JP6827069B2 - Pipe screw pile - Google Patents

Pipe screw pile Download PDF

Info

Publication number
JP6827069B2
JP6827069B2 JP2019097695A JP2019097695A JP6827069B2 JP 6827069 B2 JP6827069 B2 JP 6827069B2 JP 2019097695 A JP2019097695 A JP 2019097695A JP 2019097695 A JP2019097695 A JP 2019097695A JP 6827069 B2 JP6827069 B2 JP 6827069B2
Authority
JP
Japan
Prior art keywords
pipe
pull
simple building
value
pipe screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019097695A
Other languages
Japanese (ja)
Other versions
JP2019163688A (en
Inventor
茂喜 阿部
茂喜 阿部
Original Assignee
渡辺パイプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 渡辺パイプ株式会社 filed Critical 渡辺パイプ株式会社
Priority to JP2019097695A priority Critical patent/JP6827069B2/en
Publication of JP2019163688A publication Critical patent/JP2019163688A/en
Application granted granted Critical
Publication of JP6827069B2 publication Critical patent/JP6827069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Description

本発明は、温室等の簡易建物を地盤に固定するための補強杭に関する。 The present invention relates to reinforcing piles for fixing a simple building such as a greenhouse to the ground.

温室、サクランボハウス、畜舎等として、骨組材を組み立てて構築される簡易建物が用いられている。簡易建物は、側面と屋根とを構成するアーチ材、肩パイプ、棟パイプ、沈下防止パイプ等の骨組材を、セッターやクランプ等の連結部品で連結して組み立てることにより構築されており、アーチ材の末端が地面に差し込まれることで地盤に固定されている。 Simple buildings constructed by assembling frame materials are used as greenhouses, cherry houses, livestock barns, etc. A simple building is constructed by assembling skeleton materials such as arch materials, shoulder pipes, ridge pipes, and subsidence prevention pipes that make up the sides and roof with connecting parts such as setters and clamps. It is fixed to the ground by inserting the end of the pipe into the ground.

台風や突風等の強風で、簡易建物に大きな風圧が加わると、地面に差し込まれたアーチ材に引抜力が加わる。この引抜力がアーチ材が引き抜かれずに耐える力(以下、引抜耐力という。)よりも大きくなると、アーチ材は引き抜かれ、最悪の場合は簡易建物が風で浮き上がって倒壊してしまう。簡易建物の耐風性能を向上させるために、補強杭を地面に埋め込み、補強杭と簡易建物の沈下防止パイプ等の骨組材とを接続することが行われている(特許文献1〜3参照)。 When a large wind pressure is applied to a simple building due to a strong wind such as a typhoon or a gust, a pulling force is applied to the arch material inserted into the ground. When this pulling force becomes larger than the force that the arch material can withstand without being pulled out (hereinafter referred to as the pulling strength), the arch material is pulled out, and in the worst case, the simple building is lifted by the wind and collapses. In order to improve the wind resistance performance of a simple building, a reinforcing pile is embedded in the ground, and the reinforcing pile is connected to a frame material such as a subsidence prevention pipe of the simple building (see Patent Documents 1 to 3).

補強杭としては様々なものが提案されており、例えば、特許文献1には線材を螺旋状に形成したらせん杭が、特許文献2には平面部およびその両側端から略垂直に立ち上がる縦壁部を持つ抵抗板とこの抵抗板に固着された本体棒からなるアンカー杭が、特許文献3には先端近傍に螺旋状の羽根が固定されているスクリュー杭が提案されている。図4に特許文献1の第8図に記載のらせん杭を、図5に特許文献3の図3の部分拡大図であってスクリュー杭が骨組材と接続されている様子を示す。 Various types of reinforcing piles have been proposed. For example, in Patent Document 1, a spiral pile in which a wire rod is formed in a spiral shape is proposed, and in Patent Document 2, a vertical wall portion rising substantially vertically from a flat surface portion and both side ends thereof. An anchor pile composed of a resistance plate having a shape and a main body rod fixed to the resistance plate is proposed, and Patent Document 3 proposes a screw pile in which a spiral blade is fixed in the vicinity of the tip. FIG. 4 shows the spiral pile described in FIG. 8 of Patent Document 1, and FIG. 5 shows a partially enlarged view of FIG. 3 of Patent Document 3 in which the screw pile is connected to the frame material.

これらの補強杭は市販されているが、いずれもその長さは30〜70cm程度である。市販されている補強杭はいずれも長さ調整ができないため、深く埋め込むことができない。そのため、市販の補強杭を用いて簡易建物を補強するには、埋め込む補強杭の本数を増やすしかないという問題がある。また、軟弱地盤の場合は、30〜70cm程度の深さでは補強杭の引抜耐力が十分でないことが多く、補強杭の本数をどれだけ増やしても強度がほとんど向上しないという問題がある。 Although these reinforcing piles are commercially available, their length is about 30 to 70 cm. Since the length of any of the reinforcing piles on the market cannot be adjusted, it cannot be deeply embedded. Therefore, in order to reinforce a simple building using commercially available reinforcing piles, there is a problem that the number of reinforcing piles to be embedded must be increased. Further, in the case of soft ground, the pull-out strength of the reinforcing piles is often insufficient at a depth of about 30 to 70 cm, and there is a problem that the strength is hardly improved no matter how many the number of reinforcing piles is increased.

実開平2−87401号Real Kaihei No. 2-87401 特開2006−161442号公報Japanese Unexamined Patent Publication No. 2006-161442 特開2008−263883号公報Japanese Unexamined Patent Publication No. 2008-263883

本発明は、任意の長さの継管と接続することで、長さを調整することができるパイプスクリュー杭を提供することを課題とする。 An object of the present invention is to provide a pipe screw pile whose length can be adjusted by connecting to a joint pipe having an arbitrary length.

1.尖った形状に加工された先端を有する中空管と、
該中空管の外周に螺旋状に設けられたスクリュー羽根とを有することを特徴とするパイプスクリュー。
2.1.に記載のパイプスクリューと継管とが接続されていることを特徴とするパイプスクリュー杭。
3.前記中空管に1組以上のボルト穴が設けられ、
前記中空管に挿し込まれた前記継管が、前記ボルト穴を通るボルトの先端部で挟み込まれることにより、前記パイプスクリューと前記継管とが接続されていることを特徴とする2.に記載のパイプスクリュー杭。
4.作土より深くに位置する強度に優れた地層に埋め込まれることを特徴とする2.または3.に記載のパイプスクリュー杭。
5.骨組材を組み立てて構築され、
前記骨組材と2.から4.のいずれかに記載のパイプスクリュー杭とが接続されていることを特徴とする簡易建物。
6.所定の風速時に、簡易建物を地面に固定するアーチ材に作用する引抜力(T)を算出する工程、
下記式1に基づいて、簡易建物を地面に固定するアーチ材の引抜耐力計算値(tRa)を算定する工程、
前記引抜力(T)と、前記引抜耐力計算値(tRa)とを比較する工程、
とを有することを特徴とする簡易建物の耐風性能評価方法。
「式1」
tRa=4/15×(R/α)×2
:アーチ材とその周囲の地盤との摩擦力 [kN]
=(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
7.6.に記載の耐風性能評価方法において、前記引抜力(T)が前記引抜耐力計算値(tRa)よりも大きい場合、
前記簡易建物を構成する骨組材と、地面に埋め込まれた補強杭とを接続することを特徴とする簡易建物の補強方法。
8.前記補強杭が、2.から4.のいずれかに記載のパイプスクリュー杭であることを特徴とする7.に記載の簡易建物の補強方法。
1. 1. A hollow tube with a pointed tip and
A pipe screw characterized by having screw blades spirally provided on the outer periphery of the hollow pipe.
2.1. A pipe screw pile, characterized in that the pipe screw described in the above is connected to a joint pipe.
3. 3. The hollow tube is provided with one or more sets of bolt holes.
2. The joint pipe inserted into the hollow pipe is sandwiched between the tip portions of bolts passing through the bolt holes, so that the pipe screw and the joint pipe are connected. The pipe screw pile described in.
4. It is characterized by being embedded in a stratum with excellent strength located deeper than the soil. Or 3. The pipe screw pile described in.
5. Constructed by assembling the skeleton
With the skeleton material 2. From 4. A simple building characterized in that it is connected to the pipe screw pile described in any of.
6. A process of calculating the pull-out force (T) acting on the arch material that fixes a simple building to the ground at a predetermined wind speed.
The process of calculating the pull-out strength calculation value (tRa) of the arch material that fixes the simple building to the ground based on the following formula 1.
A step of comparing the pull-out force (T) with the calculated pull-out strength value (tRa).
A method for evaluating wind resistance performance of a simple building, which is characterized by having and.
"Equation 1"
tRa = 4/15 × (R F / α) × 2
RF : Friction force between the arch material and the surrounding ground [kN]
RF = (10/3 x N x Ls + 1/2 x qua x Lc) · φ
qu: Uniaxial compressive strength of cohesive soil [kN / m 2 ]
qu = 12.5N (Terzaghi Peck formula)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Sandy soil embedding length [m]
Lc: Embedding length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil, 3.0 for sandy soil.
However, the calculated yield strength (tRa) of sandy soil having an N value of less than 10 is set to 0.
7.6. In the wind resistance performance evaluation method described in the above, when the pull-out force (T) is larger than the pull-out force calculation value (tRa),
A method for reinforcing a simple building, which comprises connecting a frame material constituting the simple building and a reinforcing pile embedded in the ground.
8. The reinforcing pile is 2. From 4. 7. The pipe screw pile according to any one of the above. How to reinforce a simple building as described in.

本発明のパイプスクリューは、任意の長さの継管と接続することができるため、求める長さのパイプスクリュー杭を得ることができる。表層地盤の強度が弱く、強度に優れた地層が深く位置する場所に簡易建物を建設する場合、本発明のパイプスクリューを適当な長さの継管と接続することにより、パイプスクリュー杭を強度に優れた地層まで埋め込むことができる。強度に優れた地層まで埋め込まれたパイプスクリュー杭と簡易建物の骨組材とをクランプ等で接続することにより、簡易建物の耐風性能を向上することができる。また、本発明のパイプスクリュー杭は、深く埋め込むことで強度に優れた地層に到達することができるため、パイプスクリュー杭の本数を増やすことなく、簡易建物を補強することができる。 Since the pipe screw of the present invention can be connected to a joint pipe of any length, a pipe screw pile of a desired length can be obtained. When constructing a simple building in a place where the strength of the surface layer is weak and the layer with excellent strength is deeply located, the pipe screw pile of the present invention can be strengthened by connecting it to a joint pipe of an appropriate length. It can be embedded even in excellent strata. By connecting the pipe screw pile embedded up to the stratum with excellent strength and the framework material of the simple building with a clamp or the like, the wind resistance performance of the simple building can be improved. Further, since the pipe screw pile of the present invention can reach a stratum having excellent strength by deeply embedding it, it is possible to reinforce a simple building without increasing the number of pipe screw piles.

パイプスクリューと継管とは、簡易建物を建てる現場で容易に接続してパイプスクリュー杭とすることができる。パイプスクリューの中空管に1組以上のボルト穴を設け、このボルト穴に通したボルトの先端部で、中空管に挿し込まれた継管を挟み込むことで、強固に接続することができる。簡易建物の補強には多くのパイプスクリュー杭が必要であるが、本発明のパイプスクリュー杭は先端部であるパイプスクリューと継管とが別々の部材で構成されているため、従来の一体化して形成されているスクリュー杭と比較して運搬が容易であり、運搬、保管に必要なスペースを小さくすることができる。 The pipe screw and the joint pipe can be easily connected to form a pipe screw pile at the site where a simple building is constructed. One or more sets of bolt holes are provided in the hollow pipe of the pipe screw, and the joint pipe inserted in the hollow pipe is sandwiched between the tips of the bolts passed through the bolt holes to enable a strong connection. .. Many pipe screw piles are required to reinforce a simple building, but the pipe screw pile of the present invention is integrated with the conventional one because the pipe screw at the tip and the joint pipe are composed of separate members. It is easier to transport than the formed screw piles, and the space required for transportation and storage can be reduced.

さらに、地盤のN値という標準指標により、簡易建物を地盤に固定するアーチ材の引抜耐力計算値(tRa)を容易に算出することができる。特定の風速の風により簡易建物のアーチ材に作用する引抜力(T)は、簡易建物の表面積と風速とにより算出可能であるため、引抜耐力計算値(tRa)と引抜力(T)とを比較することで、簡易建物の耐風性能を容易に評価することができる。従来、「念のため」という理由で実際には不要な補強杭を設けることがあったが、引抜耐力計算値(tRa)と引抜力(T)とを比較することで補強杭が必要であるか否かを判断できるため、コストと手間とを抑えることができる。 Further, the calculated pull-out strength value (tRa) of the arch material for fixing the simple building to the ground can be easily calculated by the standard index of the N value of the ground. Since the pull-out force (T) acting on the arch material of the simple building by the wind of a specific wind speed can be calculated from the surface area and the wind speed of the simple building, the pull-out strength calculated value (tRa) and the pull-out force (T) are calculated. By comparing, the wind resistance performance of a simple building can be easily evaluated. In the past, unnecessary reinforcement piles were actually provided for the reason of "just in case", but reinforcement piles are required by comparing the calculated pull-out strength (tRa) and pull-out force (T). Since it can be determined whether or not it is possible, the cost and labor can be reduced.

簡易建物が所望の耐風性能を有さないと評価されたときは、簡易建物の骨組材と地面に埋め込んだ補強杭とを接続することで、簡易建物の耐風性能を向上することができる。補強杭の引抜耐力計算値から、所望の耐風性能を付与するのに必要な補強杭の本数が求められるため、補強杭を必要以上に用いることがなく、無駄な費用と手間とを抑えることができる。地盤表層のN値が小さいと、市販の補強杭をどれだけ増やしても所望の耐風性能を付与することができないことがあるが、本発明のパイプスクリュー杭は適切な長さの継管を用いることにより強度に優れた地層に確実に埋め込むことができるため、所望の耐風性能を付与することができる。 When it is evaluated that the simple building does not have the desired wind resistance, the wind resistance of the simple building can be improved by connecting the frame material of the simple building and the reinforcing piles embedded in the ground. Since the number of reinforcing piles required to provide the desired wind resistance can be obtained from the calculated pull-out strength of the reinforcing piles, it is possible to reduce unnecessary costs and labor by not using the reinforcing piles more than necessary. it can. If the N value of the ground surface layer is small, it may not be possible to obtain the desired wind resistance performance no matter how many commercially available reinforcing piles are added, but the pipe screw pile of the present invention uses a joint pipe of an appropriate length. As a result, it can be reliably embedded in a stratum having excellent strength, so that desired wind resistance can be imparted.

本発明のパイプスクリューを示す図。The figure which shows the pipe screw of this invention. 本発明のパイプスクリュー杭を示す図。The figure which shows the pipe screw pile of this invention. 本発明のパイプスクリュー杭の断面図。Sectional drawing of the pipe screw pile of this invention. 従来のらせん杭を示す図。The figure which shows the conventional spiral pile. 従来のスクリュー杭が骨組材と接続されている様子を示す図。The figure which shows how the conventional screw pile is connected with a frame material.

本発明者らは、温室等の簡易建物が建てられる土壌の下方には、大きな引抜耐力が得られる強度に優れた地層が存在することに着眼し、鋭意努力の結果、本発明を完成させた。土壌の引抜耐力はその土質により大きく異なるが、本発明者らは鋭意研究の結果、土壌の引抜耐力を、土壌のN値という標準指標により算出する式を導くことに成功し、このN値という標準指標を用いることにより、必要な引抜耐力を備えた簡易建物を構築できることを実現した。本発明は、簡易建物に必要な強度を付与することのできるパイプスクリュー杭と、その杭で補強された簡易建物、及びその杭を用いた簡易建物の補強方法を提案する。 The present inventors have focused on the existence of a stratum having excellent strength that can obtain a large yield strength under the soil on which a simple building such as a greenhouse is built, and completed the present invention as a result of diligent efforts. .. The yield strength of soil varies greatly depending on the soil quality, but as a result of diligent research, the present inventors have succeeded in deriving a formula for calculating the yield strength of soil using a standard index called the N value of soil, which is called the N value. By using the standard index, it was possible to construct a simple building with the required pull-out resistance. The present invention proposes a pipe screw pile capable of imparting the required strength to a simple building, a simple building reinforced by the pile, and a method for reinforcing the simple building using the pile.

以下に、本発明を詳細に説明する。
図1に、本発明のパイプスクリューの一実施態様を示す。本発明のパイプスクリュー1は、尖った形状に加工された先端を有する中空管11と、該中空管の外周に螺旋状に設けられたスクリュー羽根12とを有することを特徴とする。中空管11の外径、内径は特に制限されないが、内径19mm以上、外径22mm以上であることが好ましい。また、中空管11の断面形状は円形に限定されず、多角形、例えば六角形や八角形等であってもよい。
The present invention will be described in detail below.
FIG. 1 shows an embodiment of the pipe screw of the present invention. The pipe screw 1 of the present invention is characterized by having a hollow pipe 11 having a tip processed into a sharp shape, and a screw blade 12 spirally provided on the outer periphery of the hollow pipe. The outer diameter and inner diameter of the hollow tube 11 are not particularly limited, but the inner diameter is preferably 19 mm or more and the outer diameter is 22 mm or more. Further, the cross-sectional shape of the hollow tube 11 is not limited to a circle, and may be a polygon, for example, a hexagon or an octagon.

中空管11の材料としては特に制限することなく用いることができる。例えば、強度の点から鉄、ステンレス、アルミニウム、これらの合金等の金属製のものが好ましく、コストの点から特に鉄が好ましい。また、防錆の点から、亜鉛、ニッケル等でメッキされていることが好ましい。中空管11の内部に水が溜まることがあるため、中空管11の内面にもメッキを施すことが好ましく、中空管11の外面および内面のメッキ上に防錆塗料を塗布することがさらに好ましい。防錆塗料としては市販品を特に制限することなく使用することができ、例えば、スーパーチギワガード(渡辺パイプ株式会社製、登録商標)を用いることができる。 The material of the hollow tube 11 can be used without particular limitation. For example, those made of metals such as iron, stainless steel, aluminum, and alloys thereof are preferable from the viewpoint of strength, and iron is particularly preferable from the viewpoint of cost. Further, from the viewpoint of rust prevention, it is preferably plated with zinc, nickel or the like. Since water may collect inside the hollow tube 11, it is preferable to plate the inner surface of the hollow tube 11, and it is possible to apply a rust preventive paint on the plating on the outer and inner surfaces of the hollow tube 11. More preferred. As the rust preventive paint, a commercially available product can be used without particular limitation, and for example, Super Chigiwa Guard (manufactured by Watanabe Pipe Co., Ltd., registered trademark) can be used.

中空管11の先端は尖った形状に加工され、中空管11そのものが地面を掘るのに適した形状に加工されているため、地面を掘るための別部材と接続する必要がなく低コストである。中空管の先端形状は特に制限されないが、図1に示すように、中空管の先端を扁平状に潰してガス溶断等により尖った形状に加工することが、製造が容易で低コストである。 Since the tip of the hollow pipe 11 is processed into a sharp shape and the hollow pipe 11 itself is processed into a shape suitable for digging the ground, it is not necessary to connect with another member for digging the ground, and the cost is low. Is. The shape of the tip of the hollow tube is not particularly limited, but as shown in FIG. 1, it is easy to manufacture and low cost to crush the tip of the hollow tube into a flat shape and process it into a sharp shape by gas fusing or the like. is there.

中空管11の外周には、螺旋状のスクリュー羽根12が溶接されている。発明のパイプスクリュー1において、スクリュー羽根12が溶接される中空管11の外径は、従来のスクリュー杭においてスクリュー羽根が溶接される芯材の外径と比較して大きい。スクリュー羽根12と中空管11とが溶接される面積が、従来のスクリュー杭においてスクリュー羽根と芯材とが溶接される面積と比較して広いため、加工が容易であり、また、スクリュー羽根12と中空管11とを強固に固定することができる。 A spiral screw blade 12 is welded to the outer circumference of the hollow tube 11. In the pipe screw 1 of the present invention, the outer diameter of the hollow pipe 11 to which the screw blade 12 is welded is larger than the outer diameter of the core material to which the screw blade is welded in the conventional screw pile. Since the area where the screw blade 12 and the hollow pipe 11 are welded is larger than the area where the screw blade and the core material are welded in the conventional screw pile, processing is easy, and the screw blade 12 And the hollow tube 11 can be firmly fixed.

スクリュー羽根12の材料としては特に制限することなく用いることができるが、強度の点から鉄、ステンレス、アルミニウム、これらの合金等の金属製のものが好ましく、コストの点から特に鉄が好ましい。また、防錆の点から、亜鉛、ニッケル等でメッキされていることが好ましく、メッキ上に防錆塗料を塗布することがさらに好ましい。防錆塗料としては、市販品を特に制限することなく使用することができる。スクリュー羽根12は、その外径が100〜120mmであり、中空管11の外周に1周期以上の螺旋を描くように形成される。 The material of the screw blade 12 can be used without particular limitation, but a metal material such as iron, stainless steel, aluminum, or an alloy thereof is preferable from the viewpoint of strength, and iron is particularly preferable from the viewpoint of cost. Further, from the viewpoint of rust prevention, it is preferable that the product is plated with zinc, nickel or the like, and it is more preferable to apply a rust preventive paint on the plating. As the rust preventive paint, a commercially available product can be used without particular limitation. The screw blade 12 has an outer diameter of 100 to 120 mm, and is formed so as to draw a spiral of one cycle or more on the outer circumference of the hollow tube 11.

図2に、本発明のパイプスクリュー杭3の一実施態様を示す。パイプスクリュー杭3は、パイプスクリュー1と継管2とが接続されてなる。任意の長さの継管2を接続することで、求める長さのパイプスクリュー杭3を得ることができる。本発明のパイプスクリュー杭3を埋め込む深さは特に制限されないが、一般的な作土の深さである50cm以上埋め込むことが好ましい。また、埋め込む深さの上限は、強度に優れた地層に埋め込むことができる深さであれば特に制限されないが、通常150cm以内である。 FIG. 2 shows an embodiment of the pipe screw pile 3 of the present invention. The pipe screw pile 3 is formed by connecting the pipe screw 1 and the joint pipe 2. By connecting the joint pipe 2 of an arbitrary length, a pipe screw pile 3 having a desired length can be obtained. The depth at which the pipe screw pile 3 of the present invention is embedded is not particularly limited, but it is preferable to embed 50 cm or more, which is a general soil depth. The upper limit of the embedding depth is not particularly limited as long as it can be embedded in a stratum having excellent strength, but is usually 150 cm or less.

継管2の径は特に制限されないが、パイプスクリュー1の中空管11の内径よりも、継管2の外径が小さいことが好ましい。中空管11に継管2を挿し込むことで、パイプスクリュー杭3を地面に埋め込む際に、中空管11と継管2との間の段差が地中の石等に引っかかることを防ぐことができる。また、継管2の断面形状は特に制限されず、円形、六角形や八角形等の多角形等が挙げられ、中空管11の断面形状と同一でなくてもよい。ただし、中空管11、継管2の断面形状をともに多角形とし、中空管11の内面に継管2の外面が内接するようにすると、パイプスクリュー杭3を埋め込む際に継管2を回転させるように加えた力を、面で中空管に伝えることができるため好ましい。 The diameter of the joint pipe 2 is not particularly limited, but it is preferable that the outer diameter of the joint pipe 2 is smaller than the inner diameter of the hollow pipe 11 of the pipe screw 1. By inserting the joint pipe 2 into the hollow pipe 11, when the pipe screw pile 3 is embedded in the ground, it is possible to prevent the step between the hollow pipe 11 and the joint pipe 2 from being caught by stones in the ground. Can be done. Further, the cross-sectional shape of the joint pipe 2 is not particularly limited, and examples thereof include polygons such as a circle, a hexagon, and an octagon, and the cross-sectional shape may not be the same as that of the hollow pipe 11. However, if the cross-sectional shapes of the hollow pipe 11 and the joint pipe 2 are both polygonal and the outer surface of the joint pipe 2 is inscribed in the inner surface of the hollow pipe 11, the joint pipe 2 is used when the pipe screw pile 3 is embedded. It is preferable because the force applied so as to rotate can be transmitted to the hollow tube by a surface.

本発明において、パイプスクリュー1と継管2とを接続する手段は特に制限されない。簡易建物を組み立てる現場で容易に、かつ強固に接続することができるため、ボルト4を用いることが好ましい。図3に、図2に示した一実施態様のパイプスクリュー杭のA−A’線の断面図を示す。図3に示すように、中空管11を貫通する1組または複数組のボルト穴41を設け、ボルト4の先端部で中空管11に挿し込んだ継管2を挟みこむことにより、パイプスクリュー1と継管2とを接続することができる。ここで、ボルト穴の組とは、対向する2つのボルト穴を意味する。この構成では、継管2にボルト穴を設ける必要がないため、低コストである。また、継管2にも管を貫通するように1組または複数組のボルト穴を設け、中空管11のボルト穴と継管2のボルト穴とに通したボルトをナットで螺合することにより接続してもよい。 In the present invention, the means for connecting the pipe screw 1 and the joint pipe 2 is not particularly limited. It is preferable to use bolts 4 because they can be easily and firmly connected at the site where a simple building is assembled. FIG. 3 shows a cross-sectional view taken along the line AA'of the pipe screw pile of one embodiment shown in FIG. As shown in FIG. 3, one set or a plurality of sets of bolt holes 41 penetrating the hollow pipe 11 are provided, and the joint pipe 2 inserted into the hollow pipe 11 is sandwiched between the tips of the bolts 4 to form a pipe. The screw 1 and the joint pipe 2 can be connected. Here, the set of bolt holes means two bolt holes facing each other. In this configuration, it is not necessary to provide a bolt hole in the joint pipe 2, so that the cost is low. Further, one or more sets of bolt holes are provided in the joint pipe 2 so as to penetrate the pipes, and the bolts passed through the bolt holes of the hollow pipe 11 and the bolt holes of the joint pipe 2 are screwed with nuts. May be connected by.

ボルト穴41は、2組以上設けることが、パイプスクリュー1と継管2とを強固に接続することができるため好ましい。パイプスクリュー1と継管2とは、ボルト4のみ、またはボルト4とナットを用いて容易に接続することができるため、簡易建物を建てる現場で迅速にパイプスクリュー杭3を組み立てることができる。また、簡易建物の補強には多くのパイプスクリュー杭3が必要であるが、本発明のパイプスクリュー杭3は、パイプスクリュー1と継管2とが別々の部材で構成されているため、従来の一体化して形成されているスクリュー杭と比較して、運搬が容易であり、運搬、保管に必要なスペースを小さくすることができる。 It is preferable to provide two or more sets of bolt holes 41 because the pipe screw 1 and the joint pipe 2 can be firmly connected. Since the pipe screw 1 and the joint pipe 2 can be easily connected using only the bolt 4 or the bolt 4 and the nut, the pipe screw pile 3 can be quickly assembled at the site where a simple building is constructed. Further, many pipe screw piles 3 are required to reinforce a simple building, but the pipe screw pile 3 of the present invention has a conventional pipe screw 1 and a joint pipe 2 because they are made of separate members. Compared to the integrally formed screw pile, it is easier to transport and the space required for transport and storage can be reduced.

本発明のパイプスクリュー杭3は、地面に回転させながら押し込むことで埋め込まれる。本発明のパイプスクリュー杭3において、パイプスクリュー1と継管2とは強固に接続されており、回転させながら埋め込む際、および、埋め込む時とは逆方向に回転させながら抜き出す際に、パイプスクリュー1と継管2とが外れることはない。ここで、パイプスクリュー杭3を地面に埋め込む時には、継管2から離れた箇所に力を加えると、モーメントが大きくなるため、少ない力で継管2を回転させることができる。継管2の断面形状が多角形であると、市販のスパナやラチェットレンチを用いて継管2を回転させることができる。継管の断面形状が円形である場合は、継管2の上部に断面が多角形である金具等を取り付けることにより、市販のスパナ等で回転させることができる。 The pipe screw pile 3 of the present invention is embedded by pushing it into the ground while rotating it. In the pipe screw pile 3 of the present invention, the pipe screw 1 and the joint pipe 2 are firmly connected to each other, and the pipe screw 1 is used when embedding while rotating and when extracting while rotating in the direction opposite to the time of embedding. And the joint pipe 2 will not come off. Here, when the pipe screw pile 3 is embedded in the ground, if a force is applied to a portion away from the joint pipe 2, the moment becomes large, so that the joint pipe 2 can be rotated with a small force. When the cross-sectional shape of the joint pipe 2 is polygonal, the joint pipe 2 can be rotated by using a commercially available spanner or ratchet wrench. When the cross-sectional shape of the joint pipe is circular, it can be rotated by a commercially available spanner or the like by attaching a metal fitting or the like having a polygonal cross-section to the upper portion of the joint pipe 2.

本発明のパイプスクリュー杭3は、表層地盤の強度が弱く、強度に優れた地層が深く位置する場合であっても、適当な長さの継管2と接続することで強度に優れた地層に埋め込むことができる。強度に優れた地層に埋め込まれたパイプスクリュー杭3と簡易建物の骨組材とをクランプ等で接続することで、簡易建物の耐風性能を向上することができる。本発明のパイプスクリュー杭3は、強度に優れた地層に埋め込むことで引抜耐力が増すため、パイプスクリュー杭3の数を増やすことなく、簡易建物を補強することができる。または、簡易建物のアーチ材を、簡易建物の側面部と頂部とを構成する異なる部材からなる連結部材とし、パイプスクリュー杭3の継管2をアーチ材の側面部を構成する部材としてもよい。 The pipe screw pile 3 of the present invention has a weak surface layer, and even when a layer having excellent strength is deeply located, it can be connected to a joint pipe 2 having an appropriate length to form a layer having excellent strength. Can be embedded. By connecting the pipe screw pile 3 embedded in the stratum having excellent strength and the frame material of the simple building with a clamp or the like, the wind resistance performance of the simple building can be improved. Since the pipe screw pile 3 of the present invention is embedded in a stratum having excellent strength to increase the pull-out strength, it is possible to reinforce a simple building without increasing the number of pipe screw piles 3. Alternatively, the arch material of the simple building may be a connecting member composed of different members constituting the side surface portion and the top portion of the simple building, and the joint pipe 2 of the pipe screw pile 3 may be a member constituting the side surface portion of the arch material.

ここで、簡易建物はアーチ材の末端が地面に差し込まれることにより固定されている。簡易建物の表面積から、特定の風速の時に簡易建物に作用する風圧を求めることができる。この風圧から、地面に差し込まれたアーチ材一本あたりに作用する引抜力(T)を求め、アーチ材の引抜耐力が引抜力(T)とを比較することで、簡易建物に補強が必要であるかを評価することができる。想定される風速は、簡易建物を設置する場所や地形等に応じて適宜選択することができ、例えば、台風による被害が心配される九州、四国等では35〜50m/s、周囲を山に囲まれている等の強風被害が少ない地域では20〜35m/sの範囲を用いることができる。 Here, the simple building is fixed by inserting the end of the arch material into the ground. From the surface area of the simple building, the wind pressure acting on the simple building at a specific wind speed can be obtained. From this wind pressure, the pull-out force (T) acting on each arch material inserted into the ground is obtained, and the pull-out strength of the arch material is compared with the pull-out force (T), so that the simple building needs to be reinforced. You can evaluate if there is. The assumed wind speed can be appropriately selected according to the location and topography of the simple building. For example, in Kyushu, Shikoku, etc., where damage from typhoons is a concern, the wind speed is 35 to 50 m / s, surrounded by mountains. The range of 20 to 35 m / s can be used in areas where there is little damage from strong winds.

所定の風速時にアーチ材に作用する引抜力(T)は簡易建物の表面積と風速とから算出することができるが、アーチ材の引抜耐力は実際に測定しなければ求められない。しかし、簡易建物を建てる現場に測定機器を運び込み、実際にアーチ材を埋め込んで、引抜耐力を測定するのは煩雑である。そのため、実際には補強杭が不要な現場であっても、「念の為に」補強杭を埋め込み簡易建物を補強することが行われており、無駄な費用と手間とをかけているという問題があった。 The pull-out force (T) acting on the arch material at a predetermined wind speed can be calculated from the surface area of the simple building and the wind speed, but the pull-out strength of the arch material cannot be obtained unless it is actually measured. However, it is complicated to bring the measuring equipment to the site where the simple building is built, actually embed the arch material, and measure the pull-out strength. Therefore, even at sites where reinforcement piles are not actually needed, reinforcement piles are embedded to reinforce simple buildings "just in case", which is a problem of wasting costs and labor. was there.

本発明者らは、鋭意研究の結果、実際にアーチ材の引抜耐力を測定することなく、引抜耐力計算値(tRa)を算出することのできる式として、平成13年国土交通省告示第1113号における支持力算定式の記載を元に下記式1を算定した。 As a result of diligent research, the present inventors have calculated the pull-out strength calculation value (tRa) without actually measuring the pull-out strength of the arch material, as a formula, 2001 Ministry of Land, Infrastructure, Transport and Tourism Notification No. 1113. The following formula 1 was calculated based on the description of the bearing capacity calculation formula in.

「式1」
tRa=4/15×(R/α)×2
:アーチ材とその周囲の地盤との摩擦力 [kN]
=(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
"Equation 1"
tRa = 4/15 × (R F / α) × 2
RF : Friction force between the arch material and the surrounding ground [kN]
RF = (10/3 x N x Ls + 1/2 x qua x Lc) · φ
qu: Uniaxial compressive strength of cohesive soil [kN / m 2 ]
qu = 12.5N (Terzaghi Peck formula)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Sandy soil embedding length [m]
Lc: Embedding length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil, 3.0 for sandy soil.
However, the calculated yield strength (tRa) of sandy soil having an N value of less than 10 is set to 0.

アーチ材の埋込長(Ls、Lc)、アーチ材の周長(φ)は、簡易建物の規格や設計により判明しているため、簡易建物を建てる地盤のN値と、その分類(粘性土か砂質土か)が分かれば、上記式1を用いて引抜耐力計算値(tRa)を算出することができる。なお、下記で詳述するが、式1の引抜耐力算定式は、算定式から算出される引抜耐力計算値(tRa)が、実際に測定して求められる引抜耐力の値よりも小さい値、すなわち、安全側となるように設計している。 Since the embedding length (Ls, Lc) of the arch material and the peripheral length (φ) of the arch material are known from the standard and design of the simple building, the N value of the ground on which the simple building is built and its classification (cohesive soil) If the sandy soil is known, the pull-out strength calculation value (tRa) can be calculated using the above equation 1. As will be described in detail below, in the pull-out proof stress calculation formula of Equation 1, the pull-out proof stress calculation value (tRa) calculated from the calculation formula is smaller than the value of the pull-out proof stress actually measured, that is, , Designed to be on the safe side.

N値とはJIS A 1219に記載の標準貫入試験によって求められる値であり、地盤の強度を表す。N値は、63.5kgのおもりを75cm落下させて地盤に打ち付け、30cm打ち込むのに要する打撃回数で表される値である。N値が大きいほど地盤が強固なため、引抜耐力が大きくなる。 The N value is a value obtained by the standard penetration test described in JIS A 1219 and represents the strength of the ground. The N value is a value represented by the number of hits required to drop a 63.5 kg weight by 75 cm, hit it against the ground, and hit it by 30 cm. The larger the N value, the stronger the ground, and the greater the pull-out resistance.

N値は、JIS A 1221に記載のスウェーデン式サウンディング試験により知ることができる。また、「地中押し込み式パイプハウス安全構造指針(社団法人日本施設園芸協会発行)」(以下、園芸基準と示す)に記載のN値の目安を表1に示す。 The N value can be known by the Swedish sounding test described in JIS A 1221. In addition, Table 1 shows a guideline for the N value described in the "Underground Push-type Pipe House Safety Structure Guideline (issued by the Japan Facility Horticultural Association)" (hereinafter referred to as the horticultural standard).

地盤は細分化して多くの種類に分類されるが、引抜耐力計算値(tRa)を算出するには、粘性土か砂質土かのみを判断すればよい。粘性土とは、細粒分(粒径が0.074mm以下の粒子)の割合が50%より多い土のことであり、粘性が強く水を通しにくい。砂質土とは粗粒分(粒径が0.074mm以上の粒子)の割合が50%より多い土のことであり、粘性がなくザラザラしており、水を通しやすい。同じN値の粘性土と砂質土とに、同一のアーチ材を同じ深さに差し込んだ時の引抜耐力は粘性土の方が大きい。すなわち、粘性土と砂質土とでは、粘性土は引抜耐力が大きくアーチ材が抜けにくく、砂質土は引抜耐力が小さくアーチ材が抜けやすい。なお、粘性土であっても、砂が多く混じっている場合は、安全をとって砂質土として扱う。 The ground is subdivided and classified into many types, but in order to calculate the yield strength calculation value (tRa), it is only necessary to determine whether the soil is cohesive soil or sandy soil. The cohesive soil is soil in which the proportion of fine particles (particles having a particle size of 0.074 mm or less) is more than 50%, and is highly viscous and difficult to allow water to pass through. Sandy soil is soil in which the proportion of coarse particles (particles having a particle size of 0.074 mm or more) is more than 50%, is not viscous and is rough, and is easy for water to pass through. When the same arch material is inserted into cohesive soil and sandy soil with the same N value at the same depth, the cohesive soil has a higher yield strength. That is, between cohesive soil and sandy soil, cohesive soil has a large pull-out resistance and the arch material is difficult to come off, and sandy soil has a low pull-out resistance and the arch material is easy to come off. Even if it is cohesive soil, if it contains a lot of sand, it should be treated as sandy soil for safety.

所定の風速時に簡易建物のアーチ材に作用する引抜力(T)と、引抜耐力計算値(tRa)とを比較することにより、簡易建物がどの程度の風速に耐えることができる耐風性能を有するかを評価することができる。引抜力(T)が、引抜耐力計算値(tRa)よりも小さい場合は、アーチ材のみで十分な耐風性能を有しているため、補強杭を設ける必要はない。引抜力(T)と、引抜耐力計算値(tRa)とを比較することで、引抜耐力を測定せずとも補強が必要であるかを否かを判別することができるため、実際には不要である補強杭を購入する費用や、埋め込む手間を省くことができる。 By comparing the pull-out force (T) acting on the arch material of the simple building at a predetermined wind speed with the calculated pull-out strength (tRa), how much wind speed the simple building can withstand? Can be evaluated. When the pull-out force (T) is smaller than the calculated pull-out strength (tRa), it is not necessary to provide a reinforcing pile because the arch material alone has sufficient wind resistance. By comparing the pull-out force (T) and the calculated pull-out strength value (tRa), it is possible to determine whether or not reinforcement is necessary without measuring the pull-out strength, so it is not actually necessary. It is possible to save the cost of purchasing a certain reinforcing pile and the trouble of embedding it.

引抜力(T)が、引抜耐力計算値(tRa)よりも大きい場合は、地面に埋め込んだ補強杭と、簡易建物の骨組材とを接続することで、簡易建物に所望の耐風性能を持たせることができる。補強杭としては、従来のらせん杭、スクリュー杭、本発明のスクリューパイプ杭を用いることができる。ここで、らせん杭、スクリュー杭の引抜耐力は「園芸基準」に記載されている。本発明のパイプスクリュー杭3は、その形状からスクリュー杭と同等の引抜耐力を有している。 When the pull-out force (T) is larger than the calculated pull-out strength (tRa), the simple building is given the desired wind resistance by connecting the reinforcing pile embedded in the ground and the frame material of the simple building. be able to. As the reinforcing pile, a conventional spiral pile, a screw pile, or a screw pipe pile of the present invention can be used. Here, the pull-out resistance of spiral piles and screw piles is described in "Gardening Standards". The pipe screw pile 3 of the present invention has a pull-out strength equivalent to that of the screw pile due to its shape.

以下に、補強杭として本発明のパイプスクリュー杭3を用いる場合について詳述するが、従来のらせん杭、スクリュー杭も同様の手法により用いることができる。
簡易建物を建てる実際の地盤において、パイプスクリュー杭3が有する引抜耐力の値は測定しないと判明しないが、実際に測定するのは煩雑である。地盤が硬い(N値が大きい)ほど、引抜耐力は大きくなるため、地盤のN値と引抜耐力とが比例すると仮定して、パイプスクリュー杭3の引抜耐力計算値(tRp)を算出することのできる式を算定した。なお、園芸基準では通常の畑土で、スクリュー杭の引抜耐力(短期)は2000Nとされているため、この値を引抜耐力計算値(tRp)の上限とした。パイプスクリュー杭3の引抜耐力算定式を式2に示す。
The case where the pipe screw pile 3 of the present invention is used as the reinforcing pile will be described in detail below, but conventional spiral piles and screw piles can also be used by the same method.
In the actual ground on which a simple building is built, the value of the pull-out strength of the pipe screw pile 3 cannot be found without measurement, but it is complicated to actually measure it. The harder the ground (the larger the N value), the larger the pull-out strength. Therefore, assuming that the N value of the ground and the pull-out strength are proportional, the pull-out strength calculation value (tRp) of the pipe screw pile 3 is calculated. I calculated the formula that can be done. In addition, since the pull-out strength (short-term) of the screw pile is 2000N in the ordinary field soil according to the horticultural standard, this value is set as the upper limit of the pull-out strength calculation value (tRp). The formula for calculating the pull-out strength of the pipe screw pile 3 is shown in Equation 2.

「式2」
粘性土における引抜耐力計算値
tRp=2000/3×平均N値
(平均N値>3の場合は2000)
砂質土における引抜耐力計算値
tRp=2000/8×平均N値
(平均N値>8の場合は2000)
なお、平均(N値)とは、簡易建物を建てる地盤の複数箇所で測定したN値の平均を意味する。
"Equation 2"
Calculated yield strength of cohesive soil tRp = 2000/3 x average N value
(2000 when the average N value> 3)
Calculated yield strength of sandy soil tRp = 2000/8 x average N value
(2000 when the average N value> 8)
The average (N value) means the average of the N values measured at a plurality of locations on the ground on which the simple building is built.

なお、式1のアーチ材の引抜耐力算定式と同じく、式2のパイプスクリュー杭3の引抜耐力算定式も、実際に測定して求められる引抜耐力の値よりも小さい値、すなわち、安全側となるように算定している。 Similar to the formula for calculating the pull-out strength of the arch material in formula 1, the formula for calculating the pull-out strength of the pipe screw pile 3 in formula 2 is also smaller than the value of the pull-out strength obtained by actually measuring, that is, the safety side. It is calculated so as to be.

簡易建物のアーチ材の引抜力(T)が、引抜耐力計算値(tRa)よりも大きい時には、上記式2で求めたパイプスクリュー杭3の引抜耐力計算値(tRp)を用いて、引抜耐力の不足分(T−tRa)を補うのに必要なパイプスクリュー杭3の本数を求める。具体的には、簡易建物において地面に挿し込まれるアーチ材の本数をn、必要なパイプスクリュー杭3の本数をmとすると、下記式3で必要なパイプスクリュー杭3の本数(m)は求められる。 When the pull-out force (T) of the arch material of the simple building is larger than the pull-out strength calculation value (tRa), the pull-out strength calculation value (tRp) of the pipe screw pile 3 obtained by the above equation 2 is used to determine the pull-out strength. Find the number of pipe screw piles 3 required to make up for the shortfall (T-tRa). Specifically, assuming that the number of arch materials to be inserted into the ground in a simple building is n and the number of required pipe screw piles 3 is m, the number (m) of pipe screw piles 3 required by the following equation 3 is obtained. Be done.

「式3」
m≧n(T−tRa)/tRp (ただしmは整数とする。)
m :パイプスクリュー杭の本数
n :簡易建物において地面に挿し込まれるアーチ材の本数
"Equation 3"
m ≧ n (T-tRa) / tRp (where m is an integer)
m: Number of pipe screw piles n: Number of arch materials to be inserted into the ground in a simple building

上記式3で求めた本数のパイプスクリュー杭を一定の間隔で埋め込み、地面に埋め込んだパイプスクリュー杭と簡易建物を構成する沈下防止パイプやアーチ材等の骨組材とを接続することで、簡易建物が所定の耐風性能を有するように補強することができる。 A simple building is constructed by embedding the number of pipe screw piles obtained in the above formula 3 at regular intervals and connecting the pipe screw piles embedded in the ground with the subsidence prevention pipes and arch materials that make up the simple building. Can be reinforced to have a given wind resistance.

ここで、引抜力(T)が引抜耐力計算値(tRa)よりも大きい場合は、簡易建物を建てる地盤表層のN値が小さいことが多い。そのため、従来の30〜70cm程度の長さの市販の補強杭で補強しても、補強杭はN値の小さい地盤に埋め込まれるのみであり、耐風性能があまり向上しないことがある。本発明のパイプスクリュー杭3は、継管2の長さを調整してN値の大きい強度に優れた地層まで埋め込むことができるため、補強杭として本発明のパイプスクリュー杭3を用いることが好ましい。上記したように、粘性土と砂質土とでは引抜耐力が大きく異なるため、パイプスクリュー杭3は、粘性土ではN値が2以上となる地層まで、砂質土ではN値が4以上となる地層まで埋め込むことが好ましい。 Here, when the pull-out force (T) is larger than the calculated pull-out strength value (tRa), the N value of the ground surface layer on which the simple building is built is often small. Therefore, even if it is reinforced with a conventional commercially available reinforcing pile having a length of about 30 to 70 cm, the reinforcing pile is only embedded in the ground having a small N value, and the wind resistance performance may not be improved so much. Since the pipe screw pile 3 of the present invention can be embedded up to a layer having a large N value and excellent strength by adjusting the length of the joint pipe 2, it is preferable to use the pipe screw pile 3 of the present invention as a reinforcing pile. .. As described above, since the pull-out strength differs greatly between cohesive soil and sandy soil, the pipe screw pile 3 has an N value of 4 or more in the sandy soil and up to a stratum having an N value of 2 or more in the cohesive soil. It is preferable to embed up to the stratum.

φ19.1からφ42.7までのアーチ材と、本発明のパイプスクリュー杭を試験体とした。試験体を土壌中に300〜500mmの深さまで埋込み鉛直方向に引き抜きながら引抜耐力を測定する引抜試験を実施した。試験体の一覧を表2に示す。用いた試験体はいずれも渡辺パイプ株式会社製であり、表2において「タフ」とは、商品名「タフパイプ」を意味する。 The arch material from φ19.1 to φ42.7 and the pipe screw pile of the present invention were used as test bodies. A pull-out test was carried out in which the test piece was embedded in soil to a depth of 300 to 500 mm and pulled out in the vertical direction to measure the pull-out strength. A list of specimens is shown in Table 2. All of the test specimens used were manufactured by Watanabe Pipe Co., Ltd., and "tough" in Table 2 means the trade name "tough pipe".

<引抜試験1>
場所:茨城県小美玉市中野谷字西原501
土質:粘性土
N値=2.4 ・・・埋込長500mm
N値=2.3 ・・・埋込長300mm
<Pull-out test 1>
Location: 501 Nishihara, Nakanoya, Omitama City, Ibaraki Prefecture
Soil quality: Cohesive soil N value = 2.4 ・ ・ ・ Embedded length 500 mm
N value = 2.3 ・ ・ ・ Embedded length 300 mm

<引抜試験2>
場所:千葉県富津市西川
土質:粘性土
N値=2.4 ・・・埋込長500mm
N値=0.8 ・・・埋込長300mm
<Pull-out test 2>
Location: Nishikawa, Futtsu City, Chiba Prefecture Soil quality: Cohesive soil N value = 2.4 ・ ・ ・ Embedded length 500 mm
N value = 0.8 ・ ・ ・ Embedded length 300 mm

<引抜試験3>
場所:千葉県山武市松ケ谷口
土質:粘性土(砂混り粘性土)
N値=3.0 ・・・埋込長500mm
N値=2.6 ・・・埋込長300mm
<Pull-out test 3>
Location: Matsugayaguchi, Sammu City, Chiba Prefecture Soil: Cohesive soil (cohesive soil mixed with sand)
N value = 3.0 ・ ・ ・ Embedded length 500 mm
N value = 2.6 ・ ・ ・ Embedded length 300 mm

<引抜試験4>
場所:千葉県山武市松ケ谷口
土質:砂質土
平均N値=11.5 ・・・埋込長500mm
<Pull-out test 4>
Location: Matsugayaguchi, Sammu City, Chiba Prefecture Soil quality: Sandy soil Average N value = 11.5 ・ ・ ・ Embedded length 500 mm

各試験片を鉛直方向に引き抜く際に測定した引抜力の最大値の2/3を引抜耐力(短期)実験値とした。また、上記式1により引抜耐力計算値(tRa)を算出し、引抜耐力計算値に対する引抜耐力実験値の検定比(引抜耐力実験値/引抜耐力計算値)を求めた。その結果を表3に示す。なお、引抜試験3の土質は粘性土であったが、砂が多く混じっており砂質土としての性状が支配的になると考えられるため、引抜耐力計算値は砂質土として算定した。 Two-thirds of the maximum pulling force measured when each test piece was pulled out in the vertical direction was used as the pulling strength (short-term) experimental value. Further, the calculated pull-out proof stress value (tRa) was calculated by the above formula 1, and the test ratio of the pull-out proof stress experimental value to the pull-out proof stress calculated value (pull-out proof stress experimental value / pull-out proof stress calculated value) was obtained. The results are shown in Table 3. The soil quality of the pull-out test 3 was cohesive soil, but since it is considered that the properties of the sandy soil are dominant due to the large amount of sand mixed in, the pull-out strength calculation value was calculated as the sandy soil.

「アーチ材の引抜耐力算定式の検証」
粘性土で行った引抜き試験1、2は、24試験中20試験で検定比が基準値1.0を上回り、3試験で基準値を下回った。
検定比の分布を見ると2.0〜4.0の間に多く集まっており、24試験の平均値が3.4であることから、算定式に問題がないことが確認できた。
"Verification of the pull-out strength calculation formula for arch materials"
In the drawing tests 1 and 2 conducted on cohesive soil, the test ratio exceeded the standard value 1.0 in 20 of the 24 tests and fell below the standard value in 3 tests.
Looking at the distribution of the test ratios, many were gathered between 2.0 and 4.0, and the average value of the 24 tests was 3.4, so it was confirmed that there was no problem with the calculation formula.

砂混り粘性土で行った引抜き試験3は、11試験中8試験で検定比が基準値1.0を下回った。また、No.29は全試験を通して最も低い引抜耐力実験値である10Nを示し、ほとんど引抜耐力がなかった。
砂質土で行った引抜き試験4は、すべての試験で検定比は基準値1.0を上回っており、算定式に問題がないことが確認できた。
In the drawing test 3 performed on the sandy cohesive soil, the test ratio was lower than the reference value 1.0 in 8 tests out of 11 tests. In addition, No. 29 showed the lowest withdrawal proof stress experimental value of 10N throughout all the tests, and there was almost no withdrawal proof stress.
In the pull-out test 4 conducted on sandy soil, the test ratio exceeded the standard value of 1.0 in all the tests, and it was confirmed that there was no problem in the calculation formula.

N値が3.0の砂混じり粘性土で行った引抜き試験3はほとんど引抜耐力がなく、N値が11.5の砂質土で行った引抜き試験4は算定式に問題がなかったことから、砂質土として扱われる砂混じり粘性土と砂質土では、N値が10未満の場合の引抜耐力は0とした。 The pull-out test 3 conducted on sandy cohesive soil with an N value of 3.0 had almost no yield strength, and the pull-out test 4 conducted on sandy soil with an N value of 11.5 had no problem with the calculation formula. In the case of sandy cohesive soil and sandy soil treated as sandy soil, the yield strength when the N value was less than 10 was set to 0.

以上の結果から、アーチ材の引抜耐力の測定値は、式1で表される引抜耐力算定式から算出される引抜耐力計算値(tRa)よりも大きな値を示すこと、すなわち、引抜耐力計算値(tRa)は、実際に測定した引抜耐力の値に対して安全側に位置していることが確認できた。 From the above results, the measured value of the pull-out proof stress of the arch material shows a value larger than the pull-out proof stress calculation value (tRa) calculated from the pull-out proof stress calculation formula represented by Equation 1, that is, the pull-out proof stress calculation value. It was confirmed that (tRa) was located on the safe side with respect to the actually measured pull-out proof stress value.

「パイプスクリュー杭の引抜耐力算定式の検証」
パイプスクリュー杭の引抜耐力(短期)実験値と、上記式2で表される引抜耐力算定式
より算出されたパイプスクリュー杭の引抜耐力計算値(tRp)とを表4に示す。
"Verification of the pull-out strength calculation formula for pipe screw piles"
Table 4 shows the experimental value of the pull-out strength (short-term) of the pipe screw pile and the calculated pull-out strength (tRp) of the pipe screw pile calculated from the pull-out strength calculation formula represented by the above formula 2.

引抜き試験2〜4で測定したパイプスクリュー杭の引抜耐力(No.25、37、38、42)の実験値は、同一のN値の時に式2で表される算定式で算出した引抜耐力計算値(tRp)を上回っており、この算定式は試験値に対し安全側であることが確かめられた。 The experimental values of the pull-out strength (No. 25, 37, 38, 42) of the pipe screw pile measured in the pull-out tests 2 to 4 are the pull-out strength calculation calculated by the formula represented by the formula 2 when the same N value is used. It exceeded the value (tRp), and it was confirmed that this calculation formula was on the safe side with respect to the test value.

1 パイプスクリュー
11 中空管
12 スクリュー羽根
2 継管
3 パイプスクリュー杭
4 ボルト
41 ボルト穴
1 Pipe screw 11 Hollow pipe 12 Screw blade 2 Joint pipe 3 Pipe screw pile 4 Bolt 41 Bolt hole

Claims (3)

扁平状に潰して尖った形状に加工された先端を有する中空管と、該中空管の外周に螺旋状に設けられたスクリュー羽根とを有する引抜耐力付与用パイプスクリュー(ただし、中空管の他端に、嵌合凹部または嵌合凸部を有するものを除く)と、継管とが接続されており、
作土より深くに位置する強度に優れた地層であって、深さ50cm以上150cm以下に埋め込まれ、
簡易建物の骨組材と接続することにより簡易建物の耐風性能を向上させることを特徴とする簡易建物への引抜耐力付与用パイプスクリュー杭
A hollow tube having a processed tip pointed shape is crushed into a flat shape, pull抜耐force imparting pipe screw that having a a screw blade provided in a spiral manner around the circumference of the hollow tube (provided that (Except for those having a fitting recess or fitting protrusion at the other end of the hollow pipe) and the joint pipe are connected.
It is a stratum with excellent strength located deeper than the soil, and is embedded at a depth of 50 cm or more and 150 cm or less.
A pipe screw pile for imparting pull-out strength to a simple building, which is characterized by improving the wind resistance performance of the simple building by connecting to the frame material of the simple building .
前記中空管に1組以上のボルト穴が設けられ、
前記中空管に挿し込まれた前記継管が、前記ボルト穴を通るボルトの先端部で挟み込まれることにより、前記引抜耐力付与用パイプスクリューと前記継管とが接続されていることを特徴とする請求項に記載の簡易建物への引抜耐力付与用パイプスクリュー杭。
The hollow tube is provided with one or more sets of bolt holes.
The joint pipe inserted into the hollow pipe is sandwiched between the tips of bolts passing through the bolt holes, so that the pipe screw for imparting pull-out proof stress and the joint pipe are connected. The pipe screw pile for imparting pull-out proof stress to the simple building according to claim 1 .
骨組材を組み立てて構築され、
前記骨組材と請求項1または2に記載の簡易建物への引抜耐力付与用パイプスクリュー杭とが接続されていることを特徴とする簡易建物。
Constructed by assembling the skeleton
A simple building characterized in that the frame material and a pipe screw pile for imparting pull-out proof stress to the simple building according to claim 1 or 2 are connected.
JP2019097695A 2019-05-24 2019-05-24 Pipe screw pile Active JP6827069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019097695A JP6827069B2 (en) 2019-05-24 2019-05-24 Pipe screw pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097695A JP6827069B2 (en) 2019-05-24 2019-05-24 Pipe screw pile

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015050340A Division JP6552847B2 (en) 2015-03-13 2015-03-13 Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings

Publications (2)

Publication Number Publication Date
JP2019163688A JP2019163688A (en) 2019-09-26
JP6827069B2 true JP6827069B2 (en) 2021-02-10

Family

ID=68065249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097695A Active JP6827069B2 (en) 2019-05-24 2019-05-24 Pipe screw pile

Country Status (1)

Country Link
JP (1) JP6827069B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983875A (en) * 2019-11-17 2020-04-10 中铁二院工程集团有限责任公司 Elastic non-separating fastener system for medium-low speed magnetic suspension track
JP7277880B2 (en) * 2021-07-08 2023-05-19 雅浩 菅野 bit for steel pipe pile

Also Published As

Publication number Publication date
JP2019163688A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
RU157321U1 (en) SCREW PILES
JP6827069B2 (en) Pipe screw pile
JP6352120B2 (en) Ground reinforcement method using perforated steel pipe with blades
JP7218982B2 (en) Monitoring and control system and method for rocky slope failure disaster
JP6552847B2 (en) Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings
Detter et al. Stability recovery in London Plane trees eight years after primary anchorage failure
JP5074155B2 (en) Embankment collapse prevention method
CN112117957B (en) Fixing tool for rack support for solar cell panel and using method thereof
CN109214696A (en) Electric power pylon foundation structure maintaining method
RU142535U1 (en) SCREW PILES
RU2587399C1 (en) Screw pile
KR20090050562A (en) The installation method of long piles using steel pipe with taper shape
CN109006020B (en) Design method of reinforced concrete engineering structure bar planting type plant growth groove structure
RU163361U1 (en) SCREW PILES
RU157320U1 (en) SCREW PILES
CN208235499U (en) A kind of pile crown structure convenient for Rapid Implementation static test
RU120426U1 (en) PILOT SCREW
Li et al. Research on Application of Lattice Anchor System Design and Construction Monitoring in Slope Protection
Zhu et al. Reply to the discussion by Mesri on “Field study of pile–prefabricated vertical drain (PVD) interaction in soft clay”
CA2640858A1 (en) Utility pole
Chang-Seob Performance evaluation of underground pipe with in-situ recycled controlled low strength materials
Jafari et al. Calibration of safety factor for micropile in transmission tower foundations based on relative reliability approach
JP2006161442A (en) Anchor pile
Tsen-Tieng et al. Anchorage and stability of tree root–soil plates
CN208224506U (en) Aid for embedment of wave detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201113

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201124

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6827069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250