JP7260768B2 - Slope reinforcement structure and slope reinforcement method - Google Patents

Slope reinforcement structure and slope reinforcement method Download PDF

Info

Publication number
JP7260768B2
JP7260768B2 JP2019072203A JP2019072203A JP7260768B2 JP 7260768 B2 JP7260768 B2 JP 7260768B2 JP 2019072203 A JP2019072203 A JP 2019072203A JP 2019072203 A JP2019072203 A JP 2019072203A JP 7260768 B2 JP7260768 B2 JP 7260768B2
Authority
JP
Japan
Prior art keywords
slope
reinforcing
reinforcing member
reinforcement
installation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019072203A
Other languages
Japanese (ja)
Other versions
JP2020169511A (en
Inventor
祐輔 持田
吉郎 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019072203A priority Critical patent/JP7260768B2/en
Publication of JP2020169511A publication Critical patent/JP2020169511A/en
Application granted granted Critical
Publication of JP7260768B2 publication Critical patent/JP7260768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、斜面補強構造及び斜面補強方法に関する。 The present invention relates to a slope reinforcement structure and a slope reinforcement method.

近年、大規模地震や集中豪雨等の二次災害として、地盤の崩壊による斜面災害が増加している。当該斜面災害が懸念される領域を含む斜面には、ある同じ大きさの外力が作用した際に、当該外力の作用により崩壊してしまう「移動層」と、当該外力によっては崩壊しない「不動層」とが含まれる。 In recent years, slope disasters due to ground collapse are increasing as secondary disasters such as large-scale earthquakes and torrential rains. When an external force of the same magnitude acts on a slope that includes an area where a particular slope disaster is a concern, there is a “moving layer” that collapses due to the action of the external force, and an “immovable layer” that does not collapse due to the external force. ” is included.

例えば図1に示すように、前記斜面災害が懸念される領域(以下、「補強対象領域10」という。)を含む斜面1は、地中にすべり面Aを有し、すべり面Aよりも地中の浅い側が前記移動層としての土塊11、すべり面Aよりも地中の深い側が前記不動層としての安定地盤20となっている。すなわち、平常時において斜面1は土塊11と安定地盤20との間の内部摩擦により安定性を保っているところ、災害の発生等により斜面1に外力が作用すると、安定地盤20上において土塊11がすべり面Aに沿って滑り落ちるようにして斜面1が崩壊する。 For example, as shown in FIG. 1, a slope 1 including a region where there is concern about a slope disaster (hereinafter referred to as a “reinforcement target region 10”) has a slip surface A in the ground, and the ground level is higher than the slip surface A. The shallow side is the soil mass 11 as the moving layer, and the deeper side than the slip surface A is the stable ground 20 as the immovable layer. That is, in normal times, the slope 1 maintains its stability due to the internal friction between the soil mass 11 and the stable ground 20, but when an external force acts on the slope 1 due to the occurrence of a disaster or the like, the soil mass 11 on the stable ground 20 will move. The slope 1 collapses by sliding down along the slip surface A.

かかる地盤崩壊への対策としては、種々の地盤安定化構造、地盤補強構造が提案されている。 Various ground stabilization structures and ground reinforcement structures have been proposed as countermeasures against such ground collapse.

例えば特許文献1には、複数の列をなしてそれぞれ斜面の上部から下部に向かって間隔をあけて設置したアンカーの頭部間を頭部連結部材で連結し、かつ各アンカーに支圧板を取り付ける斜面安定化工法であって、斜面崩壊の恐れのある領域を越えた、斜面上部側の領域においてもアンカーを設置する工法が開示されている。 For example, in Patent Document 1, the heads of anchors arranged in a plurality of rows from the upper part to the lower part of the slope are connected with a head connecting member, and a bearing plate is attached to each anchor. As a slope stabilization construction method, a construction method is disclosed in which anchors are installed even in the area on the upper side of the slope beyond the area where there is a risk of slope failure.

また特許文献2には、切土斜面の地盤補強を目的とした大径曲げ引張補強体の築造方法であって、筒状の芯材を柱状の改良体に貫入することにより、補強体の曲げ抵抗力及びせん断抵抗力を増大させ、地盤の補強効果を向上させる方法が開示されている。 In addition, Patent Document 2 discloses a method for constructing a large-diameter bending tensile reinforcement body for the purpose of ground reinforcement on a cut slope, in which a cylindrical core material is penetrated into a column-shaped improved body to bend the reinforcement body. A method for increasing the resistance and shear resistance and improving the reinforcement effect of the soil is disclosed.

更に特許文献3には、地山に杭を打設して斜面を安定化する斜面の安定化構造であって、すべり面に対しての打設角度の異なる複数の杭が斜面に打設され、当該複数の杭の杭頭部が剛結される構造が開示されている。 Furthermore, Patent Document 3 discloses a slope stabilization structure in which piles are driven into the natural ground to stabilize the slope, and a plurality of piles having different driving angles with respect to the slip surface are driven into the slope. , discloses a structure in which the pile heads of the plurality of piles are rigidly connected.

特開2002-88769号公報JP-A-2002-88769 特開平7-42159号公報JP-A-7-42159 特開2017-128921号公報JP 2017-128921 A

ところで、図1に示したような斜面1の崩壊モードとしては、主として、すべり面Aに沿って土塊11が剛体として一挙に滑り落ちて崩壊する「すべり破壊」と、補強対象領域10の下部10aから徐々に土塊11の崩壊が進行する「進行性破壊」の2種類を挙げることができる。 By the way, the collapse modes of the slope 1 as shown in FIG. There are two types of "progressive destruction" in which the collapse of the soil mass 11 progresses gradually from the beginning.

前記すべり破壊は、例えば大規模地震などにより斜面1に対して過大な外力が作用することに起因する。すなわち、過大な外力の作用により前記内部摩擦の均衡が崩れ、これにより土塊11がすべり面Aに沿って滑落する。 The slip failure is caused by an excessive external force acting on the slope 1 due to, for example, a large-scale earthquake. That is, the balance of the internal friction is lost due to the action of an excessive external force, and as a result, the lump of earth 11 slides down along the slip surface A.

一方、前記進行性破壊は、例えば豪雨などによって多量の雨水が地下水となって斜面1に浸透し、斜面1中の水位が上昇することに起因する。すなわち、まず、水位の上昇により補強対象領域10を形成する土塊11の下部10a部分に雨水が浸透し、これにより下部10aの強度が低下して局部崩壊が生じる。続いて、当該局部崩壊により補強対象領域10の下部10a部分における抵抗力(土塊11の支持力)が失われ、前記局部崩壊された箇所の上部が崩壊する。このようにして、補強対象領域10の上方に向けて徐々に崩壊が進行する。 On the other hand, the progressive destruction is caused by a large amount of rainwater becoming groundwater and permeating the slope 1 due to, for example, heavy rain, and the water level in the slope 1 rises. That is, first, rainwater permeates into the lower part 10a of the soil mass 11 forming the reinforcement target area 10 due to the rise in the water level, which reduces the strength of the lower part 10a and causes local collapse. Subsequently, the local collapse causes the resistance (bearing force of the soil mass 11) in the lower portion 10a of the reinforcement target area 10 to be lost, and the upper portion of the locally collapsed portion collapses. In this way, the collapse progresses gradually upward in the region 10 to be reinforced.

ここで、上述の特許文献1~3においては、前記すべり破壊への対策としての地盤安定化、地盤補強は行われていたものの、前記進行性破壊への対策については考慮されていなかった。 Here, in the above-mentioned Patent Documents 1 to 3, although ground stabilization and ground reinforcement were performed as countermeasures against the slip failure, countermeasures against the progressive failure were not considered.

本発明は、上記事情に鑑みてなされたものであり、斜面の崩壊モードによらず、適切な斜面補強効果を得ることができる斜面補強構造を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a slope reinforcement structure capable of obtaining an appropriate slope reinforcement effect regardless of the failure mode of the slope.

上記課題を解決する本発明は、複数の補強部材を備える補強構造体を斜面に挿入した斜面補強構造であって、前記補強構造体は、周面に複数の透水孔が形成された中空の棒材により構成され、少なくとも進行性破壊の初期崩壊箇所となる斜面の法尻に一端が挿入される第1補強部材と、棒材により構成され、斜面における前記第1補強部材の挿入位置よりも高い位置に一端が挿入される第2補強部材と、前記第1補強部材の他端と前記第2補強部材の他端をそれぞれ連結する連結部材と、を備え、前記第1補強部材は、略水平または他端が一端よりも低い位置になるように設置され、前記第2補強部材の斜面のすべり面に対する設置角度は、少なくとも前記第1補強部材の設置角度よりも大きいことを特徴としている。
The present invention for solving the above problems is a slope reinforcing structure in which a reinforcing structure having a plurality of reinforcing members is inserted into a slope, wherein the reinforcing structure is a hollow bar having a plurality of water permeable holes formed on its peripheral surface. A first reinforcing member composed of a material, at least one end of which is inserted into the toe of the slope , which is the initial collapse site of the progressive fracture, and a bar material, which is higher than the insertion position of the first reinforcing member on the slope a second reinforcing member having one end inserted into a position; and a connecting member connecting the other end of the first reinforcing member to the other end of the second reinforcing member, wherein the first reinforcing member is substantially horizontal. Alternatively, the second reinforcing member is installed such that the other end is positioned lower than the one end, and the installation angle of the inclined surface of the second reinforcing member with respect to the sliding surface is at least greater than the installation angle of the first reinforcing member.

本発明によれば、略水平または他端が一端よりも低い位置になるように一端が挿入される第1補強部材が鋼管により構成されるため、適切に地盤中の排水を行うことができる。また、連結部材により端部が連結された第1補強部材及び第2補強部材の設置角度がそれぞれ異なるため、補強構造体の引張抵抗力及び曲げ抵抗力のそれぞれを高めることができ、様々な崩壊モードに適切に対応することができる斜面補強効果を得ることができる。 According to the present invention, since the first reinforcing member, one end of which is inserted so that the other end is substantially horizontal or positioned lower than the one end, is composed of a steel pipe, it is possible to properly drain the ground. In addition, since the installation angles of the first reinforcing member and the second reinforcing member whose ends are connected by the connecting member are different from each other, the tensile resistance and bending resistance of the reinforcing structure can be increased, and various collapses can be achieved. A slope reinforcement effect can be obtained that can appropriately correspond to the mode.

一の前記補強部材に対して、他の前記補強部材が複数連結されていてもよい。 A plurality of other reinforcing members may be connected to one reinforcing member.

前記第1補強部材及び前記第2補強部材が、斜面上において千鳥状に配置されることが好ましい。 It is preferable that the first reinforcing member and the second reinforcing member are arranged in a staggered manner on the slope.

前記補強構造体が斜面上において複数設けられていてもよい。 A plurality of the reinforcing structures may be provided on the slope.

複数の前記補強構造体を連結する第2連結部材を更に備えていてもよい。かかる場合、前記第2連結部材は、一の前記補強構造体の前記第1補強部材と、他の前記補強構造体の前記第2補強部材とを連結する。 A second connecting member that connects the plurality of reinforcing structures may be further provided. In such a case, the second connecting member connects the first reinforcing member of one reinforcing structure and the second reinforcing member of another reinforcing structure.

複数の前記補強構造体、斜面上において千鳥状に配置されてもよい
または、複数の前記補強構造体は、斜面の法尻に沿って並べて配置されてもよい。この時、斜面における前記第2補強部材の挿入位置よりも高い位置に一端が挿入され、前記第1補強部材と連結される他の第2補強部材を更に備えていることが好ましい。前記第2補強部材及び前記他の第2補強部材は、斜面上において千鳥状に配置されてもよい。
The plurality of reinforcing structures may be arranged in a zigzag pattern on the slope.
Alternatively, the plurality of reinforcing structures may be arranged side by side along the toe of the slope. At this time, it is preferable to further include another second reinforcing member whose one end is inserted at a position higher than the insertion position of the second reinforcing member on the slope and which is connected to the first reinforcing member. The second reinforcing member and the other second reinforcing member may be arranged in a zigzag pattern on the slope.

前記補強構造体は、棒材により構成され、少なくとも前記第1補強部材または前記第2補強部材と前記連結部材により連結される第3補強部材を更に備えていてもよい。かかる場合、当該第3補強部材の斜面のすべり面に対する設置角度は、前記第1補強部材の設置角度よりも大きく、前記第2補強部材の設置角度よりも小さく設定されることが好ましい。 The reinforcing structure may further include a third reinforcing member made of a bar material and connected to at least the first reinforcing member or the second reinforcing member by the connecting member. In this case, it is preferable that the installation angle of the inclined surface of the third reinforcing member with respect to the sliding surface is set larger than the installation angle of the first reinforcing member and smaller than the installation angle of the second reinforcing member.

少なくとも前記第1補強部材または前記第2補強部材と、前記第3補強部材をそれぞれ剛結する剛結部材が更に設けられていてもよい。 A rigid connection member may be further provided for rigidly connecting at least the first reinforcing member or the second reinforcing member and the third reinforcing member.

斜面の法尻に挿入される前記第1補強部材には、支圧板が設けられていることが好ましい。この時、前記支圧板は、前記すべり面に対して略垂直となるように前記第1補強部材に貫入してもよい。It is preferable that the first reinforcing member inserted into the trailing edge of the slope is provided with a bearing plate. At this time, the bearing pressure plate may penetrate into the first reinforcing member so as to be substantially perpendicular to the sliding surface.

前記第2補強部材の設置角度は、前記すべり面に対して略垂直であってもよい。 An installation angle of the second reinforcing member may be substantially perpendicular to the sliding surface.

なお、前記第1補強部材は主として引張抵抗部材として機能し、前記第2補強部材は主として曲げ抵抗部材として機能する。 The first reinforcing member mainly functions as a tensile resistance member, and the second reinforcing member mainly functions as a bending resistance member.

前記第1補強部材の他端と前記第2補強部材の他端をそれぞれ剛結する剛結部材が更に設けられていてもよい。 A rigid connection member may be further provided for rigidly connecting the other end of the first reinforcing member and the other end of the second reinforcing member.

一の前記補強部材と他の前記補強部材を連結した前記連結部材にはプレストレスが導入されてもよい。 A prestress may be introduced to the connecting member that connects one of the reinforcing members and another of the reinforcing members.

別な観点による本発明は、複数の補強部材を備える補強構造体を斜面に挿入する斜面補強方法であって、周面に複数の透水孔が形成された中空の棒材により構成される第1補強部材の一端を、少なくとも進行性破壊の初期崩壊箇所となる斜面の法尻に略水平または他端が一端よりも低い位置になるように挿入し、斜面における前記第1補強部材の挿入位置よりも高い位置に、棒材により構成される第2補強部材の一端を、斜面のすべり面に対する設置角度が、少なくとも前記第1補強部材の設置角度よりも大きくなるように挿入し、前記第1補強部材の他端と前記第2補強部材の他端をそれぞれ連結する、ことを特徴としている。
According to another aspect of the present invention, there is provided a slope reinforcement method for inserting a reinforcing structure having a plurality of reinforcing members into a slope, the first method comprising a hollow bar having a plurality of permeable holes formed in the peripheral surface thereof. One end of the reinforcing member is inserted at least at the toe of the slope , which is the initial collapse site of the progressive failure, so that the other end is substantially horizontal or lower than the one end, and the first reinforcing member is inserted on the slope. one end of a second reinforcing member made of a bar is inserted at a higher position than the first reinforcing member so that the setting angle with respect to the sliding surface of the slope is at least greater than the setting angle of the first reinforcing member; It is characterized by connecting the other end of the member and the other end of the second reinforcing member.

一の前記補強部材に対して、他の前記補強部材を複数連結してもよい。 A plurality of other reinforcing members may be connected to one reinforcing member.

前記第1補強部材及び前記第2補強部材を、斜面上において千鳥状に配置することが好ましい。 It is preferable that the first reinforcing member and the second reinforcing member are arranged in a staggered manner on the slope.

前記補強構造体を斜面上において複数設けてもよい。 A plurality of reinforcing structures may be provided on the slope.

複数の前記補強構造体うち、一の前記補強構造体の前記第1補強部材と、他の前記補強構造体の前記第2補強部材とを第2連結部材により連結してもよい。 Among the plurality of reinforcing structures, the first reinforcing member of one of the reinforcing structures and the second reinforcing member of the other reinforcing structure may be connected by a second connecting member.

複数の前記補強構造体を、斜面上において千鳥状に配置してもよい。
または、複数の前記補強構造体を、斜面の法尻に沿って並べて配置してもよい。この時、斜面における前記第2補強部材の挿入位置よりも高い位置に、前記第1補強部材と連結される他の第2補強部材の一端を挿入し、前記第2補強部材及び前記他の第2補強部材を、斜面上において千鳥状に配置してもよい。
A plurality of reinforcing structures may be arranged in a zigzag pattern on the slope.
Alternatively, a plurality of reinforcing structures may be arranged side by side along the toe of the slope. At this time, one end of another second reinforcing member connected to the first reinforcing member is inserted at a position higher than the insertion position of the second reinforcing member on the slope, and the second reinforcing member and the other second reinforcing member are inserted. 2 The reinforcing members may be arranged in a zigzag pattern on the slope.

棒材により構成され、少なくとも前記第1補強部材または前記第2補強部材と前記連結部材により連結される第3補強部材を、前記第1補強部材の設置角度よりも大きく、前記第2補強部材の設置角度よりも小さい設置角度で前記斜面のすべり面に設置してもよい。 A third reinforcing member made of a rod material and connected to at least the first reinforcing member or the second reinforcing member by the connecting member is set at an angle larger than the installation angle of the first reinforcing member and the angle of the second reinforcing member. It may be installed on the sliding surface of the slope at an installation angle smaller than the installation angle.

少なくとも前記第1補強部材または前記第2補強部材と、前記第3補強部材は剛結部材により剛結されてもよい。 At least the first reinforcing member or the second reinforcing member and the third reinforcing member may be rigidly connected by a rigidly connecting member.

斜面の法尻に挿入される前記第1補強部材の他端に支圧板を設けてもよい。この時、前記支圧板を、前記すべり面に対して略垂直となるように前記第1補強部材に貫入してもよい。
A bearing plate may be provided at the other end of the first reinforcing member inserted at the bottom of the slope . At this time , the bearing pressure plate may be inserted into the first reinforcing member so as to be substantially perpendicular to the sliding surface.

前記第2補強部材を、前記すべり面に対して略垂直に設置してもよい。 The second reinforcing member may be installed substantially perpendicular to the sliding surface.

前記第1補強部材は主として引張抵抗部材として機能し、前記第2補強部材は主として曲げ抵抗部材として機能してもよい。 The first reinforcing member may function primarily as a tensile resistance member and the second reinforcing member may function primarily as a bending resistance member.

前記第1補強部材の他端と前記第2補強部材の他端は、剛結部材により剛結されてもよい。 The other end of the first reinforcing member and the other end of the second reinforcing member may be rigidly connected by a rigid connection member.

一の前記補強部材と他の前記補強部材を連結した前記連結部材にプレストレスを導入してもよい。 A prestress may be introduced to the connecting member that connects one of the reinforcing members and another of the reinforcing members.

本発明によれば、斜面の崩壊モードによらず、適切な斜面補強効果を得ることができ、特に進行性破壊に対して好適な斜面補強効果を得ることができる斜面補強構造を提供することができる。 According to the present invention, it is possible to provide a slope reinforcement structure capable of obtaining an appropriate slope reinforcement effect regardless of the slope failure mode, and particularly capable of obtaining a suitable slope reinforcement effect against progressive failure. can.

崩壊するおそれのある斜面を含む地盤を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing the ground including slopes that may collapse. 斜面の崩壊により発生する応力と土塊の変位量との関係を示す概念図である。FIG. 4 is a conceptual diagram showing the relationship between the stress generated by a slope failure and the amount of displacement of a mass of soil. 第1実施形態にかかる斜面補強構造の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the slope reinforcement structure concerning 1st Embodiment. 図3に示す斜面補強構造の(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view of the slope reinforcement structure shown in FIG. 補強構造体が受ける受働土圧についての説明図である。FIG. 4 is an explanatory diagram of passive earth pressure that a reinforcing structure receives; 第2実施形態にかかる斜面補強構造の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically the structure of the slope reinforcement structure concerning 2nd Embodiment. 図6に示す斜面補強構造の斜視図である。FIG. 7 is a perspective view of the slope reinforcement structure shown in FIG. 6; 第2実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 2nd Embodiment. 第2実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 2nd Embodiment. 第2実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 2nd Embodiment. 第3実施形態にかかる斜面補強構造の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically the structure of the slope reinforcement structure concerning 3rd Embodiment. 第2実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 2nd Embodiment. 第4実施形態にかかる斜面補強構造の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically the structure of the slope reinforcement structure concerning 4th Embodiment. 第4実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 4th Embodiment. 第5実施形態にかかる斜面補強構造の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically the structure of the slope reinforcement structure concerning 5th Embodiment. 第5実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 5th Embodiment. 第5実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 5th Embodiment. 第5実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 5th Embodiment. 第5実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 5th Embodiment. 第5実施形態にかかる斜面補強構造の他の構成を模式的に示す(a)断面図及び(b)正面図である。It is (a) sectional drawing and (b) front view which show typically other structures of the slope reinforcement structure concerning 5th Embodiment.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

なお、以下の説明において「斜面1」とは、傾斜部を含む土構造物を総称するものとし、例えば山岳や丘陵地に見られる自然斜面、および、例えば堤防等に見られる人工斜面(法面)を含む。 In the following description, "slope 1" is a generic term for soil structures including slopes, such as natural slopes found in mountains and hills, and artificial slopes (slopes) found in embankments, for example. )including.

また、図2(a)は斜面1の崩壊により生じる応力の説明図であり、図2(b)はすべり面Aに対する土塊11の変位量δと補強効果との関係を示した概念図である。図2(a)に示すように、すべり面Aに沿って土塊11が滑り落ちて崩壊する場合、補強対象領域10を補強するための補強部材には、引張応力Tと曲げ応力Mが主として作用する。かかる引張応力T及び曲げ応力Mのそれぞれに対する前記補強部材による補強効果を、以下の説明においては「引張り補強効果」及び「曲げ補強効果」という場合がある。なお、図2(b)に示すように、すべり面Aに対する土塊11の変位量δが小さい場合には引張補強効果が、変位量δが大きい場合には曲げ補強効果が主として作用する。 FIG. 2(a) is an explanatory diagram of the stress generated by the collapse of the slope 1, and FIG. 2(b) is a conceptual diagram showing the relationship between the displacement amount δ of the soil mass 11 with respect to the slip surface A and the reinforcement effect. . As shown in FIG. 2(a), when the soil mass 11 slides down along the slip surface A and collapses, tensile stress T and bending stress M mainly act on the reinforcing members for reinforcing the reinforcement target region 10. do. The reinforcing effect of the reinforcing member for each of the tensile stress T and the bending stress M may be referred to as "tensile reinforcing effect" and "bending reinforcing effect" in the following description. As shown in FIG. 2(b), when the amount of displacement .delta. of the lump 11 with respect to the slip surface A is small, the tensile reinforcing effect mainly works, and when the amount of displacement .delta. is large, the bending reinforcing effect mainly works.

また、図2(c)は前記補強部材の設置角度の説明図である。以下の説明においては、図2(c)に示すように、すべり面Aからの補強部材の挿入角度、具体的には補強部材とすべり面Aの接点から斜面下方に延伸する接線を斜面1の表面側(図2(c)中における反時計回り方向)へ回転させる方向を正とする角度を、補強部材の「設置角度θ」という場合がある。 FIG. 2(c) is an explanatory diagram of the installation angle of the reinforcing member. In the following description, as shown in FIG. The angle positive in the direction of rotation toward the surface side (counterclockwise direction in FIG. 2(c)) may be referred to as the "installation angle θ" of the reinforcing member.

(第1実施形態)
まず、第1実施形態にかかる斜面補強構造について説明する。図3は、本実施形態にかかる補強構造体100の構成を模式的に表す斜視図である。また、図4は本実施形態にかかる補強構造体100の構成を模式的に表す説明図であり、図4(a)は図3におけるB-B断面図、図4(b)は正面図である。なお、以下においては、位置関係を明確にするために、互いに直交するX軸方向、Y軸方向及びZ軸方向を規定し、X軸正方向を安定地盤20から土塊11へ向けての水平方向、Y軸正方向を斜面表面に沿って延伸する水平方向、Z軸正方向を鉛直上向き方向とする。なお、断面図である図4(a)においては後述の第1補強部材101、第2補強部材102は点線により図示すべきところ、図示の煩雑さを回避するため実線により図示している。
(First embodiment)
First, the slope reinforcement structure according to the first embodiment will be described. FIG. 3 is a perspective view schematically showing the configuration of the reinforcing structure 100 according to this embodiment. 4A and 4B are explanatory views schematically showing the configuration of the reinforcing structure 100 according to the present embodiment, FIG. 4A being a cross-sectional view along the line BB in FIG. be. In the following description, in order to clarify the positional relationship, the X-axis direction, Y-axis direction, and Z-axis direction which are orthogonal to each other are defined, and the positive X-axis direction is the horizontal direction from the stable ground 20 to the mass of soil 11. , the positive direction of the Y-axis is the horizontal direction extending along the slope surface, and the positive direction of the Z-axis is the vertically upward direction. In FIG. 4A, which is a cross-sectional view, a first reinforcing member 101 and a second reinforcing member 102, which will be described later, should be illustrated by dotted lines, but are illustrated by solid lines to avoid complication of the illustration.

図3及び図4に示すように、補強構造体100は、第1補強部材101と、第2補強部材102と、第1補強部材101の頭部101a(第1補強部材101の土塊11から突出する側の端部)及び第2補強部材102の頭部102a(第2補強部材102の土塊11から突出する側の端部)をそれぞれ連結する連結部材103を有している。連結部材103としては、例えば引張材が用いられる。 As shown in FIGS. 3 and 4, the reinforcing structure 100 includes a first reinforcing member 101, a second reinforcing member 102, and a head portion 101a of the first reinforcing member 101 (the first reinforcing member 101 protruding from the soil mass 11). It has a connecting member 103 that connects the head portion 102a of the second reinforcing member 102 (the end portion of the second reinforcing member 102 that protrudes from the lump 11). A tensile member, for example, is used as the connecting member 103 .

第1補強部材101は、棒状部材により構成されており、斜面1中に、特に補強対象領域10中に浸透した地下水の排水を助長するため、少なくとも略水平、または、頭部101aが水平よりも下がる角度で、頭部101aとの他端側が補強対象領域10に挿入される。なお、第1補強部材101は補強対象領域10中の排水を適切に行うことができるものであれば、任意に構造や材質を選択することができる。具体的には、第1補強部材101は中空の棒材、例えば鋼管であってもよく、鋼管の中空部分により地下水を排水できるように構成してもよい。 The first reinforcing member 101 is composed of a rod-like member, and in order to facilitate drainage of groundwater that has penetrated into the slope 1, particularly into the region 10 to be reinforced, is at least approximately horizontal, or the head 101a is more horizontal than horizontal. The other end side of the head 101a is inserted into the reinforcement target region 10 at a downward angle. The structure and material of the first reinforcement member 101 can be arbitrarily selected as long as the drainage in the reinforcement target region 10 can be appropriately performed. Specifically, the first reinforcing member 101 may be a hollow bar, such as a steel pipe, and may be constructed such that groundwater can be drained through the hollow portion of the steel pipe.

また、第1補強部材101は、引張補強効果を主として得ることができるように補強対象領域10に設置される。かかる場合、既往の知見として引張補強効果は、補強部材の設置角度が0°~45°である場合に効率的に発揮されることが知られている。そこで、第1補強部材101は、設置角度θ1が0°~45°の範囲、より望ましくは設置角度θ1が30°となるように補強対象領域10に挿入されることが好ましい。 Also, the first reinforcing member 101 is installed in the reinforcement target region 10 so as to mainly obtain a tensile reinforcing effect. In such a case, it is known from past knowledge that the tensile reinforcing effect is efficiently exhibited when the installation angle of the reinforcing member is 0° to 45°. Therefore, the first reinforcing member 101 is preferably inserted into the region to be reinforced 10 so that the installation angle θ1 is in the range of 0° to 45°, more preferably 30°.

以上の観点から、第1補強部材101は、設置角度θ1が例えば30°である場合に、少なくとも略水平、または、頭部101aが水平よりも下がる角度となるような位置に挿入されることが望ましい。 From the above point of view, when the installation angle θ1 is, for example, 30°, the first reinforcing member 101 can be inserted at least approximately horizontally or at a position where the head 101a is at an angle lower than the horizontal. desirable.

第2補強部材102は任意の棒状部材、例えばロッド、パイプ、矩形材またはH形鋼などにより構成されている。 The second reinforcing member 102 is constructed from any bar-like member, such as a rod, pipe, rectangle or H-beam.

また、第2補強部材102は、曲げ補強効果を主として得ることができるように補強対象領域10に設置される。かかる場合、既往の知見として曲げ補強効果は、補強部材がすべり面に対して略垂直である場合、すなわち設置角度がおよそ90°である場合に効率的に発揮されることが知られている。すなわち、第2補強部材102は、設置角度θ2を少なくとも設置角度θ1(例えば30°)よりも大きくなるように設定することで、少なくとも第1補強部材101と比べ、効率的に曲げ補強効果を発揮させることができる。そして、第2補強部材102は、設置角度θ2が90°となるように補強対象領域10に挿入されてもよい。 Also, the second reinforcing member 102 is installed in the reinforcement target region 10 so as to mainly obtain a bending reinforcing effect. In such a case, it is known from past knowledge that the bending reinforcing effect is efficiently exhibited when the reinforcing member is substantially perpendicular to the slip surface, that is, when the installation angle is approximately 90°. That is, the second reinforcing member 102 exhibits a bending reinforcing effect more efficiently than at least the first reinforcing member 101 by setting the installation angle θ2 to be at least larger than the installation angle θ1 (for example, 30°). can be made Then, the second reinforcing member 102 may be inserted into the reinforcement target region 10 so that the installation angle θ2 is 90°.

なお、図5に示すように第2補強部材102の斜面1へ挿入された部分(根入れ部)には、斜面1の受働土圧Pが作用する。このため、第2補強部材102の設置角度θ2の決定にあたっては、当該受働土圧Pの影響を考慮することが好ましい。すなわち、例えば、第2補強部材102の挿入による曲げ補強効果と受働土圧Pに基づいて計算される場合の設置角度θ2が、すべり面に対して略垂直となるように設置角度θ2を設定することにより、第2補強部材102の根入れ部にかかる受働土圧Pが増大し、その結果、曲げ補強効果を効率的に発揮させることができる。なお、受働土圧Pは例えば第2補強部材102の斜面1への挿入長さにより変動する。 As shown in FIG. 5 , the passive earth pressure P of the slope 1 acts on the portion (embedded portion) of the second reinforcing member 102 inserted into the slope 1 . Therefore, it is preferable to consider the influence of the passive earth pressure P when determining the installation angle θ2 of the second reinforcing member 102 . That is, for example, the installation angle θ2 is set so that the installation angle θ2 calculated based on the bending reinforcement effect by inserting the second reinforcing member 102 and the passive earth pressure P is substantially perpendicular to the slip surface. As a result, the passive earth pressure P applied to the embedding portion of the second reinforcing member 102 is increased, and as a result, the bending reinforcing effect can be efficiently exhibited. Note that the passive earth pressure P varies depending on, for example, the length of insertion of the second reinforcing member 102 into the slope 1 .

以上の観点から、第2補強部材102の設置角度θ2は、第1補強部材101の設置角度θ1より大きく、かつ、90°以下に設定されることが好ましい。かかる場合、受働土圧Pを考慮した場合における設置角度θ2が略垂直、すなわち、およそ90°となることが望ましい。 From the above point of view, it is preferable that the installation angle θ2 of the second reinforcing member 102 is larger than the installation angle θ1 of the first reinforcing member 101 and set to 90° or less. In such a case, it is desirable that the installation angle θ2 in consideration of the passive earth pressure P is approximately vertical, that is, approximately 90°.

なお、第1補強部材101及び第2補強部材102は、斜面補強効果を好適に発揮するため、補強対象領域10に対して土塊11を介して、挿入側端部が安定地盤20に達する挿入深さで斜面1に打設される。 In addition, the first reinforcing member 101 and the second reinforcing member 102 are inserted into the region 10 to be reinforced 10 to a depth such that the insertion side end reaches the stable ground 20 via the soil mass 11 in order to properly exhibit the slope reinforcement effect. It is cast on the slope 1 with a

連結部材103は第1補強部材101の頭部101a、及び、第2補強部材102の頭部102aを連結する、例えばワイヤー状、ロッド状、シート状いずれかの鋼またはその他金属および樹脂により構成される部材である。 The connecting member 103 connects the head portion 101a of the first reinforcing member 101 and the head portion 102a of the second reinforcing member 102, and is made of wire-shaped, rod-shaped, or sheet-shaped steel or other metal or resin. It is a member that

連結部材103は、前述のように第1補強部材101の頭部101a、及び、第2補強部材102の頭部102aを連結することにより、例えば第1補強部材101に発生した引張応力を、少なくとも連結された第2補強部材102に伝達する。 The connecting member 103 connects the head portion 101a of the first reinforcing member 101 and the head portion 102a of the second reinforcing member 102 as described above, so that, for example, the tensile stress generated in the first reinforcing member 101 is reduced to at least It is transmitted to the connected second reinforcing member 102 .

(補強構造体による斜面補強効果)
以上のように構成された補強構造体100によれば、斜面の崩壊モードによらず、適切な補強効果を得ることができる。
(Slope reinforcement effect by reinforcement structure)
According to the reinforcing structure 100 configured as described above, it is possible to obtain an appropriate reinforcing effect regardless of the collapse mode of the slope.

例えば、第1補強部材101は少なくとも略水平、または、頭部101aが水平よりも下がる角度で補強対象領域10に挿入されるため、斜面1内の地下水の排水を適切に行うことができる。これにより、補強対象領域10の下部10aにおける地下水の浸透が抑制され、当該下部10aにおける強度低下を抑制することができるため、前記進行性破壊の発生を抑制することができる。 For example, since the first reinforcement member 101 is inserted into the reinforcement target region 10 at least approximately horizontally or at an angle where the head portion 101a is lower than the horizontal, groundwater in the slope 1 can be properly drained. As a result, the infiltration of groundwater into the lower portion 10a of the reinforcement target region 10 is suppressed, and the reduction in strength of the lower portion 10a can be suppressed, so that the occurrence of the progressive fracture can be suppressed.

また、第1補強部材101の周面には、鋼管の厚み方向に貫通して透水孔(図示せず)や排水孔(図示せず)が形成されていてもよい。このように透水孔や排水孔が形成されることにより、斜面1中の地下水を適切に鋼管内に導入し、排水を更に適切に行うことができる。すなわち、前記進行性破壊の発生を更に適切に抑制することができる。 Further, a water permeation hole (not shown) or a drain hole (not shown) may be formed through the steel pipe in the thickness direction on the peripheral surface of the first reinforcing member 101 . By forming the water permeation holes and the drainage holes in this way, the groundwater in the slope 1 can be properly introduced into the steel pipe and drained more properly. That is, it is possible to more appropriately suppress the occurrence of the progressive fracture.

なお、第1補強部材101の頭部101aは、補強対象領域10の下部10a近傍、より具体的には、移動層としての土塊11の最も下方側に突出していることが好ましい。これにより補強対象領域10の下部10aにおける斜面強度が向上し、前記進行性破壊の発生を更に適切に抑制することができる。 It is preferable that the head portion 101a of the first reinforcing member 101 protrude near the lower portion 10a of the reinforcement target region 10, more specifically, to the lowermost side of the lump 11 as the moving bed. As a result, the slope strength of the lower portion 10a of the reinforcement target region 10 is improved, and the occurrence of the progressive fracture can be more appropriately suppressed.

例えば、本実施形態にかかる補強構造体100によれば、第1補強部材101は設置角度が例えば30°となるように補強対象領域10に設置されるため、引張補強効果を好適に発揮させることができる。また、第2補強部材102は設置角度θ2が、少なくとも第1補強部材101の設置角度θ1より大きく、かつ少なくとも90°よりも小さく設定される。このように、設置角度θ2が設置角度θ1より大きく設定されることにより、少なくとも第1補強部材101と比べ曲げ補強効果を好適に発揮させることができる。また、設置角度θ2が90°以下となるように補強対象領域10に挿入されることにより、受働土圧Pを考慮して曲げ補強効果を好適に発揮させることができる。 For example, according to the reinforcement structure 100 according to the present embodiment, the first reinforcement member 101 is installed in the reinforcement target region 10 so that the installation angle is, for example, 30°, so that the tensile reinforcement effect can be preferably exhibited. can be done. Also, the installation angle θ2 of the second reinforcing member 102 is set to be at least larger than the installation angle θ1 of the first reinforcing member 101 and at least smaller than 90°. By setting the installation angle .theta.2 larger than the installation angle .theta.1 in this manner, the bending reinforcing effect can be favorably exhibited as compared with at least the first reinforcing member 101. FIG. In addition, by inserting into the reinforcement target region 10 so that the installation angle θ2 is 90° or less, the bending reinforcement effect can be favorably exhibited in consideration of the passive earth pressure P.

すなわち、本実施形態によれば、第1補強部材101により引張補強効果、第2補強部材102により曲げ補強効果をそれぞれ分担して好適に発揮させることにより補強構造体100の冗長性を向上させることができる。これにより、本実施形態にかかる補強構造体100は、土塊11のすべり面Aに対する変位量δの大小によらず適切に斜面補強効果を発揮させることができ、前記すべり破壊の発生を適切に抑制することができる。 That is, according to the present embodiment, the tensile reinforcing effect of the first reinforcing member 101 and the bending reinforcing effect of the second reinforcing member 102 are shared and appropriately exhibited, thereby improving the redundancy of the reinforcing structure 100. can be done. As a result, the reinforcement structure 100 according to the present embodiment can appropriately exhibit the slope reinforcement effect regardless of the magnitude of the displacement amount δ of the soil mass 11 with respect to the slip surface A, and appropriately suppress the occurrence of the slip failure. can do.

例えば、本実施形態によれば、連結部材103により第1補強部材101の頭部101a、及び、第2補強部材102の頭部102aを連結することにより、特に第2補強部材102による斜面補強効果を好適に発揮させることができる。 For example, according to the present embodiment, by connecting the head portion 101a of the first reinforcing member 101 and the head portion 102a of the second reinforcing member 102 by the connecting member 103, the slope reinforcing effect of the second reinforcing member 102 is particularly high. can be suitably exhibited.

図2に示したように、斜面1の崩壊により発生する応力として、引張応力Tはすべり面Aに対する土塊11の変位量δが小さい場合においても発生するのに対し、曲げ応力Mは変位量δが小さい場合には発生しない。すなわち、第1補強部材101は、変位量δが小さい場合から引張補強効果を発揮させることができるのに対し、第2補強部材102は変位量δが大きくならなければ曲げ補強効果を好適に発揮させることができない。かかる場合、例えば前記進行性破壊においては、斜面1内において引張応力Tが発生するものの、土塊11としての変位量δが小さいため発生する曲げ応力Mが小さく、第2補強部材102による斜面補強効果を好適に発揮させることができない。 As shown in FIG. 2, as the stress generated by the collapse of the slope 1, the tensile stress T is generated even when the displacement amount δ of the soil mass 11 with respect to the slip surface A is small, whereas the bending stress M is generated by the displacement amount δ does not occur when is small. That is, the first reinforcing member 101 can exhibit the tensile reinforcing effect even when the displacement δ is small, whereas the second reinforcing member 102 preferably exhibits the bending reinforcing effect unless the displacement δ becomes large. I can't let you. In such a case, for example, in the progressive fracture, although the tensile stress T is generated in the slope 1, the bending stress M generated is small because the displacement amount δ as the soil mass 11 is small, and the slope reinforcement effect by the second reinforcing member 102 cannot be properly exhibited.

ここで、本実施形態によれば、第1補強部材101の頭部101a、及び、第2補強部材102の頭部102aを連結部材103により連結することにより、例えば斜面1の崩壊が前記進行性破壊である場合や、すべり破壊の発生初期であって土塊11の変位量δが小さい場合であっても、第1補強部材101に作用する引張応力Tの一部を第2補強部材102へ伝達し、曲げ応力Mとして負担させることができる。すなわち、斜面の崩壊モードによらず、第2補強部材102による斜面補強効果を好適に発揮させることができる。 Here, according to the present embodiment, by connecting the head portion 101a of the first reinforcing member 101 and the head portion 102a of the second reinforcing member 102 with the connecting member 103, for example, the collapse of the slope 1 is progressed. Part of the tensile stress T acting on the first reinforcing member 101 is transmitted to the second reinforcing member 102 even in the case of failure or in the initial stage of occurrence of sliding failure and the amount of displacement δ of the soil mass 11 is small. and can be borne as a bending stress M. In other words, the slope reinforcement effect of the second reinforcing member 102 can be favorably exhibited regardless of the collapse mode of the slope.

なお、本実施形態においては引張材である連結部材103により第1補強部材101の頭部101a、及び、第2補強部材102の頭部102aを連結したが、補強部材同士の連結方法はこれに限られない。例えば、引張材である連結部材103に代えて、剛結部材(図示せず)により補強部材同士を剛結してもよい。これにより、第1補強部材101と第2補強部材102間の圧縮方向の力の伝達も可能となり、前記斜面補強効果を更に好適に発揮させることができる。 In the present embodiment, the head portion 101a of the first reinforcing member 101 and the head portion 102a of the second reinforcing member 102 are connected by the connecting member 103, which is a tensile member, but this is the method for connecting the reinforcing members. Not limited. For example, instead of the connecting member 103, which is a tensile member, a stiffening member (not shown) may be used to rigidly connect the reinforcing members. As a result, it becomes possible to transmit the force in the compression direction between the first reinforcing member 101 and the second reinforcing member 102, and the slope reinforcing effect can be exhibited more favorably.

また、前記剛結部材は、第1補強部材101、及び、第2補強部材102を連結する連結部材103に加えて、更に第1補強部材101の頭部101a、及び、第2補強部材102の頭部102aの間に設けられていてもよい。このように、連結部材103および剛結部材のそれぞれを設けることにより、例えば第2補強部材102が第1補強部材101に先んじて作用する崩壊モードの斜面崩壊が発生した場合であっても、適切に第1補強部材101に力を伝達し、斜面補強効果を向上させることができる。 In addition to the connecting member 103 that connects the first reinforcing member 101 and the second reinforcing member 102, the rigid connection member includes the head portion 101a of the first reinforcing member 101 and the second reinforcing member 102. It may be provided between the heads 102a. Thus, by providing each of the connection member 103 and the rigid connection member, even if a slope failure occurs in a collapse mode in which the second reinforcement member 102 acts before the first reinforcement member 101, for example, force can be transmitted to the first reinforcing member 101 to improve the slope reinforcing effect.

なお、補強部材間の連結が完了した連結部材103や剛結部材(図示せず)には、例えば引張方向や曲げ方向に対するプレストレスを導入してもよい。このように連結部材103や剛結部材にプレストレスが導入されることにより、補強構造体100による引張補強効果や曲げ補強効果を向上させることができる。またこれと共に、土塊11の変位量δが小さい段階から連結された補強部材間で応力を伝達することが可能になる。 For example, a prestress in the tensile direction or the bending direction may be applied to the connecting member 103 or rigid connection member (not shown) that has completed the connection between the reinforcing members. By introducing prestress to the connecting member 103 and the rigid connection member in this way, the tensile reinforcing effect and the bending reinforcing effect of the reinforcing structure 100 can be improved. Along with this, it becomes possible to transmit stress between the connected reinforcing members from a stage where the amount of displacement δ of the lump of earth 11 is small.

なお、図3及び図4(b)に示したように、例えば1の第2補強部材102に対しては、連結部材103により複数(本実施形態の例においては2つ)の第1補強部材101が連結されることが望ましい。このように、第1補強部材101と第2補強部材102との連結数を増やすことにより、補強構造体100の冗長性を向上させ、斜面補強効果を更に向上させることができる。 3 and 4B, for example, for one second reinforcing member 102, a plurality of (two in the example of the present embodiment) first reinforcing members are connected by a connecting member 103. 101 are preferably connected. Thus, by increasing the number of connections between the first reinforcing members 101 and the second reinforcing members 102, the redundancy of the reinforcing structure 100 can be improved, and the slope reinforcing effect can be further improved.

また、このように複数の補強部材が斜面上に設置される場合、各補強部材の位置関係は、千鳥状、すなわち、図4(b)に示すように第1補強部材101及び第2補強部材102がYZ平面内におけるZ軸方向で重ならないような配置となることが望ましい。このように千鳥状に各補強部材が設置されることにより、土塊11の落下方向に対しての各補強部材間の間隔が狭まり、土塊11が補強部材間をすり抜けて崩壊することを抑制することができる。 Further, when a plurality of reinforcing members are installed on the slope in this way, the positional relationship of the respective reinforcing members is staggered, that is, as shown in FIG. It is desirable that the positions 102 are arranged so that they do not overlap in the Z-axis direction in the YZ plane. By installing the reinforcing members in a staggered manner in this manner, the intervals between the reinforcing members in the falling direction of the lump of earth 11 are narrowed, and the lump of earth 11 is prevented from slipping through the reinforcing members and collapsing. can be done.

(第2実施形態)
なお、補強構造体100は、前記移動層としての土塊11が滑落することの無いように、すなわち補強対象領域10が崩壊することの無いように、当該移動層の補強を行う必要がある。
(Second embodiment)
The reinforcing structure 100 needs to reinforce the moving layer so that the soil mass 11 as the moving layer does not slide down, that is, the reinforcement target area 10 does not collapse.

そこで第2実施形態にかかる斜面補強構造においては、図6及び図7に示すように、補強構造体100が補強対象領域10に複数設置される。すなわち補強構造体100は、補強対象領域10の崩壊による土塊11の滑落を適切に抑制するため、補強対象領域10の下部10a側においてY軸方向に並べて配置される。 Therefore, in the slope reinforcement structure according to the second embodiment, as shown in FIGS. 6 and 7 , a plurality of reinforcement structures 100 are installed in the reinforcement target region 10 . That is, the reinforcing structures 100 are arranged side by side in the Y-axis direction on the side of the lower part 10a of the reinforcement target area 10 in order to appropriately suppress the soil mass 11 from sliding down due to the collapse of the reinforcement target area 10 .

このように補強構造体100を、少なくとも補強対象領域10の下部10a側においてY軸方向に並べて配置することにより、土塊11の滑落を、斜面に沿った水平方向の全長に亘って受け止めることができ、補強対象領域10の崩壊を適切に抑制することができる。 By arranging the reinforcing structures 100 side by side in the Y-axis direction at least on the side of the lower portion 10a of the reinforcement target region 10 in this way, the sliding down of the earth mass 11 can be received over the entire length in the horizontal direction along the slope. , the collapse of the reinforcement target region 10 can be appropriately suppressed.

なお、図8に示すように、1の補強構造体100の第1補強部材101と、他の補強構造体100の第2補強部材102とを連結部材103により連結することにより、連続的に補強部材が設置されるように構成してもよい。すなわち、補強対象領域10の下部10a側におけるY軸方向に沿って、複数の第1補強部材101と第2補強部材102とを交互に千鳥状に配置し、補強構造体200を構成してもよい。かかる構成を有することにより、斜面1に発生した応力をより多くの補強部材により分散して受け止めることができ、これにより更に適切に土塊11の滑落を抑制することができる。 As shown in FIG. 8, by connecting the first reinforcing member 101 of one reinforcing structure 100 and the second reinforcing member 102 of the other reinforcing structure 100 with a connecting member 103, continuous reinforcement can be achieved. You may comprise so that a member may be installed. That is, a plurality of first reinforcing members 101 and second reinforcing members 102 may be alternately arranged in a zigzag pattern along the Y-axis direction on the lower portion 10a side of the region 10 to be reinforced to form the reinforcing structure 200. good. With such a configuration, the stress generated on the slope 1 can be distributed and received by a larger number of reinforcing members, thereby more appropriately suppressing the lump of earth 11 from sliding down.

また、斜面1に複数の補強構造体100を設置するにあたっては、図9に示すように、斜面1の上方、具体的には補強対象領域10のZ軸方向正方向側に更に補強構造体100が設けられていてもよい。このように斜面1の上方にも補強構造体100が設置されることにより、補強対象領域10の全体を補強することができ、斜面1の崩壊を更に適切に抑制することができる。 Further, when installing a plurality of reinforcing structures 100 on the slope 1, as shown in FIG. may be provided. By installing the reinforcement structure 100 also above the slope 1 in this way, the entire reinforcement target region 10 can be reinforced, and the collapse of the slope 1 can be suppressed more appropriately.

なお、このように複数の補強構造体100が斜面の上下方向にそれぞれに設けられる場合、これら複数の補強構造体100は、図9(b)に示したように互いに千鳥状に配置されていることが望ましい。 In addition, when a plurality of reinforcing structures 100 are respectively provided in the vertical direction of the slope in this way, the plurality of reinforcing structures 100 are arranged in a zigzag manner as shown in FIG. 9(b). is desirable.

また、かかる際、上方に設けられる補強構造体100の第1補強部材101と下方に設けられる他の補強構造体100の第2補強部材102とが第2連結部材105により連結されることにより、斜面1に発生する応力を適切に各補強構造体100に分散させることができ、斜面補強効果を更に向上させることができる。 Further, at this time, the first reinforcing member 101 of the reinforcing structure 100 provided above and the second reinforcing member 102 of the other reinforcing structure 100 provided below are connected by the second connecting member 105, The stress generated on the slope 1 can be appropriately distributed to each reinforcing structure 100, and the slope reinforcement effect can be further improved.

なお、当然に、図10に示すように前記補強構造体200が斜面の上下方向それぞれに設けられていてもよい。 Incidentally, as a matter of course, as shown in FIG. 10, the reinforcing structure 200 may be provided in each of the vertical directions of the slope.

(第3実施形態)
第2実施形態で説明したように、斜面の上下方向それぞれに補強構造体100、または補強構造体200を設けることにより、移動層となる土塊11の領域全体が補強され、斜面1の崩壊を抑制することができる。なお、移動層となる土塊11の領域全体を補強することができれば、補強構造体を斜面1上に複数設ける必要はない。
(Third embodiment)
As described in the second embodiment, by providing the reinforcing structure 100 or the reinforcing structure 200 respectively in the vertical direction of the slope, the entire region of the soil mass 11 that becomes the moving layer is reinforced, and the collapse of the slope 1 is suppressed. can do. It should be noted that there is no need to provide a plurality of reinforcing structures on the slope 1 if the entire region of the mass of soil 11 that becomes the moving layer can be reinforced.

図11は、第3実施形態にかかる補強構造体300の構成を模式的に示す説明図である。図11に示すように、補強構造体300によれば、第1及び第2実施形態と同様に補強対象領域10のZ軸方向負方向側に設けられる第1補強部材101と、補強対象領域10のZ軸方向正方向側に設けられる第2補強部材102とが連結部材103により連結された構造を有している。すなわち本実施形態によれば、補強構造体100を複数設けることなく、第2補強部材102の挿入位置を変更することにより、補強対象領域10の全面を補強することができる。かかる場合、第2補強部材102の設置位置は、受働土圧Pを考慮した設置角度θ2が略垂直に設定され、かつ当該第2補強部材102の挿入側端部が、第1補強部材101の挿入側端部の近傍に位置するように設定されることが好ましい。かかる際、斜面1中において、断面視において第1補強部材101及び第2補強部材102が交差するように配置されることが更に好ましい。 FIG. 11 is an explanatory diagram schematically showing the configuration of the reinforcing structure 300 according to the third embodiment. As shown in FIG. 11 , according to the reinforcing structure 300, as in the first and second embodiments, the first reinforcing member 101 provided on the Z-axis direction negative side of the reinforcement target region 10 and the reinforcement target region 10 and a second reinforcing member 102 provided on the positive side in the Z-axis direction are connected by a connecting member 103 . That is, according to the present embodiment, the entire area to be reinforced 10 can be reinforced by changing the insertion position of the second reinforcing member 102 without providing a plurality of reinforcing structures 100 . In this case, the installation position of the second reinforcing member 102 is such that the installation angle θ2 considering the passive earth pressure P is set to be substantially vertical, and the insertion side end of the second reinforcing member 102 is aligned with the first reinforcing member 101. It is preferably set so as to be positioned near the insertion side end. In this case, it is more preferable that the first reinforcing member 101 and the second reinforcing member 102 are arranged so as to intersect each other in the slope 1 in cross-sectional view.

また、補強対象領域10の全体を補強するにあたっては、例えば図12に示すように、前述の斜面の下方に設けられる補強構造体200に加え、斜面の上方に更に第2補強部材102が設けてもよい。かかる場合、新たに挿入される第2補強部材102は、補強構造体200を構成する第2補強部材102と千鳥状に配置されることが好ましい。また更に、新たに挿入される第2補強部材102は、例えば第2連結部材105によりそれぞれ補強構造体200と連結されることが好ましい。 In order to reinforce the entire reinforcement target region 10, for example, as shown in FIG. 12, in addition to the reinforcing structure 200 provided below the slope, a second reinforcing member 102 is provided above the slope. good too. In such a case, the newly inserted second reinforcing members 102 are preferably arranged in a zigzag manner with the second reinforcing members 102 forming the reinforcing structure 200 . Furthermore, it is preferable that the newly inserted second reinforcing members 102 are respectively connected to the reinforcing structures 200 by second connecting members 105, for example.

(第4実施形態)
なお、以上の第1~第3の実施形態によれば、補強構造体は引張補強効果を主として発揮するために設置される第1補強部材101の頭部101a、及び、曲げ補強効果を主として発揮するために設置される第2補強部材102の頭部102aを連結部材103により連結することにより構成されていたが、補強構造体の構成はこれに限られない。
(Fourth embodiment)
According to the above first to third embodiments, the reinforcing structure mainly exhibits the head portion 101a of the first reinforcing member 101 installed to mainly exhibit the tensile reinforcing effect and the bending reinforcing effect. Although the head portion 102a of the second reinforcing member 102 installed for the purpose is connected by the connecting member 103, the structure of the reinforcing structure is not limited to this.

図13は、第4実施形態にかかる補強構造体400の構成を模式的に示す説明図である。補強構造体400は、第1補強部材101、第2補強部材102に加え、第3補強部材104が連結部材103により更に連結されて構成されている。 FIG. 13 is an explanatory diagram schematically showing the configuration of a reinforcing structure 400 according to the fourth embodiment. The reinforcing structure 400 is configured by connecting a third reinforcing member 104 with a connecting member 103 in addition to the first reinforcing member 101 and the second reinforcing member 102 .

第3補強部材104は、補強構造体400において引張補強効果及び曲げ補強効果のそれぞれを更に好適に発揮することができるように、具体的には、斜面1に発生する引張応力及び曲げ応力を更に適切に分散させることができるように補強対象領域10に設置される。かかる場合、第3補強部材104の設置角度θ3は、θ1<θ3<θ2となるように設定されることが望ましい。 Specifically, the third reinforcing member 104 further reduces the tensile stress and the bending stress generated on the slope 1 so that the reinforcing structure 400 can exhibit both the tensile reinforcing effect and the bending reinforcing effect more preferably. It is installed in the area 10 to be reinforced so that it can be distributed appropriately. In this case, the installation angle θ3 of the third reinforcing member 104 is desirably set so that θ1<θ3<θ2.

また、第3補強部材104は、第1補強部材101及び第2補強部材102と千鳥状に配置されることが望ましい。 Also, the third reinforcing member 104 is preferably arranged in a staggered manner with the first reinforcing member 101 and the second reinforcing member 102 .

このように、第3補強部材104を含んで補強構造体400を構成することにより、斜面補強効果を更に適切に向上させることができる。 Thus, by configuring the reinforcing structure 400 including the third reinforcing member 104, the slope reinforcing effect can be further appropriately improved.

なお、第3補強部材104の設置方法は上記実施例には限られない。例えば、図14に示すように、図10で示した斜面上方に設けられる補強構造体200に代え、当該補強構造体200構成する第1補強部材101を第3補強部材104と入れ替えた、補強構造体500を設置してもよい。 Note that the method of installing the third reinforcing member 104 is not limited to the above embodiment. For example, as shown in FIG. 14, instead of the reinforcing structure 200 provided above the slope shown in FIG. A body 500 may be placed.

すなわち、補強対象領域10の崩壊にあたっては、補強対象領域10の下部10aにおいて引張応力Tが最も大きく作用するため、第1補強部材101は、少なくともかかる補強対象領域10の下部10aに設けられていれば引張補強効果を発揮することができる。そこで、斜面上方に設けられる補強構造体200の第1補強部材101を第3補強部材104と置き換えることにより、斜面1の崩壊により斜面上方において発生する引張応力T及び曲げ応力Mのそれぞれを適切に抑制することができ、すなわち、引張補強効果及び曲げ補強効果を発揮し、斜面補強効果を適切に向上させることができる。 That is, when the region to be reinforced 10 collapses, the tensile stress T acts most on the lower portion 10a of the region to be reinforced 10, so the first reinforcing member 101 is provided at least on the lower portion 10a of the region to be reinforced 10. It can exert a tensile reinforcing effect. Therefore, by replacing the first reinforcing member 101 of the reinforcing structure 200 provided above the slope with the third reinforcing member 104, the tensile stress T and the bending stress M generated above the slope due to the collapse of the slope 1 can be appropriately reduced. In other words, the tensile reinforcement effect and the bending reinforcement effect can be exhibited, and the slope reinforcement effect can be appropriately improved.

なお、第3補強部材104は、連結部材103に代えて、または連結部材103に加えて、剛結部材(図示せず)により第1補強部材101や第2補強部材102に剛結されていてもよい。 The third reinforcing member 104 is rigidly connected to the first reinforcing member 101 and the second reinforcing member 102 by rigidly connecting members (not shown) instead of or in addition to the connecting member 103. good too.

(第5実施形態)
なお、以上の第1~第4に示した補強構造体100、200、300、400、500には、図15に示すように支圧板106が設けられていてもよい。
(Fifth embodiment)
Note that the reinforcing structures 100, 200, 300, 400, and 500 shown in the above first to fourth may be provided with a bearing plate 106 as shown in FIG.

支圧板106は、例えば板状部材により構成され、支圧板106の面部から厚み方向に向けて貫入孔(図示せず)が形成されている。そして、当該貫入孔に対して、例えば各補強構造体を構成する第1補強部材101が貫入され、前記面部が斜面1の表面に沿うようにして補強対象領域10に設置される。 The pressure plate 106 is made of, for example, a plate-like member, and has a penetration hole (not shown) extending from the surface of the pressure plate 106 in the thickness direction. Then, for example, the first reinforcing member 101 constituting each reinforcing structure is penetrated into the penetration hole, and the surface portion is installed in the reinforcement target region 10 along the surface of the slope 1 .

このように、補強構造体に支圧板106を設けることにより、斜面崩壊により滑落しようとする土塊11を受け止めて滑落を防止し、補強対象領域10が崩壊することを抑制することができる。また、特に支圧板106を前記進行性破壊の初期崩壊箇所となる補強対象領域10の下部10a部分に設けることにより、補強対象領域10の初期崩壊を適切に受け止めることができるため、前記進行性破壊の発生を適切に抑制することができる。 In this way, by providing the bearing plate 106 to the reinforcing structure, it is possible to receive the soil mass 11 that is about to slide down due to a slope failure, prevent it from sliding down, and suppress the collapse of the reinforcement target area 10. In addition, especially by providing the bearing plate 106 at the lower portion 10a of the reinforcement target region 10, which is the initial collapse portion of the progressive fracture, the initial collapse of the reinforcement target region 10 can be appropriately received, so the progressive fracture can be appropriately suppressed.

なお、前述のように支圧板106は、斜面崩壊により滑落する土塊11を前記面部により受け止めることにより崩壊を抑制する。このため、支圧板106は少なくとも補強対象領域10の下部10a側(Z軸方向負方向側)に設けられる補強構造体(Z軸方向最も負方向側に設けられる補強構造体)の第1補強部材101に貫入されていれば、補強対象領域10の崩壊を抑制することができるが、当然に斜面1に設けられる全ての第1補強部材101に貫入されてもよい。 In addition, as described above, the bearing plate 106 suppresses the collapse by receiving the earth mass 11 that slides down due to the slope failure with the surface portion. Therefore, the bearing plate 106 is at least the first reinforcing member of the reinforcing structure provided on the side of the lower portion 10a of the reinforcement target region 10 (the Z-axis direction negative direction side) (the reinforcing structure provided on the most negative side in the Z-axis direction). If the first reinforcing member 101 is penetrated, collapse of the reinforcement target region 10 can be suppressed, but naturally all the first reinforcing members 101 provided on the slope 1 may be penetrated.

なお、支圧板106の設置方法は、斜面1の表面に沿わせて設置することには限られない。例えば図16に示すように支圧板106は、すべり面Aに対して略垂直となるように第1補強部材101に貫入されてもよい。 The installation method of the pressure plate 106 is not limited to installation along the surface of the slope 1 . For example, as shown in FIG. 16, the bearing plate 106 may be inserted into the first reinforcing member 101 so as to be substantially perpendicular to the slip plane A. As shown in FIG.

このように支圧板106が設けられることにより、補強対象領域10の崩壊により滑落する土塊11の滑落方向に対して前記面部が略垂直となるため、補強対象領域10の崩壊を更に適切に抑制することができる。 By providing the bearing plate 106 in this way, the surface portion becomes substantially perpendicular to the sliding direction of the soil mass 11 that slides down due to the collapse of the reinforcement target region 10, so that the collapse of the reinforcement target region 10 is suppressed more appropriately. be able to.

なお、このように支圧板106をすべり面Aに対して略垂直に設置する場合、当該設置箇所近傍の土塊11を除去した後に支圧板106を設置することになるが、当該除去した土塊11は、支圧板106の設置個所に対して埋め戻しても、埋め戻さなくても、適切に支圧板106による斜面補強効果は発揮することができる。 When the bearing plate 106 is installed substantially perpendicular to the slip surface A in this way, the bearing plate 106 is installed after removing the clod 11 in the vicinity of the installation location. , the slope reinforcement effect of the bearing plate 106 can be exhibited properly whether or not the installation location of the bearing plate 106 is backfilled.

なお、上述したように支圧板106は、図17~図20に例示するように、補強構造体100、200、300、400、500の任意の補強部材に対して貫入することができる。 It should be noted that, as described above, the bearing plate 106 can penetrate any reinforcing member of the reinforcing structures 100, 200, 300, 400, 500 as illustrated in FIGS. 17-20.

以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above, the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive various modifications or modifications within the scope of the technical idea described in the claims, and these are also within the technical scope of the present invention. be understood to belong to

例えば、本発明において開示された補強構造体は、前記人工斜面としての堤防等にも好適に適用することができる。かかる場合、補強構造体は堤防の法面に設けられ、特に当該補強構造体の下部に設けられる第1補強部材が法尻に設置されることにより、特に適切に斜面補強効果を享受することができる。 For example, the reinforcing structure disclosed in the present invention can be suitably applied to embankments and the like as artificial slopes. In such a case, the reinforcing structure is provided on the slope of the embankment, and particularly by installing the first reinforcing member provided at the bottom of the reinforcing structure at the toe of the slope, it is possible to enjoy a particularly appropriate slope reinforcement effect. can.

本発明は、崩壊する恐れのある斜面を補強する際に有用であり、特に堤防のような人工斜面を補強する際に有用である。 INDUSTRIAL APPLICABILITY The present invention is useful for reinforcing slopes that are likely to collapse, and is particularly useful for reinforcing artificial slopes such as embankments.

1 斜面
10 補強対象領域
10a 下部
11 土塊
20 安定地盤
100 補強構造体
101 第1補強部材
102 第2補強部材
103 連結部材
104 第3補強部材
105 第2連結部材
106 支圧板
200 補強構造体
300 補強構造体
400 補強構造体
500 補強構造体
A すべり面
M 曲げ応力
T 引張応力
θ1 設置角度(第1補強部材)
θ2 設置角度(第2補強部材)
θ3 設置角度(第3補強部材)
Reference Signs List 1 slope 10 area to be reinforced 10a lower part 11 earth mass 20 stable ground 100 reinforcing structure 101 first reinforcing member 102 second reinforcing member 103 connecting member 104 third reinforcing member 105 second connecting member 106 pressure plate 200 reinforcing structure 300 reinforcing structure Body 400 Reinforcement structure 500 Reinforcement structure A Slip surface M Bending stress T Tensile stress θ1 Installation angle (first reinforcing member)
θ2 Installation angle (second reinforcing member)
θ3 Installation angle (third reinforcing member)

Claims (32)

複数の補強部材を備える補強構造体を斜面に挿入した斜面補強構造であって、
前記補強構造体は、
周面に複数の透水孔が形成された中空の棒材により構成され、少なくとも進行性破壊の初期崩壊箇所となる斜面の法尻に一端が挿入される第1補強部材と、
棒材により構成され、斜面における前記第1補強部材の挿入位置よりも高い位置に一端が挿入される第2補強部材と、
前記第1補強部材の他端と前記第2補強部材の他端をそれぞれ連結する連結部材と、を備え、
前記第1補強部材は、略水平または他端が一端よりも低い位置になるように設置され、
前記第2補強部材の斜面のすべり面に対する設置角度は、少なくとも前記第1補強部材の設置角度よりも大きいことを特徴とする、斜面補強構造。
A slope reinforcement structure in which a reinforcement structure including a plurality of reinforcement members is inserted into a slope,
The reinforcing structure is
a first reinforcing member composed of a hollow bar material having a plurality of water permeable holes formed on its peripheral surface, and having one end inserted into at least the toe of the slope, which is the initial collapse site of the progressive fracture;
a second reinforcing member made of a bar and having one end inserted at a position higher than the insertion position of the first reinforcing member on the slope;
a connecting member that connects the other end of the first reinforcing member and the other end of the second reinforcing member,
The first reinforcing member is installed so that it is substantially horizontal or the other end is lower than the one end,
The slope reinforcement structure, wherein the installation angle of the slope of the second reinforcement member with respect to the sliding surface is at least greater than the installation angle of the first reinforcement member.
斜面の法尻に挿入される前記第1補強部材には、支圧板が設けられることを特徴とする、請求項1に記載の斜面補強構造。 2. The slope reinforcement structure according to claim 1, wherein said first reinforcement member inserted at the bottom of the slope is provided with a bearing plate. 前記支圧板を、前記すべり面に対して略垂直となるように前記第1補強部材に貫入することを特徴とする、請求項2に記載の斜面補強構造。 3. The slope reinforcement structure according to claim 2, wherein the bearing pressure plate is inserted into the first reinforcement member so as to be substantially perpendicular to the sliding surface. 一の前記補強部材に対して、他の前記補強部材が複数連結されることを特徴とする、請求項1~3のいずれか一項に記載の斜面補強構造。 The slope reinforcement structure according to any one of claims 1 to 3, wherein a plurality of other reinforcing members are connected to one reinforcing member. 前記第1補強部材及び前記第2補強部材が、斜面上において千鳥状に配置されることを特徴とする、請求項4に記載の斜面補強構造。 5. The slope reinforcing structure according to claim 4, wherein the first reinforcing member and the second reinforcing member are arranged in a staggered manner on the slope. 前記補強構造体が斜面上において複数設けられることを特徴とする、請求項1~5のいずれか一項に記載の斜面補強構造。 The slope reinforcement structure according to any one of claims 1 to 5, characterized in that a plurality of said reinforcement structures are provided on the slope. 複数の前記補強構造体を連結する第2連結部材を更に備え、
前記第2連結部材は、一の前記補強構造体の前記第1補強部材と、他の前記補強構造体の前記第2補強部材とを連結することを特徴とする、請求項6に記載の斜面補強構造。
Further comprising a second connecting member that connects the plurality of reinforcing structures,
The slope according to claim 6, wherein the second connecting member connects the first reinforcing member of one reinforcing structure and the second reinforcing member of another reinforcing structure. reinforced structure.
複数の前記補強構造体が、斜面の法尻に沿って並べて配置されることを特徴とする、請求項6又は7に記載の斜面補強構造。 The slope reinforcement structure according to claim 6 or 7, wherein a plurality of said reinforcement structures are arranged side by side along the toe of the slope. 斜面における前記第2補強部材の挿入位置よりも高い位置に一端が挿入され、前記第1補強部材と連結される他の第2補強部材を更に備え、
前記第2補強部材及び前記他の第2補強部材が、斜面上において千鳥状に配置されることを特徴とする、請求項8に記載の斜面補強構造。
Further comprising another second reinforcing member having one end inserted at a position higher than the insertion position of the second reinforcing member on the slope and connected to the first reinforcing member,
9. The slope reinforcement structure according to claim 8, wherein said second reinforcement member and said another second reinforcement member are arranged in a zigzag manner on the slope.
複数の前記補強構造体が、斜面上において千鳥状に配置されることを特徴とする、請求項6~8のいずれか一項に記載の斜面補強構造。 The slope reinforcement structure according to any one of claims 6 to 8, characterized in that a plurality of said reinforcement structures are arranged in a zigzag pattern on the slope. 前記第2補強部材の設置角度は、前記すべり面に対して略垂直であることを特徴とする、請求項1~10のいずれか一項に記載の斜面補強構造。 The slope reinforcement structure according to any one of claims 1 to 10, wherein the installation angle of the second reinforcement member is substantially perpendicular to the slip surface. 前記第1補強部材は主として引張抵抗部材として機能し、
前記第2補強部材は主として曲げ抵抗部材として機能することを特徴とする、請求項1~11のいずれか一項に記載の斜面補強構造。
The first reinforcing member mainly functions as a tensile resistance member,
The slope reinforcement structure according to any one of claims 1 to 11, wherein the second reinforcement member mainly functions as a bending resistance member.
前記第1補強部材の他端と前記第2補強部材の他端をそれぞれ剛結する剛結部材が更に設けられることを特徴とする、請求項1~12のいずれか一項に記載の斜面補強構造。 The slope reinforcement according to any one of claims 1 to 12, further comprising a rigid connection member for rigidly connecting the other end of the first reinforcing member and the other end of the second reinforcing member, respectively. structure. 前記補強構造体は、
棒材により構成され、少なくとも前記第1補強部材または前記第2補強部材と前記連結部材により連結される第3補強部材を更に備え、
当該第3補強部材の斜面のすべり面に対する設置角度は、前記第1補強部材の設置角度よりも大きく、前記第2補強部材の設置角度よりも小さいことを特徴とする、請求項1~13のいずれか一項に記載の斜面補強構造。
The reinforcing structure is
Further comprising a third reinforcing member composed of a bar material and connected to at least the first reinforcing member or the second reinforcing member by the connecting member,
The installation angle of the slope of the third reinforcing member with respect to the sliding surface is larger than the installation angle of the first reinforcement member and smaller than the installation angle of the second reinforcement member. The slope reinforcement structure according to any one of claims 1 to 3.
少なくとも前記第1補強部材または前記第2補強部材と、前記第3補強部材をそれぞれ剛結する剛結部材が更に設けられることを特徴とする、請求項14に記載の斜面補強構造。 15. The slope reinforcement structure according to claim 14, further comprising a stiffening member for rigidly coupling at least the first reinforcing member or the second reinforcing member and the third reinforcing member, respectively. 一の前記補強部材と他の前記補強部材を連結した前記連結部材にはプレストレスが導入されることを特徴とする、請求項1~15のいずれか一項に記載の斜面補強構造。 The slope reinforcement structure according to any one of claims 1 to 15, characterized in that a prestress is introduced to the connecting member that connects one of the reinforcing members and another of the reinforcing members. 複数の補強部材を備える補強構造体を斜面に挿入する斜面補強方法であって、
周面に複数の透水孔が形成された中空の棒材により構成される第1補強部材の一端を、少なくとも進行性破壊の初期崩壊箇所となる斜面の法尻に略水平または他端が一端よりも低い位置になるように挿入し、
斜面における前記第1補強部材の挿入位置よりも高い位置に、棒材により構成される第2補強部材の一端を、斜面のすべり面に対する設置角度が、少なくとも前記第1補強部材の設置角度よりも大きくなるように挿入し、
前記第1補強部材の他端と前記第2補強部材の他端をそれぞれ連結する、ことを特徴とする、斜面補強方法。
A slope reinforcement method for inserting a reinforcing structure having a plurality of reinforcing members into a slope,
One end of the first reinforcing member composed of a hollow bar with a plurality of water permeable holes formed on the peripheral surface is placed at least horizontally at the toe of the slope, which is the initial collapse site of the progressive fracture, or the other end is from one end. so that the
One end of a second reinforcing member made of a bar is placed at a position higher than the insertion position of the first reinforcing member on the slope so that the setting angle with respect to the sliding surface of the slope is at least greater than the setting angle of the first reinforcing member. Insert so that it becomes larger,
A slope reinforcement method, characterized in that the other end of the first reinforcing member and the other end of the second reinforcing member are connected to each other.
斜面の法尻に挿入される前記第1補強部材の他端に支圧板を設ける、ことを特徴とする、請求項17に記載の斜面補強方法。 18. The slope reinforcement method according to claim 17 , wherein a bearing plate is provided at the other end of said first reinforcing member inserted at the bottom of the slope. 前記支圧板を、前記すべり面に対して略垂直となるように前記第1補強部材に貫入する、請求項18に記載の斜面補強方法。 19. The slope reinforcement method according to claim 18, wherein the bearing pressure plate is inserted into the first reinforcement member so as to be substantially perpendicular to the sliding surface. 一の前記補強部材に対して、他の前記補強部材を複数連結することを特徴とする、請求項17~19のいずれか一項に記載の斜面補強方法。 The slope reinforcement method according to any one of claims 17 to 19, wherein a plurality of other reinforcing members are connected to one reinforcing member. 前記第1補強部材及び前記第2補強部材を、斜面上において千鳥状に配置することを特徴とする、請求項20に記載の斜面補強方法。 21. The slope reinforcement method according to claim 20, wherein the first reinforcing member and the second reinforcing member are arranged in a staggered manner on the slope. 前記補強構造体を斜面上において複数設けることを特徴とする、請求項17~21のいずれか一項に記載の斜面補強方法。 The slope reinforcement method according to any one of claims 17 to 21, characterized in that a plurality of said reinforcing structures are provided on the slope. 複数の前記補強構造体うち、一の前記補強構造体の前記第1補強部材と、他の前記補強構造体の前記第2補強部材とを第2連結部材により連結することを特徴とする、請求項22に記載の斜面補強方法。 wherein the first reinforcing member of one of the plurality of reinforcing structures and the second reinforcing member of the other reinforcing structure are connected by a second connecting member; Item 23. A slope reinforcement method according to Item 22. 複数の前記補強構造体を、斜面の法尻に沿って並べて配置することを特徴とする、請求項22又は23に記載の斜面補強方法。 24. The method of reinforcing a slope according to claim 22 or 23, wherein a plurality of said reinforcing structures are arranged along the toe of the slope. 斜面における前記第2補強部材の挿入位置よりも高い位置に、前記第1補強部材と連結される他の第2補強部材の一端を挿入し、
前記第2補強部材及び前記他の第2補強部材を、斜面上において千鳥状に配置することを特徴とする、請求項24に記載の斜面補強方法。
inserting one end of another second reinforcing member connected to the first reinforcing member at a position higher than the insertion position of the second reinforcing member on the slope;
25. The slope reinforcement method according to claim 24, wherein the second reinforcing member and the other second reinforcing member are arranged in a zigzag manner on the slope.
複数の前記補強構造体を、斜面上において千鳥状に配置することを特徴とする、請求項22~24のいずれか一項に記載の斜面補強方法。 The slope reinforcement method according to any one of claims 22 to 24, characterized in that a plurality of said reinforcing structures are arranged in a zigzag pattern on the slope. 前記第2補強部材を、前記すべり面に対して略垂直に設置することを特徴とする、請求項17~26のいずれか一項に記載の斜面補強方法。 The slope reinforcement method according to any one of claims 17 to 26, characterized in that the second reinforcement member is installed substantially perpendicular to the slip surface. 前記第1補強部材は主として引張抵抗部材として機能し、
前記第2補強部材は主として曲げ抵抗部材として機能することを特徴とする、請求項17~27のいずれか一項に記載の斜面補強方法。
The first reinforcing member mainly functions as a tensile resistance member,
A slope reinforcement method according to any one of claims 17 to 27, characterized in that said second reinforcement member mainly functions as a bending resistance member.
前記第1補強部材の他端と前記第2補強部材の他端を、剛結部材により剛結することを特徴とする、請求項17~28のいずれか一項に記載の斜面補強方法。 The slope reinforcement method according to any one of claims 17 to 28, wherein the other end of the first reinforcing member and the other end of the second reinforcing member are rigidly connected by a rigid connection member. 棒材により構成され、少なくとも前記第1補強部材または前記第2補強部材と連結される第3補強部材を、
前記第1補強部材の設置角度よりも大きく、前記第2補強部材の設置角度よりも小さい設置角度で前記斜面のすべり面に設置することを特徴とする、請求項17~29のいずれか一項に記載の斜面補強方法。
a third reinforcing member composed of a bar and connected to at least the first reinforcing member or the second reinforcing member;
Any one of claims 17 to 29, characterized in that it is installed on the sliding surface of the slope at an installation angle that is larger than the installation angle of the first reinforcing member and smaller than the installation angle of the second reinforcing member. The slope reinforcement method described in .
少なくとも前記第1補強部材または前記第2補強部材と、前記第3補強部材を剛結部材により剛結することを特徴とする、請求項30に記載の斜面補強方法。 31. The slope reinforcement method according to claim 30, wherein at least said first reinforcing member or said second reinforcing member and said third reinforcing member are rigidly connected by a rigidly connecting member. 一の前記補強部材と他の前記補強部材を連結する部材にプレストレスを導入することを特徴とする、請求項17~31のいずれか一項に記載の斜面補強方法。

The slope reinforcement method according to any one of claims 17 to 31, characterized in that prestress is introduced into a member connecting one of the reinforcing members and another of the reinforcing members.

JP2019072203A 2019-04-04 2019-04-04 Slope reinforcement structure and slope reinforcement method Active JP7260768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019072203A JP7260768B2 (en) 2019-04-04 2019-04-04 Slope reinforcement structure and slope reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019072203A JP7260768B2 (en) 2019-04-04 2019-04-04 Slope reinforcement structure and slope reinforcement method

Publications (2)

Publication Number Publication Date
JP2020169511A JP2020169511A (en) 2020-10-15
JP7260768B2 true JP7260768B2 (en) 2023-04-19

Family

ID=72745742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072203A Active JP7260768B2 (en) 2019-04-04 2019-04-04 Slope reinforcement structure and slope reinforcement method

Country Status (1)

Country Link
JP (1) JP7260768B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088769A (en) 2000-09-18 2002-03-27 Nippon Steel Metal Prod Co Ltd Slope stabilizing method
JP2006089979A (en) 2004-09-22 2006-04-06 Chiyoda Koei Kk Inclined ground stabilizing tool and inclined ground stabilizing construction method
JP2006226051A (en) 2005-02-21 2006-08-31 Chiyoda Koei Kk Inclined ground stabilizing tool and inclined ground stabilizing construction method
JP2011179212A (en) 2010-03-01 2011-09-15 Railway Technical Research Institute Drain pipe connector and method of stabilizing banking
JP2016056505A (en) 2014-09-05 2016-04-21 西日本高速道路株式会社 Ground reinforcement method using perforated steel pipe with blade
JP2017128921A (en) 2016-01-20 2017-07-27 株式会社ケー・エフ・シー Slope stabilization structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088769A (en) 2000-09-18 2002-03-27 Nippon Steel Metal Prod Co Ltd Slope stabilizing method
JP2006089979A (en) 2004-09-22 2006-04-06 Chiyoda Koei Kk Inclined ground stabilizing tool and inclined ground stabilizing construction method
JP2006226051A (en) 2005-02-21 2006-08-31 Chiyoda Koei Kk Inclined ground stabilizing tool and inclined ground stabilizing construction method
JP2011179212A (en) 2010-03-01 2011-09-15 Railway Technical Research Institute Drain pipe connector and method of stabilizing banking
JP2016056505A (en) 2014-09-05 2016-04-21 西日本高速道路株式会社 Ground reinforcement method using perforated steel pipe with blade
JP2017128921A (en) 2016-01-20 2017-07-27 株式会社ケー・エフ・シー Slope stabilization structure

Also Published As

Publication number Publication date
JP2020169511A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP5259510B2 (en) Retaining wall and its construction method
JP6902144B2 (en) Slope ground flow control method and slope ground flow control structure
JP2009133099A (en) Self-supporting earth retaining wall
JP7260768B2 (en) Slope reinforcement structure and slope reinforcement method
JP2023011057A (en) Foundation structure and foundation construction method
JP4958064B2 (en) Seismic reinforcement structure of quay
KR100587376B1 (en) Reinforced structure of road bridge pier that located slope
KR102617795B1 (en) Retaining wall system combine H-piles with steel reinforcement structure
KR101590057B1 (en) Ground attachment type retaining wall structure for easy construction of round part
JP5637657B2 (en) Retaining wall and its reinforcement method
JP2009121231A (en) Reinforced-soil structure and fixture for banking reinforcing material
JP2007277830A (en) Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building
JP6287358B2 (en) Embankment reinforcement structure
JP6292028B2 (en) Embankment reinforcement structure
JP4183137B2 (en) Seismic structure
JP7133366B2 (en) Retaining wall structure
JP3539724B2 (en) Reinforced soil structures and blocks
JP5551943B2 (en) Foundation structure using ground improvement body
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP6774774B2 (en) Pile foundation structure
JP2020117959A (en) Levee body reinforcement structure
KR101732133B1 (en) Reinforcement structure for pile and construction method of reinforcement structure for pile using the same
JP2010209528A (en) Lateral flow countermeasure structure
JP6347120B2 (en) Embankment reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7260768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151