JP2019163688A - Pile screw pile - Google Patents
Pile screw pile Download PDFInfo
- Publication number
- JP2019163688A JP2019163688A JP2019097695A JP2019097695A JP2019163688A JP 2019163688 A JP2019163688 A JP 2019163688A JP 2019097695 A JP2019097695 A JP 2019097695A JP 2019097695 A JP2019097695 A JP 2019097695A JP 2019163688 A JP2019163688 A JP 2019163688A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- pile
- strength
- value
- pipe screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 claims description 61
- 239000000463 material Substances 0.000 claims description 52
- 230000003014 reinforcing effect Effects 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- 238000007586 pull-out test Methods 0.000 description 12
- 230000002787 reinforcement Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000004927 clay Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000121220 Tricholoma matsutake Species 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Piles And Underground Anchors (AREA)
Abstract
Description
本発明は、温室等の簡易建物を地盤に固定するための補強杭に関する。 The present invention relates to a reinforcing pile for fixing a simple building such as a greenhouse to the ground.
温室、サクランボハウス、畜舎等として、骨組材を組み立てて構築される簡易建物が用いられている。簡易建物は、側面と屋根とを構成するアーチ材、肩パイプ、棟パイプ、沈下防止パイプ等の骨組材を、セッターやクランプ等の連結部品で連結して組み立てることにより構築されており、アーチ材の末端が地面に差し込まれることで地盤に固定されている。 Simple buildings constructed by assembling frame materials are used as greenhouses, cherry houses, barns, and the like. A simple building is constructed by connecting and assembling frame materials such as arch materials, shoulder pipes, ridge pipes, and subsidence prevention pipes that compose the side and roof with connecting parts such as setters and clamps. The end of is inserted into the ground and is fixed to the ground.
台風や突風等の強風で、簡易建物に大きな風圧が加わると、地面に差し込まれたアーチ材に引抜力が加わる。この引抜力がアーチ材が引き抜かれずに耐える力(以下、引抜耐力という。)よりも大きくなると、アーチ材は引き抜かれ、最悪の場合は簡易建物が風で浮き上がって倒壊してしまう。簡易建物の耐風性能を向上させるために、補強杭を地面に埋め込み、補強杭と簡易建物の沈下防止パイプ等の骨組材とを接続することが行われている(特許文献1〜3参照)。 When strong winds such as typhoons and gusts apply a large wind pressure to a simple building, a pulling force is applied to the arch material inserted into the ground. When this pulling force becomes greater than the force that the arch material can withstand without being pulled out (hereinafter referred to as pulling strength), the arch material is pulled out, and in the worst case, the simple building is lifted by the wind and collapses. In order to improve the wind resistance performance of a simple building, a reinforcing pile is embedded in the ground, and the reinforcing pile and a frame material such as a settlement prevention pipe of the simple building are connected (see Patent Documents 1 to 3).
補強杭としては様々なものが提案されており、例えば、特許文献1には線材を螺旋状に形成したらせん杭が、特許文献2には平面部およびその両側端から略垂直に立ち上がる縦壁部を持つ抵抗板とこの抵抗板に固着された本体棒からなるアンカー杭が、特許文献3には先端近傍に螺旋状の羽根が固定されているスクリュー杭が提案されている。図4に特許文献1の第8図に記載のらせん杭を、図5に特許文献3の図3の部分拡大図であってスクリュー杭が骨組材と接続されている様子を示す。 Various types of reinforcing piles have been proposed. For example, in Patent Document 1, a spiral pile in which a wire rod is formed in a spiral shape, and in Patent Document 2, a vertical wall portion that rises substantially vertically from a flat portion and both side ends thereof. An anchor pile made up of a resistance plate having a main body bar fixed to the resistance plate and a screw pile in which a spiral blade is fixed in the vicinity of the tip is proposed in Patent Document 3. FIG. 4 is a spiral pile described in FIG. 8 of Patent Document 1, and FIG. 5 is a partially enlarged view of FIG. 3 of Patent Document 3, showing a screw pile connected to a frame material.
これらの補強杭は市販されているが、いずれもその長さは30〜70cm程度である。市販されている補強杭はいずれも長さ調整ができないため、深く埋め込むことができない。そのため、市販の補強杭を用いて簡易建物を補強するには、埋め込む補強杭の本数を増やすしかないという問題がある。また、軟弱地盤の場合は、30〜70cm程度の深さでは補強杭の引抜耐力が十分でないことが多く、補強杭の本数をどれだけ増やしても強度がほとんど向上しないという問題がある。 Although these reinforcement piles are marketed, all are about 30-70 cm in length. Since all commercially available reinforcing piles cannot be adjusted in length, they cannot be embedded deeply. Therefore, in order to reinforce a simple building using a commercially available reinforcing pile, there is a problem that the number of reinforcing piles to be embedded must be increased. In addition, in the case of soft ground, the pullout strength of the reinforcing pile is often insufficient at a depth of about 30 to 70 cm, and there is a problem that the strength is hardly improved no matter how many the reinforcing piles are increased.
本発明は、任意の長さの継管と接続することで、長さを調整することができるパイプスクリュー杭を提供することを課題とする。 This invention makes it a subject to provide the pipe screw pile which can adjust length by connecting with the connecting pipe of arbitrary length.
1.尖った形状に加工された先端を有する中空管と、
該中空管の外周に螺旋状に設けられたスクリュー羽根とを有することを特徴とするパイプスクリュー。
2.1.に記載のパイプスクリューと継管とが接続されていることを特徴とするパイプスクリュー杭。
3.前記中空管に1組以上のボルト穴が設けられ、
前記中空管に挿し込まれた前記継管が、前記ボルト穴を通るボルトの先端部で挟み込まれることにより、前記パイプスクリューと前記継管とが接続されていることを特徴とする2.に記載のパイプスクリュー杭。
4.作土より深くに位置する強度に優れた地層に埋め込まれることを特徴とする2.または3.に記載のパイプスクリュー杭。
5.骨組材を組み立てて構築され、
前記骨組材と2.から4.のいずれかに記載のパイプスクリュー杭とが接続されていることを特徴とする簡易建物。
6.所定の風速時に、簡易建物を地面に固定するアーチ材に作用する引抜力(T)を算出する工程、
下記式1に基づいて、簡易建物を地面に固定するアーチ材の引抜耐力計算値(tRa)を算定する工程、
前記引抜力(T)と、前記引抜耐力計算値(tRa)とを比較する工程、
とを有することを特徴とする簡易建物の耐風性能評価方法。
「式1」
tRa=4/15×(RF/α)×2
RF :アーチ材とその周囲の地盤との摩擦力 [kN]
RF =(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m2]
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
7.6.に記載の耐風性能評価方法において、前記引抜力(T)が前記引抜耐力計算値(tRa)よりも大きい場合、
前記簡易建物を構成する骨組材と、地面に埋め込まれた補強杭とを接続することを特徴とする簡易建物の補強方法。
8.前記補強杭が、2.から4.のいずれかに記載のパイプスクリュー杭であることを特徴とする7.に記載の簡易建物の補強方法。
1. A hollow tube having a tip machined into a pointed shape;
A pipe screw having a screw blade spirally provided on an outer periphery of the hollow tube.
2.1. A pipe screw pile, characterized in that the pipe screw described in 1 and a connecting pipe are connected.
3. One or more bolt holes are provided in the hollow tube,
1. The pipe screw and the connecting pipe are connected by the connecting pipe inserted into the hollow pipe being sandwiched between tip ends of bolts passing through the bolt holes. Pipe screw pile as described in.
4). 1. It is embedded in a stratum that is located deeper than the soil and has excellent strength. Or 3. Pipe screw pile as described in.
5. It is constructed by assembling frame materials
1. the frame material; To 4. A simple building, wherein the pipe screw pile according to any one of the above is connected.
6). Calculating a pulling force (T) acting on an arch member that fixes the simple building to the ground at a predetermined wind speed;
Based on the following formula 1, a step of calculating a pulling-out strength calculation value (tRa) of an arch material that fixes a simple building to the ground,
Comparing the pulling force (T) and the pulling strength calculation value (tRa);
A method for evaluating wind resistance performance of a simple building.
"Formula 1"
tRa = 4/15 × (R F / α) × 2
R F : Frictional force between arch material and surrounding ground [kN]
R F = (10/3 × N × Ls + 1/2 × qu × Lc) · φ
ku: uniaxial compressive strength of cohesive soil [kN / m 2 ]
que = 12.5N (Terzagi Peck formula)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Embedment length of sandy soil [m]
Lc: Embedment length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil and 3.0 for sandy soil.
However, the drawing strength calculation value (tRa) of sandy soil having an N value of less than 10 is set to 0.
7.6. In the wind resistance performance evaluation method according to, when the pulling force (T) is larger than the pulling strength calculation value (tRa),
A reinforcing method for a simple building, comprising connecting a frame material constituting the simple building and a reinforcing pile embedded in the ground.
8). The reinforcing pile is 2. To 4. 6. A pipe screw pile according to any one of the above. Reinforcement method for simple buildings as described in 1.
本発明のパイプスクリューは、任意の長さの継管と接続することができるため、求める長さのパイプスクリュー杭を得ることができる。表層地盤の強度が弱く、強度に優れた地層が深く位置する場所に簡易建物を建設する場合、本発明のパイプスクリューを適当な長さの継管と接続することにより、パイプスクリュー杭を強度に優れた地層まで埋め込むことができる。強度に優れた地層まで埋め込まれたパイプスクリュー杭と簡易建物の骨組材とをクランプ等で接続することにより、簡易建物の耐風性能を向上することができる。また、本発明のパイプスクリュー杭は、深く埋め込むことで強度に優れた地層に到達することができるため、パイプスクリュー杭の本数を増やすことなく、簡易建物を補強することができる。 Since the pipe screw of the present invention can be connected to a pipe having an arbitrary length, a pipe screw pile having a desired length can be obtained. When building a simple building in a place where the strength of the surface layer is weak and the stratum with excellent strength is located deeply, the pipe screw pile is strengthened by connecting the pipe screw of the present invention to a suitable length of the pipe. It is possible to embed even an excellent formation. By connecting the pipe screw pile embedded up to the stratum having excellent strength and the frame material of the simple building with a clamp or the like, the wind resistance performance of the simple building can be improved. Moreover, since the pipe screw pile of this invention can reach | attain the stratum excellent in intensity | strength by embedding deeply, it can reinforce a simple building, without increasing the number of pipe screw piles.
パイプスクリューと継管とは、簡易建物を建てる現場で容易に接続してパイプスクリュー杭とすることができる。パイプスクリューの中空管に1組以上のボルト穴を設け、このボルト穴に通したボルトの先端部で、中空管に挿し込まれた継管を挟み込むことで、強固に接続することができる。簡易建物の補強には多くのパイプスクリュー杭が必要であるが、本発明のパイプスクリュー杭は先端部であるパイプスクリューと継管とが別々の部材で構成されているため、従来の一体化して形成されているスクリュー杭と比較して運搬が容易であり、運搬、保管に必要なスペースを小さくすることができる。 The pipe screw and the connecting pipe can be easily connected to each other at a site where a simple building is built to form a pipe screw pile. By providing one or more sets of bolt holes in the hollow pipe of the pipe screw and sandwiching the connecting pipe inserted into the hollow pipe at the tip of the bolt passed through the bolt hole, a strong connection can be achieved. . Many pipe screw piles are needed to reinforce a simple building, but the pipe screw pile of the present invention is composed of separate members for the pipe screw and the pipe at the tip, so Compared with the formed screw pile, it is easy to carry and the space required for carrying and storage can be reduced.
さらに、地盤のN値という標準指標により、簡易建物を地盤に固定するアーチ材の引抜耐力計算値(tRa)を容易に算出することができる。特定の風速の風により簡易建物のアーチ材に作用する引抜力(T)は、簡易建物の表面積と風速とにより算出可能であるため、引抜耐力計算値(tRa)と引抜力(T)とを比較することで、簡易建物の耐風性能を容易に評価することができる。従来、「念のため」という理由で実際には不要な補強杭を設けることがあったが、引抜耐力計算値(tRa)と引抜力(T)とを比較することで補強杭が必要であるか否かを判断できるため、コストと手間とを抑えることができる。 Furthermore, the drawing strength calculation value (tRa) of the arch material that fixes the simple building to the ground can be easily calculated by the standard index called the N value of the ground. The pulling force (T) acting on the arch material of a simple building due to the wind at a specific wind speed can be calculated from the surface area of the simple building and the wind speed, so the pulling strength calculation value (tRa) and pulling force (T) are By comparing, the wind resistance performance of a simple building can be easily evaluated. Conventionally, a reinforcing pile that is not actually necessary has been provided for reasons of "just in case", but a reinforcing pile is required by comparing the pull-out strength calculation value (tRa) and the pull-out force (T). Therefore, it is possible to reduce costs and labor.
簡易建物が所望の耐風性能を有さないと評価されたときは、簡易建物の骨組材と地面に埋め込んだ補強杭とを接続することで、簡易建物の耐風性能を向上することができる。補強杭の引抜耐力計算値から、所望の耐風性能を付与するのに必要な補強杭の本数が求められるため、補強杭を必要以上に用いることがなく、無駄な費用と手間とを抑えることができる。地盤表層のN値が小さいと、市販の補強杭をどれだけ増やしても所望の耐風性能を付与することができないことがあるが、本発明のパイプスクリュー杭は適切な長さの継管を用いることにより強度に優れた地層に確実に埋め込むことができるため、所望の耐風性能を付与することができる。 When it is evaluated that the simple building does not have the desired wind resistance, the wind resistance of the simple building can be improved by connecting the frame material of the simple building and the reinforcing pile embedded in the ground. Since the number of reinforcement piles required to give the desired wind resistance performance is obtained from the calculated pull-out strength of the reinforcement piles, it is possible to reduce unnecessary costs and labor without using reinforcement piles more than necessary. it can. If the N value of the ground surface layer is small, it may not be possible to give the desired wind resistance performance no matter how many commercially available reinforcing piles are added. However, the pipe screw pile of the present invention uses an appropriate length of the pipe. Therefore, it is possible to reliably embed in a stratum having excellent strength, and therefore, desired wind resistance can be imparted.
本発明者らは、温室等の簡易建物が建てられる土壌の下方には、大きな引抜耐力が得られる強度に優れた地層が存在することに着眼し、鋭意努力の結果、本発明を完成させた。土壌の引抜耐力はその土質により大きく異なるが、本発明者らは鋭意研究の結果、土壌の引抜耐力を、土壌のN値という標準指標により算出する式を導くことに成功し、このN値という標準指標を用いることにより、必要な引抜耐力を備えた簡易建物を構築できることを実現した。本発明は、簡易建物に必要な強度を付与することのできるパイプスクリュー杭と、その杭で補強された簡易建物、及びその杭を用いた簡易建物の補強方法を提案する。 The inventors of the present invention have focused on the existence of a stratum having excellent strength capable of obtaining a large pulling resistance under the soil where a simple building such as a greenhouse is built, and as a result of diligent efforts, the present invention has been completed. . Although the pulling strength of soil varies greatly depending on the soil quality, the present inventors have succeeded in deriving an equation for calculating the pulling strength of soil by a standard index called the N value of soil as a result of intensive studies. By using the standard index, we realized that a simple building with the required pulling strength could be constructed. The present invention proposes a pipe screw pile capable of imparting necessary strength to a simple building, a simple building reinforced with the pile, and a method of reinforcing the simple building using the pile.
以下に、本発明を詳細に説明する。
図1に、本発明のパイプスクリューの一実施態様を示す。本発明のパイプスクリュー1は、尖った形状に加工された先端を有する中空管11と、該中空管の外周に螺旋状に設けられたスクリュー羽根12とを有することを特徴とする。中空管11の外径、内径は特に制限されないが、内径19mm以上、外径22mm以上であることが好ましい。また、中空管11の断面形状は円形に限定されず、多角形、例えば六角形や八角形等であってもよい。
The present invention is described in detail below.
FIG. 1 shows an embodiment of the pipe screw of the present invention. The pipe screw 1 of the present invention is characterized by having a hollow tube 11 having a tip processed into a sharp shape and a screw blade 12 spirally provided on the outer periphery of the hollow tube. The outer diameter and inner diameter of the hollow tube 11 are not particularly limited, but are preferably 19 mm or more and 22 mm or more. Moreover, the cross-sectional shape of the hollow tube 11 is not limited to a circle, and may be a polygon, such as a hexagon or an octagon.
中空管11の材料としては特に制限することなく用いることができる。例えば、強度の点から鉄、ステンレス、アルミニウム、これらの合金等の金属製のものが好ましく、コストの点から特に鉄が好ましい。また、防錆の点から、亜鉛、ニッケル等でメッキされていることが好ましい。中空管11の内部に水が溜まることがあるため、中空管11の内面にもメッキを施すことが好ましく、中空管11の外面および内面のメッキ上に防錆塗料を塗布することがさらに好ましい。防錆塗料としては市販品を特に制限することなく使用することができ、例えば、スーパーチギワガード(渡辺パイプ株式会社製、登録商標)を用いることができる。 The material of the hollow tube 11 can be used without any particular limitation. For example, metals such as iron, stainless steel, aluminum, and alloys thereof are preferable from the viewpoint of strength, and iron is particularly preferable from the viewpoint of cost. Moreover, it is preferable that it plated with zinc, nickel, etc. from the point of rust prevention. Since water may accumulate inside the hollow tube 11, it is preferable to apply plating to the inner surface of the hollow tube 11, and to apply a rust preventive paint on the outer surface and inner surface of the hollow tube 11. Further preferred. A commercially available product can be used as the rust preventive paint without any particular limitation. For example, Super Chigiwa Guard (registered trademark, manufactured by Watanabe Pipe Co., Ltd.) can be used.
中空管11の先端は尖った形状に加工され、中空管11そのものが地面を掘るのに適した形状に加工されているため、地面を掘るための別部材と接続する必要がなく低コストである。中空管の先端形状は特に制限されないが、図1に示すように、中空管の先端を扁平状に潰してガス溶断等により尖った形状に加工することが、製造が容易で低コストである。 The tip of the hollow tube 11 is processed into a sharp shape, and the hollow tube 11 itself is processed into a shape suitable for digging the ground, so that it is not necessary to connect to another member for digging the ground, and the cost is low. It is. Although the tip shape of the hollow tube is not particularly limited, as shown in FIG. 1, it is easy to manufacture and low-cost by crushing the tip of the hollow tube into a flat shape and processing it into a sharp shape by gas fusing or the like. is there.
中空管11の外周には、螺旋状のスクリュー羽根12が溶接されている。発明のパイプスクリュー1において、スクリュー羽根12が溶接される中空管11の外径は、従来のスクリュー杭においてスクリュー羽根が溶接される芯材の外径と比較して大きい。スクリュー羽根12と中空管11とが溶接される面積が、従来のスクリュー杭においてスクリュー羽根と芯材とが溶接される面積と比較して広いため、加工が容易であり、また、スクリュー羽根12と中空管11とを強固に固定することができる。 A spiral screw blade 12 is welded to the outer periphery of the hollow tube 11. In the pipe screw 1 of the invention, the outer diameter of the hollow tube 11 to which the screw blade 12 is welded is larger than the outer diameter of the core material to which the screw blade is welded in the conventional screw pile. Since the area where the screw blade 12 and the hollow tube 11 are welded is larger than the area where the screw blade and the core material are welded in the conventional screw pile, the processing is easy. And the hollow tube 11 can be firmly fixed.
スクリュー羽根12の材料としては特に制限することなく用いることができるが、強度の点から鉄、ステンレス、アルミニウム、これらの合金等の金属製のものが好ましく、コストの点から特に鉄が好ましい。また、防錆の点から、亜鉛、ニッケル等でメッキされていることが好ましく、メッキ上に防錆塗料を塗布することがさらに好ましい。防錆塗料としては、市販品を特に制限することなく使用することができる。スクリュー羽根12は、その外径が100〜120mmであり、中空管11の外周に1周期以上の螺旋を描くように形成される。 The material of the screw blade 12 can be used without any particular limitation, but is preferably made of metal such as iron, stainless steel, aluminum, and alloys thereof from the viewpoint of strength, and iron is particularly preferable from the viewpoint of cost. Moreover, it is preferable that it is plated with zinc, nickel, etc. from the point of rust prevention, and it is still more preferable to apply | coat an antirust coating on plating. A commercially available product can be used without particular limitation as the anticorrosive paint. The screw blade 12 has an outer diameter of 100 to 120 mm, and is formed so as to draw a spiral of one cycle or more on the outer periphery of the hollow tube 11.
図2に、本発明のパイプスクリュー杭3の一実施態様を示す。パイプスクリュー杭3は、パイプスクリュー1と継管2とが接続されてなる。任意の長さの継管2を接続することで、求める長さのパイプスクリュー杭3を得ることができる。本発明のパイプスクリュー杭3を埋め込む深さは特に制限されないが、一般的な作土の深さである50cm以上埋め込むことが好ましい。また、埋め込む深さの上限は、強度に優れた地層に埋め込むことができる深さであれば特に制限されないが、通常150cm以内である。 FIG. 2 shows an embodiment of the pipe screw pile 3 of the present invention. The pipe screw pile 3 includes a pipe screw 1 and a connecting pipe 2 connected to each other. A pipe screw pile 3 having a desired length can be obtained by connecting the connecting pipe 2 having an arbitrary length. Although the depth which embeds the pipe screw pile 3 of this invention is not restrict | limited in particular, It is preferable to embed 50 cm or more which is the depth of a general soil. Moreover, the upper limit of the embedding depth is not particularly limited as long as it is a depth that can be embedded in a strata excellent in strength, but is usually within 150 cm.
継管2の径は特に制限されないが、パイプスクリュー1の中空管11の内径よりも、継管2の外径が小さいことが好ましい。中空管11に継管2を挿し込むことで、パイプスクリュー杭3を地面に埋め込む際に、中空管11と継管2との間の段差が地中の石等に引っかかることを防ぐことができる。また、継管2の断面形状は特に制限されず、円形、六角形や八角形等の多角形等が挙げられ、中空管11の断面形状と同一でなくてもよい。ただし、中空管11、継管2の断面形状をともに多角形とし、中空管11の内面に継管2の外面が内接するようにすると、パイプスクリュー杭3を埋め込む際に継管2を回転させるように加えた力を、面で中空管に伝えることができるため好ましい。 The diameter of the connecting pipe 2 is not particularly limited, but the outer diameter of the connecting pipe 2 is preferably smaller than the inner diameter of the hollow pipe 11 of the pipe screw 1. By inserting the pipe 2 into the hollow tube 11, it is possible to prevent the step between the hollow pipe 11 and the pipe 2 from being caught by underground stones when the pipe screw pile 3 is embedded in the ground. Can do. In addition, the cross-sectional shape of the connecting pipe 2 is not particularly limited, and may be a circular shape, a hexagonal shape, a polygonal shape such as an octagonal shape, or the like, and may not be the same as the cross-sectional shape of the hollow tube 11. However, if the cross-sectional shapes of the hollow tube 11 and the connecting tube 2 are both polygonal and the outer surface of the connecting tube 2 is inscribed in the inner surface of the hollow tube 11, the connecting tube 2 is inserted when the pipe screw pile 3 is embedded. It is preferable because the force applied to rotate can be transmitted to the hollow tube by the surface.
本発明において、パイプスクリュー1と継管2とを接続する手段は特に制限されない。簡易建物を組み立てる現場で容易に、かつ強固に接続することができるため、ボルト4を用いることが好ましい。図3に、図2に示した一実施態様のパイプスクリュー杭のA−A’線の断面図を示す。図3に示すように、中空管11を貫通する1組または複数組のボルト穴41を設け、ボルト4の先端部で中空管11に挿し込んだ継管2を挟みこむことにより、パイプスクリュー1と継管2とを接続することができる。ここで、ボルト穴の組とは、対向する2つのボルト穴を意味する。この構成では、継管2にボルト穴を設ける必要がないため、低コストである。また、継管2にも管を貫通するように1組または複数組のボルト穴を設け、中空管11のボルト穴と継管2のボルト穴とに通したボルトをナットで螺合することにより接続してもよい。 In the present invention, the means for connecting the pipe screw 1 and the connecting pipe 2 is not particularly limited. The bolt 4 is preferably used because it can be easily and firmly connected at a site where a simple building is assembled. FIG. 3 is a cross-sectional view taken along the line A-A ′ of the pipe screw pile according to the embodiment shown in FIG. 2. As shown in FIG. 3, one or a plurality of sets of bolt holes 41 penetrating the hollow tube 11 are provided, and the pipe 2 inserted between the hollow tubes 11 at the tip of the bolt 4 is sandwiched between the pipes The screw 1 and the connecting pipe 2 can be connected. Here, the set of bolt holes means two opposing bolt holes. In this structure, since it is not necessary to provide a bolt hole in the connecting pipe 2, it is low-cost. Also, one or more sets of bolt holes are provided in the connecting pipe 2 so as to penetrate the pipe, and the bolts passed through the bolt holes of the hollow pipe 11 and the connecting pipe 2 are screwed together with nuts. You may connect by.
ボルト穴41は、2組以上設けることが、パイプスクリュー1と継管2とを強固に接続することができるため好ましい。パイプスクリュー1と継管2とは、ボルト4のみ、またはボルト4とナットを用いて容易に接続することができるため、簡易建物を建てる現場で迅速にパイプスクリュー杭3を組み立てることができる。また、簡易建物の補強には多くのパイプスクリュー杭3が必要であるが、本発明のパイプスクリュー杭3は、パイプスクリュー1と継管2とが別々の部材で構成されているため、従来の一体化して形成されているスクリュー杭と比較して、運搬が容易であり、運搬、保管に必要なスペースを小さくすることができる。 It is preferable to provide two or more sets of bolt holes 41 because the pipe screw 1 and the connecting pipe 2 can be firmly connected. Since the pipe screw 1 and the connecting pipe 2 can be easily connected using only the bolt 4 or the bolt 4 and the nut, the pipe screw pile 3 can be quickly assembled on the site where a simple building is built. Moreover, although many pipe screw piles 3 are required for reinforcement of a simple building, since the pipe screw pile 3 of this invention is comprised by the pipe screw 1 and the connecting pipe 2 by a separate member, it is conventional. Compared with a screw pile that is integrally formed, transportation is easy, and a space required for transportation and storage can be reduced.
本発明のパイプスクリュー杭3は、地面に回転させながら押し込むことで埋め込まれる。本発明のパイプスクリュー杭3において、パイプスクリュー1と継管2とは強固に接続されており、回転させながら埋め込む際、および、埋め込む時とは逆方向に回転させながら抜き出す際に、パイプスクリュー1と継管2とが外れることはない。ここで、パイプスクリュー杭3を地面に埋め込む時には、継管2から離れた箇所に力を加えると、モーメントが大きくなるため、少ない力で継管2を回転させることができる。継管2の断面形状が多角形であると、市販のスパナやラチェットレンチを用いて継管2を回転させることができる。継管の断面形状が円形である場合は、継管2の上部に断面が多角形である金具等を取り付けることにより、市販のスパナ等で回転させることができる。 The pipe screw pile 3 of the present invention is embedded by being pushed into the ground while being rotated. In the pipe screw pile 3 of the present invention, the pipe screw 1 and the connecting pipe 2 are firmly connected. When the pipe screw 1 is embedded while being rotated, and when the pipe screw 1 is extracted while being rotated in the direction opposite to that when being embedded, the pipe screw 1 And the connecting pipe 2 will not come off. Here, when embedding the pipe screw pile 3 in the ground, if a force is applied to a place away from the connecting pipe 2, the moment increases, so that the connecting pipe 2 can be rotated with a small force. When the cross-sectional shape of the connecting pipe 2 is a polygon, the connecting pipe 2 can be rotated using a commercially available spanner or ratchet wrench. When the cross-sectional shape of the connecting pipe is circular, it can be rotated by a commercially available spanner or the like by attaching a metal fitting having a polygonal cross section to the upper part of the connecting pipe 2.
本発明のパイプスクリュー杭3は、表層地盤の強度が弱く、強度に優れた地層が深く位置する場合であっても、適当な長さの継管2と接続することで強度に優れた地層に埋め込むことができる。強度に優れた地層に埋め込まれたパイプスクリュー杭3と簡易建物の骨組材とをクランプ等で接続することで、簡易建物の耐風性能を向上することができる。本発明のパイプスクリュー杭3は、強度に優れた地層に埋め込むことで引抜耐力が増すため、パイプスクリュー杭3の数を増やすことなく、簡易建物を補強することができる。または、簡易建物のアーチ材を、簡易建物の側面部と頂部とを構成する異なる部材からなる連結部材とし、パイプスクリュー杭3の継管2をアーチ材の側面部を構成する部材としてもよい。 The pipe screw pile 3 according to the present invention is a stratum having excellent strength by connecting to the appropriate length of the pipe 2 even when the stratum ground is weak and the stratum having excellent strength is located deep. Can be embedded. By connecting the pipe screw pile 3 embedded in the stratum having excellent strength and the frame material of the simple building with a clamp or the like, the wind resistance performance of the simple building can be improved. The pipe screw pile 3 according to the present invention can reinforce a simple building without increasing the number of pipe screw piles 3 because the pulling strength increases by being embedded in a stratum having excellent strength. Or it is good also considering the arch material of a simple building as a connection member which consists of a different member which comprises the side part and top part of a simple building, and the connecting pipe 2 of the pipe screw pile 3 may be a member which comprises the side part of an arch material.
ここで、簡易建物はアーチ材の末端が地面に差し込まれることにより固定されている。簡易建物の表面積から、特定の風速の時に簡易建物に作用する風圧を求めることができる。この風圧から、地面に差し込まれたアーチ材一本あたりに作用する引抜力(T)を求め、アーチ材の引抜耐力が引抜力(T)とを比較することで、簡易建物に補強が必要であるかを評価することができる。想定される風速は、簡易建物を設置する場所や地形等に応じて適宜選択することができ、例えば、台風による被害が心配される九州、四国等では35〜50m/s、周囲を山に囲まれている等の強風被害が少ない地域では20〜35m/sの範囲を用いることができる。 Here, the simple building is fixed by inserting the end of the arch material into the ground. From the surface area of the simple building, the wind pressure acting on the simple building at a specific wind speed can be obtained. From this wind pressure, the pulling force (T) acting on each arch material inserted into the ground is obtained, and the pulling strength of the arch material is compared with the pulling force (T). Can be evaluated. The assumed wind speed can be selected as appropriate according to the location where the simple building is installed, the topography, etc. For example, in Kyushu, Shikoku, etc., where damage from typhoons is a concern, 35-50 m / s, surrounded by mountains In areas where there is little damage from strong winds, such as the wind, a range of 20 to 35 m / s can be used.
所定の風速時にアーチ材に作用する引抜力(T)は簡易建物の表面積と風速とから算出することができるが、アーチ材の引抜耐力は実際に測定しなければ求められない。しかし、簡易建物を建てる現場に測定機器を運び込み、実際にアーチ材を埋め込んで、引抜耐力を測定するのは煩雑である。そのため、実際には補強杭が不要な現場であっても、「念の為に」補強杭を埋め込み簡易建物を補強することが行われており、無駄な費用と手間とをかけているという問題があった。 The pulling force (T) acting on the arch material at a predetermined wind speed can be calculated from the surface area of the simple building and the wind speed, but the pulling strength of the arch material cannot be obtained unless it is actually measured. However, it is cumbersome to carry a measuring device to the site where a simple building is built, and actually embed an arch material to measure the pulling strength. For this reason, even if it is actually a site that does not require reinforcement piles, the problem is that it is necessary to embed reinforcement piles to reinforce a simple building and to reinforce a simple building, which is a waste of cost and effort. was there.
本発明者らは、鋭意研究の結果、実際にアーチ材の引抜耐力を測定することなく、引抜耐力計算値(tRa)を算出することのできる式として、平成13年国土交通省告示第1113号における支持力算定式の記載を元に下記式1を算定した。 As a result of diligent research, the inventors of the present invention have been able to calculate the pulling strength calculation value (tRa) without actually measuring the pulling strength of the arch material. The following formula 1 was calculated based on the description of the bearing capacity calculation formula.
「式1」
tRa=4/15×(RF/α)×2
RF :アーチ材とその周囲の地盤との摩擦力 [kN]
RF =(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m2]
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
"Formula 1"
tRa = 4/15 × (R F / α) × 2
R F : Frictional force between arch material and surrounding ground [kN]
R F = (10/3 × N × Ls + 1/2 × qu × Lc) · φ
ku: uniaxial compressive strength of cohesive soil [kN / m 2 ]
que = 12.5N (Terzagi Peck formula)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Embedment length of sandy soil [m]
Lc: Embedment length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil and 3.0 for sandy soil.
However, the drawing strength calculation value (tRa) of sandy soil having an N value of less than 10 is set to 0.
アーチ材の埋込長(Ls、Lc)、アーチ材の周長(φ)は、簡易建物の規格や設計により判明しているため、簡易建物を建てる地盤のN値と、その分類(粘性土か砂質土か)が分かれば、上記式1を用いて引抜耐力計算値(tRa)を算出することができる。なお、下記で詳述するが、式1の引抜耐力算定式は、算定式から算出される引抜耐力計算値(tRa)が、実際に測定して求められる引抜耐力の値よりも小さい値、すなわち、安全側となるように設計している。 Since the arch material embedding length (Ls, Lc) and the arch material circumference (φ) are known from the standard and design of the simple building, the N value of the ground on which the simple building is built and its classification (cohesive soil) If it is known whether it is sandy soil or not, it is possible to calculate the pulling strength calculation value (tRa) using the above formula 1. In addition, as will be described in detail below, the pulling strength calculation formula of Formula 1 is such that the pulling strength calculation value (tRa) calculated from the calculation formula is smaller than the pulling strength value obtained by actual measurement, Designed to be on the safe side.
N値とはJIS A 1219に記載の標準貫入試験によって求められる値であり、地盤の強度を表す。N値は、63.5kgのおもりを75cm落下させて地盤に打ち付け、30cm打ち込むのに要する打撃回数で表される値である。N値が大きいほど地盤が強固なため、引抜耐力が大きくなる。 The N value is a value obtained by a standard penetration test described in JIS A 1219 and represents the strength of the ground. The N value is a value represented by the number of hits required to drop a weight of 63.5 kg for 75 cm, hit the ground, and drive 30 cm. The greater the N value, the stronger the ground, and the greater the pulling strength.
N値は、JIS A 1221に記載のスウェーデン式サウンディング試験により知ることができる。また、「地中押し込み式パイプハウス安全構造指針(社団法人日本施設園芸協会発行)」(以下、園芸基準と示す)に記載のN値の目安を表1に示す。 The N value can be known by a Swedish sounding test described in JIS A 1221. In addition, Table 1 shows a guideline for the N value described in “Guidelines for safety of underground pipe-type pipe houses (issued by the Japan Facility Horticultural Association)” (hereinafter referred to as horticultural standards).
地盤は細分化して多くの種類に分類されるが、引抜耐力計算値(tRa)を算出するには、粘性土か砂質土かのみを判断すればよい。粘性土とは、細粒分(粒径が0.074mm以下の粒子)の割合が50%より多い土のことであり、粘性が強く水を通しにくい。砂質土とは粗粒分(粒径が0.074mm以上の粒子)の割合が50%より多い土のことであり、粘性がなくザラザラしており、水を通しやすい。同じN値の粘性土と砂質土とに、同一のアーチ材を同じ深さに差し込んだ時の引抜耐力は粘性土の方が大きい。すなわち、粘性土と砂質土とでは、粘性土は引抜耐力が大きくアーチ材が抜けにくく、砂質土は引抜耐力が小さくアーチ材が抜けやすい。なお、粘性土であっても、砂が多く混じっている場合は、安全をとって砂質土として扱う。 The ground is subdivided and classified into many types, but in order to calculate the drawing strength calculation value (tRa), it is only necessary to determine whether the soil is clayey or sandy. Cohesive soil is soil having a proportion of fine particles (particles having a particle size of 0.074 mm or less) of more than 50%, and is highly viscous and difficult to pass water. Sandy soil refers to soil with a coarse fraction (particles having a particle size of 0.074 mm or more) of more than 50%, which is not viscous and is rough and easy to pass water. When the same arch material is inserted at the same depth into viscous soil and sandy soil having the same N value, the viscous strength of the viscous soil is greater. That is, for clay soil and sandy soil, the clay soil has a high pulling strength and the arch material is difficult to be removed, and the sandy soil has a small pulling strength and the arch material is easily removed. Even if it is a cohesive soil, if it contains a lot of sand, treat it as sandy soil for safety.
所定の風速時に簡易建物のアーチ材に作用する引抜力(T)と、引抜耐力計算値(tRa)とを比較することにより、簡易建物がどの程度の風速に耐えることができる耐風性能を有するかを評価することができる。引抜力(T)が、引抜耐力計算値(tRa)よりも小さい場合は、アーチ材のみで十分な耐風性能を有しているため、補強杭を設ける必要はない。引抜力(T)と、引抜耐力計算値(tRa)とを比較することで、引抜耐力を測定せずとも補強が必要であるかを否かを判別することができるため、実際には不要である補強杭を購入する費用や、埋め込む手間を省くことができる。 By comparing the pulling force (T) that acts on the arch material of a simple building at a given wind speed and the pulling strength calculation value (tRa), how much wind speed the simple building can withstand to wind speed Can be evaluated. When the pulling force (T) is smaller than the pulling strength calculation value (tRa), it is not necessary to provide a reinforcing pile because the arch material alone has sufficient wind resistance. By comparing the pulling force (T) and the pulling strength calculation value (tRa), it is possible to determine whether or not reinforcement is necessary without measuring the pulling strength, so this is not actually necessary. This saves the cost of purchasing a certain stake and the time it takes to embed it.
引抜力(T)が、引抜耐力計算値(tRa)よりも大きい場合は、地面に埋め込んだ補強杭と、簡易建物の骨組材とを接続することで、簡易建物に所望の耐風性能を持たせることができる。補強杭としては、従来のらせん杭、スクリュー杭、本発明のスクリューパイプ杭を用いることができる。ここで、らせん杭、スクリュー杭の引抜耐力は「園芸基準」に記載されている。本発明のパイプスクリュー杭3は、その形状からスクリュー杭と同等の引抜耐力を有している。 When the pulling force (T) is larger than the pulling strength calculation value (tRa), the desired building has the desired wind resistance performance by connecting the reinforcing pile embedded in the ground and the frame material of the simple building. be able to. As the reinforcing pile, a conventional spiral pile, a screw pile, or the screw pipe pile of the present invention can be used. Here, the pulling strength of the spiral pile and screw pile is described in the “horticultural standards”. The pipe screw pile 3 of the present invention has a pulling strength equivalent to that of the screw pile due to its shape.
以下に、補強杭として本発明のパイプスクリュー杭3を用いる場合について詳述するが、従来のらせん杭、スクリュー杭も同様の手法により用いることができる。
簡易建物を建てる実際の地盤において、パイプスクリュー杭3が有する引抜耐力の値は測定しないと判明しないが、実際に測定するのは煩雑である。地盤が硬い(N値が大きい)ほど、引抜耐力は大きくなるため、地盤のN値と引抜耐力とが比例すると仮定して、パイプスクリュー杭3の引抜耐力計算値(tRp)を算出することのできる式を算定した。なお、園芸基準では通常の畑土で、スクリュー杭の引抜耐力(短期)は2000Nとされているため、この値を引抜耐力計算値(tRp)の上限とした。パイプスクリュー杭3の引抜耐力算定式を式2に示す。
Below, although the case where the pipe screw pile 3 of this invention is used as a reinforcement pile is explained in full detail, the conventional spiral pile and a screw pile can also be used with the same method.
In the actual ground where a simple building is built, the value of the pull-out strength of the pipe screw pile 3 is not found to be measured, but it is complicated to actually measure. Since the pulling strength increases as the ground is harder (the N value is larger), it is assumed that the N value of the ground and the pulling strength are proportional to calculate the pulling strength calculation value (tRp) of the pipe screw pile 3 The possible formula was calculated. In addition, since the pulling proof strength (short term) of the screw pile is 2000N in the horticultural standard, it is set as the upper limit of the calculated pulling proof strength (tRp). The drawing strength calculation formula of the pipe screw pile 3 is shown in Formula 2.
「式2」
粘性土における引抜耐力計算値
tRp=2000/3×平均N値
(平均N値>3の場合は2000)
砂質土における引抜耐力計算値
tRp=2000/8×平均N値
(平均N値>8の場合は2000)
なお、平均(N値)とは、簡易建物を建てる地盤の複数箇所で測定したN値の平均を意味する。
"Formula 2"
Calculated pulling strength in cohesive soil tRp = 2000/3 x average N value
(2000 if average N value> 3)
Calculated pulling strength in sandy soil tRp = 2000/8 × average N value
(2000 if average N value> 8)
In addition, an average (N value) means the average of the N value measured in several places of the ground which builds a simple building.
なお、式1のアーチ材の引抜耐力算定式と同じく、式2のパイプスクリュー杭3の引抜耐力算定式も、実際に測定して求められる引抜耐力の値よりも小さい値、すなわち、安全側となるように算定している。 Similar to the pulling strength calculation formula of the arch material of Formula 1, the pulling strength calculation formula of the pipe screw pile 3 of Formula 2 is smaller than the pulling strength value obtained by actual measurement, that is, the safety side. It is calculated as follows.
簡易建物のアーチ材の引抜力(T)が、引抜耐力計算値(tRa)よりも大きい時には、上記式2で求めたパイプスクリュー杭3の引抜耐力計算値(tRp)を用いて、引抜耐力の不足分(T−tRa)を補うのに必要なパイプスクリュー杭3の本数を求める。具体的には、簡易建物において地面に挿し込まれるアーチ材の本数をn、必要なパイプスクリュー杭3の本数をmとすると、下記式3で必要なパイプスクリュー杭3の本数(m)は求められる。 When the pulling force (T) of the arch material of the simple building is larger than the pulling strength calculation value (tRa), the pulling strength calculation value (tRp) of the pipe screw pile 3 obtained by the above equation 2 is used to calculate the pulling strength. The number of pipe screw piles 3 required to make up for the shortage (T-tRa) is obtained. Specifically, where n is the number of arch materials to be inserted into the ground in a simple building and m is the number of pipe screw piles 3 required, the number (m) of pipe screw piles 3 required by Equation 3 below is obtained. It is done.
「式3」
m≧n(T−tRa)/tRp (ただしmは整数とする。)
m :パイプスクリュー杭の本数
n :簡易建物において地面に挿し込まれるアーチ材の本数
"Formula 3"
m ≧ n (T−tRa) / tRp (where m is an integer)
m: Number of pipe screw piles n: Number of arch materials to be inserted into the ground in a simple building
上記式3で求めた本数のパイプスクリュー杭を一定の間隔で埋め込み、地面に埋め込んだパイプスクリュー杭と簡易建物を構成する沈下防止パイプやアーチ材等の骨組材とを接続することで、簡易建物が所定の耐風性能を有するように補強することができる。 By embedding the number of pipe screw piles obtained in the above equation 3 at regular intervals, and connecting the pipe screw piles embedded in the ground with the frame materials such as the subsidence prevention pipes and arch materials constituting the simple building, Can be reinforced so as to have a predetermined wind resistance.
ここで、引抜力(T)が引抜耐力計算値(tRa)よりも大きい場合は、簡易建物を建てる地盤表層のN値が小さいことが多い。そのため、従来の30〜70cm程度の長さの市販の補強杭で補強しても、補強杭はN値の小さい地盤に埋め込まれるのみであり、耐風性能があまり向上しないことがある。本発明のパイプスクリュー杭3は、継管2の長さを調整してN値の大きい強度に優れた地層まで埋め込むことができるため、補強杭として本発明のパイプスクリュー杭3を用いることが好ましい。上記したように、粘性土と砂質土とでは引抜耐力が大きく異なるため、パイプスクリュー杭3は、粘性土ではN値が2以上となる地層まで、砂質土ではN値が4以上となる地層まで埋め込むことが好ましい。 Here, when the drawing force (T) is larger than the drawing strength calculation value (tRa), the N value of the ground surface layer on which the simple building is built is often small. Therefore, even if it reinforces with the conventional commercially available reinforcement pile of about 30-70 cm in length, a reinforcement pile is only embedded in the ground with a small N value, and wind resistance performance may not improve so much. Since the pipe screw pile 3 of the present invention can be embedded up to a stratum having a large N value by adjusting the length of the connecting pipe 2, it is preferable to use the pipe screw pile 3 of the present invention as a reinforcing pile. . As described above, since the pulling strength differs greatly between the viscous soil and the sandy soil, the pipe screw pile 3 has a N value of 2 or more in the clay soil, and the N value of 4 or more in the sandy soil. It is preferable to embed up to the formation.
φ19.1からφ42.7までのアーチ材と、本発明のパイプスクリュー杭を試験体とした。試験体を土壌中に300〜500mmの深さまで埋込み鉛直方向に引き抜きながら引抜耐力を測定する引抜試験を実施した。試験体の一覧を表2に示す。用いた試験体はいずれも渡辺パイプ株式会社製であり、表2において「タフ」とは、商品名「タフパイプ」を意味する。 The arch material from φ19.1 to φ42.7 and the pipe screw pile of the present invention were used as test specimens. A pull-out test was conducted in which the test specimen was embedded in soil to a depth of 300 to 500 mm and the pulling strength was measured while pulling out in the vertical direction. Table 2 shows a list of test specimens. All of the test specimens used were manufactured by Watanabe Pipe Co., Ltd., and “Tough” in Table 2 means the trade name “Tough Pipe”.
<引抜試験1>
場所:茨城県小美玉市中野谷字西原501
土質:粘性土
N値=2.4 ・・・埋込長500mm
N値=2.3 ・・・埋込長300mm
<Pullout test 1>
Location: 501 Nishihara, Nakanoya, Omitama City, Ibaraki Prefecture
Soil: Cohesive soil N value = 2.4 ... Embedding length 500mm
N value = 2.3 ... Embedded length 300mm
<引抜試験2>
場所:千葉県富津市西川
土質:粘性土
N値=2.4 ・・・埋込長500mm
N値=0.8 ・・・埋込長300mm
<Pullout test 2>
Location: Nishikawa soil, Futtsu City, Chiba Prefecture: Cohesive soil N value = 2.4 ... Embedding length 500mm
N value = 0.8 ... Embedded length 300mm
<引抜試験3>
場所:千葉県山武市松ケ谷口
土質:粘性土(砂混り粘性土)
N値=3.0 ・・・埋込長500mm
N値=2.6 ・・・埋込長300mm
<Pullout test 3>
Location: Matsutake Valley, Sanmu-shi, Chiba Soil: Cohesive soil (sandy clay)
N value = 3.0 ... embedding length 500mm
N value = 2.6 ... Embedded length 300mm
<引抜試験4>
場所:千葉県山武市松ケ谷口
土質:砂質土
平均N値=11.5 ・・・埋込長500mm
<Pullout test 4>
Place: Matsutake Valley, Sanmu-shi, Chiba Soil: Sandy soil average N value = 11.5 ... Embedding length 500mm
各試験片を鉛直方向に引き抜く際に測定した引抜力の最大値の2/3を引抜耐力(短期)実験値とした。また、上記式1により引抜耐力計算値(tRa)を算出し、引抜耐力計算値に対する引抜耐力実験値の検定比(引抜耐力実験値/引抜耐力計算値)を求めた。その結果を表3に示す。なお、引抜試験3の土質は粘性土であったが、砂が多く混じっており砂質土としての性状が支配的になると考えられるため、引抜耐力計算値は砂質土として算定した。 2/3 of the maximum value of the pulling force measured when each test piece was pulled in the vertical direction was taken as the pulling strength (short term) experimental value. Moreover, the drawing strength calculation value (tRa) was calculated by the above formula 1, and the test ratio of the drawing strength experiment value to the drawing strength calculation value (drawing strength experiment value / drawing strength calculation value) was obtained. The results are shown in Table 3. In addition, although the soil quality of the pull-out test 3 was a viscous soil, since many sands are mixed and the property as a sandy soil is considered to be dominant, the drawing strength calculation value was calculated as a sandy soil.
「アーチ材の引抜耐力算定式の検証」
粘性土で行った引抜き試験1、2は、24試験中20試験で検定比が基準値1.0を上回り、3試験で基準値を下回った。
検定比の分布を見ると2.0〜4.0の間に多く集まっており、24試験の平均値が3.4であることから、算定式に問題がないことが確認できた。
"Verification of calculation formula for pulling strength of arch material"
In the pull-out tests 1 and 2 performed on the clay, the test ratio was higher than the reference value 1.0 in 20 of 24 tests and lower than the reference value in 3 tests.
Looking at the distribution of the test ratio, many were collected between 2.0 and 4.0, and the average value of 24 tests was 3.4. Therefore, it was confirmed that there was no problem in the calculation formula.
砂混り粘性土で行った引抜き試験3は、11試験中8試験で検定比が基準値1.0を下回った。また、No.29は全試験を通して最も低い引抜耐力実験値である10Nを示し、ほとんど引抜耐力がなかった。
砂質土で行った引抜き試験4は、すべての試験で検定比は基準値1.0を上回っており、算定式に問題がないことが確認できた。
In the pull-out test 3 performed with sandy clay, the test ratio was less than the standard value 1.0 in 8 of 11 tests. No. 29 shows 10N which is the lowest experimental value of pulling strength through all tests, and there was almost no pulling strength.
In the pull-out test 4 performed on sandy soil, the verification ratio exceeded the standard value 1.0 in all tests, and it was confirmed that there was no problem in the calculation formula.
N値が3.0の砂混じり粘性土で行った引抜き試験3はほとんど引抜耐力がなく、N値が11.5の砂質土で行った引抜き試験4は算定式に問題がなかったことから、砂質土として扱われる砂混じり粘性土と砂質土では、N値が10未満の場合の引抜耐力は0とした。 The pull-out test 3 performed on sandy soil with an N value of 3.0 has almost no pulling resistance, and the pull-out test 4 performed on sandy soil with an N value of 11.5 has no problem in the calculation formula. In the case of sand-mixed viscous soil and sandy soil treated as sandy soil, the pulling strength when the N value is less than 10 was set to zero.
以上の結果から、アーチ材の引抜耐力の測定値は、式1で表される引抜耐力算定式から算出される引抜耐力計算値(tRa)よりも大きな値を示すこと、すなわち、引抜耐力計算値(tRa)は、実際に測定した引抜耐力の値に対して安全側に位置していることが確認できた。 From the above results, the measured value of the pulling strength of the arch material shows a larger value than the pulling strength calculation value (tRa) calculated from the pulling strength calculation formula represented by Equation 1, that is, the drawing strength calculation value. It was confirmed that (tRa) is located on the safe side with respect to the actually measured pulling strength value.
「パイプスクリュー杭の引抜耐力算定式の検証」
パイプスクリュー杭の引抜耐力(短期)実験値と、上記式2で表される引抜耐力算定式
より算出されたパイプスクリュー杭の引抜耐力計算値(tRp)とを表4に示す。
“Verification of the calculation formula for pulling strength of pipe screw piles”
Table 4 shows experimental values of the pulling strength (short term) of the pipe screw pile and the calculated pulling strength (tRp) of the pipe screw pile calculated from the drawing strength calculation formula expressed by the above formula 2.
引抜き試験2〜4で測定したパイプスクリュー杭の引抜耐力(No.25、37、38、42)の実験値は、同一のN値の時に式2で表される算定式で算出した引抜耐力計算値(tRp)を上回っており、この算定式は試験値に対し安全側であることが確かめられた。 The experimental value of the pull-out strength (No. 25, 37, 38, 42) of the pipe screw pile measured in the pull-out tests 2 to 4 is the pull-out strength calculation calculated by the formula expressed by Formula 2 when the N value is the same. It exceeded the value (tRp), and it was confirmed that this calculation formula is safe with respect to the test value.
1 パイプスクリュー
11 中空管
12 スクリュー羽根
2 継管
3 パイプスクリュー杭
4 ボルト
41 ボルト穴
1 Pipe screw 11 Hollow tube 12 Screw blade 2 Pipe 3 Pipe screw pile 4 Bolt 41 Bolt hole
Claims (5)
該中空管の外周に螺旋状に設けられたスクリュー羽根とを有することを特徴とする引抜耐力付与用パイプスクリュー。 A hollow tube having a tip machined into a pointed shape;
A pipe screw for imparting drawing strength, which has screw blades spirally provided on the outer periphery of the hollow tube.
前記中空管に挿し込まれた前記継管が、前記ボルト穴を通るボルトの先端部で挟み込まれることにより、前記引抜耐力付与用パイプスクリューと前記継管とが接続されていることを特徴とする請求項2に記載の引抜耐力付与用パイプスクリュー杭。 One or more bolt holes are provided in the hollow tube,
The pipe inserted into the hollow pipe is sandwiched at the tip of a bolt that passes through the bolt hole, so that the drawing strength imparting pipe screw and the pipe are connected. The pipe screw pile for drawing strength imparting according to claim 2.
前記骨組材と請求項2から4のいずれかに記載の引抜耐力付与用パイプスクリュー杭とが接続されていることを特徴とする簡易建物。 It is constructed by assembling frame materials
A simple building in which the frame material and the pipe screw pile for pulling strength imparting according to any one of claims 2 to 4 are connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019097695A JP6827069B2 (en) | 2019-05-24 | 2019-05-24 | Pipe screw pile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019097695A JP6827069B2 (en) | 2019-05-24 | 2019-05-24 | Pipe screw pile |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015050340A Division JP6552847B2 (en) | 2015-03-13 | 2015-03-13 | Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019163688A true JP2019163688A (en) | 2019-09-26 |
JP6827069B2 JP6827069B2 (en) | 2021-02-10 |
Family
ID=68065249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019097695A Active JP6827069B2 (en) | 2019-05-24 | 2019-05-24 | Pipe screw pile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6827069B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110983875A (en) * | 2019-11-17 | 2020-04-10 | 中铁二院工程集团有限责任公司 | Elastic non-separating fastener system for medium-low speed magnetic suspension track |
JP2023010569A (en) * | 2021-07-08 | 2023-01-20 | 雅浩 菅野 | Steel pipe pile bit |
-
2019
- 2019-05-24 JP JP2019097695A patent/JP6827069B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110983875A (en) * | 2019-11-17 | 2020-04-10 | 中铁二院工程集团有限责任公司 | Elastic non-separating fastener system for medium-low speed magnetic suspension track |
JP2023010569A (en) * | 2021-07-08 | 2023-01-20 | 雅浩 菅野 | Steel pipe pile bit |
JP7277880B2 (en) | 2021-07-08 | 2023-05-19 | 雅浩 菅野 | bit for steel pipe pile |
Also Published As
Publication number | Publication date |
---|---|
JP6827069B2 (en) | 2021-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU157321U1 (en) | SCREW PILES | |
JP6827069B2 (en) | Pipe screw pile | |
JP6352120B2 (en) | Ground reinforcement method using perforated steel pipe with blades | |
CN201531020U (en) | Blade drill pipe steel pile special for a surface solar power station | |
Chen et al. | Field investigation of pile setup in mixed soil | |
Carroll et al. | Field experiments at three sites to investigate the effects of age on steel piles driven in sand | |
Beim et al. | Results of dynamic and static load tests on helical piles in the varved clay of Massachusetts | |
Park et al. | Groundwater effect factors for the load-carrying behavior of footings from hydraulic chamber load tests | |
RU2583793C1 (en) | Screw pile | |
JP5150596B2 (en) | Anchor device and anchor construction method | |
JP6552847B2 (en) | Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings | |
RU2725348C2 (en) | Multiblade screw pile (versions) | |
CN112117957A (en) | Fixing tool for rack support for solar cell panel and using method thereof | |
Loporcaro et al. | Investigating the relationship between hardness and plastic strain in reinforcing steel bars | |
RU158889U1 (en) | PILOT SCREW | |
RU144966U1 (en) | SCREW PILES | |
CN109006020B (en) | Design method of reinforced concrete engineering structure bar planting type plant growth groove structure | |
RU142535U1 (en) | SCREW PILES | |
RU164014U1 (en) | SCREW PILES | |
RU2801991C1 (en) | Screw pile | |
Zhussupbekov et al. | The Results of Dynamic (Pile Driving Analysis) and Traditional Static Piling Tests in Capital of Kazakhstan | |
RU163361U1 (en) | SCREW PILES | |
RU157320U1 (en) | SCREW PILES | |
CN208235499U (en) | A kind of pile crown structure convenient for Rapid Implementation static test | |
Wijaya et al. | Failure assessment of deteriorated steel light poles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200403 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200403 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201113 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201113 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201113 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20201124 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20201201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6827069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |