JP6352120B2 - Ground reinforcement method using perforated steel pipe with blades - Google Patents

Ground reinforcement method using perforated steel pipe with blades Download PDF

Info

Publication number
JP6352120B2
JP6352120B2 JP2014180861A JP2014180861A JP6352120B2 JP 6352120 B2 JP6352120 B2 JP 6352120B2 JP 2014180861 A JP2014180861 A JP 2014180861A JP 2014180861 A JP2014180861 A JP 2014180861A JP 6352120 B2 JP6352120 B2 JP 6352120B2
Authority
JP
Japan
Prior art keywords
steel pipe
perforated steel
ground
bladed
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014180861A
Other languages
Japanese (ja)
Other versions
JP2016056505A (en
Inventor
良刀 前田
良刀 前田
智洋 浜崎
智洋 浜崎
藤原 優
優 藤原
富久 水田
富久 水田
隆博 中石
隆博 中石
Original Assignee
西日本高速道路株式会社
西日本高速道路メンテナンス九州株式会社
Nexco西日本コンサルタンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西日本高速道路株式会社, 西日本高速道路メンテナンス九州株式会社, Nexco西日本コンサルタンツ株式会社 filed Critical 西日本高速道路株式会社
Priority to JP2014180861A priority Critical patent/JP6352120B2/en
Publication of JP2016056505A publication Critical patent/JP2016056505A/en
Application granted granted Critical
Publication of JP6352120B2 publication Critical patent/JP6352120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排水機能を有する螺旋羽根付き有孔鋼管を用いた地盤補強工法に関する。   The present invention relates to a ground reinforcement method using a perforated steel pipe with spiral blades having a drainage function.

地形的な要因等により地盤内へ地下水等が供給され、それにより間隙水圧が上昇し、土粒子間の有効応力が減少することにより、豪雨や地震時にのり面が崩壊に至るケースが多数見受けられる。   Due to topographical factors, groundwater is supplied into the ground, which increases the pore water pressure and reduces the effective stress between soil particles, resulting in many cases in which the slope surface collapses during heavy rains or earthquakes. .

従来は、塩化ビニル製管などを用いた排水パイプにより盛土内水位を低下させる対応を行っている。また、水位低下のみでは安定性が満足されない場合は、必要に応じて鋼管やグラウンドアンカーによる抑止対策を実施している事例もある。   Conventionally, measures have been taken to lower the water level in the embankment with drainage pipes using vinyl chloride pipes and the like. In addition, when stability is not satisfied only by lowering the water level, there are cases where deterrence measures using steel pipes or ground anchors are implemented as necessary.

例えば、特許文献1には、筒状をなし、先端開口部が閉塞板によって閉塞され、閉塞板に堀削刃が固定されていると共に、先端寄りの外周には一個又は複数個の螺旋翼が固定され、周壁には複数の透孔が形成されており、頭部寄りの外周には雄ねじが形成されている鋼管製のアンカー体と、アンカー体の透孔の孔径より小さい網目を有し、アンカー体の内部空間に挿入されるメッシュ状筒体と、中央にアンカー体の頭部を挿通せしめる貫通孔を有し、この貫通孔の上面に前記アンカー体の雄ねじに螺合するナットが位置せしめられている支圧盤と、アンカー体の頭部開口端を着脱自在に閉塞するキャップとからなる傾斜地盤安定具が開示されている。
この傾斜地盤安定具は、アンカー体の頭部に掘削ドリルを接続して回転させ、螺旋翼に働く前進力によってアンカー体を地盤内にねじ込むものである。アンカー体のねじ込み方向としては、垂直や斜め下方向のほか、透孔による排水機能を重視したい場合には、略水平方向にねじ込むことが示されている。
For example, in Patent Document 1, a cylindrical shape is formed, a tip opening is closed by a closing plate, a digging blade is fixed to the closing plate, and one or a plurality of spiral blades are provided on the outer periphery near the tip. A plurality of through holes are formed on the peripheral wall, and the steel pipe anchor body is formed with a male screw on the outer periphery near the head, and has a mesh smaller than the hole diameter of the through hole of the anchor body, A mesh-like cylinder inserted into the interior space of the anchor body, and a through-hole through which the head of the anchor body is inserted in the center, and a nut to be screwed into the male screw of the anchor body is positioned on the upper surface of the through-hole. There is disclosed an inclined ground stabilizer comprising a supported bearing plate and a cap that detachably closes the head opening end of the anchor body.
In this inclined ground stabilizer, a drilling drill is connected to the head of the anchor body and rotated, and the anchor body is screwed into the ground by a forward force acting on the spiral blade. As the screwing direction of the anchor body, in addition to the vertical direction and the obliquely downward direction, it is shown that the anchor body is screwed in a substantially horizontal direction when the drainage function by the through holes is important.

特許文献2には、鋼管からなる杭本体と、前記杭本体の先端又は周面に螺旋状に設けられた螺旋状羽根と、前記杭本体の周面に設けられ、地盤面に接触して又は地中に配置されて前記螺旋状羽根との間の地盤に圧縮力を生じさせる支圧部とを備え、前記杭本体の周面には、地盤からの水を杭本体内部に通過させる貫通孔が設けられた地すべり防止杭が開示されている。   In Patent Document 2, a pile main body made of a steel pipe, a spiral blade provided spirally on the tip or peripheral surface of the pile main body, provided on the peripheral surface of the pile main body, and in contact with the ground surface or A through-hole that is disposed in the ground and has a pressure-bearing portion that generates a compressive force on the ground between the spiral blades and allows water from the ground to pass through the inside of the pile body. A landslide prevention pile provided with is disclosed.

特許文献3には、中空の鋼管と、前記鋼管の一端側から他端側まで連続して前記鋼管の外周に少なくとも1周以上螺旋状に形成された螺旋羽根と、前記鋼管の一端側において、前記鋼管の全周のうち一部分の周が前記螺旋羽根に沿って切欠かれた第1の切欠き部と、前記鋼管の全周のうち前記一部分の周以外の他の部分の周が前記第1の切欠き部の始端部と終端部とを結んで切欠かれた第2の切欠き部とを備えた鋼管が開示されている。   In Patent Document 3, a hollow steel pipe, a spiral blade formed in a spiral shape on the outer circumference of the steel pipe continuously from one end side to the other end side of the steel pipe, and one end side of the steel pipe, A first cutout portion in which a part of the entire circumference of the steel pipe is cut out along the spiral blade, and a circumference of the other part of the whole circumference of the steel pipe other than the circumference of the part is the first. The steel pipe provided with the 2nd notch part notched by connecting the start end part and termination | terminus part of this notch part is disclosed.

特開2006−226051号公報JP 2006-226051 A 特開2012−2012号公報JP 2012-2012 A 特開2012−136823号公報JP 2012-136823 A

前掲の特許文献1に開示された傾斜地盤安定具は、鋼鉄製のアンカー体の周壁に形成された複数の透孔により地盤の地下水の排出を行うとともに、先端の螺旋翼によりアンカー体を地盤内にねじ込むようにし、また螺旋翼と支圧盤とにより地盤を挟み付けることによって、傾斜地盤の支圧を行うようにしている。しかし、この傾斜地盤安定具による工法では、アンカー体の基端の支圧盤と支持地盤に貫入させた先端の螺旋翼とを締め付けることにより拘束効果が得られることとなるため、支持地盤に確実に貫入させる必要があるが、その方法については開示されていない。実際に先端ビットを取り付けて螺旋翼を付けた鋼管を地盤に貫入させようとすると、粘土層や砂質土層(支持地盤とならない)ではうまくいくが、ほとんどの盛土では、礫が混在しており、ある程度堅い地盤(標準貫入試験値10程度以上)であるので、水平もしくはやや上向きには、貫入させることが難しい。
また、螺旋翼を使わず楔締用鋼管先端のスリットを、手元端をハンマー等で打撃し拡張させて定着する方法も記されているが、鋼管が短い場合はある程度効果を期待できるが、長い場合(10m程度以上)になると人力での打撃では、杭体周面摩擦による抵抗で効果が期待できない(充分拡張できない)場合が多い。
また、アンカー体の基端の支圧盤がない場合は、拘束効果がなくなり、地盤の変位に対するアンカーの抵抗力は、アンカー周面の摩擦力のみとなり、先端の螺旋翼の効果が発揮されない。
The slope ground stabilizer disclosed in Patent Document 1 described above discharges ground water from the ground through a plurality of through holes formed in the peripheral wall of the steel anchor body, and the anchor body is grounded by the spiral wing at the tip. In addition, the ground is supported by the spiral blade and the bearing plate, so that the inclined ground is supported. However, in this construction method using an inclined ground stabilizer, a restraining effect can be obtained by tightening the pressure bearing plate at the base end of the anchor body and the spiral wing at the distal end penetrating the support ground. It is necessary to penetrate, but the method is not disclosed. If you try to penetrate a steel pipe with a spiral blade with a tip bit attached to it, it will work well in clay layers and sandy soil layers (which will not be a supporting ground), but in most embankments, there will be a mix of gravel. In addition, since the ground is somewhat solid (standard penetration test value of about 10 or more), it is difficult to penetrate horizontally or slightly upward.
There is also a method to fix the slit at the tip of the steel pipe for wedge tightening by hitting the proximal end with a hammer etc. without using a spiral blade, but if the steel pipe is short, it can be expected to have some effect, but it is long If it is a case (about 10 m or more), it is often impossible to expect the effect due to the resistance of the pile peripheral surface friction (it cannot be sufficiently expanded) by hitting with human power.
Further, when there is no bearing plate at the base end of the anchor body, the restraining effect is lost, and the resistance force of the anchor to the displacement of the ground is only the frictional force of the anchor peripheral surface, and the effect of the spiral blade at the tip is not exhibited.

前掲の特許文献2に開示された地すべり防止杭も、特許文献1と同様に、杭本体の先端に螺旋状羽根を、基端に支圧部を設け、間には貫通孔を設けた構造であるため、特許文献1と同様の問題がある。   Similarly to Patent Document 1, the landslide prevention pile disclosed in the above-mentioned Patent Document 2 has a structure in which a spiral blade is provided at the distal end of the pile body, a supporting portion is provided at the proximal end, and a through hole is provided therebetween. Therefore, there is a problem similar to that of Patent Document 1.

前掲の特許文献3には、中空の鋼管の一端側から他端側まで連続して螺旋羽根を設けた鋼管が開示されており、地盤への貫入性と強度確保のために、螺旋羽根に沿って切欠き部を設けているが、地盤中の地下水の排出の機能は有しない。   The above-mentioned Patent Document 3 discloses a steel pipe provided with spiral blades continuously from one end side to the other end side of a hollow steel pipe, and in order to ensure penetration into the ground and strength, along the spiral blades. However, it has no function of discharging groundwater in the ground.

さらに、前掲の特許文献1〜3に開示されたアンカー体ないし鋼管を用いたのり面安定化工法は、水抜きのための透孔を設けること、周壁に螺旋羽根を設けること、地盤に水平に打ち込むことの一般的な技術は開示されているものの、地盤には、土質、強度、含水状態等の地盤条件の違いがあるため、実際の施工に際しては、透孔の径や密度、螺旋羽根の設置長さ、高さ、ピッチ等の設計を地盤条件に適したものにしなければならない。   Furthermore, the slope stabilization method using the anchor body or the steel pipe disclosed in the above-mentioned Patent Documents 1 to 3 is to provide a through hole for draining water, to provide a spiral blade on the peripheral wall, and to be horizontal to the ground. Although the general technique of driving in is disclosed, there are differences in the ground conditions such as soil quality, strength, moisture content, etc., so in actual construction, the diameter and density of the through holes, the spiral blades The installation length, height, pitch, etc. must be designed to suit the ground conditions.

しかしながら、前掲の特許文献には、工法の一般的な概念は示されているものの、実際の施工に際して必要な、地盤条件に応じた設計の具体的な手法、例えば鋼管の径、長さ、打ち込み間隔、打ち込み角度、透孔の径や密度等の施工条件の決定方法は開示されていないし、ほとんどの地盤では、礫が混在しており、ある程度堅い地盤(標準貫入試験値10程度以上)であるので、水平もしくはやや上向きに貫入させることも難しいが、そのような地盤でも確実に貫入させる方法も開示されていない。   However, although the general concept of the construction method is shown in the above-mentioned patent document, a specific design method according to the ground conditions necessary for actual construction, for example, the diameter, length, and driving of the steel pipe The method for determining construction conditions such as spacing, driving angle, through-hole diameter and density is not disclosed, and in most grounds, gravel is mixed and the ground is somewhat solid (standard penetration test value of about 10 or more). Therefore, it is difficult to penetrate horizontally or slightly upward, but a method for reliably penetrating even in such ground is not disclosed.

本発明は、排水機能と地盤拘束機能を同時に有する有孔鋼管の施工条件を、施工する地盤に適応して決定すること、および決定された有孔鋼管を、粘性土、砂質土、礫混り土、それらの複合体等どのような土質の土で施工されていた人工地盤や自然地盤であっても、確実に施工することを目的とするものであり、それにより、盛土や切土のり面の安定性向上および施工費の縮減を図るものである。   The present invention determines the construction conditions of a perforated steel pipe having a drainage function and a ground restraint function at the same time, and adapts the determined perforated steel pipe to viscous soil, sandy soil, gravel mixed material. The purpose of the construction is to make sure that even artificial ground or natural ground that has been constructed with any kind of soil such as ground, composites of them, etc. It is intended to improve surface stability and reduce construction costs.

前記課題を解決するため、本発明は、次の構成を特徴とする。
<1>鋼製の管本体の外周に螺旋羽根を設け、さらに前記管本体の外周に水抜き孔を設けた羽根付き有孔鋼管を用いた地盤補強工法であって、
施工する地盤を対象に地盤の単位体積重量、せん断抵抗力、せん断抵抗角などの地盤定数を設定する地盤定数設定ステップと、
現況安全率、計画安全率を設定する安全率設定ステップと、
必要抑止力を、常時と地震時の各状態において、前記計画安全率から算定する必要抑止力算定ステップと、
前記羽根付き有孔鋼管の設置長さ、設置密度を計算する有孔鋼管配置計算ステップと、
前記羽根付き有孔鋼管1本当たりの必要引張力、許容引張力を算定する引張力算定ステップと
を含み、
前記羽根付き有孔鋼管配置計算ステップで求められた設置長さを有する羽根付き有孔鋼管を、前記設置密度で当該地盤に捩じ込むことを特徴とする、羽根付き有孔鋼管を用いた地盤補強工法。
In order to solve the above problems, the present invention is characterized by the following configuration.
<1> A ground reinforcement method using a perforated steel pipe with a blade provided with a spiral blade on the outer periphery of a steel pipe body and further provided with a drain hole on the outer periphery of the tube body,
A ground constant setting step for setting ground constants such as unit volume weight of the ground, shear resistance force, shear resistance angle, etc. for the ground to be constructed,
Safety factor setting step to set the current safety factor and the planned safety factor,
Necessary deterrence calculation step for calculating necessary detergency from the planned safety factor in each state at the time of earthquake and earthquake,
The perforated steel pipe arrangement calculating step for calculating the installation length of the bladed perforated steel pipe, the installation density, and
A necessary tensile force per one perforated steel pipe with blades, and a tensile force calculating step for calculating an allowable tensile force,
The ground using the bladed perforated steel pipe, wherein the bladed perforated steel pipe having the installation length obtained in the bladed perforated steel pipe arrangement calculation step is screwed into the ground at the installation density. Reinforcement method.

<2>
前記羽根付き有孔鋼管を地盤に打込むことにより、前記管本体の外周に設けられた水抜き孔により、地盤内の水を前記羽根付き有孔鋼管内に導き、水平またはやや上向きに設置された前記羽根付き有孔鋼管内を自然流下させて地盤外へ排水させるとともに、前記羽根付き有孔鋼管と地盤との周面摩擦抵抗に基づく付着効果を利用して、地盤の崩壊や変状に対する抵抗力を高めることを特徴とする、<1>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<2>
By placing the bladed perforated steel pipe into the ground, the water in the ground is guided into the bladed perforated steel pipe by a drain hole provided in the outer periphery of the pipe body, and is installed horizontally or slightly upward. In addition, the inside of the perforated steel pipe with blades is allowed to flow down to the outside of the ground, and the adhesion effect based on the peripheral frictional resistance between the perforated steel pipe with blades and the ground is used for the collapse or deformation of the ground. The ground reinforcing method using the bladed perforated steel pipe according to <1>, characterized by increasing resistance.

<3>
前記羽根付き有孔鋼管を当該地盤に水平またはやや上向きに打込むのに、前記羽根付き有孔鋼管に回転力を与え、螺旋羽根のねじ作用を利用して打込むことを特徴とする、<2>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<3>
In order to drive the perforated steel pipe with blades horizontally or slightly upward to the ground, a rotational force is applied to the perforated steel pipe with blades and driven using the screw action of a spiral blade, <2> Ground reinforcement method using a perforated steel pipe with a blade according to 2>.

<4>
螺旋羽根のねじ作用に加え、押し込み力を併用して、前記羽根付き有孔鋼管を打込むことを特徴とする、<3>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<4>
The ground reinforcement construction method using a perforated steel pipe with a blade according to <3>, wherein the perforated steel pipe with a blade is driven by using a pushing force in addition to the screw action of a spiral blade.

<5>
螺旋羽根のねじ作用と押し込み力に加え、振動を併用して、前記羽根付き有孔鋼管を打込むことを特徴とする、<4>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<5>
The ground reinforcement construction method using the bladed perforated steel pipe according to <4>, wherein the bladed perforated steel pipe is driven by using vibration in addition to the screw action and pushing force of the spiral blade.

<6>
前記羽根付き有孔鋼管の螺旋羽根の外側径よりやや小さな径で削孔し、その後削孔した孔に沿って羽根付き有孔鋼管に回転力を与え、螺旋羽根のねじ作用、押し込み力、振動のいずれか1つまたは2つ以上を併用することにより打込むことを特徴とする、<1>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<6>
Drilling with a diameter slightly smaller than the outer diameter of the spiral blade of the bladed perforated steel pipe, and then applying rotational force to the bladed perforated steel pipe along the drilled hole, screw action of the spiral blade, pushing force, vibration The ground reinforcement construction method using a perforated steel pipe with a blade according to <1>, which is driven by using any one or more of the above.

<7>
前記羽根付き有孔鋼管の螺旋羽根の外側径よりやや小さな径または同じ径もしくはやや大きな径で削孔し、その孔に充填材を充填した後、削孔し充填された孔に沿って、前記羽根付き有孔鋼管に回転力を与え、螺旋羽根のねじ作用、押し込み力、振動のいずれかまたは併用することにより前記羽根付き有孔鋼管を打込むことを特徴とする、<1>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<7>
Drilling with a slightly smaller diameter or the same diameter or slightly larger diameter than the outer diameter of the spiral blade of the bladed perforated steel pipe, after filling the hole with a filler, along the hole filled and drilled, <1> The blade according to <1>, wherein the bladed perforated steel pipe is driven by applying a rotational force to the bladed perforated steel pipe and using one or both of the screw action, pushing force, and vibration of the spiral blade. Ground reinforcement method using perforated steel pipes with holes.

<8>
前記羽根付き有孔鋼管に回転力と押し込み力を与えて打込むことと、ロットの先端に取り付けたビットまたは打撃ハンマーに、回転力と押し込み力あるいは打撃力を与えて削孔することの、両方が可能な打込み機を利用して前記羽根付き有孔鋼管を打込むことを特徴とする、<1>記載の有孔鋼管を用いた地盤補強工法。
<8>
Both the perforated steel pipe with blades is driven by applying a rotational force and an indentation force, and the bit or striking hammer attached to the tip of the lot is subjected to a rotational force and an indentation force or an impact force for drilling. The ground reinforcement method using the perforated steel pipe according to <1>, wherein the perforated steel pipe with blades is driven using a driving machine capable of performing the above.

<9>
前記羽根付き有孔鋼管の打込みと削孔することの両方に、振動を併用することが可能な打込み機を利用して打込むことを特徴とする、<8>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<9>
The bladed perforated steel pipe according to <8>, wherein the bladed perforated steel pipe is driven using a driving machine capable of using both vibration for driving and drilling. The ground reinforcement method used.

<10>
引き抜き試験を実施し地盤分類や地盤状態に応じた有孔鋼管周長に係る付着強度の設定を行うことを特徴とする、<1>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<10>
A ground reinforcement construction method using a perforated steel pipe with blades according to <1>, wherein a pull-out test is performed and the adhesion strength related to the perforated steel pipe circumference is set according to the ground classification and the ground condition.

<11>
予め一定の長さの羽根付き有孔鋼管を地盤に捩じ込み、一定期間放置した後に、油圧ジャッキを用いて引抜き試験を行い、極限周面摩擦抵抗の設定を行うことを特徴とする、<2>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<11>
A perforated steel pipe with a certain length of blade is screwed into the ground in advance and left for a certain period of time, and then a pull-out test is performed using a hydraulic jack to set the ultimate peripheral friction resistance. 2> Ground reinforcement method using a perforated steel pipe with a blade according to 2>.

<12>
充填材は、前記削孔径よりやや小さめの径の、生分解性プラスチックの袋に詰められた砂、砂質土、砂利、砕石および高炉スラグ等の透水性が良い材料から選ばれた1つまたは2つ以上を使用して前記削孔全長に詰めることを特徴とする、<7>記載の羽根付き有孔鋼管を用いた地盤補強工法。
<12>
The filler is one selected from materials having good water permeability, such as sand, sandy soil, gravel, crushed stone, and blast furnace slag, which are slightly smaller than the hole diameter, and packed in a biodegradable plastic bag. The ground reinforcement method using a perforated steel pipe with a blade according to <7>, wherein two or more are used to fill the entire length of the hole.

本発明によれば、次の効果を奏する。
(1)排水機能を有する羽根付き有孔鋼管の設置により地盤内水位や飽和度を低下させることができる。
(2)有孔鋼管外周に螺旋羽根を設置することにより、地盤との拘束(付着)効果が向上する。
(3)地盤と羽根付き有孔鋼管との間に充填材(砂)を充填することによりさらなる地盤拘束機能と排水機能の改善を図ることができる。
(4)引き抜き試験を実施し地盤分類や地盤状態に応じた有孔鋼管周長に係る付着強度の設定を行うことにより、設置する地盤に適合した羽根付き有孔鋼管の施工ができる。
(5)回転力と螺旋羽根のねじ作用により設置する一般的な方法だけではなく、押し込み力、振動(バイブロ)を併用して設置する方法や、設置する孔をあらかじめ削孔した後設置する方法や、あらかじめ削孔した孔に充填材を充填した後に設置する方法のいずれかの方法により、どのような土質の土の地盤であっても、確実に施工することができる。
(6)前掲の特許文献2は、地盤に圧縮力を生じさせ地盤の安定化を図ることを目的としているが、本発明では、地盤と鋼管との間に発生する周面摩擦抵抗により全面接着による抑止効果が期待できる。
(7)また、特許文献2では、あらかじめ砂が充填されたさや管を貫入し、その後鋼管を回転貫入することとしているが、本発明では螺旋羽付き有孔鋼管の外径よりやや小さな形または同じ径、もしくはやや大きな径で削孔した後、その孔に充填材を詰め、その後螺旋羽付き有孔鋼管に回転力を与え、捩じ込みを行う工法であり、施工性および経済性の面で利点がある。
The present invention has the following effects.
(1) The ground water level and saturation can be lowered by installing a perforated steel pipe with a blade having a drainage function.
(2) The effect of restraint (adhesion) with the ground is improved by installing spiral blades on the outer periphery of the perforated steel pipe.
(3) The ground restraint function and the drainage function can be further improved by filling a filler (sand) between the ground and the bladed perforated steel pipe.
(4) By conducting a pull-out test and setting the adhesion strength related to the perforated steel pipe circumference according to the ground classification and ground condition, it is possible to construct a perforated steel pipe with blades suitable for the ground to be installed.
(5) Not only the general method of installation by the rotational force and the screw action of the spiral blades, but also the method of installation by using indentation force and vibration (vibro), or the method of installation after previously drilling the holes to be installed In addition, by any one of the methods of installing after filling a hole that has been drilled in advance, any soil soil of any soil can be reliably constructed.
(6) Although the above-mentioned Patent Document 2 aims to stabilize the ground by generating a compressive force on the ground, in the present invention, the entire surface is bonded by the peripheral frictional resistance generated between the ground and the steel pipe. The deterrent effect can be expected.
(7) Moreover, in patent document 2, although it is supposed that the sand pipe | tube previously filled with sand is penetrated, and it is supposed that a steel pipe is rotationally penetrate | introduced after that, in this invention, a shape a little smaller than the outer diameter of a perforated steel pipe with a spiral feather or This is a method of drilling with the same diameter or a slightly larger diameter, then filling the hole with a filler, and then applying rotational force to the perforated steel pipe with spiral blades, and screwing it in. There are advantages.

本発明の実施の形態に係る有孔鋼管を示すものであり、(a)は側面図、(b)は正面断面図である。The perforated steel pipe which concerns on embodiment of this invention is shown, (a) is a side view, (b) is front sectional drawing. 本発明の実施の形態に係る羽根付き有孔鋼管の施工例を示すものであり、(a)は側面図、(b)は正面図である。The construction example of the perforated steel pipe with a blade | wing which concerns on embodiment of this invention is shown, (a) is a side view, (b) is a front view. 本発明の実施の形態に係る羽根付き有孔鋼管を2本、長手方向に連結する状態を示す側面図である。It is a side view showing the state where two perforated steel pipes with a blade concerning an embodiment of the invention are connected in the longitudinal direction. 本発明の実施の形態に係る羽根付き有孔鋼管を2本、長手方向に連結し、先端に掘削用コーンを取り付けた状態を示す側面図である。It is a side view which shows the state which connected two perforated steel pipes with a blade | wing concerning embodiment of this invention in the longitudinal direction, and attached the cone for excavation to the front-end | tip. 本発明の実施の形態に係る羽根付き有孔鋼管を用いた地盤補強工法の設計フロー図である。It is a design flow figure of the ground reinforcement construction method using the perforated steel pipe with a blade concerning an embodiment of the invention. 水抜き孔の例を示す羽根付き有孔鋼管の要部側面図である。It is a principal part side view of the perforated steel pipe with a blade | wing which shows the example of a drain hole. N値と極限周面抵抗力との関係を示すグラフである。It is a graph which shows the relationship between N value and ultimate circumference resistance.

以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。
図1に示すように、本発明の実施の形態に係る羽根付き有孔鋼管(以下、単に「有孔鋼管」ということがある。)10は、鋼管製の管本体1の外周に螺旋羽根2を設け、さらに管本体1の外周に排水孔3を設けた構成となっている。螺旋羽根2は、管本体1の推進方向側には、管端に近い所まで形成して、地盤へ回転させながらの捩じ込む時に、地中への推進力が得られるようにしている。管本体1の手前側は、有孔鋼管10の捩じ込み機(図示せず)のチャックに噛ませるための鋼管回転用金具を装着するために螺旋羽根2を設けない部分を形成している。管本体1の径、螺旋羽根2の高さやピッチ、排水孔3の径や個数は、後述する計算式により設定する。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIG. 1, a perforated steel pipe with blades according to an embodiment of the present invention (hereinafter sometimes simply referred to as “perforated steel pipe”) 10 is a spiral blade 2 on the outer periphery of a pipe body 1 made of steel pipe. Further, the drain hole 3 is provided on the outer periphery of the pipe body 1. The spiral blade 2 is formed on the side of the tube main body 1 in the propulsion direction so as to be close to the end of the tube so that when it is screwed in while rotating to the ground, a propulsive force into the ground can be obtained. The front side of the tube body 1 forms a portion where the spiral blade 2 is not provided for mounting a steel tube rotating metal fitting for engaging with a chuck of a screwing machine (not shown) of the perforated steel tube 10. . The diameter of the pipe body 1, the height and pitch of the spiral blades 2, and the diameter and number of the drain holes 3 are set according to the calculation formula described later.

図2は、本発明の有孔鋼管10をのり面に捩じ込んだ状態を示すものであり、有孔鋼管10を水平方向、好ましくは基端側が低くなるような傾斜を設けてのり面に捩じ込むことにより、地盤中の地下水や水分が排水孔3を介して管本体1の内部に流入し、のり面の外側から排水されることになる。管本体1の外周に設けられた螺旋羽根2は、のり面への捩じ込み時に地中への推進力が働くとともに、捩じ込み後は、地盤との拘束(付着)効果が螺旋羽根2を設けない場合に比べて著しく高まる。   FIG. 2 shows a state in which the perforated steel pipe 10 of the present invention is screwed into the slope surface. The perforated steel pipe 10 is provided on the slope surface with an inclination so that the base end side is lowered in the horizontal direction, preferably the base end side. By screwing, groundwater and moisture in the ground flow into the inside of the pipe body 1 through the drainage holes 3 and are drained from the outside of the slope surface. The spiral blade 2 provided on the outer periphery of the tube body 1 exerts a propulsive force into the ground when screwed into the slope surface, and after the screwing, the effect of restraining (adhering) to the ground is the spiral blade 2. Compared with the case where no is provided, it is remarkably increased.

図3は、所定長の有孔鋼管10を複数本、長手方向に連結して、地盤に捩じ込む際の必要長を確保しようとするものである。有孔鋼管10の連結は、差込ボルト式継手12を一方の管端に装着し、他方の管端を挿入して予め開けられたボルト穴を介してボルト結合することにより行う。差込ボルト式継手12により連結後の状態を図4に示す。図中11は有孔鋼管10の捩じ込み機(図示せず)のチャックに噛ませるための鋼管回転用金具、13は、先端の有孔鋼管10の先端に溶接して固定する地盤推進用のコーンである。本実施の形態においては、鋼管先端をコーン形状とし、1本あたりの長さを1〜2m、それらを接続するためボルト式の継手構造とし、施工性の向上を図っている。   FIG. 3 is intended to secure a necessary length when a plurality of perforated steel pipes 10 having a predetermined length are connected in the longitudinal direction and screwed into the ground. The perforated steel pipe 10 is connected by attaching the insertion bolt type joint 12 to one pipe end and inserting the other pipe end and bolting it through a bolt hole that has been opened in advance. FIG. 4 shows a state after connection by the insertion bolt type joint 12. In the figure, 11 is a steel tube rotating metal fitting for engaging with a chuck of a screwing machine (not shown) of the perforated steel pipe 10, and 13 is a ground propulsion member that is welded and fixed to the tip of the perforated steel pipe 10. The cone. In the present embodiment, the tip of the steel pipe is shaped like a cone, the length per pipe is 1 to 2 m, and a bolt-type joint structure is used to connect them to improve workability.

継手は、上記の差込ボルト式継手のほか、ねじ式がある。
打込み機のチャックに噛ませるための鋼管回転用金具は継手ごとに異なる形状(図示せず)となる。
In addition to the above-described insertion bolt type joints, there are screw types.
Steel pipe rotating metal fittings for engaging the chuck of the driving machine have different shapes (not shown) for each joint.

なお、有孔鋼管10は、地中に捩じ込む際、基端部に溶接した鋼管回転用金具11を捩じ込み機のチャックに噛ませて回転させ、地中に推進させ、大部分が捩じ込まれたときに次の有孔鋼管10を差込ボルト式継手12で連結して継ぎ足した方の有孔鋼管10の基端部に溶接した鋼管回転用金具11を捩じ込み機のチャックに噛ませて回転させ、さらに地中に捩じ込むことを繰り返して必要長の捩じ込みを行う。   When the perforated steel pipe 10 is screwed into the ground, the steel pipe rotating metal fitting 11 welded to the base end portion is engaged with the chuck of the screwing machine and rotated to be pushed into the ground. When screwed, a steel pipe rotating metal fitting 11 welded to the base end portion of the perforated steel pipe 10 to which the next perforated steel pipe 10 is connected by an insertion bolt type joint 12 and added is inserted into the screwing machine. The required length is screwed by repeatedly engaging and rotating the chuck and screwing it into the ground.

有孔鋼管の打込みは、打込み機により、有孔鋼管に回転力を与え、螺旋羽根のねじ作用を利用して打込む。   The perforated steel pipe is driven by applying a rotational force to the perforated steel pipe by a driving machine and utilizing the screw action of the spiral blade.

上記の方法で有孔鋼管の打込みを行うが、礫が混在していたり、堅い地盤(標準貫入試験値10程度以上)では、回転力と螺旋羽根のねじ作用だけでは打込みが困難となる。そのような場合は、回転力に押し込み力を加えて打込みを補助し、所定の長さまで有孔鋼管を打込む。   The perforated steel pipe is driven by the above method. However, in the case where gravels are mixed or hard ground (standard penetration test value of about 10 or more), it is difficult to drive only by the rotational force and the screw action of the spiral blade. In such a case, a perforating steel pipe is driven to a predetermined length by applying a pushing force to the rotational force to assist the driving.

上記の回転力と螺旋羽根のねじ作用に押し込み力を加えた方法で有孔鋼管の打込みを行っても打込みが困難となる場合は、打込み機に併設している振動(バイブロ)装置を稼働させて、打込みを補助し、所定の長さまで有孔鋼管を打込む。   If it is difficult to drive a perforated steel pipe using the above-mentioned rotational force and the screw action of the spiral blade, it is difficult to drive the perforated steel pipe. The perforated steel pipe is driven to a predetermined length by assisting the driving.

上記の振動を併用する方法でも所定の長さの有孔鋼管の打込みができない場合は、有孔鋼管を捩じ込むのに先立ち、有孔鋼管の羽根外径よりやや小さな径であらかじめ削孔を行い、その孔を利用して、有孔鋼管の羽根の一部または全部が元の地盤に食い込むように打込む。打込みは、打込み機により、有孔鋼管に回転力を与え、螺旋羽根のねじ効果を利用し、場合によっては押し込み力や振動(バイブロ)を併用して行う。   If the perforated steel pipe of the specified length cannot be driven even with the above-mentioned vibration method, drill a hole with a diameter slightly smaller than the outer diameter of the blade of the perforated steel pipe before screwing in the perforated steel pipe. Then, using the hole, it is driven so that part or all of the blades of the perforated steel pipe bite into the original ground. The driving is performed by applying a rotational force to the perforated steel pipe with a driving machine, utilizing the screw effect of the spiral blade, and in some cases using a pressing force and vibration (vibro) together.

上記のあらかじめ行う削孔は、打込み機を利用して、先端に掘削用のビットあるいは打撃ハンマーを取り付けた中空ロットに空気圧および油圧により、打撃と回転を与え先端の地盤を削り、中空ロットの中に吹き込んだ圧搾空気により、削った土を外部へ排出して所定の必要長を設置する。   The above-mentioned pre-drilling is done by using a driving machine to blow and rotate the hollow lot with a drilling bit or hammer to the tip by air pressure and hydraulic pressure to cut the ground at the tip. With the compressed air blown in, the shaved soil is discharged to the outside and a predetermined required length is installed.

有孔鋼管に回転力を与え、螺旋羽根のねじ作用を利用し、場合によっては押し込み力や振動を併用して打込まれた有孔鋼管の付着強度(周面摩擦抵抗)に比べ、あらかじめ削孔を行い、その孔を利用して設置した有孔鋼管の元の地盤との付着強度(周面摩擦抵抗)は約半分に低下する。
設計上杭1本当たりの付着強度(周面摩擦抵抗)を高めたい場合は、ケーシングを用いてあらかじめ削孔し、その孔に充填材を充填した後、ケーシングだけを抜き、充填材が充填された孔に、有孔鋼管を捩じ込めば、充填材と有孔鋼管の付着強度(周面摩擦抵抗)となるため、付着強度(周面摩擦抵抗)の改善ができる。
A rotating force is applied to the perforated steel pipe and the screw action of the spiral blade is used. The adhesion strength (peripheral surface frictional resistance) with the original ground of the perforated steel pipe installed using the hole is reduced to about half.
If you want to increase the adhesion strength (peripheral frictional resistance) per pile by design, drill a hole in advance using a casing, fill the hole with a filler, then pull out only the casing and fill with the filler. If the perforated steel pipe is screwed into the hole, the adhesion strength (circumferential frictional resistance) between the filler and the perforated steel pipe is obtained, so that the adhesion strength (peripheral frictional resistance) can be improved.

充填材は、削孔径よりやや小さめの径の、変成ポリビニルアルコール(PVOH)を主成分としたビニル袋に詰められたものを、押し棒などを使用して削孔全長に詰める。
この袋は、水や土中のバクテリアによって分解される生分解性プラスチックであるので、有孔鋼管設置後、地盤からの排水効果に影響を与えることはない。袋の厚みや成分の調合により、溶解時間を数秒から2年程度まで設定できるので、施工時期や地盤の含水状況等を勘案して1〜10日程度に設定したものを使用するのが良い。
The filler is packed in a full length of the hole using a push rod or the like, which is packed in a vinyl bag whose main component is denatured polyvinyl alcohol (PVOH) having a diameter slightly smaller than the hole diameter.
Since this bag is a biodegradable plastic that is decomposed by bacteria in the water and soil, it does not affect the drainage effect from the ground after the perforated steel pipe is installed. Since the dissolution time can be set from several seconds to about 2 years depending on the thickness of the bag and the composition of the components, it is preferable to use the one set to about 1 to 10 days in consideration of the construction time and the water content of the ground.

充填材としては、砂、砂質土、砂利、砕石あるいは高炉スラグなどの透水性の良い材料が使える。使用する充填材の種類および削孔された孔への充填率により、充填材と有孔鋼管の付着強度(周面摩擦抵抗)は異なってくる。   As the filler, materials having good water permeability such as sand, sandy soil, gravel, crushed stone, or blast furnace slag can be used. The adhesion strength (circumferential frictional resistance) between the filler and the perforated steel pipe varies depending on the type of filler used and the filling rate of the drilled hole.

次に、以上の構成の有孔鋼管10を用いた地盤補強工法の設計について、図5を参照しながら説明する。   Next, the design of the ground reinforcement method using the perforated steel pipe 10 having the above configuration will be described with reference to FIG.

ステップ100:設計・施工条件の把握
本工法の設計・施工を合理的に行うために、現地踏査や図面等の判読を行い、対象とする地盤の地盤条件、地下水条件および周辺環境の把握を行う
地盤条件の把握としては、対象とする地盤の物理的性質を求める試験において地盤の状態や特性を調べ、対象とする地盤の力学的性質を求める試験において土の強さなどを求める。
地下水条件の把握としては、地盤表面の湧水状況や調査ボーリングによる地下水位観測により降雨状況による湧水量や地下水位の増減を調査する。
周辺環境の把握としては周辺の土地利用状況、既設の構造物や埋設物、施工に必要な進入路、電力、騒音、振動、作業時間などの調査を行う。
Step 100: Grasping design and construction conditions In order to rationalize the design and construction of this construction method, the site reconnaissance and drawings are read, and the ground conditions, groundwater conditions and surrounding environment of the target ground are grasped. In order to grasp the ground conditions, the state and characteristics of the ground are examined in a test for determining the physical properties of the target ground, and the strength of the soil is determined in a test for determining the mechanical properties of the target ground.
To understand groundwater conditions, the amount of spring water and the increase or decrease in groundwater level due to rainfall conditions are investigated by monitoring the groundwater level and groundwater level by survey boring.
To understand the surrounding environment, the surrounding land use situation, existing structures and buried objects, approach roads necessary for construction, electric power, noise, vibration, working time, etc. are investigated.

ステップ110:当工法の適用は妥当かどうかの判断
本工法の適用性を対象とする地盤の補強規模をもとに判断する。地盤を補強するために必要な抑止力が300KN/mとなる場合や想定するすべり線の長さが30mを超える場合は、グラウンドアンカーや抑止杭などの他の抑止工法が経済的となる場合が想定される。
適用が妥当であれば、次に進む。適用が妥当でなければ、設計を終了する。
Step 110: Judgment whether application of this method is appropriate Judgment is made based on the scale of ground reinforcement targeted for applicability of this method. If the deterrence required to reinforce the ground is 300 KN / m or if the length of the slip line is more than 30 m, other deterrence methods such as ground anchors and deterrence piles may become economical. is assumed.
If the application is appropriate, proceed to the next. If the application is not appropriate, the design is terminated.

ステップ120:安定解析手法の検討
極限釣合い法を用いて安定解析を行う。
震度法を用いて安定解析を行う。
ニューマーク法を用いて安定解析を行う。
Step 120: Examination of stability analysis method Stability analysis is performed using the limit balance method.
Stability analysis is performed using seismic intensity method.
Stability analysis is performed using the Newmark method.

ステップ130:地盤定数の設定
単位体積重量、せん断抵抗力およびせん断抵抗角などの設計に必要な地盤定数は、原則として対象とする地盤から採取した試料をもとにした物理的試験や力学的試験により決定するものとする。ただし、一般的な地盤を対象とする場合においては表1を参考に設定できるものとする。
Step 130: Setting the ground constant The ground constants necessary for the design such as unit volume weight, shear resistance force and shear resistance angle are in principle physical and mechanical tests based on samples taken from the target ground. Shall be determined by However, in the case of targeting general ground, it can be set with reference to Table 1.

Figure 0006352120
Figure 0006352120

ステップ140:安全率等の設定
対象とする地盤における現況安全率(Fs)は、ステップ100およびステップ130をもとに極限釣合い法において算定する。また、長期安定性を対象とした場合の計画安全率(Fsp)は、一般的に盛土などの人工地盤の場合Fsp=1.2〜1.25、切土などの自然地盤の場合Fsp=1.2を目標とされているのでそれらを引用するものとした。
Step 140: Setting of safety factor, etc. The current safety factor (F s ) in the target ground is calculated by the limit balance method based on Step 100 and Step 130. The planned safety factor (F sp ) for long-term stability is generally Fsp = 1.2 to 1.25 for artificial ground such as embankment, and F sp for natural ground such as cut soil. = 1.2 is targeted, so we quoted them.

ステップ150:必要抑止力の算定
本工法による必要抑止力の算定にあたっては、長期安定性とあわせて、短期安定性の対象となる異常降雨時および地震時に対してそれぞれの計画安全率を満足するよう設定する。
異常降雨時における必要抑止力(Pr)は、Fsp=1.05〜1.1とし、次式から算定する。

Figure 0006352120
ここに、(W)は分割片の重量、(α)はすべり面の傾斜角である。
地震時における必要抑止力は、Fsp=1.0とし、次式から算定する。
Figure 0006352120
ここに、(h)は分割片の重心とすべり円との中心との鉛直距離、(r)はすべり円の半径、(kh)は設計水平震度である。 Step 150: Calculation of necessary deterrence In calculating the necessary deterrence by this method, in addition to long-term stability, each planned safety factor should be satisfied in the event of abnormal rainfall and earthquake that are subject to short-term stability. Set.
The necessary deterrence (P r ) at the time of abnormal rain is set to F sp = 1.05 to 1.1 and is calculated from the following equation.
Figure 0006352120
Here, (W) is the weight of the divided piece, and (α) is the inclination angle of the sliding surface.
The necessary deterrence in the event of an earthquake is Fsp = 1.0 and is calculated from the following formula.
Figure 0006352120
Here, (h) the vertical distance between the center of a circle and sliding the center of gravity of the divided piece, (r) is the sliding circle radius, (k h) is a design horizontal seismic.

ステップ160〜180
有孔鋼管の配置検討にあたっては、予め、設置長さと配置密度(間隔)を仮定し、繰り返し計算において、もっとも合理的な配置となるよう検討を行う。
その際、有孔鋼管の1本あたりの許容引張力を設定しておく必要があり、{地盤との周面摩擦抵抗、有孔鋼管の引張強度、螺旋羽根と有効鋼管との溶接強度}のうち最小のものを採用する。
Steps 160-180
When considering the arrangement of perforated steel pipes, the installation length and the arrangement density (interval) are assumed in advance, and examination is performed so that the most reasonable arrangement is obtained in repeated calculations.
At that time, it is necessary to set the permissible tensile force per one perforated steel pipe, and {the peripheral friction resistance with the ground, the tensile strength of the perforated steel pipe, the welding strength between the spiral blade and the effective steel pipe} The smallest one is adopted.

ステップ190:安定性は確保できたかどうかの判断
有孔鋼管に作用すると想定される必要引張力が許容引張力以下であることをもって、安定性が確保できたかどうか判断する。確保できていれば次に進む。確保できていなければ、ステップ160に戻る。
ステップ150において算定した必要抑止力をステップ160で仮定する配置密度(間隔)で分担させ、有孔鋼管が受け持つ1本あたりの必要引張力を算定し、ステップ180で採用した1本あたりの許容引張力を満足することを確認する。
Step 190: Judgment of whether or not the stability can be secured It is judged whether or not the stability can be secured when the necessary tensile force assumed to act on the perforated steel pipe is equal to or less than the allowable tensile force. If secured, proceed to the next. If not secured, the process returns to step 160.
The necessary deterring force calculated in step 150 is shared by the arrangement density (interval) assumed in step 160, the necessary tensile force per piece that the perforated steel pipe is responsible for is calculated, and the allowable tensile per piece adopted in step 180 is calculated. Make sure you are satisfied.

ステップ200:降伏震度の算定
極限釣合い法を用いて震度法による降伏水平震度を算出する。
Step 200: Calculation of the yield seismic intensity The yield horizontal seismic intensity is calculated by the seismic intensity method using the limit balance method.

ステップ210:地表面波形の算定
道路橋示方書・同解説(耐震設計編)などに記載されている地震波形を参考に設計に用いる地表面波形を選定する。
Step 210: Calculation of ground surface waveform The ground surface waveform to be used for the design is selected with reference to the seismic waveform described in the road bridge specifications / explanation (seismic design).

ステップ220:残留変形量の算定
ステップ210で選定した地震波形を用いてニューマーク法により、地盤の残留変形量の算定を行う。
Step 220: Calculation of residual deformation amount The residual deformation amount of the ground is calculated by the Newmark method using the seismic waveform selected in step 210.

ステップ230:許容変形量を満足するかどうかの判断
ステップ210で算出した残留変形量が100cm未満であれば許容変形量を満足しているとし、満足しなければ、再度、有孔鋼管の設置長さと配置密度(間隔)の見直しを行う。
Step 230: Judgment of whether or not the allowable deformation amount is satisfied If the residual deformation amount calculated in Step 210 is less than 100 cm, the allowable deformation amount is satisfied. And review the arrangement density (interval).

ステップ160で求められた設置長さを有する有孔鋼管を、同じくステップ160で求められた設置密度で当該地盤に捩じ込む。   The perforated steel pipe having the installation length determined in step 160 is screwed into the ground with the installation density also determined in step 160.

対象とする地盤の地下水位や飽和度を低下させるために、図6に示すように管本体1の外周に開口率10%でのスリット形状の長孔4を設置し、排水効果の向上を図る。本例では管本体1の外径は50mm、長孔4は6×50mmとし、管本体1の周方向に90°かつ長手方向に78mmピッチで千鳥配置した例を示している。開口率10%は透水係数に換算すると10-3〜10-2m/sに相当し、透水係数が10-9〜10-5m/sで透水不良といわれるシルトや砂の混合物土地盤における排水効果に大きく寄与する。
開口率を変えると、地盤中の地下水をのり面外に排水する効果が変わるので、有効鋼管の配置を見なおすかどうかを含め、十分検討する。
管本体1の外周に開ける水抜き穴は、「道路土木−排水溝指針」(公益社団法人日本道路協会発行)、「地下排水施設の施工−フィルター材料の選定」の規定を準用して選定するのがよい。また、スリット形状のほか、円形でもよい。
In order to reduce the groundwater level and saturation of the target ground, a slit-shaped long hole 4 with an opening ratio of 10% is installed on the outer periphery of the pipe body 1 as shown in FIG. . In this example, the outer diameter of the tube main body 1 is 50 mm, the long holes 4 are 6 × 50 mm, and the zigzag is arranged at a pitch of 90 ° in the circumferential direction of the tube main body 1 and 78 mm in the longitudinal direction. An open area ratio of 10% is equivalent to 10 -3 to 10 -2 m / s in terms of hydraulic conductivity, and in a mixed ground of silt and sand, which is said to have poor hydraulic conductivity when the hydraulic permeability is 10 -9 to 10 -5 m / s. It greatly contributes to the drainage effect.
Changing the aperture ratio will change the effect of draining groundwater in the ground to the outside of the slope. Therefore, it will be necessary to consider whether to review the arrangement of effective steel pipes.
Drain holes to be opened on the outer periphery of the pipe body 1 are selected by applying the provisions of “Road Civil Engineering-Drainage Guideline” (published by the Japan Road Association) and “Construction of underground drainage facilities-Selection of filter materials”. It is good. In addition to the slit shape, it may be circular.

ここで、有孔鋼管の地盤に対する拘束(付着)効果は、次のような引抜き試験により定量的評価を行う。
すなわち、一定の長さ(本例では6m)の有孔鋼管を地盤に捩じ込み、一定期間放置した後に前記有孔鋼管の長さ1mの部分の回りを掘削し、残存する長さ5mの有孔鋼管に対して、油圧ジャッキを用いて引抜き試験を行い、極限周面摩擦抵抗の設定を行う。
その極限周面摩擦抵抗は、地盤の強さを示す指標の一つとして頻繁に用いられているN値(重さ63.5kgのハンマーを75cmの高さから落下させて円筒形の試料採取器を土中に打ち込み、30cm打ち込むのに必要な落下回数)と図7のような相関が得られ、次式で推定できることが確認された。

Figure 0006352120
ここでτ;極限周面摩擦抵抗(KN/m2
N;盛土の平均N値 Here, the constraint (adhesion) effect of the perforated steel pipe on the ground is quantitatively evaluated by the following pull-out test.
That is, a perforated steel pipe having a certain length (6 m in this example) is screwed into the ground, left for a certain period of time, then excavated around a 1 m long portion of the perforated steel pipe, and the remaining 5 m long A perforated steel pipe is subjected to a pull-out test using a hydraulic jack, and the ultimate peripheral friction resistance is set.
The ultimate peripheral frictional resistance is an N value that is frequently used as an indicator of the strength of the ground (a 63.5 kg weight hammer is dropped from a height of 75 cm and a cylindrical sampler. The number of drops required for driving 30 cm into the soil and the number of drops required for driving 30 cm) was obtained as shown in FIG.
Figure 0006352120
Where τ: Ultimate circumferential frictional resistance (KN / m 2 )
N: Average N value of the embankment

本発明は、排水機能と地盤拘束機能を同時に有する有孔鋼管の施工条件を、施工する地盤に適応して決定することのできる手法を提供するものであり、各種地盤補強工事に好適に利用することができる。   The present invention provides a technique capable of determining the construction conditions of a perforated steel pipe having a drainage function and a ground restraint function at the same time, and is suitably used for various ground reinforcement works. be able to.

1 管本体
2 螺旋羽根
3 排水孔
4 長孔
10 有孔鋼管
11 鋼管回転用金具
12 差込ボルト式継手
13 地盤推進用のコーン
DESCRIPTION OF SYMBOLS 1 Pipe body 2 Spiral blade 3 Drain hole 4 Long hole 10 Perforated steel pipe 11 Steel pipe rotation metal fitting 12 Insertion bolt type joint 13 Cone for ground propulsion

Claims (11)

鋼製の管本体の外周に螺旋羽根を設け、さらに前記管本体の外周に地盤内の水分を排出するための水抜き孔を設けた羽根付き有孔鋼管であり、前記螺旋羽根は前記管本体のほぼ全長に渡り、前記管本体の推進方向側には管端に近い所まで形成して前記地盤へ回転させながらの捩じ込む時に地中への推進力が得られるようにし、前記管本体の手前側は捩じ込み機のチャックに噛ませるための鋼管回転用金具を装着するための鋼管回転用金具を装着するために螺旋羽根を設けない部分を形成している羽根付き有孔鋼管を用い、前記羽根付き有孔鋼管を地盤に打込むことにより、前記管本体の外周に設けられた水抜き孔により、地盤内の水を前記羽根付き有孔鋼管内に導き、水平またはやや上向きに設置された前記羽根付き有孔鋼管内を自然流下させて地盤外へ排水させ、基端に支圧盤を設けることなく前記羽根付き有孔鋼管と地盤との周面摩擦抵抗に基づく付着効果を利用して、地盤の崩壊や変状に対する抵抗力を高める地盤補強工法であって、
施工する地盤を対象に地盤の単位体積重量、せん断抵抗力、せん断抵抗角などの地盤定数を設定する地盤定数設定ステップと、
現況安全率、計画安全率を設定する安全率設定ステップと、
必要抑止力を、常時と地震時の各状態において、前記計画安全率から算定する必要抑止力算定ステップと、
前記羽根付き有孔鋼管の設置長さ、設置密度を計算する有孔鋼管配置計算ステップと、
前記羽根付き有孔鋼管1本当たりの必要引張力、許容引張力を算定する引張力算定ステップと
を含み、
前記羽根付き有孔鋼管配置計算ステップで求められた設置長さを有する羽根付き有孔鋼管を、前記設置密度で当該地盤に打ち込むことを特徴とする、羽根付き有孔鋼管を用いた地盤補強工法。
A perforated steel pipe with a blade provided with a spiral blade on the outer periphery of a steel tube main body, and further provided with a drain hole for discharging water in the ground on the outer periphery of the tube main body , the spiral blade is the tube main body Over the entire length of the tube body, the tube body is formed on the propulsion direction side up to the end of the tube so that when it is screwed in while rotating to the ground, a propulsion force into the ground can be obtained. On the front side of the blade is a perforated steel pipe with a blade forming a portion not provided with a spiral blade for mounting a steel pipe rotating metal fitting for fitting a steel pipe rotating metal fitting for engaging with a chuck of a screwing machine. By using the perforated steel pipe with blades into the ground, the water in the ground is guided into the perforated steel pipe with blades horizontally or slightly upward by the drain holes provided on the outer periphery of the pipe body. It flows naturally through the installed perforated steel pipe with blades. Te drained to ground out, by utilizing the adhering effect based on the peripheral surface frictional resistance between the bladed perforated steel tube and the ground without providing a bearing capacity Release the proximal end, increasing the resistance to collapse and Deformation of the ground A ground reinforcement method,
A ground constant setting step for setting ground constants such as unit volume weight of the ground, shear resistance force, shear resistance angle, etc. for the ground to be constructed,
Safety factor setting step to set the current safety factor and the planned safety factor,
Necessary deterrence calculation step for calculating necessary detergency from the planned safety factor in each state at the time of earthquake and earthquake,
The perforated steel pipe arrangement calculating step for calculating the installation length of the bladed perforated steel pipe, the installation density, and
A necessary tensile force per one perforated steel pipe with blades, and a tensile force calculating step for calculating an allowable tensile force,
A ground reinforcement method using a bladed perforated steel pipe, characterized in that a bladed perforated steel pipe having the installation length obtained in the bladed perforated steel pipe arrangement calculation step is driven into the ground at the installation density. .
前記羽根付き有孔鋼管を当該地盤に水平またはやや上向きに打込むのに、前記羽根付き有孔鋼管に回転力を与え、螺旋羽根のねじ作用を利用して打込むことを特徴とする、請求項記載の羽根付き有孔鋼管を用いた地盤補強工法。 In order to drive the bladed perforated steel pipe horizontally or slightly upward into the ground, a rotational force is applied to the bladed perforated steel pipe and driven using the screw action of a spiral blade. Item 1. Ground reinforcement method using the perforated steel pipe with a blade according to Item 1 . 螺旋羽根のねじ作用に加え、押し込み力を併用して、前記羽根付き有孔鋼管を打込むことを特徴とする、請求項記載の羽根付き有孔鋼管を用いた地盤補強工法。 3. The ground reinforcement method using a bladed perforated steel pipe according to claim 2 , wherein the bladed perforated steel pipe is driven using a pushing force in addition to the screw action of the spiral blade. 螺旋羽根のねじ作用と押し込み力に加え、振動を併用して、前記羽根付き有孔鋼管を打込むことを特徴とする、請求項記載の羽根付き有孔鋼管を用いた地盤補強工法。 The ground reinforcing method using the bladed perforated steel pipe according to claim 3 , wherein the bladed perforated steel pipe is driven by using vibration in addition to the screw action and pushing force of the spiral blade. 前記羽根付き有孔鋼管の螺旋羽根の外側径よりやや小さな径で削孔し、その後削孔した孔に沿って羽根付き有孔鋼管に回転力を与え、螺旋羽根のねじ作用、押し込み力、振動のいずれか1つまたは2つ以上を併用することにより打込むことを特徴とする、請求項1記載の羽根付き有孔鋼管を用いた地盤補強工法。   Drilling with a diameter slightly smaller than the outer diameter of the spiral blade of the bladed perforated steel pipe, and then applying rotational force to the bladed perforated steel pipe along the drilled hole, screw action of the spiral blade, pushing force, vibration A ground reinforcement method using a bladed perforated steel pipe according to claim 1, wherein the method is driven by using any one or two or more of them together. 前記羽根付き有孔鋼管の螺旋羽根の外側径よりやや小さな径または同じ径もしくはやや大きな径で削孔し、その孔に充填材を充填した後、削孔し充填された孔に沿って、前記羽根付き有孔鋼管に回転力を与え、螺旋羽根のねじ作用、押し込み力、振動のいずれかまたは併用することにより前記羽根付き有孔鋼管を打込むことを特徴とする、請求項1記載の羽根付き有孔鋼管を用いた地盤補強工法。   Drilling with a slightly smaller diameter or the same diameter or slightly larger diameter than the outer diameter of the spiral blade of the bladed perforated steel pipe, after filling the hole with a filler, along the hole filled and drilled, 2. The blade according to claim 1, wherein the bladed perforated steel pipe is driven by applying a rotational force to the bladed perforated steel pipe and using one or a combination of screw action, pushing force, and vibration of the spiral blade. Ground reinforcement method using perforated steel pipes with holes. 前記羽根付き有孔鋼管に回転力と押し込み力を与えて打込むことと、ロットの先端に取り付けたビットまたは打撃ハンマーに、回転力と押し込み力あるいは打撃力を与えて削孔することの、両方が可能な打込み機を利用して前記羽根付き有孔鋼管を打込むことを特徴とする、請求項1記載の有孔鋼管を用いた地盤補強工法。   Both the perforated steel pipe with blades is driven by applying a rotational force and an indentation force, and the bit or striking hammer attached to the tip of the lot is subjected to a rotational force and an indentation force or an impact force for drilling. 2. The ground reinforcement method using a perforated steel pipe according to claim 1, wherein the perforated steel pipe with blades is driven using a driving machine capable of performing the following. 前記羽根付き有孔鋼管の打込みと削孔することの両方に、振動を併用することが可能な打込み機を利用して打込むことを特徴とする、請求項記載の羽根付き有孔鋼管を用いた地盤補強工法。 8. The bladed perforated steel pipe according to claim 7 , wherein the bladed perforated steel pipe is driven using a driving machine capable of using both vibration for driving and drilling. The ground reinforcement method used. 引き抜き試験を実施し地盤分類や地盤状態に応じた有孔鋼管周長に係る付着強度の設定を行うことを特徴とする、請求項1記載の羽根付き有孔鋼管を用いた地盤補強工法。   The ground reinforcement construction method using a bladed perforated steel pipe according to claim 1, wherein a pulling test is performed to set the adhesion strength related to the perforated steel pipe perimeter according to the ground classification and the ground condition. 予め一定の長さの羽根付き有孔鋼管を地盤に捩じ込み、一定期間放置した後に、油圧ジャッキを用いて引抜き試験を行い、極限周面摩擦抵抗の設定を行うことを特徴とする、請求項記載の羽根付き有孔鋼管を用いた地盤補強工法。 A perforated steel pipe with a certain length of blade is screwed into the ground in advance and left for a certain period of time, then a pull-out test is performed using a hydraulic jack, and the ultimate peripheral friction resistance is set. Item 1. Ground reinforcement method using the perforated steel pipe with a blade according to Item 1 . 充填材は、前記削孔径よりやや小さめの径の、生分解性プラスチックの袋に詰められた砂、砂質土、砂利、砕石および高炉スラグ等の透水性が良い材料から選ばれた1つまたは2つ以上を使用して前記削孔全長に詰めることを特徴とする、請求項記載の羽根付き有孔鋼管を用いた地盤補強工法。 The filler is one selected from materials having good water permeability, such as sand, sandy soil, gravel, crushed stone, and blast furnace slag, which are slightly smaller than the hole diameter, and packed in a biodegradable plastic bag. The ground reinforcement construction method using a perforated steel pipe with blades according to claim 6 , wherein two or more are used to fill the entire length of the hole.
JP2014180861A 2014-09-05 2014-09-05 Ground reinforcement method using perforated steel pipe with blades Active JP6352120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014180861A JP6352120B2 (en) 2014-09-05 2014-09-05 Ground reinforcement method using perforated steel pipe with blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014180861A JP6352120B2 (en) 2014-09-05 2014-09-05 Ground reinforcement method using perforated steel pipe with blades

Publications (2)

Publication Number Publication Date
JP2016056505A JP2016056505A (en) 2016-04-21
JP6352120B2 true JP6352120B2 (en) 2018-07-04

Family

ID=55757849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014180861A Active JP6352120B2 (en) 2014-09-05 2014-09-05 Ground reinforcement method using perforated steel pipe with blades

Country Status (1)

Country Link
JP (1) JP6352120B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107012857A (en) * 2017-05-12 2017-08-04 上海建工二建集团有限公司 One kind is prefabricated with the tapered screw thread combination pile tube in hole and its construction method
JP2019157398A (en) * 2018-03-08 2019-09-19 西日本高速道路エンジニアリング四国株式会社 Fastener construction method
WO2019176836A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Slope monitoring system, slope monitoring method, and recording medium
JP7004889B2 (en) * 2018-05-14 2022-01-21 株式会社建設技術研究所 Rotary press-fitting / drainage pipe device
JP7260768B2 (en) * 2019-04-04 2023-04-19 日本製鉄株式会社 Slope reinforcement structure and slope reinforcement method
JP7160297B1 (en) 2022-07-19 2022-10-25 株式会社ケイジェイシー Pile foundation with soil improvement and its construction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093881A (en) * 1995-06-21 1997-01-07 Taiko:Kk Steel pipe pile and its manufacture, and small water-supply system, drainage device, and soil improvement method for soft ground using steel pipe pile
JP2777346B2 (en) * 1996-02-08 1998-07-16 建二 秋山 Groundwater elimination method using multiple pipes for civil engineering
JPH11286928A (en) * 1998-04-02 1999-10-19 Taisei Corp Drain material
JP4738836B2 (en) * 2005-02-21 2011-08-03 千代田工営株式会社 Sloped ground stabilizer and sloped ground stabilization method
JP4977280B2 (en) * 2006-06-09 2012-07-18 株式会社地盤リスク研究所 Method and apparatus for embedding water collecting pipe
JP2009002089A (en) * 2007-06-25 2009-01-08 Osamu Tanaka Construction method of horizontal drain hole
JP5595137B2 (en) * 2010-06-18 2014-09-24 新日鉄住金エンジニアリング株式会社 Landslide prevention method

Also Published As

Publication number Publication date
JP2016056505A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6352120B2 (en) Ground reinforcement method using perforated steel pipe with blades
JP4874417B2 (en) Survey method to obtain ground information
Basu et al. Drilled displacement piles–current practice and design
JP4282022B2 (en) Drain pipe burial method and structures, etc. to prevent tilting, sinking or floating
KR100762991B1 (en) Precast piling method injected with high-strength mortar
JP4099199B2 (en) Open-ended type ready-made pile and excavation head used therefor
KR101789967B1 (en) Estimating method of the end bearing capacity of SDA augered piles on residual soil and weathered rock mass
JP5150596B2 (en) Anchor device and anchor construction method
JP3760316B2 (en) Intermediate striking pile and its construction method
KR101416865B1 (en) Construction method of screw file
JP7215470B2 (en) Steel pipe, steel pipe structure, method for constructing steel pipe structure
JP4694513B2 (en) Survey method to obtain ground information
Ahlund et al. Pore pressures and settlements generated from two different pile drilling methods
KR101789966B1 (en) Estimating method of the end bearing capacity of SDA augered piles on weathered rock mass and bed rock mass
JP5300163B1 (en) Steel pile rooting method
KR101224440B1 (en) Construction method of screw file
Ruban et al. Pile load testing of concrete belled pile and rock socket pile using the Osterberg load cell
Hai et al. Non-conventional pile loading tests in Vietnam
Ferrucci et al. Performance of an Osterberg Cell (O-Cell) Load Test on a High-Capacity Production Drilled Shaft at the Kosciuszko Bridge
NL2018206B1 (en) Apparatus and method for stabilizing a foundation of a building
JP3875398B2 (en) Anchor burial method
KR100481149B1 (en) Concrete Filled Thin Tube Pile, CFTTP
JP6588117B2 (en) Foundation pile and its construction method
Shah et al. In-situ Axial Load Tests of Drilled Displacement Steel Piles
KR20140014739A (en) Pile with non-closed channel shape of plural non-flat in the end of pile and method of construction of pile by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6352120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250