JP6552847B2 - Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings - Google Patents

Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings Download PDF

Info

Publication number
JP6552847B2
JP6552847B2 JP2015050340A JP2015050340A JP6552847B2 JP 6552847 B2 JP6552847 B2 JP 6552847B2 JP 2015050340 A JP2015050340 A JP 2015050340A JP 2015050340 A JP2015050340 A JP 2015050340A JP 6552847 B2 JP6552847 B2 JP 6552847B2
Authority
JP
Japan
Prior art keywords
value
pipe
ground
pile
tra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050340A
Other languages
Japanese (ja)
Other versions
JP2016169546A (en
Inventor
茂喜 阿部
茂喜 阿部
Original Assignee
渡辺パイプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 渡辺パイプ株式会社 filed Critical 渡辺パイプ株式会社
Priority to JP2015050340A priority Critical patent/JP6552847B2/en
Publication of JP2016169546A publication Critical patent/JP2016169546A/en
Application granted granted Critical
Publication of JP6552847B2 publication Critical patent/JP6552847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Description

本発明は、温室等の簡易建物を地盤に固定するための補強杭に関する。   The present invention relates to a reinforcing pile for fixing a simple building such as a greenhouse to the ground.

温室、サクランボハウス、畜舎等として、骨組材を組み立てて構築される簡易建物が用いられている。簡易建物は、側面と屋根とを構成するアーチ材、肩パイプ、棟パイプ、沈下防止パイプ等の骨組材を、セッターやクランプ等の連結部品で連結して組み立てることにより構築されており、アーチ材の末端が地面に差し込まれることで地盤に固定されている。   Simple buildings constructed by assembling frame materials are used as greenhouses, cherry houses, barns, and the like. A simple building is constructed by connecting and assembling frame members such as arch members, shoulder pipes, ridge pipes, and anti-sink pipes that compose the sides and the roof with connected parts such as setters and clamps. The end of is inserted into the ground and is fixed to the ground.

台風や突風等の強風で、簡易建物に大きな風圧が加わると、地面に差し込まれたアーチ材に引抜力が加わる。この引抜力がアーチ材が引き抜かれずに耐える力(以下、引抜耐力という。)よりも大きくなると、アーチ材は引き抜かれ、最悪の場合は簡易建物が風で浮き上がって倒壊してしまう。簡易建物の耐風性能を向上させるために、補強杭を地面に埋め込み、補強杭と簡易建物の沈下防止パイプ等の骨組材とを接続することが行われている(特許文献1〜3参照)。   When large wind pressure is applied to a simple building due to strong wind such as a typhoon or gust, a pulling force is applied to an arch member inserted into the ground. If this pulling force is greater than the force that the arch material can withstand without being pulled (hereinafter referred to as pull-out load resistance), the arch material is pulled out, and in the worst case, the simple building floats up and collapses due to the wind. In order to improve the wind resistance performance of a simple building, it is practiced to embed a reinforcing pile on the ground and connect the reinforcing pile and a frame member such as a settlement preventing pipe of the simple building (see Patent Documents 1 to 3).

補強杭としては様々なものが提案されており、例えば、特許文献1には線材を螺旋状に形成したらせん杭が、特許文献2には平面部およびその両側端から略垂直に立ち上がる縦壁部を持つ抵抗板とこの抵抗板に固着された本体棒からなるアンカー杭が、特許文献3には先端近傍に螺旋状の羽根が固定されているスクリュー杭が提案されている。図4に特許文献1の第8図に記載のらせん杭を、図5に特許文献3の図3の部分拡大図であってスクリュー杭が骨組材と接続されている様子を示す。   Various reinforcement piles have been proposed. For example, Patent Document 1 discloses a spiral pile having a wire rod formed in a spiral shape, and Patent Document 2 discloses a vertical wall portion that substantially vertically rises from a flat portion and both side ends thereof. Patent Document 3 proposes a screw pile in which a spiral blade is fixed in the vicinity of a tip end of an anchor pile consisting of a resistance plate having a and a body rod fixed to the resistance plate. FIG. 4 is a spiral pile described in FIG. 8 of Patent Document 1, and FIG. 5 is a partially enlarged view of FIG. 3 of Patent Document 3, showing a screw pile connected to a frame material.

これらの補強杭は市販されているが、いずれもその長さは30〜70cm程度である。市販されている補強杭はいずれも長さ調整ができないため、深く埋め込むことができない。そのため、市販の補強杭を用いて簡易建物を補強するには、埋め込む補強杭の本数を増やすしかないという問題がある。また、軟弱地盤の場合は、30〜70cm程度の深さでは補強杭の引抜耐力が十分でないことが多く、補強杭の本数をどれだけ増やしても強度がほとんど向上しないという問題がある。   Although these reinforcement piles are marketed, all are about 30-70 cm in length. Any of the commercially available reinforced piles can not be deeply embedded because their length can not be adjusted. Therefore, in order to reinforce a simple building using a commercially available reinforcement pile, there is a problem that it is only necessary to increase the number of reinforcement piles to be embedded. Moreover, in the case of a soft ground, the pullout resistance of the reinforcement pile is often insufficient at a depth of about 30 to 70 cm, and there is a problem that the strength is hardly improved even if the number of reinforcement piles is increased.

実開平2−87401号ACT 2-87401 特開2006−161442号公報JP 2006-161442 A 特開2008−263883号公報JP 2008-263883 A

本発明は、任意の長さの継管と接続することで、長さを調整することができるパイプスクリュー杭を提供することを課題とする。   This invention makes it a subject to provide the pipe screw pile which can adjust length by connecting with the connecting pipe of arbitrary length.

1.尖った形状に加工された先端を有する中空管と、
該中空管の外周に螺旋状に設けられたスクリュー羽根とを有することを特徴とするパイプスクリュー。
2.1.に記載のパイプスクリューと継管とが接続されていることを特徴とするパイプスクリュー杭。
3.前記中空管に1組以上のボルト穴が設けられ、
前記中空管に挿し込まれた前記継管が、前記ボルト穴を通るボルトの先端部で挟み込まれることにより、前記パイプスクリューと前記継管とが接続されていることを特徴とする2.に記載のパイプスクリュー杭。
4.作土より深くに位置する強度に優れた地層に埋め込まれることを特徴とする2.または3.に記載のパイプスクリュー杭。
5.骨組材を組み立てて構築され、
前記骨組材と2.から4.のいずれかに記載のパイプスクリュー杭とが接続されていることを特徴とする簡易建物。
6.所定の風速時に、簡易建物を地面に固定するアーチ材に作用する引抜力(T)を算出する工程、
下記式1に基づいて、簡易建物を地面に固定するアーチ材の引抜耐力計算値(tRa)を算定する工程、
前記引抜力(T)と、前記引抜耐力計算値(tRa)とを比較する工程、
とを有することを特徴とする簡易建物の耐風性能評価方法。
「式1」
tRa=4/15×(R/α)×2
:アーチ材とその周囲の地盤との摩擦力 [kN]
=(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
7.6.に記載の耐風性能評価方法において、前記引抜力(T)が前記引抜耐力計算値(tRa)よりも大きい場合、
前記簡易建物を構成する骨組材と、地面に埋め込まれた補強杭とを接続することを特徴とする簡易建物の補強方法。
8.前記補強杭が、2.から4.のいずれかに記載のパイプスクリュー杭であることを特徴とする7.に記載の簡易建物の補強方法。
1. A hollow tube having a tip processed into a pointed shape;
And a screw screw provided in a spiral shape on the outer periphery of the hollow tube.
2.1. A pipe screw pile, characterized in that the pipe screw described in 1 and a connecting pipe are connected.
3. The hollow tube is provided with one or more sets of bolt holes,
1. The pipe screw and the connecting pipe are connected to each other by sandwiching the connecting pipe inserted into the hollow pipe at a tip portion of a bolt passing through the bolt hole. Pipe screw pile as described in.
4. 1. It is embedded in a stratum that is located deeper than the soil and has excellent strength. Or 3. Pipe screw pile as described in.
5. Assembled and constructed a frame material,
1. the frame material; To 4. A simple building, wherein the pipe screw pile according to any one of the above is connected.
6. Calculating a pulling force (T) acting on an arch member for fixing the simplified building to the ground at a predetermined wind speed;
Based on the following formula 1, a step of calculating a pulling-out strength calculation value (tRa) of an arch material that fixes a simple building to the ground,
Comparing the pulling force (T) and the pulling strength calculation value (tRa);
The wind resistance performance evaluation method of the simple building characterized by having.
"Formula 1"
tRa = 4/15 × (R F / α) × 2
R F : Frictional force between arch material and surrounding ground [kN]
R F = (10/3 × N × Ls + 1/2 × qu × Lc) · φ
qu: Uniaxial compressive strength of cohesive soil [kN / m 2 ]
qu = 12.5 N (Terzaghi Peck type)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Buried length of sandy soil [m]
Lc: Buried length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil, 3.0 for sandy soil.
However, the drawing strength calculation value (tRa) of sandy soil having an N value of less than 10 is assumed to be zero.
7.6. In the wind resistance performance evaluation method according to, when the pulling force (T) is larger than the pulling strength calculation value (tRa),
A reinforcing method for a simple building, comprising connecting a frame material constituting the simple building and a reinforcing pile embedded in the ground.
8. The reinforcing pile is 2. To 4. 6. A pipe screw pile according to any one of the above. Reinforcement method for simple buildings as described in 1.

本発明のパイプスクリューは、任意の長さの継管と接続することができるため、求める長さのパイプスクリュー杭を得ることができる。表層地盤の強度が弱く、強度に優れた地層が深く位置する場所に簡易建物を建設する場合、本発明のパイプスクリューを適当な長さの継管と接続することにより、パイプスクリュー杭を強度に優れた地層まで埋め込むことができる。強度に優れた地層まで埋め込まれたパイプスクリュー杭と簡易建物の骨組材とをクランプ等で接続することにより、簡易建物の耐風性能を向上することができる。また、本発明のパイプスクリュー杭は、深く埋め込むことで強度に優れた地層に到達することができるため、パイプスクリュー杭の本数を増やすことなく、簡易建物を補強することができる。   Since the pipe screw of the present invention can be connected to a pipe having an arbitrary length, a pipe screw pile having a desired length can be obtained. When a simple building is constructed in a place where the strength of the surface ground is weak and the excellent strength is deeply located, the pipe screw pile of the present invention can be reinforced by connecting the pipe screw of the present invention with a connecting pipe of appropriate length. It is possible to embed even an excellent formation. By connecting the pipe screw pile embedded up to the stratum having excellent strength and the frame material of the simple building with a clamp or the like, the wind resistance performance of the simple building can be improved. Moreover, since the pipe screw pile of the present invention can reach a stratum with excellent strength by deep embedding, the simple building can be reinforced without increasing the number of pipe screw piles.

パイプスクリューと継管とは、簡易建物を建てる現場で容易に接続してパイプスクリュー杭とすることができる。パイプスクリューの中空管に1組以上のボルト穴を設け、このボルト穴に通したボルトの先端部で、中空管に挿し込まれた継管を挟み込むことで、強固に接続することができる。簡易建物の補強には多くのパイプスクリュー杭が必要であるが、本発明のパイプスクリュー杭は先端部であるパイプスクリューと継管とが別々の部材で構成されているため、従来の一体化して形成されているスクリュー杭と比較して運搬が容易であり、運搬、保管に必要なスペースを小さくすることができる。   The pipe screw and the connecting pipe can be easily connected to each other at a site where a simple building is built to form a pipe screw pile. One or more sets of bolt holes are provided in the hollow pipe of the pipe screw, and the connecting pipe inserted into the hollow pipe can be firmly connected by the tip of the bolt passed through the bolt hole. . Reinforcement of a simple building requires many pipe screw piles, but in the pipe screw pile of the present invention, since the pipe screw as the tip and the joint pipe are composed of separate members, they are integrated as in the prior art Compared with the formed screw pile, it is easy to carry and the space required for carrying and storage can be reduced.

さらに、地盤のN値という標準指標により、簡易建物を地盤に固定するアーチ材の引抜耐力計算値(tRa)を容易に算出することができる。特定の風速の風により簡易建物のアーチ材に作用する引抜力(T)は、簡易建物の表面積と風速とにより算出可能であるため、引抜耐力計算値(tRa)と引抜力(T)とを比較することで、簡易建物の耐風性能を容易に評価することができる。従来、「念のため」という理由で実際には不要な補強杭を設けることがあったが、引抜耐力計算値(tRa)と引抜力(T)とを比較することで補強杭が必要であるか否かを判断できるため、コストと手間とを抑えることができる。   Furthermore, the pullout resistance calculation value (tRa) of the arch material which fixes a simple building to the ground can be easily calculated by the standard index | surface called N value of a ground. Since the pullout force (T) acting on the arch material of the simple building by the wind of a specific wind speed can be calculated by the surface area of the simple building and the wind speed, the pullout resistance calculation value (tRa) and the pullout force (T) By comparing, the wind resistance performance of a simple building can be easily evaluated. In the past, there was a case where an unnecessary reinforcement pile was actually provided for the reason of "just in case", but a reinforcement pile is necessary by comparing the pullout resistance calculation value (tRa) and the pullout force (T) Therefore, it is possible to reduce costs and labor.

簡易建物が所望の耐風性能を有さないと評価されたときは、簡易建物の骨組材と地面に埋め込んだ補強杭とを接続することで、簡易建物の耐風性能を向上することができる。補強杭の引抜耐力計算値から、所望の耐風性能を付与するのに必要な補強杭の本数が求められるため、補強杭を必要以上に用いることがなく、無駄な費用と手間とを抑えることができる。地盤表層のN値が小さいと、市販の補強杭をどれだけ増やしても所望の耐風性能を付与することができないことがあるが、本発明のパイプスクリュー杭は適切な長さの継管を用いることにより強度に優れた地層に確実に埋め込むことができるため、所望の耐風性能を付与することができる。   When it is evaluated that the simple building does not have the desired wind resistance performance, the wind resistance performance of the simple building can be improved by connecting the skeleton of the simple building and the reinforcing pile embedded in the ground. Since the number of reinforced piles necessary to impart desired wind resistance performance can be determined from the calculated pull-out resistance value of reinforced piles, unnecessary use of reinforced piles is avoided, and waste costs and labor can be suppressed. it can. If the ground surface N value is small, it may not be possible to provide the desired wind resistance performance no matter how much the number of commercially available reinforced piles is increased, but the pipe screw pile of the present invention uses a junction pipe of an appropriate length. As a result, since it can be reliably embedded in the stratum excellent in strength, desired wind resistance performance can be imparted.

本発明のパイプスクリューを示す図。The figure which shows the pipe screw of this invention. 本発明のパイプスクリュー杭を示す図。The figure which shows the pipe screw pile of this invention. 本発明のパイプスクリュー杭の断面図。Sectional drawing of the pipe screw pile of this invention. 従来のらせん杭を示す図。The figure which shows the conventional spiral pile. 従来のスクリュー杭が骨組材と接続されている様子を示す図。The figure which shows a mode that the conventional screw pile is connected with the frame material.

本発明者らは、温室等の簡易建物が建てられる土壌の下方には、大きな引抜耐力が得られる強度に優れた地層が存在することに着眼し、鋭意努力の結果、本発明を完成させた。土壌の引抜耐力はその土質により大きく異なるが、本発明者らは鋭意研究の結果、土壌の引抜耐力を、土壌のN値という標準指標により算出する式を導くことに成功し、このN値という標準指標を用いることにより、必要な引抜耐力を備えた簡易建物を構築できることを実現した。本発明は、簡易建物に必要な強度を付与することのできるパイプスクリュー杭と、その杭で補強された簡易建物、及びその杭を用いた簡易建物の補強方法を提案する。   The present inventors focused on the existence of a stratum excellent in strength with which a large pull-out resistance can be obtained under the soil where a simple building such as a greenhouse is built, and completed the present invention as a result of earnest effort. . Although the pullout resistance of the soil greatly varies depending on the soil quality, the present inventors have succeeded in deriving a formula for calculating the pullout resistance of the soil by the standard index of N value of the soil as a result of intensive research. By using the standard index, we realized that we could build a simple building with the necessary pullout resistance. The present invention proposes a pipe screw pile capable of imparting the required strength to a simple building, a simple building reinforced with the pile, and a method of reinforcing the simple building using the pile.

以下に、本発明を詳細に説明する。
図1に、本発明のパイプスクリューの一実施態様を示す。本発明のパイプスクリュー1は、尖った形状に加工された先端を有する中空管11と、該中空管の外周に螺旋状に設けられたスクリュー羽根12とを有することを特徴とする。中空管11の外径、内径は特に制限されないが、内径19mm以上、外径22mm以上であることが好ましい。また、中空管11の断面形状は円形に限定されず、多角形、例えば六角形や八角形等であってもよい。
Hereinafter, the present invention will be described in detail.
FIG. 1 shows an embodiment of a pipe screw of the present invention. The pipe screw 1 of the present invention is characterized by having a hollow tube 11 having a tip processed into a pointed shape, and a screw blade 12 helically provided on the outer periphery of the hollow tube. The outer diameter and the inner diameter of the hollow tube 11 are not particularly limited, but the inner diameter is preferably 19 mm or more and the outer diameter 22 mm or more. Moreover, the cross-sectional shape of the hollow tube 11 is not limited to a circle, and may be a polygon, such as a hexagon or an octagon.

中空管11の材料としては特に制限することなく用いることができる。例えば、強度の点から鉄、ステンレス、アルミニウム、これらの合金等の金属製のものが好ましく、コストの点から特に鉄が好ましい。また、防錆の点から、亜鉛、ニッケル等でメッキされていることが好ましい。中空管11の内部に水が溜まることがあるため、中空管11の内面にもメッキを施すことが好ましく、中空管11の外面および内面のメッキ上に防錆塗料を塗布することがさらに好ましい。防錆塗料としては市販品を特に制限することなく使用することができ、例えば、スーパーチギワガード(渡辺パイプ株式会社製、登録商標)を用いることができる。   The material of the hollow tube 11 can be used without any particular limitation. For example, metals such as iron, stainless steel, aluminum, and alloys thereof are preferable from the viewpoint of strength, and iron is particularly preferable from the viewpoint of cost. Moreover, it is preferable to plate with zinc, nickel etc. from the point of rust prevention. It is preferable to plate the inner surface of the hollow tube 11 as water may be accumulated inside the hollow tube 11, and an anticorrosive coating may be applied on the plating of the outer surface and the inner surface of the hollow tube 11. Further preferred. A commercially available product can be used without particular limitation as the anticorrosion paint, and for example, Super Chigi Wagad (manufactured by Watanabe Pipe Co., Ltd., registered trademark) can be used.

中空管11の先端は尖った形状に加工され、中空管11そのものが地面を掘るのに適した形状に加工されているため、地面を掘るための別部材と接続する必要がなく低コストである。中空管の先端形状は特に制限されないが、図1に示すように、中空管の先端を扁平状に潰してガス溶断等により尖った形状に加工することが、製造が容易で低コストである。   The tip of the hollow tube 11 is processed into a pointed shape, and the hollow tube 11 itself is processed into a shape suitable for digging the ground, so there is no need to connect with a separate member for digging the ground, and the cost is low. It is. The shape of the tip of the hollow tube is not particularly limited, but as shown in FIG. 1, it is easy to lower the cost because the tip of the hollow tube is crushed into a flat shape and processed into a sharp shape by gas melting etc. is there.

中空管11の外周には、螺旋状のスクリュー羽根12が溶接されている。発明のパイプスクリュー1において、スクリュー羽根12が溶接される中空管11の外径は、従来のスクリュー杭においてスクリュー羽根が溶接される芯材の外径と比較して大きい。スクリュー羽根12と中空管11とが溶接される面積が、従来のスクリュー杭においてスクリュー羽根と芯材とが溶接される面積と比較して広いため、加工が容易であり、また、スクリュー羽根12と中空管11とを強固に固定することができる。   A spiral screw blade 12 is welded to the outer periphery of the hollow tube 11. In the pipe screw 1 of the invention, the outer diameter of the hollow tube 11 to which the screw blade 12 is welded is larger than the outer diameter of the core material to which the screw blade is welded in the conventional screw pile. The area in which the screw vanes 12 and the hollow tube 11 are welded is large as compared with the area in which the screw vanes and the core material are welded in a conventional screw pile, so that processing is easy. And the hollow tube 11 can be firmly fixed.

スクリュー羽根12の材料としては特に制限することなく用いることができるが、強度の点から鉄、ステンレス、アルミニウム、これらの合金等の金属製のものが好ましく、コストの点から特に鉄が好ましい。また、防錆の点から、亜鉛、ニッケル等でメッキされていることが好ましく、メッキ上に防錆塗料を塗布することがさらに好ましい。防錆塗料としては、市販品を特に制限することなく使用することができる。スクリュー羽根12は、その外径が100〜120mmであり、中空管11の外周に1周期以上の螺旋を描くように形成される。   The material of the screw blade 12 can be used without any particular limitation, but is preferably made of metal such as iron, stainless steel, aluminum, and alloys thereof from the viewpoint of strength, and iron is particularly preferable from the viewpoint of cost. Moreover, it is preferable to plate with zinc, nickel etc. from a point of rust prevention, and it is more preferable to apply a rust preventive paint on plating. A commercially available product can be used without particular limitation as the anticorrosive paint. The screw blade 12 has an outer diameter of 100 to 120 mm, and is formed on the outer periphery of the hollow tube 11 so as to draw a spiral of one or more cycles.

図2に、本発明のパイプスクリュー杭3の一実施態様を示す。パイプスクリュー杭3は、パイプスクリュー1と継管2とが接続されてなる。任意の長さの継管2を接続することで、求める長さのパイプスクリュー杭3を得ることができる。本発明のパイプスクリュー杭3を埋め込む深さは特に制限されないが、一般的な作土の深さである50cm以上埋め込むことが好ましい。また、埋め込む深さの上限は、強度に優れた地層に埋め込むことができる深さであれば特に制限されないが、通常150cm以内である。   FIG. 2 shows an embodiment of the pipe screw pile 3 of the present invention. The pipe screw pile 3 includes a pipe screw 1 and a connecting pipe 2 connected to each other. By connecting the connecting pipe 2 of any length, it is possible to obtain the pipe screw pile 3 of the required length. Although the depth in which the pipe screw pile 3 of the present invention is embedded is not particularly limited, it is preferable to be embedded at 50 cm or more which is a common depth of soil formation. Further, the upper limit of the embedding depth is not particularly limited as long as it can be embedded in a stratum excellent in strength, but is usually within 150 cm.

継管2の径は特に制限されないが、パイプスクリュー1の中空管11の内径よりも、継管2の外径が小さいことが好ましい。中空管11に継管2を挿し込むことで、パイプスクリュー杭3を地面に埋め込む際に、中空管11と継管2との間の段差が地中の石等に引っかかることを防ぐことができる。また、継管2の断面形状は特に制限されず、円形、六角形や八角形等の多角形等が挙げられ、中空管11の断面形状と同一でなくてもよい。ただし、中空管11、継管2の断面形状をともに多角形とし、中空管11の内面に継管2の外面が内接するようにすると、パイプスクリュー杭3を埋め込む際に継管2を回転させるように加えた力を、面で中空管に伝えることができるため好ましい。   The diameter of the connecting pipe 2 is not particularly limited, but the outer diameter of the connecting pipe 2 is preferably smaller than the inner diameter of the hollow pipe 11 of the pipe screw 1. By inserting the joining pipe 2 into the hollow pipe 11, when the pipe screw pile 3 is embedded in the ground, it is possible to prevent the step between the hollow pipe 11 and the joining pipe 2 from being caught in a stone or the like in the ground. Can do. In addition, the cross-sectional shape of the connecting pipe 2 is not particularly limited, and may be a circular shape, a hexagonal shape, a polygonal shape such as an octagonal shape, or the like, and may not be the same as the cross-sectional shape of the hollow tube 11. However, when the cross sectional shapes of the hollow pipe 11 and the joint pipe 2 are both polygonal and the outer surface of the joint pipe 2 is inscribed in the inner surface of the hollow pipe 11, the joint pipe 2 is embedded when the pipe screw pile 3 is embedded. It is preferable because the force applied to rotate can be transmitted to the hollow tube by the surface.

本発明において、パイプスクリュー1と継管2とを接続する手段は特に制限されない。簡易建物を組み立てる現場で容易に、かつ強固に接続することができるため、ボルト4を用いることが好ましい。図3に、図2に示した一実施態様のパイプスクリュー杭のA−A’線の断面図を示す。図3に示すように、中空管11を貫通する1組または複数組のボルト穴41を設け、ボルト4の先端部で中空管11に挿し込んだ継管2を挟みこむことにより、パイプスクリュー1と継管2とを接続することができる。ここで、ボルト穴の組とは、対向する2つのボルト穴を意味する。この構成では、継管2にボルト穴を設ける必要がないため、低コストである。また、継管2にも管を貫通するように1組または複数組のボルト穴を設け、中空管11のボルト穴と継管2のボルト穴とに通したボルトをナットで螺合することにより接続してもよい。   In the present invention, the means for connecting the pipe screw 1 and the connecting pipe 2 is not particularly limited. The bolt 4 is preferably used because it can be easily and firmly connected at a site where a simple building is assembled. FIG. 3 is a cross-sectional view taken along line A-A 'of the pipe screw pile of one embodiment shown in FIG. As shown in FIG. 3, a pipe is provided by providing one or more sets of bolt holes 41 penetrating the hollow pipe 11 and sandwiching the junction pipe 2 inserted into the hollow pipe 11 with the tip of the bolt 4. The screw 1 and the connecting pipe 2 can be connected. Here, the set of bolt holes means two opposing bolt holes. In this structure, since it is not necessary to provide a bolt hole in the connecting pipe 2, it is low-cost. Also, one or more sets of bolt holes are provided in the connecting pipe 2 so as to penetrate the pipe, and the bolts passed through the bolt holes of the hollow pipe 11 and the connecting pipe 2 are screwed together with nuts. You may connect by.

ボルト穴41は、2組以上設けることが、パイプスクリュー1と継管2とを強固に接続することができるため好ましい。パイプスクリュー1と継管2とは、ボルト4のみ、またはボルト4とナットを用いて容易に接続することができるため、簡易建物を建てる現場で迅速にパイプスクリュー杭3を組み立てることができる。また、簡易建物の補強には多くのパイプスクリュー杭3が必要であるが、本発明のパイプスクリュー杭3は、パイプスクリュー1と継管2とが別々の部材で構成されているため、従来の一体化して形成されているスクリュー杭と比較して、運搬が容易であり、運搬、保管に必要なスペースを小さくすることができる。   It is preferable to provide two or more sets of bolt holes 41 because the pipe screw 1 and the connecting pipe 2 can be firmly connected. The pipe screw 1 and the joint pipe 2 can be easily connected using only the bolt 4 or the bolt 4 and the nut, so the pipe screw pile 3 can be assembled quickly at the site where a simple building is built. Moreover, although many pipe screw piles 3 are required for reinforcement of a simple building, since the pipe screw piles 3 and the joint pipe 2 of the pipe screw pile 3 of the present invention are composed of different members, Compared to screw piles that are integrally formed, they can be easily transported, and the space required for transportation and storage can be reduced.

本発明のパイプスクリュー杭3は、地面に回転させながら押し込むことで埋め込まれる。本発明のパイプスクリュー杭3において、パイプスクリュー1と継管2とは強固に接続されており、回転させながら埋め込む際、および、埋め込む時とは逆方向に回転させながら抜き出す際に、パイプスクリュー1と継管2とが外れることはない。ここで、パイプスクリュー杭3を地面に埋め込む時には、継管2から離れた箇所に力を加えると、モーメントが大きくなるため、少ない力で継管2を回転させることができる。継管2の断面形状が多角形であると、市販のスパナやラチェットレンチを用いて継管2を回転させることができる。継管の断面形状が円形である場合は、継管2の上部に断面が多角形である金具等を取り付けることにより、市販のスパナ等で回転させることができる。   The pipe screw pile 3 of the present invention is embedded by being pushed into the ground while being rotated. In the pipe screw pile 3 of the present invention, the pipe screw 1 and the connecting pipe 2 are firmly connected, and when embedding while rotating, and when extracting while rotating in the opposite direction to the time of embedding, pipe screw 1 And the connecting pipe 2 will not come off. Here, when embedding the pipe screw pile 3 in the ground, if a force is applied to a place away from the connecting pipe 2, the moment increases, so that the connecting pipe 2 can be rotated with a small force. When the cross-sectional shape of the connecting pipe 2 is a polygon, the connecting pipe 2 can be rotated using a commercially available spanner or ratchet wrench. When the cross-sectional shape of the connecting pipe is circular, it can be rotated by a commercially available spanner or the like by attaching a metal fitting having a polygonal cross section to the upper part of the connecting pipe 2.

本発明のパイプスクリュー杭3は、表層地盤の強度が弱く、強度に優れた地層が深く位置する場合であっても、適当な長さの継管2と接続することで強度に優れた地層に埋め込むことができる。強度に優れた地層に埋め込まれたパイプスクリュー杭3と簡易建物の骨組材とをクランプ等で接続することで、簡易建物の耐風性能を向上することができる。本発明のパイプスクリュー杭3は、強度に優れた地層に埋め込むことで引抜耐力が増すため、パイプスクリュー杭3の数を増やすことなく、簡易建物を補強することができる。または、簡易建物のアーチ材を、簡易建物の側面部と頂部とを構成する異なる部材からなる連結部材とし、パイプスクリュー杭3の継管2をアーチ材の側面部を構成する部材としてもよい。   The pipe screw pile 3 of the present invention is a layer with excellent strength by connecting with the connecting pipe 2 of appropriate length even when the strength of the surface ground is weak and the layer with excellent strength is deeply located. Can be embedded. By connecting the pipe screw pile 3 embedded in the stratum having excellent strength and the frame material of the simple building with a clamp or the like, the wind resistance performance of the simple building can be improved. The pipe screw pile 3 of the present invention is enhanced in pullout resistance by being embedded in a stratum excellent in strength, so that a simple building can be reinforced without increasing the number of pipe screw piles 3. Alternatively, the arch member of the simplified building may be a connecting member composed of different members constituting the side portion and the top portion of the simplified building, and the joint pipe 2 of the pipe screw pile 3 may be a member constituting the side portion of the arched member.

ここで、簡易建物はアーチ材の末端が地面に差し込まれることにより固定されている。簡易建物の表面積から、特定の風速の時に簡易建物に作用する風圧を求めることができる。この風圧から、地面に差し込まれたアーチ材一本あたりに作用する引抜力(T)を求め、アーチ材の引抜耐力が引抜力(T)とを比較することで、簡易建物に補強が必要であるかを評価することができる。想定される風速は、簡易建物を設置する場所や地形等に応じて適宜選択することができ、例えば、台風による被害が心配される九州、四国等では35〜50m/s、周囲を山に囲まれている等の強風被害が少ない地域では20〜35m/sの範囲を用いることができる。   Here, the simple building is fixed by inserting the end of the arch material into the ground. From the surface area of the simple building, the wind pressure acting on the simple building at a specific wind speed can be determined. From this wind pressure, the pullout force (T) acting on one arch material inserted into the ground is obtained, and the pullout resistance of the arch material is compared with the pullout force (T), and it is necessary to reinforce the simple building Can be evaluated. The assumed wind speed can be appropriately selected according to the place where the simple building is installed, the topography, etc. For example, in Kyushu, Shikoku, etc. where damage by typhoon is a concern, the surrounding area is surrounded by mountains The range of 20 to 35 m / s can be used in the area where there is little strong wind damage such as

所定の風速時にアーチ材に作用する引抜力(T)は簡易建物の表面積と風速とから算出することができるが、アーチ材の引抜耐力は実際に測定しなければ求められない。しかし、簡易建物を建てる現場に測定機器を運び込み、実際にアーチ材を埋め込んで、引抜耐力を測定するのは煩雑である。そのため、実際には補強杭が不要な現場であっても、「念の為に」補強杭を埋め込み簡易建物を補強することが行われており、無駄な費用と手間とをかけているという問題があった。   The pulling force (T) acting on the arch material at a predetermined wind speed can be calculated from the surface area of the simple building and the wind speed, but the pulling strength of the arch material cannot be obtained unless it is actually measured. However, it is complicated to carry measurement equipment to the site where a simple building is to be built, to actually embed an arch material, and to measure the pull-out resistance. Therefore, even if it is a site where reinforcement piles are not actually needed, reinforcement piles are embedded "for just in case" to reinforce simple buildings, which is a problem of wasting unnecessary cost and labor. was there.

本発明者らは、鋭意研究の結果、実際にアーチ材の引抜耐力を測定することなく、引抜耐力計算値(tRa)を算出することのできる式として、平成13年国土交通省告示第1113号における支持力算定式の記載を元に下記式1を算定した。   The inventors of the present invention reported on the Ministry of Land, Infrastructure, Transport and Tourism No. 1113 of 2001 as a formula that can calculate the pull-out resistance calculation value (tRa) without actually measuring the pull-out resistance of the arch member as a result of earnest research. The following formula 1 was calculated based on the description of the bearing capacity calculation formula.

「式1」
tRa=4/15×(R/α)×2
:アーチ材とその周囲の地盤との摩擦力 [kN]
=(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
"Formula 1"
tRa = 4/15 × (R F / α) × 2
R F : Frictional force between arch material and surrounding ground [kN]
R F = (10/3 × N × Ls + 1/2 × qu × Lc) · φ
qu: Uniaxial compressive strength of cohesive soil [kN / m 2 ]
qu = 12.5 N (Terzaghi Peck type)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Buried length of sandy soil [m]
Lc: Buried length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil, 3.0 for sandy soil.
However, the pull-out resistance calculation value (tRa) of the sandy soil whose N value is less than 10 is 0.

アーチ材の埋込長(Ls、Lc)、アーチ材の周長(φ)は、簡易建物の規格や設計により判明しているため、簡易建物を建てる地盤のN値と、その分類(粘性土か砂質土か)が分かれば、上記式1を用いて引抜耐力計算値(tRa)を算出することができる。なお、下記で詳述するが、式1の引抜耐力算定式は、算定式から算出される引抜耐力計算値(tRa)が、実際に測定して求められる引抜耐力の値よりも小さい値、すなわち、安全側となるように設計している。   The embedded length (Ls, Lc) of the arch material and the circumferential length (φ) of the arch material are determined by the standard and design of the simple building, so the N value of the ground on which the simple building is built If it is known whether it is sandy soil or not, it is possible to calculate the pulling strength calculation value (tRa) using the above formula 1. As described in detail below, in the pullout resistance calculation formula of Formula 1, the pullout resistance calculation value (tRa) calculated from the calculation formula is a value smaller than the pullout resistance value obtained by actual measurement, that is, Designed to be on the safe side.

N値とはJIS A 1219に記載の標準貫入試験によって求められる値であり、地盤の強度を表す。N値は、63.5kgのおもりを75cm落下させて地盤に打ち付け、30cm打ち込むのに要する打撃回数で表される値である。N値が大きいほど地盤が強固なため、引抜耐力が大きくなる。   The N value is a value determined by the standard penetration test described in JIS A 1219, and represents the strength of the ground. The N value is a value represented by the number of impacts required to drop a 63.5 kg weight by 75 cm, strike it on the ground, and drive 30 cm. The greater the N value, the stronger the ground, and the greater the pulling strength.

N値は、JIS A 1221に記載のスウェーデン式サウンディング試験により知ることができる。また、「地中押し込み式パイプハウス安全構造指針(社団法人日本施設園芸協会発行)」(以下、園芸基準と示す)に記載のN値の目安を表1に示す。   The N value can be known by the Swedish-type sounding test described in JIS A 1221. In addition, Table 1 shows a guideline for the N value described in “Guidelines for safety of underground pipe-type pipe houses (issued by the Japan Facility Horticultural Association)” (hereinafter referred to as horticultural standards).


地盤は細分化して多くの種類に分類されるが、引抜耐力計算値(tRa)を算出するには、粘性土か砂質土かのみを判断すればよい。粘性土とは、細粒分(粒径が0.074mm以下の粒子)の割合が50%より多い土のことであり、粘性が強く水を通しにくい。砂質土とは粗粒分(粒径が0.074mm以上の粒子)の割合が50%より多い土のことであり、粘性がなくザラザラしており、水を通しやすい。同じN値の粘性土と砂質土とに、同一のアーチ材を同じ深さに差し込んだ時の引抜耐力は粘性土の方が大きい。すなわち、粘性土と砂質土とでは、粘性土は引抜耐力が大きくアーチ材が抜けにくく、砂質土は引抜耐力が小さくアーチ材が抜けやすい。なお、粘性土であっても、砂が多く混じっている場合は、安全をとって砂質土として扱う。   The ground is subdivided and classified into many types, but in order to calculate the drawing strength calculation value (tRa), it is only necessary to determine whether the soil is clayey or sandy. A viscous soil is a soil in which the proportion of fine particles (particles having a particle size of 0.074 mm or less) is more than 50%, and the viscosity is high and it is difficult to pass water. Sandy soil refers to soil with a coarse fraction (particles having a particle size of 0.074 mm or more) of more than 50%, which is not viscous and is rough and easy to pass water. When the same arch material is inserted into the same depth to the same N-value cohesive soil and sandy soil, the cohesive soil is larger in pullout resistance. That is, for clay soil and sandy soil, the clay soil has a high pulling strength and the arch material is difficult to be removed, and the sandy soil has a small pulling strength and the arch material is easily removed. Even if it is a cohesive soil, if it contains a lot of sand, treat it as sandy soil for safety.

所定の風速時に簡易建物のアーチ材に作用する引抜力(T)と、引抜耐力計算値(tRa)とを比較することにより、簡易建物がどの程度の風速に耐えることができる耐風性能を有するかを評価することができる。引抜力(T)が、引抜耐力計算値(tRa)よりも小さい場合は、アーチ材のみで十分な耐風性能を有しているため、補強杭を設ける必要はない。引抜力(T)と、引抜耐力計算値(tRa)とを比較することで、引抜耐力を測定せずとも補強が必要であるかを否かを判別することができるため、実際には不要である補強杭を購入する費用や、埋め込む手間を省くことができる。   How much wind speed can a simple building have withstanding wind resistance by comparing the pulling out force (T) acting on the arch material of the simple building at a given wind speed and the calculated pulling out resistance value (tRa)? Can be evaluated. When the pulling force (T) is smaller than the pulling strength calculation value (tRa), it is not necessary to provide a reinforcing pile because the arch material alone has sufficient wind resistance. By comparing the pullout force (T) with the calculated pullout resistance value (tRa), it can be determined whether reinforcement is necessary without measuring the pullout resistance, so it is actually unnecessary. This saves the cost of purchasing a certain stake and the time it takes to embed it.

引抜力(T)が、引抜耐力計算値(tRa)よりも大きい場合は、地面に埋め込んだ補強杭と、簡易建物の骨組材とを接続することで、簡易建物に所望の耐風性能を持たせることができる。補強杭としては、従来のらせん杭、スクリュー杭、本発明のスクリューパイプ杭を用いることができる。ここで、らせん杭、スクリュー杭の引抜耐力は「園芸基準」に記載されている。本発明のパイプスクリュー杭3は、その形状からスクリュー杭と同等の引抜耐力を有している。   If the pullout force (T) is larger than the pullout resistance calculation value (tRa), the simplified building can be made to have a desired wind resistance performance by connecting the reinforced pile embedded in the ground and the skeleton of the simple building be able to. As the reinforcing pile, a conventional spiral pile, a screw pile, or the screw pipe pile of the present invention can be used. Here, the pulling strength of the spiral pile and screw pile is described in the “horticultural standards”. The pipe screw pile 3 of the present invention has a pullout resistance equivalent to that of the screw pile because of its shape.

以下に、補強杭として本発明のパイプスクリュー杭3を用いる場合について詳述するが、従来のらせん杭、スクリュー杭も同様の手法により用いることができる。
簡易建物を建てる実際の地盤において、パイプスクリュー杭3が有する引抜耐力の値は測定しないと判明しないが、実際に測定するのは煩雑である。地盤が硬い(N値が大きい)ほど、引抜耐力は大きくなるため、地盤のN値と引抜耐力とが比例すると仮定して、パイプスクリュー杭3の引抜耐力計算値(tRp)を算出することのできる式を算定した。なお、園芸基準では通常の畑土で、スクリュー杭の引抜耐力(短期)は2000Nとされているため、この値を引抜耐力計算値(tRp)の上限とした。パイプスクリュー杭3の引抜耐力算定式を式2に示す。
Below, although the case where the pipe screw pile 3 of this invention is used as a reinforcement pile is explained in full detail, the conventional spiral pile and a screw pile can also be used with the same method.
In an actual ground where a simple building is to be built, it is not clear that the value of the pullout resistance of the pipe screw pile 3 will not be measured, but it is complicated to measure in practice. The harder the ground is (the larger the N value), the higher the pullout resistance, so it is assumed that the N value of the ground and the pullout resistance are proportional, and the calculated pullout resistance value (tRp) of the pipe screw pile 3 is calculated. The possible formula was calculated. In addition, since the pullout resistance (short-term) of the screw pile is 2000 N in normal upland soil according to horticulture standards, this value is set as the upper limit of the calculated pullout resistance value (tRp). A formula for calculating the pullout resistance of the pipe screw pile 3 is shown in Formula 2.

「式2」
粘性土における引抜耐力計算値
tRp=2000/3×平均N値
(平均N値>3の場合は2000)
砂質土における引抜耐力計算値
tRp=2000/8×平均N値
(平均N値>8の場合は2000)
なお、平均(N値)とは、簡易建物を建てる地盤の複数箇所で測定したN値の平均を意味する。
"Formula 2"
Calculated pull-out strength in cohesive soil tRp = 2000/3 × average N value
(2000 if average N value> 3)
Calculated pulling strength in sandy soil tRp = 2000/8 × average N value
(2000 if average N value> 8)
In addition, an average (N value) means the average of the N value measured in multiple places of the ground which builds a simple building.

なお、式1のアーチ材の引抜耐力算定式と同じく、式2のパイプスクリュー杭3の引抜耐力算定式も、実際に測定して求められる引抜耐力の値よりも小さい値、すなわち、安全側となるように算定している。   In the same way as the pullout strength calculation formula of the arch member of Formula 1, the pullout strength calculation formula of the pipe screw pile 3 of Formula 2 is also a smaller value than the pullout strength value obtained by actual measurement, that is, the safety side It is calculated as follows.

簡易建物のアーチ材の引抜力(T)が、引抜耐力計算値(tRa)よりも大きい時には、上記式2で求めたパイプスクリュー杭3の引抜耐力計算値(tRp)を用いて、引抜耐力の不足分(T−tRa)を補うのに必要なパイプスクリュー杭3の本数を求める。具体的には、簡易建物において地面に挿し込まれるアーチ材の本数をn、必要なパイプスクリュー杭3の本数をmとすると、下記式3で必要なパイプスクリュー杭3の本数(m)は求められる。   When the pullout force (T) of the arch member of the simple building is larger than the pullout resistance calculation value (tRa), the pullout resistance calculation value (tRp) of the pipe screw pile 3 determined by the above equation 2 is used to The number of pipe screw piles 3 required to compensate for the shortage (T-tRa) is determined. Specifically, assuming that the number of arch members inserted into the ground in a simple building is n and the number of required pipe screw piles 3 is m, the number (m) of required pipe screw piles 3 is calculated by the following equation 3 It is done.

「式3」
m≧n(T−tRa)/tRp (ただしmは整数とする。)
m :パイプスクリュー杭の本数
n :簡易建物において地面に挿し込まれるアーチ材の本数
"Formula 3"
m ≧ n (T−tRa) / tRp (where m is an integer)
m: Number of pipe screw piles n: Number of arch members inserted into the ground in simple buildings

上記式3で求めた本数のパイプスクリュー杭を一定の間隔で埋め込み、地面に埋め込んだパイプスクリュー杭と簡易建物を構成する沈下防止パイプやアーチ材等の骨組材とを接続することで、簡易建物が所定の耐風性能を有するように補強することができる。   A simple building is obtained by embedding at a fixed interval the number of pipe screw piles obtained by the above equation 3 and connecting the pipe screw pile embedded in the ground and a skeleton material such as an anti-sink pipe or arch material that constitutes a simple building. Can be reinforced so as to have a predetermined wind resistance.

ここで、引抜力(T)が引抜耐力計算値(tRa)よりも大きい場合は、簡易建物を建てる地盤表層のN値が小さいことが多い。そのため、従来の30〜70cm程度の長さの市販の補強杭で補強しても、補強杭はN値の小さい地盤に埋め込まれるのみであり、耐風性能があまり向上しないことがある。本発明のパイプスクリュー杭3は、継管2の長さを調整してN値の大きい強度に優れた地層まで埋め込むことができるため、補強杭として本発明のパイプスクリュー杭3を用いることが好ましい。上記したように、粘性土と砂質土とでは引抜耐力が大きく異なるため、パイプスクリュー杭3は、粘性土ではN値が2以上となる地層まで、砂質土ではN値が4以上となる地層まで埋め込むことが好ましい。   Here, when the drawing force (T) is larger than the drawing strength calculation value (tRa), the N value of the ground surface layer on which the simple building is built is often small. Therefore, even if it reinforces with the conventional reinforcement pile of about 30-70 cm in length, a reinforcement pile is only embedded in the ground with small N value, and wind resistance may not be improved very much. In the pipe screw pile 3 of the present invention, it is preferable to use the pipe screw pile 3 of the present invention as a reinforcement pile because the length of the joint pipe 2 can be adjusted and embedded up to the formation having excellent strength of N value. . As described above, since the pullout resistance is significantly different between the cohesive soil and the sandy soil, the pipe screw pile 3 has the N value of 4 or more in the sandy soil until the formation where the N value is 2 or more in the cohesive soil It is preferable to embed up to the formation.

φ19.1からφ42.7までのアーチ材と、本発明のパイプスクリュー杭を試験体とした。試験体を土壌中に300〜500mmの深さまで埋込み鉛直方向に引き抜きながら引抜耐力を測定する引抜試験を実施した。試験体の一覧を表2に示す。用いた試験体はいずれも渡辺パイプ株式会社製であり、表2において「タフ」とは、商品名「タフパイプ」を意味する。   The arch members from φ19.1 to φ42.7 and the pipe screw pile of the present invention were used as test bodies. A pull-out test was conducted to measure the pull-out resistance while the test body was embedded in the soil to a depth of 300 to 500 mm and pulled out in the vertical direction. Table 2 shows a list of test specimens. All of the test specimens used were manufactured by Watanabe Pipe Co., Ltd., and “Tough” in Table 2 means the trade name “Tough Pipe”.

<引抜試験1>
場所:茨城県小美玉市中野谷字西原501
土質:粘性土
N値=2.4 ・・・埋込長500mm
N値=2.3 ・・・埋込長300mm
<Pullout test 1>
Place: Nakamitani character Nishihara 501, Omitama City, Ibaraki Prefecture
Soil quality: cohesive soil N value = 2.4 ··· Embedding length 500 mm
N value = 2.3 ... embedded length 300 mm

<引抜試験2>
場所:千葉県富津市西川
土質:粘性土
N値=2.4 ・・・埋込長500mm
N値=0.8 ・・・埋込長300mm
<Pullout test 2>
Place: Nishikawa Soil, Futtsu City, Chiba Prefecture: Cohesive soil N value = 2.4 ··· Embedding length 500 mm
N value = 0.8 ... Embedded length 300mm

<引抜試験3>
場所:千葉県山武市松ケ谷口
土質:粘性土(砂混り粘性土)
N値=3.0 ・・・埋込長500mm
N値=2.6 ・・・埋込長300mm
<Pullout test 3>
Location: Sanbu City, Chiba Prefecture Matsugayaguchi Soil Quality: Cohesive soil (sand mixed cohesive soil)
N value = 3.0 ... embedding length 500mm
N value = 2.6 ··· embedded length 300 mm

<引抜試験4>
場所:千葉県山武市松ケ谷口
土質:砂質土
平均N値=11.5 ・・・埋込長500mm
<Pullout test 4>
Location: Sanbu-shi, Chiba Matsugayaguchi soil quality: Sandy soil average N value = 11.5 ... embedded length 500mm

各試験片を鉛直方向に引き抜く際に測定した引抜力の最大値の2/3を引抜耐力(短期)実験値とした。また、上記式1により引抜耐力計算値(tRa)を算出し、引抜耐力計算値に対する引抜耐力実験値の検定比(引抜耐力実験値/引抜耐力計算値)を求めた。その結果を表3に示す。なお、引抜試験3の土質は粘性土であったが、砂が多く混じっており砂質土としての性状が支配的になると考えられるため、引抜耐力計算値は砂質土として算定した。   Two thirds of the maximum value of the drawing force measured when drawing each test piece in the vertical direction was taken as a drawing resistance (short-term) experimental value. In addition, the draw-out resistance calculation value (tRa) was calculated by the above-mentioned equation 1, and the verification ratio of the pull-out resistance experimental value to the draw-out resistance calculation value was calculated (extraction resistance test value / extraction resistance calculation value). The results are shown in Table 3. Although the soil quality in pull-out test 3 was viscous soil, it is thought that the sand mixture is abundant and the property as sandy soil is dominant, so the pull-out resistance calculation value was calculated as sandy soil.


「アーチ材の引抜耐力算定式の検証」
粘性土で行った引抜き試験1、2は、24試験中20試験で検定比が基準値1.0を上回り、3試験で基準値を下回った。
検定比の分布を見ると2.0〜4.0の間に多く集まっており、24試験の平均値が3.4であることから、算定式に問題がないことが確認できた。
"Verification of pullout strength calculation formula of arch material"
In the pull-out tests 1 and 2 performed on the clay, the test ratio was higher than the reference value 1.0 in 20 of 24 tests and lower than the reference value in 3 tests.
Looking at the distribution of the test ratio, many were collected between 2.0 and 4.0, and the average value of 24 tests was 3.4. Therefore, it was confirmed that there was no problem in the calculation formula.

砂混り粘性土で行った引抜き試験3は、11試験中8試験で検定比が基準値1.0を下回った。また、No.29は全試験を通して最も低い引抜耐力実験値である10Nを示し、ほとんど引抜耐力がなかった。
砂質土で行った引抜き試験4は、すべての試験で検定比は基準値1.0を上回っており、算定式に問題がないことが確認できた。
In pull-out test 3 performed on sandy clay soil, verification ratio fell below the standard value 1.0 in 8 of 11 tests. Also, no. 29 showed 10 N which is the lowest pull-out resistance experimental value through all the tests, and there was almost no pull-out resistance.
In the pull-out test 4 performed on sandy soil, the verification ratio exceeded the standard value 1.0 in all tests, and it was confirmed that there was no problem in the calculation formula.

N値が3.0の砂混じり粘性土で行った引抜き試験3はほとんど引抜耐力がなく、N値が11.5の砂質土で行った引抜き試験4は算定式に問題がなかったことから、砂質土として扱われる砂混じり粘性土と砂質土では、N値が10未満の場合の引抜耐力は0とした。   There was almost no pull-out resistance in the pull-out test 3 conducted on a sand mixed cohesive soil having an N value of 3.0, and the pull-out test 4 conducted on a sandy soil having an N value of 11.5 had no problem in the formula. In the case of sandy mixed clay soil and sandy soil treated as sandy soil, the pullout resistance was set to 0 when the N value was less than 10.

以上の結果から、アーチ材の引抜耐力の測定値は、式1で表される引抜耐力算定式から算出される引抜耐力計算値(tRa)よりも大きな値を示すこと、すなわち、引抜耐力計算値(tRa)は、実際に測定した引抜耐力の値に対して安全側に位置していることが確認できた。   From the above results, the measured value of the pullout resistance of the arch material exhibits a larger value than the calculated pullout resistance calculated value (tRa) calculated from the pullout resistance calculation formula expressed by Equation 1, that is, the calculated pullout resistance It was confirmed that (tRa) is located on the safe side with respect to the actually measured pulling strength value.

「パイプスクリュー杭の引抜耐力算定式の検証」
パイプスクリュー杭の引抜耐力(短期)実験値と、上記式2で表される引抜耐力算定式より算出されたパイプスクリュー杭の引抜耐力計算値(tRp)とを表4に示す。
"Verification of pullout strength calculation formula of pipe screw pile"
Table 4 shows pull-out resistance (short-term) experimental values of pipe screw piles and calculated pull-out strengths (tRp) of pipe screw piles calculated from the pull-out resistance calculation formula expressed by the above equation 2.

引抜き試験2〜4で測定したパイプスクリュー杭の引抜耐力(No.25、37、38、42)の実験値は、同一のN値の時に式2で表される算定式で算出した引抜耐力計算値(tRp)を上回っており、この算定式は試験値に対し安全側であることが確かめられた。   The experimental values of the pullout resistance (No. 25, 37, 38, 42) of the pipe screw piles measured in the pullout tests 2 to 4 are the pullout resistance calculation calculated by the formula represented by Formula 2 at the same N value. It exceeded the value (tRp), and it was confirmed that this calculation formula is safe with respect to the test value.

1 パイプスクリュー
11 中空管
12 スクリュー羽根
2 継管
3 パイプスクリュー杭
4 ボルト
41 ボルト穴
1 pipe screw 11 hollow pipe 12 screw blade 2 joint pipe 3 pipe screw pile 4 bolt 41 bolt hole

Claims (3)

所定の風速時に、簡易建物を地面に固定するアーチ材に作用する引抜力(T)を算出する工程、
下記式1に基づいて、簡易建物を地面に固定するアーチ材の引抜耐力計算値(tRa)を算定する工程、
前記引抜力(T)と、前記引抜耐力計算値(tRa)とを比較する工程、
とを有することを特徴とする簡易建物の耐風性能評価方法。
「式1」
tRa=4/15×(R/α)×2
:アーチ材とその周囲の地盤との摩擦力 [kN]
RF =(10/3×N×Ls+1/2×qu×Lc)・φ
qu :粘性土の一軸圧縮強さ [kN/m
qu =12.5N (Terzaghi Peck式)
N :N値。標準貫入試験(JIS A 1219)によって求められる地盤
の強度を示す数値。
Ls :砂質土の埋込長 [m]
Lc :粘性土の埋込長 [m]
φ :アーチ材の周長 [m]
α :安全率。粘性土の場合2.0、砂質土の場合3.0。
ただし、N値が10未満の砂質土の引抜耐力計算値(tRa)は0とする。
Calculating a pulling force (T) acting on an arch member for fixing the simplified building to the ground at a predetermined wind speed;
Based on the following formula 1, a step of calculating a pulling-out strength calculation value (tRa) of an arch material that fixes a simple building to the ground,
Comparing the pulling force (T) and the pulling strength calculation value (tRa);
The wind resistance performance evaluation method of the simple building characterized by having.
"Formula 1"
tRa = 4/15 × (R F / α) × 2
R F : Frictional force between arch material and surrounding ground [kN]
RF = (10/3 × N × Ls + 1/2 × qu × Lc) · φ
qu: Uniaxial compressive strength of cohesive soil [kN / m 2 ]
qu = 12.5 N (Terzaghi Peck type)
N: N value. A numerical value indicating the strength of the ground determined by the standard penetration test (JIS A 1219).
Ls: Buried length of sandy soil [m]
Lc: Buried length of cohesive soil [m]
φ: Perimeter of arch material [m]
α: Safety factor. 2.0 for cohesive soil, 3.0 for sandy soil.
However, the pull-out resistance calculation value (tRa) of the sandy soil whose N value is less than 10 is 0.
請求項に記載の耐風性能評価方法において、前記引抜力(T)が前記引抜耐力計算値(tRa)よりも大きい場合、
前記簡易建物を構成する骨組材と、地面に埋め込まれた補強杭とを接続することを特徴とする簡易建物の補強方法。
The wind resistance performance evaluation method according to claim 1 , wherein the pulling force (T) is larger than the pulling strength calculation value (tRa),
A reinforcing method for a simple building, comprising connecting a frame material constituting the simple building and a reinforcing pile embedded in the ground.
前記補強杭が、扁平状に潰して尖った形状に加工された先端を有する中空管と、
該中空管の外周に1周期以上の螺旋状に設けられたスクリュー羽根とを有するパイプスクリューと継管とが接続されているパイプスクリュー杭であることを特徴とする請求項に記載の簡易建物の補強方法。
A hollow tube having a tip end of the reinforcement pile which is crushed into a flat shape and processed into a sharp shape;
Simple of claim 2 in which the pipe screw and Tsugikan having an outer peripheral screw blade provided in one period or more helically of the hollow tube, characterized in that a pipe screw pile connected How to reinforce the building.
JP2015050340A 2015-03-13 2015-03-13 Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings Active JP6552847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050340A JP6552847B2 (en) 2015-03-13 2015-03-13 Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050340A JP6552847B2 (en) 2015-03-13 2015-03-13 Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019097695A Division JP6827069B2 (en) 2019-05-24 2019-05-24 Pipe screw pile

Publications (2)

Publication Number Publication Date
JP2016169546A JP2016169546A (en) 2016-09-23
JP6552847B2 true JP6552847B2 (en) 2019-07-31

Family

ID=56983349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050340A Active JP6552847B2 (en) 2015-03-13 2015-03-13 Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings

Country Status (1)

Country Link
JP (1) JP6552847B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417433U (en) * 1990-06-04 1992-02-13
JPH08246435A (en) * 1995-03-10 1996-09-24 Isomatsugumi:Kk Cover for ridge between rice paddy
JPH10231521A (en) * 1997-02-19 1998-09-02 Yamada Kikai Kogyo Kk Strike work machine
US20030159839A1 (en) * 2002-05-02 2003-08-28 Perko Howard A. Tubular pipe helix blade system
JP4658685B2 (en) * 2005-05-20 2011-03-23 株式会社大林組 Calculation method of pulling resistance of knotted pile using support pressure acting on inclined surface of enlarged diameter part, calculation method of indentation resistance, design method of knotted pile, knotted pile
JP3960559B1 (en) * 2007-03-19 2007-08-15 英将 太田 Reinforcement pipe with pressure plate, ground fall prevention method, and slope reinforcement method
JP3133482U (en) * 2007-04-27 2007-07-12 三協フロンテア株式会社 Unit house anchor pile and unit house with anchor pile
JP3135948U (en) * 2007-07-23 2007-10-04 ガイアパイル東日本 株式会社 Steel pipe pile joint structure
JP4611366B2 (en) * 2007-12-04 2011-01-12 キタイ設計株式会社 Water-saving type leakage prevention structure for paddy fields
JP2011024533A (en) * 2009-07-28 2011-02-10 Sankin B & G Kk Agricultural greenhouse, doorsill material of the same, method for constructing the agricultural greenhouse, and method for mounting the doorsill material of the agricultural greenhouse
JP5550372B2 (en) * 2010-02-05 2014-07-16 ソフトバンクBb株式会社 Antenna installation method and antenna installation equipment
JP2013169200A (en) * 2012-02-22 2013-09-02 Sankin B & G Kk Foundation structure of agricultural greenhouse, and construction method of the same

Also Published As

Publication number Publication date
JP2016169546A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
RU157321U1 (en) SCREW PILES
CN201531020U (en) Blade drill pipe steel pile special for a surface solar power station
EP3036377A1 (en) Pile, pile head and connector therefor
JP6827069B2 (en) Pipe screw pile
JP6352120B2 (en) Ground reinforcement method using perforated steel pipe with blades
RU2583793C1 (en) Screw pile
CN203755301U (en) Resistance withstanding spiral ground pile
JP6552847B2 (en) Wind resistance evaluation method for simple buildings and reinforcement method for simple buildings
JP2011080195A (en) Anchor device and method of installing anchor
CN112117957B (en) Fixing tool for rack support for solar cell panel and using method thereof
JP2008303608A (en) Steel pipe-soil cement composite pile
RU142535U1 (en) SCREW PILES
RU144966U1 (en) SCREW PILES
RU158889U1 (en) PILOT SCREW
CN208235499U (en) A kind of pile crown structure convenient for Rapid Implementation static test
RU164014U1 (en) SCREW PILES
JP5032255B2 (en) Rockfall protection and avalanche prevention facility
RU2587399C1 (en) Screw pile
CN109006020B (en) Design method of reinforced concrete engineering structure bar planting type plant growth groove structure
RU157320U1 (en) SCREW PILES
CN204225105U (en) The antitorque rotating earth anchor of anti-oblique pull with platen
RU163361U1 (en) SCREW PILES
CN203668919U (en) Reinforcing-type ground pile
RU148789U1 (en) SCREW PILES
RU127092U1 (en) ANCHOR DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190124

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6552847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250