前記正極活物質層の全面を覆う位置に配置されていることを特徴とする。本開示の全固体電池用外装材によれば、当該構成を備えていることにより、全固体電池の短絡を効果的に抑制することができる。より具体的には、全固体電池が高圧で拘束された状態で使用された場合にも、全固体電池の短絡を効果的に抑制することができる。
以下、本開示の全固体電池用外装材について詳述する。なお、本明細書において、「〜」で示される数値範囲は「以上」、「以下」を意味する。例えば、2〜15mmとの表記は、2mm以上15mm以下を意味する。
1.全固体電池用外装材の積層構造
本開示の全固体電池用外装材10は、例えば図6から図9に示すように、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体Mと、熱融着性樹脂層4の基材層1側とは反対側に設けられた絶縁層11とから構成されている。全固体電池用外装材10において、基材層1が外層側になり、絶縁層11が内層側になる。全固体電池用外装材10と電池素子を用いて全固体電池を組み立てる際に、全固体電池用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、電池素子が収容される。全固体電池用外装材10において、熱融着性樹脂層4の基材層1側とは反対側(すなわち、電池素子側)に絶縁層11が設けられる。ただし、絶縁層11は、少なくとも、熱融着性樹脂層4同士が熱融着される位置には設けられていない。
本開示の全固体電池用外装材10においては、全固体電池に適用される前に、絶縁層11が熱融着性樹脂層4の上に積層されていてもよい。また、本開示の全固体電池用外装材10が全固体電池に適用される時に、前記の積層体Mの熱融着性樹脂層4と電池素子との間に絶縁層11を配置して、本開示の全固体電池用外装材10としてもよい。
全固体電池用外装材10は、例えば図7から図9に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図8及び図9に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図9に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。
全固体電池用外装材10を構成する積層体Mと絶縁層11の合計厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、好ましくは約10000μm以下、約8000μm以下、約5000μm以下が挙げられ、電池素子を保護するという全固体電池用外装材10の機能を維持する観点からは、好ましくは約100μm以上、約150μm以上、約200μm以上が挙げられ、好ましい範囲については、例えば、100〜10000μm程度、100〜8000μm程度、100〜5000μm程度、150〜10000μm程度、150〜8000μm程度、150〜5000μm程度、200〜10000μm程度、200〜8000μm程度、200〜5000μm程度が挙げられ、特に100〜500μm程度が好ましい。
全固体電池用外装材10を構成する各層の詳細については、「3.全固体電池用外装材を形成する各層」の項目で詳述する。
2.全固体電池
本開示の全固体電池用外装材10(以下、「外装材10」と表記することがある)が適用される全固体電池については、外装材10(積層体Mと絶縁層11を含む)を用いることを除いて、特に制限されない。すなわち、外装材10(積層体Mと絶縁層11を含む)以外の電池素子(電極、固体電解質、端子など)等については、全固体電池に適用されるものであれば特に制限されず、公知の全固体電池に使用されているものであってもよい。以下、本開示の全固体電池70を例にして、本開示の全固体電池用外装材10を全固体電池に適用する態様を具体的に説明する。
図1から図4の模式図に示すように、本開示の全固体電池70は、負極活物質層21と、正極活物質層31と、負極活物質層21及び正極活物質層31の間に積層された固体電解質層40とを含む単電池50を少なくとも含む電池素子が、本開示の全固体電池用外装材10により形成された包装体中に収容されたものである。より具体的には、負極活物質層21は負極集電体22の上に積層されて負極層20を構成しており、正極活物質層31は正極集電体32の上に積層されて正極層30を構成している。負極集電体22及び正極集電体32は、それぞれ、外部に露出した端子60に接合されて、外部環境と電気的に接続されている。負極層20と正極層30との間には、固体電解質層40が積層されており、負極層20、正極層30、及び固体電解質層40が単電池50を構成している。全固体電池70の電池素子は、単電池50を1つのみ含むものであってもよいし、複数の単電池50を含んでいてもよい。図1,3,4には、1つの単電池50を電池素子として含む全固体電池50を図示しており、図2には、2つの単電池50が積層されて電池素子を構成した全固体電池50を図示している。
全固体電池70においては、負極層20及び正極層30の各々に接続された端子60を外側に突出させた状態で、電池素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして、電池素子を被覆し、フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、全固体電池用外装材を使用した全固体電池となる。なお、本開示の全固体電池用外装材により形成された包装体中に電池素子を収容する場合、本開示の全固体電池用外装材の熱融着性樹脂部分が内側(電池素子と接する面)になるようにして、包装体を形成する。
図1から図5の模式図に示すように、本開示の全固体電池70において、外装材10の絶縁層11は、外装材10を構成する積層体Mの内側に配置されており、全固体電池70を平面視した場合に、全固体電池の正極活物質層の全面を覆うようにして設けられる。絶縁層11によって正極活物質層31が位置している部分の全体を覆うことにより、全固体電池の短絡を効果的に抑制することができる。
より具体的には、前述の通り、従来、固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制するために、全固体電池を外装材の外側から高圧下にて拘束し続けることが望まれる。特に、固体電解質と、負極活物質層や正極活物質層との剥離を抑制するために、全固体電池の高圧下での拘束は、全固体電池70を平面視した場合に、全固体電池の負極活物質層の全面または一部を覆うようにして、高い圧力が加えられる。しかしながら、全固体電池を外装材の外側から高温かつ高圧プレスに供され、さらに高圧下にて固体電解質と、正負極活物質層とを拘束し続けると、外装材の熱融着性樹脂層(内層)の厚みが薄くなり、外装材に積層されているバリア層(金属)と、正極や負極との間で短絡が生じる可能性がある。本開示の全固体電池用外装材10においては、全固体電池70を平面視した場合に、全固体電池の正極活物質層の全面を覆うようにして、絶縁層11が設けられる。このため、全固体電池に高い圧力が加えられる箇所において、熱融着性樹脂層4と正極活物質層31との間の絶縁層11がクッションの働きを発揮して、外装材10の熱融着性樹脂層4の厚みが薄くなることが抑制され、外装材10に積層されているバリア層3と、正極との間で短絡が生じることが効果的に抑制される。結果として、本開示の外装材10は、全固体電池の短絡を効果的に抑制することができる。
外装材10の絶縁層11は、全固体電池を平面視した場合に、正極活物質層の全面を覆っていればよく、全固体電池を平面視した場合に、絶縁層11の面積は、正極活物質層31の面積と同じであってもよいし、図3から図5の模式図に示されるように、正極活物質層31の面積より大きくてもよい。また、全固体電池を平面視した場合に、絶縁層11の面積は、負極活物質層21の面積と同じであってもよいし、負極活物質層21の面積より大きくてもよい。なお、一般に、全固体電池において、全固体電池を平面視した場合に、正極活物質層31の面積は、負極活物質層21の面積と同じであるか、負極活物質層21の面積よりも小さい。また、全固体電池が高圧プレスされる部分は、一般に、正極活物質層が存在している部分に対応する。
絶縁層11は、電池素子の一方面側に設けられていればよいが、全固体電池の短絡をより効果的に抑制する観点から、電池素子の両面側に設けられていることが好ましい。図1から図3には、電池素子の一方面側のみに絶縁層11が設けられている図が示され、図4には、電池素子の両面側に絶縁層11が設けられている図が示されている。また、図示を省略するが、絶縁層11は、電池素子の側面のうち、端子に接続されていない部分の少なくとも一部を覆っていてもよい。また、この場合、電池素子の側面に位置する絶縁層11には、高圧プレスの影響を回避するためにつなぎ目を設けてもよい。
前記の通り、本開示の外装材10が適用される全固体電池については、特定の外装材10を使用することを限度として、特に制限されず、本開示の全固体電池70についても同様である。以下、本開示の外装材10が適用される全固体電池の電池素子を構成する部材の材料等について例示する。
前記の通り、全固体電池70の電池素子は、少なくとも、負極層20、正極層30、及び固体電解質層40が単電池50を構成している。負極層20は、負極集電体22の上に負極活物質層21が積層された構造を備えている。正極層30は、正極集電体32の上に正極活物質層31が積層された構造を備えている。そして、負極集電体22及び正極集電体32は、それぞれ、外部に露出した端子60に接合されて、外部環境と電気的に接続されている。
[正極活物質層31]
正極活物質層31は、少なくとも正極活物質を含有する層である。正極活物質層31は、正極活物質に加えて、必要に応じて、固体電解質材料、導電化材、結着材などをさらに含んでいてもよい。
正極活物質としては、特に制限されず、酸化物活物質、硫化物活物質などが挙げられる。全固体電池が、全固体リチウム電池である場合、正極活物質として用いられる酸化物活物質としては、例えば、LiCoO2、LiMnO2、LiNiO2、LiVO2、LiNi1/3Co1/3Mn1/32等の岩塩層状型活物質、LiMn24、Li(Ni0.5Mn1.5)O4等のスピネル型活物質、LiFePO4、LiMnPO4等のオリビン型活物質、Li2FeSiO4、Li2MnSiO4等のSi含有活物質等が挙げられる。また、全固体リチウム電池の正極活物質として用いられる硫化物活物質としては、例えば、銅シュブレル、硫化鉄、硫化コバルト、硫化ニッケル等が挙げられる。
正極活物質の形状は、特に制限されないが、例えば、粒子形状が挙げられる。正極活物質の平均粒径(D50)は、例えば、0.1〜50μm程度であることが好ましい。また、正極活物質層31における正極活物質の含有量は、好ましくは10〜99質量%程度、より好ましくは20〜90質量%程度が挙げられる。
正極活物質層31は、さらに固体電解質材料を含有することが好ましい。これにより、正極活物質層31中のイオン伝導性を向上させることができる。正極活物質層31に含有させる固体電解質材料については、後述する固体電解質層40で例示した固体電解質材料と同様である。正極活物質層における固体電解質材料の含有量は、好ましくは1〜90質量%程度、より好ましくは10〜80質量%程度が挙げられる。
正極活物質層31は、さらに導電化材を含有していても良い。導電化材の添加により、正極活物質層の電子伝導性を向上させることができる。導電化材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、正極活物質層は、さらに結着材を含有していても良い。結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素含有結着材等を挙げることができる。
正極活物質層31の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは0.1〜1000μm程度が挙げられる。
[正極集電体32]
正極集電体32を構成する材料としては、例えばステンレス鋼(SUS)、アルミニウム、ニッケル、鉄、チタン、カーボンなどが挙げられる。
正極集電体32の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは10〜1000μm程度が挙げられる。
[負極活物質層21]
負極活物質層21は、少なくとも負極活物質を含有する層である。負極活物質層21は、負極活物質に加えて、必要に応じて、固体電解質材料、導電化材、結着材などを含んでいてもよい。
負極活物質としては、特に制限されず、例えば、カーボン活物質、金属活物質、酸化物活物質等が挙げられる。カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等の黒鉛、ハードカーボンおよびソフトカーボン等の非晶質炭素等が挙げられる。金属活物質としては、例えばIn、Al、SiおよびSn等が挙げられる。酸化物活物質としては、例えばNb25、Li4Ti512、SiO等が挙げられる。
負極活物質の形状は、特に制限されないが、例えば、粒子形状、膜形状などが挙げられる。負極活物質の平均粒径(D50)は、好ましくは0.1〜50μm程度である。また、負極活物質層21における負極活物質の含有量は、例えば10〜99質量%程度、より好ましくは20〜90質量%程度が挙げられる。
負極活物質層21は、さらに固体電解質材料を含有することが好ましい。これにより、負極活物質層21中のイオン伝導性を向上させることができる。なお、負極活物質層21に含有させる固体電解質材料については、後述の固体電解質層40で例示する固体電解質材料と同様である。負極活物質層21における固体電解質材料の含有量は、好ましくは1〜90質量%程度、より好ましくは10〜80質量%程度が挙げられる。
負極活物質層21は、さらに導電化材を含有していても良い。また、負極活物質層21は、さらに結着材を含有していても良い。導電化材および結着材については、前述の正極活物質層31について例示したものと同様である。
負極活物質層21の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは0.1〜1000μm程度が挙げられる。
[負極集電体22]
負極集電体22を構成する材料としては、例えばステンレス鋼(SUS)、銅、ニッケル、カーボン等が挙げられる。
負極集電体22の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは10〜1000μm程度が挙げられる。
[固体電解質層40]
固体電解質層40は、固体電解質材料を含有する層である。固体電解質材料としては、例えば、硫化物固体電解質材料および酸化物固体電解質材料が挙げられる。
硫化物固体電解質材料は、酸化物固体電解質材料に比べて、イオン伝導性が高いものが多い点で好ましく、酸化物固体電解質材料は、硫化物固体電解質材料に比べて、化学的安定性が高い点で好ましい。
酸化物固体電解質材料の具体例としては、例えば、NASICON型構造を有する化合物等が挙げられる。NASICON型構造を有する化合物の一例としては、一般式Li1+xAlxGe2-x(PO43(0≦x≦2)で表される化合物が挙げられる。中でも、上記化合物は、Li1.5Al0.5Ge1.5(PO43であることが好ましい。また、NASICON型構造を有する化合物の他の例としては、一般式Li1+xAlxTi2-x(PO43(0≦x≦2)で表される化合物を挙げることができる。中でも、上記化合物は、Li1.5Al0.5Ti1.5(PO43であることが好ましい。また、全固体リチウム二次電池に用いられる酸化物固体電解質材料の他の例としては、LiLaTiO(例えば、Li0.34La0.51TiO3)、LiPON(例えば、Li2.9PO3.30.46)、LiLaZrO(例えば、Li7La3Zr212)等を挙げることができる。
また、硫化物固体電解質材料の具体例としては、例えば、Li2S−P25、Li2S−P25−LiI、Li2S−P25−Li2O、Li2S−P25−Li2O−LiI、Li2S−SiS2、Li2S−SiS2−LiI、Li2S−SiS2−LiBr、Li2S−SiS2−LiCl、Li2S−SiS2−B23−LiI、Li2S−SiS2−P25−LiI、Li2S−B23、Li2SP25−ZmSn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、Li2S−GeS2、Li2S−SiS2−Li3PO4、Li2S−SiS2−LixMOy(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)等を挙げることができる。なお、上記「Li2S−P25」の記載は、Li2SおよびP25を含む原料組成物を用いてなる硫化物固体電解質材料を意味し、他の記載についても同様である。また、硫化物固体電解質材料は、硫化物ガラスであってもよく、結晶化硫化物ガラスであっても良い。
固体電解質層40における固体電解質材料の含有量は、特に制限されないが、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上が挙げられる。固体電解質層は、結着材を含有していても良く、固体電解質材料のみから構成されていてもよい。
固体電解質層40の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは0.1〜1000μm程度、より好ましくは0.1〜300μm程度が挙げられる。
本開示の全固体電池70は、外側から高圧下で拘束された環境で好適使用することができる。全固体電池70を外側から拘束する圧力としては、固体電解質と負極活物質層との間(さらには固体電解質と正極活物質層との間)の剥離を好適に抑制する観点から、好ましくは約0.1MPa以上、より好ましくは0.5MPa以上、さらに好ましくは約1MPa以上、さらに好ましくは5MPa以上が挙げられ、また、好ましくは約100MPa以下、より好ましくは約70MPa以下、さらに好ましくは約30MPa以下が挙げられ、好ましい範囲としては、0.1〜100MPa程度、0.1〜70MPa程度、0.1〜30MPa程度、0.5〜100MPa程度、0.5〜70MPa程度、0.5〜30MPa程度、1〜100MPa程度、1〜70MPa程度、1〜30MPa程度、5〜100MPa程度、5〜70MPa程度、10〜100MPa程度、1〜30MPa程度が挙げられる。
固体電池70を外側から高圧下で拘束する方法としては、金属板などで全固体電池を挟み、高圧プレスした状態で固定する(例えば、万力などで締め付ける)方法やガス加圧等の方法が挙げられる。
また、同様の観点から、全固体電池70を外側から拘束する際の温度としては、好ましくは20℃以上、より好ましくは40℃以上、また、好ましくは200℃以下、より好ましくは150℃以下が挙げられ、好ましい範囲としては、20〜150℃程度、40〜150℃程度が挙げられる。
3.全固体電池用外装材を形成する各層
本開示の外装材10は、少なくとも、基材層1、バリア層3、熱融着性樹脂層4をこの順に備える積層体Mと、絶縁層11とから構成されている。絶縁層11は、熱融着性樹脂層4の基材層1側とは反対側に設けられている。以下、本開示の外装材10の積層体Mを構成する各層と絶縁層11について、詳述する。
[絶縁層11]
本開示において、絶縁層11は、全固体電池の短絡を効果的に抑制するために、全固体電池を平面視した場合に、全固体電池の正極活物質層31の全面を覆うようにして設けられ、絶縁部材によって構成される層である。前述の通り、全固体電池70は、電池素子を全固体電池用外装材10により形成された包装体中に収容したものである。また、電池素子は、単電池50を少なくとも含んでいる。さらに、単電池50は、正極活物質層31と、負極活物質層21と、正極活物質層31及び負極活物質層21の間に積層された固体電解質層40とを含んでいる。
本開示の外装材10において、絶縁層11は、全固体電池70の正極活物質層31の全面を覆う位置に配置されている。全固体電池70を平面視した場合に、絶縁層11の面積は、正極活物質層31の面積と同じであってもよいし、図3から図5の模式図に示されるように、正極活物質層31の面積より大きくてもよい。また、全固体電池70を平面視した場合に、絶縁層11の面積は、負極活物質層21の面積と同じであってもよいし、負極活物質層21の面積より大きくてもよい。全固体電池70を平面視した場合に、絶縁層11の面積は、正極活物質層31の面積の1.0倍から1.5倍とすることが好ましく、1.0倍から1.2倍とすることがより好ましい。
外装材10において、絶縁層11を配置する方法については、全固体電池70の正極活物質層31の全面を覆う位置に絶縁層11が配置されれば、特に制限されない。例えば、全固体電池の製造工程において、絶縁層11を設ける前の外装材10を冷間成形して電池素子を収容するための収容部(熱融着性樹脂層側から基材層側に突出した形状の凹部)を形成した後、当該収容部に入る大きさの絶縁層11を当該収容部に載置し、その上から電池素子を配置すると、外装材10に絶縁層11を配置する位置決めが容易となる。
絶縁層11は、電池素子の一方面側に設けられていればよいが、全固体電池の短絡をより効果的に抑制する観点から、電池素子の両面側に位置するように配置されていることが好ましい。すなわち、絶縁層11は、全固体電池70が外側から高圧プレスされる両面のうち、少なくとも一方面側に配置されていればよく、両面側に配置されていることがより好ましい。前記の通り、図1から図3には、電池素子の一方面側のみに絶縁層11が設けられている図が示され、図4には、電池素子の両面側に絶縁層11が設けられている図が示されている。
絶縁層11を構成する材料(絶縁部材を構成する材料)としては、絶縁性を備えており、かつ、高圧プレスに対してクッションとして機能し得るものであれば特に制限されず、好ましくは樹脂フィルムが挙げられる。
樹脂フィルムを構成する樹脂としては、特に制限されず、ポリエステル、ポリアミド、ポリオレフィン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂、フェノール樹脂などが挙げられる。これらの中でも、機械的強度が高く、絶縁性に優れていることから、ポリエステルなどが好ましい。ポリエステルとしては、後述の[基材層1]の項目で例示したものと同じものが例示される。
全固体電池の短絡を効果的に抑制する観点から、絶縁層11の突刺し強さとしては、好ましくは3N以上、より好ましくは約4N以上、さらに好ましくは約5N以上、さらに好ましくは8N以上が挙げられ、また、好ましくは約50N以下、より好ましくは約40N以下が挙げられ、好ましい範囲としては、3〜50N程度、3〜40N程度、4〜50N程度、4〜40N程度、5〜50N程度、5〜40N程度、8〜50N程度、8〜40N程度が挙げられる。なお、本開示において、絶縁層11の突刺し強さは、具体的には、以下の方法により測定された値である。
<突刺し強さ>
絶縁層11の突刺し強さは、JIS Z1707:1997の規定に準拠した方法により測定する。具体的には、23±2℃、相対湿度(50±5)%の測定環境において、中央に直径15mmの開口部を有する直径115mmの台と押さえ板で試験片を固定し、直径1.0mm、先端形状半径0.5mmの半円形の針を毎分50±5mmの速度で突き刺し、針が貫通するまでの最大応力を測定する。試験片の数は5個であり、その平均値を求める。なお、試験片の数が足りず5個測定できない場合は測定可能な数を測定し、その平均値を求める。
全固体電池の短絡を効果的に抑制する観点から、絶縁層11の融点としては、好ましくは約200℃以上、より好ましくは約220℃以上が挙げられ、また、好ましくは約450℃以下、より好ましくは約400℃以下が挙げられ、好ましい範囲としては、200〜450℃程度、220〜450℃程度200〜400℃程度、220〜400℃程度が挙げられる。なお、本開示において、絶縁層11の融点は、示差走査熱量測定(DSC)にて測定された値である。
また、絶縁層11は、電池素子に接着されていないことが好ましい。より具体的には、絶縁層11は、接着剤などを用いて電池素子に接着されていないことが好ましい。また、絶縁層11は、外装材10の熱融着性樹脂層4に接着されていなくてもよいし、接着剤や熱融着などによって熱融着性樹脂層4に接着されていてもよい。全固体電池70が外側から高圧プレスされる際に、絶縁層11は、電池素子に接着されていないことにより、絶縁層11が電池素子との界面で容易に移動することができ、高圧プレスされる方向とは垂直の方向に対して、電池素子や熱融着性樹脂層4に大きな外力が加わることを抑制することができる。
絶縁層11の厚みについては、絶縁性を発揮し、かつ、高圧プレスに対してクッションとして機能し得る程度であれば特に制限されず、好ましくは約5μm以上、より好ましくは約10μm以上が挙げられ、また、好ましくは約500μm以下、より好ましくは約200μm以下、さらに好ましくは約100μm以下が挙げられ、好ましい範囲としては、5〜500μm程度、5〜200μm程度、5〜100μm程度、10〜500μm程度、10〜200μm程度、10〜100μm程度が挙げられる。
[基材層1]
本開示において、基材層1は、全固体電池用外装材の基材としての機能を発揮させることなどを目的として積層体Mに設けられる層である。基材層1は、全固体電池用外装材の外層側に位置する。
基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。
基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などがあげられる。
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル−ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン−イソフタル酸−テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4‐アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’−ジフェニルメタン−ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。基材層1が単層である場合、基材層1は、ポリエステル樹脂の単層により構成されていることが好ましい。
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2〜5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01〜1.0μm程度が挙げられる。
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、全固体電池用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N−オレイルパルミチン酸アミド、N−ステアリルステアリン酸アミド、N−ステアリルオレイン酸アミド、N−オレイルステアリン酸アミド、N−ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’−ジステアリルアジピン酸アミド、N,N’−ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N’−ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m−キシリレンビスステアリン酸アミド、m−キシリレンビスヒドロキシステアリン酸アミド、N,N’−ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4〜15mg/m2程度、さらに好ましくは5〜14mg/m2程度が挙げられる。
基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3〜50μm程度、好ましくは10〜35μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2〜25μm程度が挙げられる。
[接着剤層2]
本開示の全固体電池用外装材において、接着剤層2は、積層体Mの基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン−ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、全固体電池用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン−ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
着色剤の中でも、例えば全固体電池用外装材の外観を黒色とするためには、カーボンブラックが好ましい。
顔料の平均粒子径としては、特に制限されず、例えば、0.05〜5μm程度、好ましくは0.08〜2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
接着剤層2における顔料の含有量としては、全固体電池用外装材が着色されれば特に制限されず、例えば5〜60質量%程度、好ましくは10〜40質量%が挙げられる。
接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上が挙げられ、また、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1〜10μm程度、1〜5μm程度、2〜10μm程度、2〜5μm程度が挙げられる。
[着色層]
着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、全固体電池用外装材を着色することができる。
着色層は、例えば、着色剤を含むインキを基材層1の表面、接着剤層2の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
[バリア層3]
全固体電池用外装材において、積層体Mのバリア層3は、少なくとも水分の浸入を抑止する層である。
バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。
アルミニウム合金箔は、全固体電池用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1〜9.0質量%であることが好ましく、0.5〜2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する全固体電池用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた全固体電池用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H−O、JIS H4160:1994 A8079H−O、JIS H4000:2014 A8021P−O、又はJIS H4000:2014 A8079P−Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。
また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた全固体電池用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9〜200μm程度が挙げられる。バリア層3の厚みは、例えば、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下が挙げられ、また、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上が挙げられ、当該厚みの好ましい範囲としては、10〜85μm程度、10〜50μm程度、10〜40μm程度、10〜35μm程度、20〜85μm程度、20〜50μm程度、20〜40μm程度、20〜35μm程度、25〜85μm程度、25〜50μm程度、25〜40μm程度、25〜35μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましく、25〜85μm程度、25〜50μm程度が特に好ましい。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられ、また、好ましくは約10μm以上、より好ましくは約15μm以上が挙げられ、好ましい厚みの範囲としては、10〜60μm程度、10〜50μm程度、10〜40μm程度、10〜30μm程度、10〜25μm程度、15〜60μm程度、15〜50μm程度、15〜40μm程度、15〜30μm程度、15〜25μm程度が挙げられる。
また、バリア層3が金属箔の場合は、固体電解質から発生した腐食性ガスによる溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性を備えさせる薄膜をいう。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。
耐腐食性皮膜は、全固体電池用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、固体電解質から発生した腐食性ガスによるバリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。
化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸−クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)〜(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)〜(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
一般式(1)〜(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)〜(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基などの炭素数1〜4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、1−ヒドロキシプロピル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、1−ヒドロキシブチル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1〜4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)〜(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)〜(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)〜(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500〜100万程度であることが好ましく、1000〜2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(−CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。
耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。
耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。
なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5〜50mg程度、好ましくは1.0〜40mg程度、リン化合物がリン換算で例えば0.5〜50mg程度、好ましくは1.0〜40mg程度、及びアミノ化フェノール重合体が例えば1.0〜200mg程度、好ましくは5.0〜150mg程度の割合で含有されていることが望ましい。
耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm〜20μm程度、より好ましくは1nm〜100nm程度、さらに好ましくは1nm〜50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。
化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70〜200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。
本開示の全固体用外装材の耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6〜120の範囲内にあることが好ましい。
前記の通り、全固体電池においては、固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制するために、使用時においても、全固体電池を外装材の外側からの高圧プレスによって拘束し続けることが望まれる。しかしながら、全固体電池の外装材の外側から固体電解質と負極活物質層や正極活物質層とを高圧の状態で拘束し続けると、外装材の熱融着性樹脂層が電池素子に強く押しつけられ、外装材の熱融着性樹脂層(内層)の厚みが薄くなり、外装材に積層されているバリア層と、固体電解質とが接触する虞がある。特に、外装材のバリア層と、固体電解質とが接触した状態で、これらの間で通電すると、バリア層の表面に合金が生成し、バリア層が劣化するという問題がある。これに対して、本開示の全固体電池用外装材においては、耐腐食性皮膜が外装材10のバリア層3の表面に設けられていることにより、全固体電池が高圧の状態で拘束されることよって、固体電解質が熱融着性樹脂層4や接着層5を貫通するなどした状態で、バリア層3と固体電解質層40との間で通電した場合にも、バリア層3の表面に合金が生成し難く、バリア層3の劣化が効果的に抑制される。特に、耐腐食性皮膜の前記のピーク強度比PPO3/CrPO4が6〜120の範囲内にあることにより、バリア層3の表面における合金の生成がより効果的に抑制され、バリア層3の劣化がより一層効果的に抑制される。
本開示において、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4としては、下限は、好ましくは約10以上が挙げられ、上限は、好ましくは約115以下、より好ましくは約110以下、さらに好ましくは約50以下が挙げられる。また、当該比PPO3/CrPO4の好ましい範囲としては、6〜120程度、6〜115程度、6〜110程度、6〜50程度、10〜120程度、10〜115程度、10〜110程度、10〜50程度、さらには25〜32程度が挙げられ、これらの中でも10〜50程度、さらには25〜32程度が特に好ましい。
また、本開示においては、耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO2 -に由来するピーク強度PPO2の比PPO2/CrPO4が、7〜70の範囲内にあることが好ましい。
CrPO4 -に由来するピーク強度PCrPO4に対するPO2 -に由来するピーク強度PPO2の比PPO2/CrPO4は、7〜70の範囲にあることが好ましく、バリア層3の劣化を効果的に抑制する観点から、比PPO2/CrPO4としては、下限は、好ましくは約10以上、上限は、好ましくは約65以下、より好ましくは約50以下が挙げられる。また、当該比PPO2/CrPO4の好ましい範囲としては7〜70程度、7〜65程度、7〜50程度、10〜70程度、10〜65程度、10〜50程度、さらには15〜37程度が挙げられ、これらの中でも10〜50程度、さらには15〜37程度が特に好ましい。
なお、本開示において、バリア層3の両面に耐腐食性皮膜を備えている場合、両面の耐腐食性皮膜のいずれについても、前記ピーク強度比PPO3/CrPO4が上記の範囲にあることが好ましく、さらには、PPO2/CrPO4についても、上記の範囲内にあることが好ましい。
耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析する方法は、具体的には、飛行時間型2次イオン質量分析装置を用いて、次の測定条件で行うことができる。
(測定条件)
1次イオン:ビスマスクラスターのダブルチャージイオン(Bi3 ++
1次イオン加速電圧:30 kV
質量範囲(m/z):0〜1500
測定範囲:100μm×100μm
スキャン数:16 scan/cycle
ピクセル数(1辺):256 pixel
エッチングイオン:Arガスクラスターイオンビーム(Ar−GCIB)
エッチングイオン加速電圧:5.0 k
[熱融着性樹脂層4]
本開示の全固体電池用外装材において、積層体Mの熱融着性樹脂層4は、最内層に該当し、全固体電池の組み立て時に熱融着性樹脂層同士が熱融着して電池素子を密封する機能を発揮する層(シーラント層)である。
熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン−αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン−αオレフィン共重合体;エチレン−ブテン−プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
また、熱融着性樹脂層4は、ポリブチレンテレフタレートフィルムにより形成されていることも好ましい。ポリブチレンテレフタレートフィルムは、延伸ポリブチレンテレフタレートフィルムであってもよいし、未延伸ポリブチレンテレフタレートフィルムであってもよく、未延伸ポリブチレンテレフタレートフィルムであることが好ましい。なお、熱融着性樹脂層4を形成する、ポリブチレンテレフタレートフィルムは、予め用意したポリブチレンテレフタレートフィルムをバリア層3、接着層5などと積層して熱融着性樹脂層4としてもよいし、ポリブチレンテレフタレートフィルムを形成する樹脂を溶融押出しするなどしてフィルムとすると共に、バリア層3、接着層5などと積層してもよい。
熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。熱融着性樹脂層4が2層以上で形成されている場合、例えば、少なくとも1層が、ポリブチレンテレフタレートフィルムにより形成されており、ポリブチレンテレフタレートフィルムは、最内層であることが好ましい。熱融着性樹脂層4が2層以上で形成されている場合、ポリブチレンテレフタレートフィルムにより形成されていない層については、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンや、酸変性ポリプロピレン、酸変性ポリエチレンなどの酸変性ポリレフィンなどにより形成された層であってもよい。熱融着性樹脂層4が2層以上で形成されている場合、2層以上の熱融着性樹脂層4のうち、少なくとも、全固体電池用外装材10の最内層を構成している層は、ポリブチレンテレフタレートフィルムであることが好ましい。また、少なくとも、接着層5と接面する層は、ポリブチレンテレフタレートフィルムであることが好ましい。
また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、全固体電池用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、電子包装用材料の成形性を高める観点からは、好ましくは10〜50mg/m2程度、さらに好ましくは15〜40mg/m2程度が挙げられる。
熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して電池素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15〜85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15〜45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35〜85μm程度が挙げられる。
[接着層5]
本開示の全固体電池用外装材において、積層体Mの接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。なお、接着層5の形成に使用される樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
バリア層3と熱融着性樹脂層4とを強固に接着する観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。
さらに、全固体電池用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた全固体電池用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。
また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF−SIMS)などから選択される方法で確認することが可能である。
また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC−O−C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C−O−C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ポリウレタンなどが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF−SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1〜50質量%の範囲にあることが好ましく、0.5〜40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1〜50質量%の範囲にあることが好ましく、0.5〜40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50〜2000程度、より好ましくは100〜1000程度、さらに好ましくは200〜800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1〜50質量%の範囲にあることが好ましく、0.5〜40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1〜50質量%の範囲にあることが好ましく、0.5〜40質量%の範囲にあることがより好ましい。
なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。
接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下が挙げられ、また、好ましくは、約0.1μm以上、約0.5μm以上が挙げられ、当該厚さの範囲としては、好ましくは、0.1〜50μm程度、0.1〜40μm程度、0.1〜30μm程度、0.1〜20μm程度、0.1〜5μm程度、0.5〜50μm程度、0.5〜40μm程度、0.5〜30μm程度、0.5〜20μm程度、0.5〜5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1〜10μm程度、より好ましくは1〜5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2〜50μm程度、より好ましくは10〜40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。
[表面被覆層6]
本開示の外装材は、意匠性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、積層体Mの基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、外装材を用いて全固体電池を組み立てた時に、外装材の最外層側に位置する層である。
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。
表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。
表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm〜5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5〜10μm程度、好ましくは1〜5μm程度が挙げられる。
全固体電池用外装材の製造方法については、本開示の全固体電池用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。
本開示の全固体電池用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4を構成する樹脂成分をグラビアコート法、ロールコート法などの方法により塗布すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングし、高温で乾燥さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4をサーマルラミネート法により積層する方法、(4)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)などが挙げられる。
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/必要に応じて設けられる耐腐食性皮膜/バリア層/必要に応じて設けられる耐腐食性皮膜/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体Mが形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式などの加熱処理に供してもよい。このような加熱処理の条件としては、例えば150〜250℃程度で1〜5分間程度が挙げられる。
全固体電池用外装材において、積層体Mを構成する各層には、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性などを向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施していてもよい。例えば、基材層1の少なくとも一方の表面にコロナ処理を施すことにより、製膜性、積層化加工、最終製品2次加工適性などを向上又は安定化させ得る。さらに、例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
前述の通り、絶縁層11は、全固体電池に適用される前に、熱融着性樹脂層4の上に積層してもよいし、外装材10が全固体電池に適用されるまでは、絶縁層11は積層せず、全固体電池に適用される時に、本開示の全固体電池用外装材10と電池素子との間に絶縁層11を配置してもよい。
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
<外装材の製造例1>
基材層としてポリエチレンテレフタレートフィルム(12μm)/接着剤層(2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)、厚さ3μm)/二軸延伸ナイロンフィルム(厚さ15μm)が順に積層された積層フィルムを用意した。次に、基材層の二軸延伸ナイロンフィルム(厚さ15μm)の上に、アルミニウム箔(JIS H4160:1994 A8021H−O、厚さ40μm、両面にクロム酸を用いた耐腐食性皮膜が形成されている)からなるバリア層をドライラミネート法により積層させた。具体的には、アルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ40μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ40μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、ポリエチレンテレフタレートフィルム(12μm)/接着剤層(3μm)/二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(40μm)/熱融着性樹脂層(40μm)がこの順に積層された積層体M1を得た。なお、絶縁層については、後述の通り、全固体電池を製造する際に、熱融着性樹脂層の内側に配置され、全固体電池用外装材となる。
<外装材の製造例2>
基材層として、ポリエチレンテレフタレートフィルム(25μm)を用いたこと以外は、製造例1と同様にして、ポリエチレンテレフタレートフィルム(25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(40μm)/熱融着性樹脂層(40μm)がこの順に積層された積層体M2を得た。
<外装材の製造例3>
熱融着性樹脂層として、ポリブチレンテレフタレートフィルム(25μm)を用い、接着層として2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を用いたドライラミネート法により、基材層/接着剤層/バリア層の積層体のバリア層の上に、ポリブチレンテレフタレートフィルムを積層したこと以外は、製造例1と同様にして、ポリエチレンテレフタレートフィルム(12μm)/接着剤層(3μm)/二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(3μm)/熱融着性樹脂層(ポリブチレンテレフタレートフィルム 25μm)がこの順に積層された積層体M3を得た。
<全固体電池の製造>
[実施例1]
図1の模式図に示すような全固体電池70を作製した。具体的には、露点マイナス50℃以下のドライ環境において、正極集電体32(厚み20μm)としてのアルミニウム合金箔の上に正極活物質層31(厚み100μm)としてのLiCoO2を積層した正極層30と、負極集電体22(厚み10μm)としてのSUS304箔の上に負極活物質層21(厚み120μm)としてのグラファイトを積層した負極層20とを、固体電解質層(Li2S:P25=75:25、厚み100μm)を介して積層して単電池50を作製した。なお、全固体電池を平面視した場合に、正極活物質層31は縦30mm×横30mm、正極集電体32は縦40mm×横35mm、負極活物質層21は縦32mm×横32mm、負極集電体22は縦40mm×横35mm、固体電解質層は縦32mm×横32mmである。次に、正極集電体32及び負極集電体22それぞれに端子60を接合した。
次に、前記の外装材(積層体M1)(縦60mm×横60mm)を用意した。次に、全固体電池を平面視した場合に、前記全固体電池の正極活物質の全面を覆うようにして、単電池50の正極集電体32の表面に、絶縁層11としてのポリエチレンテレフタレートフィルム(PET、厚み12μm、融点265℃ 表1に記載の突き刺し強さ)を載置した。このとき、前記のように、外装材を冷間成形して収容部(熱融着性樹脂層側から基材層側に突出した形状の凹部)を形成した後、当該収容部に入る大きさのポリエチレンテレフタレートフィルム(絶縁層11)を当該収容部に載置し、その上から単電池を載置した。この工程を採用することにより、絶縁層11を配置する位置決めが容易であった。この状態で、2枚の外装材の熱融着性樹脂層同士が対向するようにして、単電池50を上下から挟み込み、外装材の周縁部を熱融着させることにより、真空環境において、全固体電池を作製した。図4の模式図のように、絶縁層は、全固体電池の両面側に配置している。
バリア層の両面における耐腐食性皮膜の形成は、次のようにして行った。水100質量に対して、アミノ化フェノール重合体43質量部、フッ化クロム16質量部、リン酸13質量部を含む処理液を用意し、バリア層の両面に当該処理液を塗布し(乾燥後の膜厚が10nm)、バリア層の表面温度が190℃程度となる温度で、3秒間程度、加熱乾燥させた。
[実施例2]
製造例1において、外装材(積層体M1)の絶縁層として、ポリエチレンテレフタレートフィルム(厚み5μm、融点265℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例3]
製造例1において、外装材(積層体M1)の絶縁層として、ポリエチレンテレフタレートフィルム(厚み25μm、融点265℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例4]
製造例1において、外装材(積層体M1)の絶縁層として、ポリフェニレンサルファイドフィルム(厚み16μm、融点290℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例5]
製造例1において、外装材(積層体M1)の絶縁層として、ポリエーテルエーテルケトンフィルム(厚み12μm、融点334℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例6]
製造例1において、外装材(積層体M1)の絶縁層として、ポリエチレンナフタレートフィルム(厚み25μm、融点265℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例7]
製造例1において、外装材(積層体M1)の絶縁層として、ポリブチレンテレフタレートフィルム(厚み15μm、融点260℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例8]
製造例1において、外装材(積層体M1)の絶縁層として、ポリブチレンテレフタレートフィルム(厚み25μm、融点260℃、表2の突き刺し強さ)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例9]
製造例1で製造した外装材(積層体M1)の代わりに、製造例2で製造した外装材(積層体M2)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。
[実施例10]
製造例1で製造した外装材(積層体M1)の代わりに、製造例3で製造した外装材(積層体M3)を用いたこと以外は、実施例1と同様にして、全固体電池を作製した。実施例10で使用した外装材(積層体M3)は、熱融着性樹脂層としてポリブチレンテレフタレートフィルムが使用されており、厚みが薄い場合にも優れた耐熱性を発揮することができる。すなわち、外装材全体としての厚みを薄くして、優れた耐熱性を発揮することができる。
[比較例1]
絶縁層11を用いなかったこと以外は、実施例1と同様にして、全固体電池を作製した。
<突刺し強さ>
絶縁層の突刺し強さは、JIS Z1707:1997の規定に準拠した方法により測定した。具体的には、23±2℃、相対湿度(50±5)%の測定環境において、中央に直径15mmの開口部を有する直径115mmの台と押さえ板で試験片を固定し、試験片の主面から、直径1.0mm、先端形状半径0.5mmの半円形の針を毎分50±5mmの速度で突き刺し、針が貫通するまでの最大応力を測定する。試験片の数は5個であり、その平均値を求めた。測定機器として、イマダ社製のZP−50N(フォースゲージ)及びイマダ社製のMX2−500N(測定スタンド)を用いた。
<飛行時間型2次イオン質量分析>
バリア層(アルミニウム合金箔)の表面に形成した耐腐食性皮膜の分析は、次のようにして行った。まず、バリア層と接着層との間を引き剥がした。この際、水や有機溶剤、酸やアルカリの水溶液などを利用せずに、物理的に剥離させた。バリア層と接着層との間を剥離した後には、バリア層の表面に接着層が残存していたため、残存している接着層をAr−GCIBによるエッチングで除去した。このようにして得られたバリア層の表面について、飛行時間型2次イオン質量分析法を用いて、バリア層保護膜の分析を行った。それぞれ、CrPO4 -、PO2 -、及びPO3 -に由来するピーク強度PCrPO4は3.8×104、PPO2は6.3×105、PPO3は1.0×106であった。
飛行時間型2次イオン質量分析法の測定装置及び測定条件の詳細は次の通りである。
測定装置:ION−TOF社製 飛行時間型2次イオン質量分析装置TOF.SIMS5
(測定条件)
1次イオン:ビスマスクラスターのダブルチャージイオン(Bi3 ++
1次イオン加速電圧:30 kV
質量範囲(m/z):0〜1500
測定範囲:100μm×100μm
スキャン数:16 scan/cycle
ピクセル数(1辺):256 pixel
エッチングイオン:Arガスクラスターイオンビーム(Ar−GCIB)
エッチングイオン加速電圧:5.0 kV
<高温高圧プレスでの拘束による短絡の評価>
上記で得られた各全固体電池について、短絡の抑制効果を次のようにして行った。まず、正極活物質層31と同じサイズ(縦30mm×横30mm)のステンレス鋼板を2枚用意した。次に、全固体電池70を平面視した場合に、ステンレス鋼板が正極活物質層の全面を覆うようにして、全固体電池を上下から挟み込んだ。次に、120℃の環境において、上下のステンレス鋼板に100MPaの荷重を加え、この状態で24時間保持した。次に、全固体電池からステンレス鋼板を外し、正極端子と外装材のアルミニウム合金箔とをテスターに接続して導通を確認した。導通が確認されなかった場合を、短絡が抑制されていると評価(A)し、導通が確認された場合を、短絡が抑制されていないと評価(C)した。結果を表1に示す。
以上の通り、本開示は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成された、全固体電池用外装材であり、
正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子を、前記全固体電池用外装材により形成された包装体中に収容した、全固体電池を平面視した場合に、前記絶縁層は、前記全固体電池の前記正極活物質層の全面を覆う位置に配置されている、全固体電池用外装材。
項2. 前記絶縁層の融点が200℃以上である、項1に記載の全固体電池用外装材。
項3. 正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子が、全固体電池用外装材により形成された包装体中に収容された全固体電池であって、
前記全固体電池用外装材は、少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成されており、
前記全固体電池を平面視した場合に、前記絶縁層は、前記全固体電池の正極活物質層の全面を覆う位置に配置されている、全固体電池。
項4. 正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子を、全固体電池用外装材により形成された包装体中に収容する収容工程を備えており、
前記全固体電池用外装材は、少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成されており、
前記全固体電池用外装材の前記絶縁層は、前記全固体電池を平面視した場合に、前記全固体電池の前記正極活物質層の全面を覆う位置に配置する、全固体電池の製造方法。
項5. 全固体電池の外装材に設けられる絶縁層を構成する絶縁部材であって、
前記外装材は、少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体から構成されており、
前記絶縁層は、前記熱融着性樹脂層の基材層側とは反対側に設けられ、
前記絶縁層は、前記全固体電池を平面視した場合に、前記全固体電池の正極活物質層の全面を覆うようにして設けられる、絶縁部材。
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 全固体電池用外装材
11 絶縁層
20 負極層
21 負極活物質層
22 負極集電体
30 正極層
31 正極活物質層
32 正極集電体
40 固体電解質層
50 単電池
60 端子
70 全固体電池
M 積層体

Claims (7)

  1. 少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成された、全固体電池用外装材であり、
    正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子を、前記全固体電池用外装材により形成された包装体中に収容した全固体電池を平面視した場合に、前記絶縁層は、前記全固体電池の前記正極活物質層の全面を覆う位置に配置されており、
    前記熱融着性樹脂層は、ポリブチレンテレフタレートフィルムにより形成されており、
    前記絶縁層は、ポリエステル、ポリアミド、ポリオレフィン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂及びフェノール樹脂からなる群より選択される少なくとも1種の樹脂により構成されている、全固体電池用外装材。
  2. 前記絶縁層の融点が200℃以上である、請求項1に記載の全固体電池用外装材。
  3. 前記バリア層の表面に形成された、耐腐食性皮膜を有している、請求項1又は2に記載の全固体電池用外装材。
  4. 前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にある、請求項に記載の全固体電池用外装材。
  5. 前記積層体は、前記熱融着性樹脂層側から前記基材層側に突出した形状の凹部を有しており、
    前記凹部に、前記絶縁層が配置されている、請求項1〜4のいずれかに記載の全固体電池用外装材。
  6. 正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子が、全固体電池用外装材により形成された包装体中に収容された全固体電池であって、
    前記全固体電池用外装材は、少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成されており、
    前記全固体電池を平面視した場合に、前記絶縁層は、前記全固体電池の正極活物質層の全面を覆う位置に配置されており、
    前記熱融着性樹脂層は、ポリブチレンテレフタレートフィルムにより形成されており、
    前記絶縁層は、ポリエステル、ポリアミド、ポリオレフィン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂及びフェノール樹脂からなる群より選択される少なくとも1種の樹脂により構成されている、全固体電池。
  7. 正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間に積層された固体電解質層と、を含む単電池を少なくとも含む電池素子を、全固体電池用外装材により形成された包装体中に収容する収容工程を備えており、
    前記全固体電池用外装材は、少なくとも、基材層、バリア層、熱融着性樹脂層をこの順に備える積層体と、前記熱融着性樹脂層の前記基材層側とは反対側に設けられた絶縁層と、から構成されており、
    前記全固体電池用外装材の前記絶縁層は、全固体電池を平面視した場合に、前記全固体電池の前記正極活物質層の全面を覆う位置に配置し、
    前記熱融着性樹脂層は、ポリブチレンテレフタレートフィルムにより形成されており、
    前記絶縁層は、ポリエステル、ポリアミド、ポリオレフィン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂及びフェノール樹脂からなる群より選択される少なくとも1種の樹脂により構成されている、全固体電池の製造方法。

JP2020561838A 2019-03-12 2020-03-12 全固体電池用外装材、全固体電池及びその製造方法 Active JP6844762B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021029131A JP7548058B2 (ja) 2019-03-12 2021-02-25 全固体電池用外装材、全固体電池及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019044533 2019-03-12
JP2019044533 2019-03-12
PCT/JP2020/010969 WO2020184692A1 (ja) 2019-03-12 2020-03-12 全固体電池用外装材、全固体電池及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021029131A Division JP7548058B2 (ja) 2019-03-12 2021-02-25 全固体電池用外装材、全固体電池及びその製造方法

Publications (2)

Publication Number Publication Date
JP6844762B2 true JP6844762B2 (ja) 2021-03-17
JPWO2020184692A1 JPWO2020184692A1 (ja) 2021-03-18

Family

ID=72426117

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020561838A Active JP6844762B2 (ja) 2019-03-12 2020-03-12 全固体電池用外装材、全固体電池及びその製造方法
JP2021029131A Active JP7548058B2 (ja) 2019-03-12 2021-02-25 全固体電池用外装材、全固体電池及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021029131A Active JP7548058B2 (ja) 2019-03-12 2021-02-25 全固体電池用外装材、全固体電池及びその製造方法

Country Status (6)

Country Link
US (1) US20220059889A1 (ja)
EP (1) EP3940849A4 (ja)
JP (2) JP6844762B2 (ja)
KR (1) KR20210136977A (ja)
CN (1) CN113574712A (ja)
WO (1) WO2020184692A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2646237B2 (es) * 2017-09-28 2018-07-27 Avanzare Innovacion Tecnologica S.L. Formulación para el mordentado de materiales poliméricos previo al recubrimiento de los mismos
WO2022004845A1 (ja) * 2020-07-03 2022-01-06 マクセル株式会社 固体二次電池
DE102020126088A1 (de) * 2020-10-06 2022-04-07 Volkswagen Aktiengesellschaft Batteriezelle mit einem Zellverbund und Verfahren zu deren Herstellung
JP7311073B1 (ja) * 2021-09-15 2023-07-19 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、フィルム、及び蓄電デバイス
KR20230053455A (ko) 2021-10-14 2023-04-21 주식회사 엘지에너지솔루션 버튼형 이차전지
JPWO2023157391A1 (ja) 2022-02-16 2023-08-24
WO2024014261A1 (ja) * 2022-07-11 2024-01-18 株式会社村田製作所 パッケージ化された固体電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353584C (zh) * 1999-04-08 2007-12-05 大日本印刷株式会社 电池用包装材料、电池包装用袋体及其制造方法
JP4283598B2 (ja) * 2003-05-29 2009-06-24 Tdk株式会社 非水電解質溶液及びリチウムイオン2次電池
JP4920957B2 (ja) * 2005-11-21 2012-04-18 Necエナジーデバイス株式会社 積層型リチウムイオンポリマー電池
JP2008103245A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 硫化物系二次電池
JP5456954B2 (ja) * 2006-11-30 2014-04-02 日産自動車株式会社 双極型二次電池のモジュール構造
CN102598391A (zh) * 2009-11-02 2012-07-18 丰田自动车株式会社 固体电解质电池的制造方法
JP6032786B2 (ja) * 2010-12-24 2016-11-30 興人フィルム&ケミカルズ株式会社 二軸延伸ポリブチレンテレフタレートフィルムを含む冷間成形用電池ケース包材
JP5636965B2 (ja) 2011-01-05 2014-12-10 トヨタ自動車株式会社 リチウムイオン二次電池用電極体の製造方法、及びリチウムイオン二次電池の製造方法
KR101342646B1 (ko) * 2012-03-28 2013-12-17 (주)열린기술 래핑 전극군 및 그 제조방법
CN108602596B (zh) * 2016-01-29 2021-02-05 大日本印刷株式会社 包装材料和电池
JP6900648B2 (ja) * 2016-10-05 2021-07-07 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
WO2019017457A1 (ja) * 2017-07-19 2019-01-24 大日本印刷株式会社 電池用包装材料、電池用包装材料の製造方法、及び電池

Also Published As

Publication number Publication date
CN113574712A (zh) 2021-10-29
WO2020184692A1 (ja) 2020-09-17
JP7548058B2 (ja) 2024-09-10
KR20210136977A (ko) 2021-11-17
EP3940849A1 (en) 2022-01-19
US20220059889A1 (en) 2022-02-24
JPWO2020184692A1 (ja) 2021-03-18
JP2021099996A (ja) 2021-07-01
EP3940849A4 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
JP6844762B2 (ja) 全固体電池用外装材、全固体電池及びその製造方法
WO2020153458A1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP6756421B1 (ja) 全固体電池及びその製造方法
JP6777276B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
WO2020184693A1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
WO2022065036A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7056810B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7018166B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7020598B2 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
WO2021182624A1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201102

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150