JP6811066B2 - リスク評価装置、リスク変化量の評価方法及びプログラム - Google Patents

リスク評価装置、リスク変化量の評価方法及びプログラム Download PDF

Info

Publication number
JP6811066B2
JP6811066B2 JP2016193483A JP2016193483A JP6811066B2 JP 6811066 B2 JP6811066 B2 JP 6811066B2 JP 2016193483 A JP2016193483 A JP 2016193483A JP 2016193483 A JP2016193483 A JP 2016193483A JP 6811066 B2 JP6811066 B2 JP 6811066B2
Authority
JP
Japan
Prior art keywords
risk
risk evaluation
correlation
correlation model
exclusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016193483A
Other languages
English (en)
Other versions
JP2018055567A (ja
Inventor
洋人 高瀬
洋人 高瀬
シルビア ゴメス
シルビア ゴメス
太 田中
太 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016193483A priority Critical patent/JP6811066B2/ja
Publication of JP2018055567A publication Critical patent/JP2018055567A/ja
Application granted granted Critical
Publication of JP6811066B2 publication Critical patent/JP6811066B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、リスク評価装置、リスク変化量の評価方法及びプログラムに関する。
発電プラント等では、プラントの状態を示す情報を入力すると、そのプラントの状態が示すリスクを評価するリスクモニタと呼ばれる評価装置が導入されていることがある。プラントの管理者は、リスクモニタが表示するリスク評価値を参照して、日々のプラントの安全管理を行う。また、プラントの状態が変化したときのリスクを把握するために、変化後のある状況下におけるプラントの状態を示す情報を入力してリスク評価を行い、どのような状態になるとリスクが高まるのか等を把握し、運転計画や保守・点検計画の立案に役立てることができる。
なお、関連する技術として、特許文献1には、地震情報や津波情報を受信し、地震による機器の損傷確率と津波による機器の損傷確率とを各々算出し、さらに地震と津波の重畳現象による機器の損傷確率を算出して表示するプラントの機器損傷可能性予測表示システムについて記載がある。
特開2016−4452号公報
ところで、あるプラント機器について冗長システムが構成されている場合、地震発生時に冗長システムのうちの1台のプラント機器が故障したとする。この場合、冗長システムを構成する他のプラント機器の中でどの程度故障が発生するかについて、明確な相関係数を定めることに課題がある場合が多い。このような場合、冗長システムを構成する各プラント機器の故障の発生は完全相関するものと仮定してリスク評価を行うことがある。故障の発生が完全相関するとは、例えば、あるプラント機器の冗長システムが機器Aと機器Bとで構成されている場合、機器Aが地震によって故障すると、機器Bも同時に必ず故障することをいう。しかし、機器Aと機器Bの故障の発生が完全相関すると仮定すると、仮に機器Aが待機除外となった場合、機器Aの待機除外によるリスクの増加量が0として評価される為、適切なリスク評価ができないという問題があった。
そこでこの発明は、上述の課題を解決することのできるリスク評価装置、リスク変化量の評価方法及びプログラムを提供することを目的としている。
本発明の第1の態様は、プラントが備える冗長化された機器群に生じる故障の相関を示す相関モデルについて、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づいて前記プラントに生じるリスク評価値の算出を行うリスク評価部と、前記冗長化された機器群のうちの一部が待機除外となった場合前記待機除外の前後におけるリスク変化量を算出するにあたり、前記待機除外の前に第1の前記相関モデルを、前記相関の度合いがより低い第2の前記相関モデルに切り替える相関モデル切替部と、を備えるリスク評価装置である。
本発明の第の態様では、前記相関モデル切替部は、前記リスク変化量の算出にあたって、前記待機除外の前に前記機器群の故障が完全独立することを示す第2の前記相関モデルに切り替えてもよい。
本発明の第の態様における前記リスク評価部は、前記待機除外の前後におけるリスク変化量を、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づくリスク評価値と、前記待機除外の前に前記相関モデル切替部が切り替えた第2の前記相関モデルに基づくリスク評価値との差によって算出してもよい。
本発明の第の態様における前記リスク評価部は、所定の要因の発生によって生じる前記機器群における故障の相関が不明な場合に、第1の前記相関モデルとして前記完全相関することを示す相関モデルを用いてリスク評価を行ってもよい。
本発明の第の態様における前記所定の要因は地震である。
本発明の第の態様において前記リスク評価部は、所定の要因の発生時のリスクを算出するにあたり、前記待機除外前について、前記完全相関することを示す第1の前記相関モデルに基づく第一リスク評価値を算出し、前記待機除外後について、前記完全相関することを示す第3の前記相関モデルに基づく第二リスク評価値を算出し、さらに、前記所定の要因の発生時に、前記所定の要因の発生とは関係なく生じる前記機器群における故障について、前記待機除外前における第三リスク評価値と、前記待機除外後における第四リスク評価値とをそれぞれ算出し、前記所定の要因の発生時における前記待機除外前の前記プラントに生じるリスクについて、前記第一リスク評価値と前記第三リスク評価値とを合計して算出し、前記所定の要因の発生時における前記待機除外後の前記プラントに生じるリスクについて、前記第二リスク評価値と前記第四リスク評価値を合計して算出してもよい。
本発明の第の態様における前記リスク評価部は、前記待機除外前における第2の前記相関モデルに基づく第五リスク評価値をさらに算出し、前記所定の要因の発生時における前記待機除外後のリスクの増加量を、前記第一リスク評価値から前記第五リスク評価値を減じた値と、前記第二リスク評価値と前記第四リスク評価値を合計した値から前記第一リスク評価値と前記第三リスク評価値を合計した値を減じた値と、の合計によって算出してもよい。
本発明の第の態様は、プラントが備える冗長化された機器群に生じる故障の相関を示す相関モデルについて、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づいて前記プラントに生じるリスク評価値の算出を行うリスク評価装置が、前記冗長化された機器群のうちの一部が待機除外となった場合前記待機除外の前後におけるリスク変化量を算出するにあたり、前記待機除外の前に第1の前記相関モデルを前記相関の度合いがより低い第2の前記相関モデルに切り替える、リスク変化量の評価方法である。
本発明の第の態様は、リスク評価装置のコンピュータを、プラントが備える冗長化された機器群に生じる故障の相関を示す相関モデルについて、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づいて前記プラントに生じるリスク評価値の算出を行う手段、前記冗長化された機器群のうちの一部が待機除外となった場合前記待機除外の前後におけるリスク変化量を算出するにあたり、前記待機除外の前に第1の前記相関モデルを前記相関の度合いがより低い第2の前記相関モデルに切り替える手段、として機能させるためのプログラムである。
本発明によれば、冗長化された複数の機器の故障が完全相関すると仮定されている場合に、複数の機器のうちの1台が待機除外となった後のリスクの変化量を適切に評価することができる。
本発明の一実施形態におけるプラントとリスク評価装置の概略図である。 本発明の一実施形態におけるリスク評価装置の構成例を示すブロック図である。 本発明の一実施形態における相関モデルの切り替え処理の一例を示す図である。 本発明の一実施形態における待機除外後のリスク増加量の評価方法を説明する第一の図である。 本発明の一実施形態における待機除外後のリスク増加量の評価方法を説明する第二の図である。 本発明の一実施形態におけるリスク評価装置の処理の一例を示すフローチャートである。 従来のリスク評価方法を示す第一の図である。 従来のリスク評価方法を示す第二の図である。
<実施形態>
以下、本発明の一実施形態によるリスク評価装置を図1〜図8を参照して説明する。
図1は、本発明の一実施形態におけるプラントとリスク評価装置の概略図である。
図1に示すリスク評価装置10は、プラント100から、プラント機器の運転データやプラント機器の冗長性、プラント機器の稼働状態などを含むプラント運転情報や、冗長化されたプラント機器に対する待機除外設定情報など、プラントの状態を示すプラント状態情報を取得し、そのプラント状態情報が示すプラントのリスク評価を行う。例えば、リスク評価装置10とプラント100とは通信可能に接続されており、リスク評価装置10は、プラント100からリアルタイムにプラント状態情報を取得する。あるいは、プラントの管理者等が、プラント状態情報をリスク評価装置10に入力してもよい。リスク評価装置10は、これらのプラント状態情報を入力パラメータとし、確率論的安全評価(PSA:Probabilistic Safety Assessment)等の手法によって、プラント状態に対応するリスクを定量化する。
プラント100は、例えば、複数のプラント機器(発電機システム1、プラント機器2、プラント機器3・・・)を備える原子力発電所である。リスク評価装置10は、これら複数のプラント機器等からプラント状態情報を取得しリスク評価を行う。本実施形態では、説明の便宜のため、リスク評価装置10が、発電機システム1のプラント状態情報を取得し、プラント100のリスクとして、炉心損傷の発生頻度(CDF :Core Damage Frequency)を評価する場合を例に以下の説明を行う。また、CDFを評価する状況として、地震発生時の発電機システム1の故障に対するCDFを評価する場合を例に以下の説明を行う。
発電機システム1は、例えば、プラント100に外部からの電力供給が停止したときに発電を行うシステムである。発電機システム1は、2つの発電機(発電機Aおよび発電機B)を含んだ冗長システムとして構成されている。例えば、発電機A、発電機Bは非常用ディーゼル発電機であって、発電機システム1が稼働する状況になると、発電機Aと発電機Bが稼働して発電を行うが、発電機Aと発電機Bのどちらかが稼働すれば、必要な電力供給を行うことができる。しかし、発電機Aが故障中、メンテナンス中などで発電できない状況では、発電機Bが単独で稼働して発電を行う。以下、冗長化システムを構成する機器(例えば、発電機Aおよび発電機B)を冗長機器と呼ぶ場合がある。
外部からの電力供給が停止した状況で、発電機システム1が稼働せず、プラント100への電力供給が停止・不足等すると、原子炉の炉心損傷リスクが高まる。リスク評価装置10は、発電機システム1のプラント状態情報を入力して、発電機システム1の稼働状態に対する炉心損傷リスク(CDF)を評価する。
次に従来のリスク評価装置が行う地震発生時における上記の発電機システム1の状態に対するCDFの評価方法について説明する。
図7は、従来のリスク評価方法を示す第一の図である。
図7に発電機システム1の故障を判定する相関モデル(フォルトツリー)を示す。図7の相関モデルは、発電機システム1の故障が、発電機Aの故障と発電機Bの故障との論理積(AND)として表されることを示している。つまり、発電機Aと発電機Bが共に故障している場合に発電機システム1は故障しているとみなされる。また、図中、「DGab」が記載された丸印は、発電機Aの故障と発電機Bの故障が完全相関する事象であることを示している。完全相関とは、発電機Aが故障すると必ず発電機Bも故障することを意味する。図7の相関モデルにおいては、発電機Aの故障と発電機Bの故障とが共に事象「DGab」によって生じるとして設定されている。例えば、発電機Aが故障する場合、事象「DGab」が生じているので、発電機Bも故障する(完全相関)。すると、発電機Aと発電機Bが両方故障することになり、発電機システム1は故障していることになる。つまり、図7の相関モデルを適用してリスク評価を行う場合、一方の発電機(発電機Aまたは発電機B)が故障すると、他方の発電機(発電機Bまたは発電機A)も故障し、その結果、発電機システム1が故障することになる。
一般的に、冗長システムを構成するプラント機器のうち、あるプラント機器が故障したときに残りのプラント機器が故障する確率については、所定の相関係数k(0<k<1)が算出されていて、その相関係数kによって判断する場合が多い。しかし、地震によって発生するプラント機器間の故障の相関係数kを明確に定めることは困難であり、安全性に配慮してより保守的に最大のリスクを想定したリスク評価を行うため、複数のプラント機器の故障は完全相関(k=1)するものとして扱われる。このような理由から、従来のリスク評価方法では、地震発生による発電機Aおよび発電機Bの故障の評価を図7に示す完全相関することを示す相関モデルによって行っている。
次に図7に示す相関モデルを用いて評価されたCDFについて説明する。
図8は、従来のリスク評価方法を示す第二の図である。
図8に図7の相関モデルによって発電機システム1の状態を判定した場合の、地震発生時の発電機システム1の状態変化とCDFとの関係を示す。図8(a)は、従来のリスク評価方法による地震発生時の発電機システム1の状態変化とCDFの関係を示す図である。図8(a)のグラフの縦軸はCDF、横軸は時間経過を示す。後述するように図8(a)のグラフは、図8(b)のグラフと図8(c)のグラフを加算(合計)したものである。図8(a)に示す「DG1台待機除外」とは、地震発生時に1台の発電機(例えば発電機A)が故障やメンテナンスなどによって、稼働可能な状態から除外された状態になることをいう。「DG1台待機除外」の前後を比べると、待機除外後のCDFは、待機除外前のCDFに比べ上昇していることが分かる。待機除外前後のCDFの変化を理解するために、CDFを構成する成分を「地震損傷(地震による損傷)」に関して評価されるCDFと、地震に関係なく生じる「ランダム故障」に関して評価されるCDFとに分解して考える。
図8(b)は、従来のリスク評価方法による地震を原因とする発電機システム1の状態変化とCDFの関係を示す図である。上述のとおり、図7で説明した相関モデルを用いる従来のリスク評価方法では、地震による発電機Aと発電機Bに生じる故障は完全相関していると考える。従って、発電機Aと発電機Bの何れかが地震の影響で故障し、待機除外となると発電機Aおよび発電機Bの両方が故障する。故障の確率が完全相関すると仮定しているので、「DG1台待機除外」前における発電機Aおよび発電機Bの両方が稼働可能な状態であっても、より安全側に立った保守的な立場から、1台の発電機が故障したら発電機システム1が停止する(予備の発電機が1台もない状態である)とみなしてリスク評価を行う。また、待機除外後には発電機Aと発電機Bのうち何れか1台だけが稼働可能な状態となるが、これは待機除外前に想定している状態(1台が故障すると発電機システム1が停止する)と同様である。従って、「DG1台待機除外」前における発電機システム1の故障によるCDFと、「DG1台待機除外」後における発電機システム1の故障によるCDFとでは、変化が無く一定となる。このように、冗長機器の故障が完全相関すると仮定したプラント機器に対するリスク評価では、機器の待機除外によるリスクの増加量が0として評価される。換言すれば、待機除外後に冗長性が失われることによるリスク増加量が0として評価される。
図8(c)は、従来のリスク評価方法によるランダム故障による発電機システム1の状態変化とCDFの関係を示す図である。ここでランダム故障とは、地震以外の要因で生じる(地震の発生とは関係なく生じる)故障である。ランダム故障には、例えば、起動時の故障や運転中の故障等が含まれる。このランダム故障の場合、冗長機器間での故障の相関係数k(0<k<1)は、例えば過去の故障発生データに基づく各種検証やシミュレーション等により予め算出されていることが多い。相関係数kが既知である場合、相関係数kに基づいて、待機除外後に冗長性が失われることによるリスク増加量(ΔCDF)を計算することができる。図8(c)に示すように、待機除外後は、冗長性が失われる為、その分のリスク(ΔCDF)が増加している。
図8(a)の説明にもどる。上記のように、図8(a)のグラフは、地震損傷によるCDFとランダム故障によるCDFを加算して得られるグラフである。地震発生時のCDFとしては、地震の影響によって生じる発電機システム1の故障によるCDFの他に、地震の発生に関係なく常に発電機システム1について生じ得る故障(ランダム故障)によるCDFを考慮しなければならない。従って、地震発生時のCDF(の大きさ)を評価する場合、地震発生によるCDF評価(図8(b))とランダム故障によるCDF評価(図8(c))を加算して得られる図8(a)のグラフが示すCDFの値を用いる。
ここで、地震発生時のリスクの大きさ(絶対値)を評価する場合、プラントの管理者は、完全相関モデルをベースにした図8(a)に示すCDFの値(リスク評価値)によって、地震発生時のプラント100のリスクを把握しても大きな問題はない。なぜならば、完全相関モデルの場合、冗長構成を有するプラント機器についても、その待機除外の前後を通じて、予備機による補償を考えない相関モデルを適用することで、リスクを保守的に(最大のリスクを想定して)評価することができるためである。
しかし、待機除外の前後におけるリスクの変化に注目すると、完全相関モデルに基づく、図8(a)が示すリスク増加量(ΔCDF)は適切では無い。なぜならば、完全相関モデルに基づいてリスク評価を行う場合、上記のとおり、待機除外後に冗長性が失われることによるリスク増加量が無いものとして評価されるからである。例えば、4台の発電機で構成される発電機システムαと、2台の発電機で構成される発電機システムβがあって、どちらも1台の発電機が稼働可能であればよい場合、発電機システムαにて4台のうち1台が待機除外となった場合(3台が稼働可能)と、発電機システムβにて2台のうち1台が待機除外となった場合(1台のみが稼働可能)とでは、待機除外後のリスクは異なるはずである。現実的には、発電機システムαにて1台が待機除外となった後のリスク増加(ΔCDFα)と発電機システムβにて1台が待機除外となった後のリスク増加(ΔCDFβ)とを比べると、ΔCDFα<ΔCDFβとなると考えられる。しかし、完全相関モデルによれば、ΔCDFαとΔCDFβは共に0となってしまい、現実と合わない。また、完全相関モデルによれば、待機除外となり冗長性が失われた(または低下した)場合のリスク増加が0と過小評価されるので、ΔCDFと待機除外時間の積に制限値が設定されており、この制限値から許容待機時間(待機除外となったプラント機器の復旧に費やすことができる時間の許容値)を設定する場合、許容待機時間が過大評価される問題が生じることがある。例えば、発電機Aが故障した状況で、実際より長時間の許容待機時間が許容されると評価してしまう可能性がある。そこで、本実施形態では、地震発生時のCDFの大きさについては、従来通り、保守的なリスク評価値を算出しつつ、待機除外後のリスク増加分についても適切なリスク評価値を算出できるリスク評価装置10を提供する。
図2は、本発明の一実施形態におけるリスク評価装置の構成例を示すブロック図である。
図2に示すリスク評価装置10は、例えば、1台または複数台のサーバ端末装置やPC(personal computer)などのコンピュータによって構成される。図2に示すようにリスク評価装置10は、入力部11と、出力部12と、リスク評価部13と、記憶部14とを備える。また、入力部11は、プラント運転情報取得部111と、待機除外設定取得部112とを備え、リスク評価部13は、第一リスク評価部131と、第二リスク評価部132と、第三リスク評価部133と、相関モデル切替部134とを備える。
入力部11は、プラント100からのプラント状態情報の入力、ユーザ(プラントの管理者など)によるリスク評価装置10への指示情報や設定情報などの入力を受け付け、それらの情報を取得する。より具体的には、入力部11が備えるプラント運転情報取得部111は、プラント100からプラント運転情報を取得する。あるいは、プラント運転情報取得部111は、ユーザが手入力したプラント運転情報を取得する。また、入力部11が備える待機除外設定取得部112は、ユーザが入力した待機除外設定情報を取得する。
出力部12は、種々の情報を出力する。例えば、出力部12は、リスク評価部13が算出したリスク評価値をディスプレイ等に出力し表示させる。
リスク評価部13は、プラント状態情報に基づいてプラント100が備えるプラント機器のリスクを評価する。より具体的には、第一リスク評価部131は、冗長機器の故障について完全相関が適用される要因(地震などの外的事象)に対して、待機除外設定前のリスク評価を行う。第二リスク評価部132は、完全相関が適用される要因によって生じる冗長機器の故障について、待機除外設定情報の入力に基づいて、相関モデル切替部134が切り替えたリスク相関モデルを用いて、待機除外設定前のリスク評価を行う。また、第三リスク評価部133は、冗長機器の故障について完全相関が適用される要因に対して、待機除外設定後のリスク評価を行う。なお、第一リスク評価部131、第二リスク評価部132、第三リスク評価部133は、完全相関が適用される要因によって生じる冗長機器の故障以外(ランダム故障による故障)については、所定の相関係数k1を用いてリスク評価を行う。
相関モデル切替部134は、待機除外設定が入力された場合に、冗長機器の故障を判定する相関モデルを、完全相関モデルから相関係数kの値が1より低い他の相関モデルに変更する。
記憶部14は、種々の情報を記憶する。例えば、記憶部14は、プラント運転情報取得部111が取得したプラント状態情報やリスク評価部13がリスク評価に用いる計算式、相関モデルなどを記憶する。
なお、リスク評価部13は、リスク評価装置10が備えるCPU(Central Processing Unit)が記憶部14からプログラムを読み出し実行することで備わる機能である。
次に相関モデル切替部134による相関モデルの切り替え処理の一例について説明する。
図3は、本発明の一実施形態における相関モデルの切り替え処理の一例を示す図である。
図3に、待機除外後のリスク増加量を算出する際の相関モデルの切り替え例を示す。図3の左図は、図7で説明したものと同じ発電機Aと発電機Bの故障が完全相関すると仮定した場合の相関モデルである。本実施形態では、従来のリスク評価方法と同様に、発電機Aと発電機Bとがどちらも稼働可能な状態にある状況で、地震が原因で発電機システム1が故障し、それによって炉心損傷が生じるリスクを評価する場合、発電機Aと発電機Bの故障が完全相関することを示す相関モデルを採用する。発電機Aと発電機Bの故障が完全相関すると仮定しておけば、最大のリスクを想定することになり、より保守的なリスク評価値が得られる。
次にあるタイミングで、発電機Aまたは発電機Bが何らかの要因による故障または計画的保守により待機除外の状態となる。このとき、完全相関の相関モデルを用いて待機除外前後のリスク評価を行うならば、図7、図8を用いて説明したように発電機の冗長性が失われた(または冗長構成の多重度が低下した)ことによる待機除外後のリスク増加量が0となってしまう。
そこで、本実施形態では相関モデル切替部134が、待機除外となる前のタイミングで発電機システム1の故障を判定する相関モデルを、完全相関から完全独立に切り替える処理を行う。
図3の右図に、切り替え後の相関モデルを示す。図3右図の相関モデルは、発電機Aの故障と発電機Bの故障とが完全に独立した事象であることを仮定した相関モデルである。
図中、「DGa」が記載された丸印は、発電機Aが地震によって故障した事象を示している。また、「DGb」が記載された丸印は、発電機Bが地震によって故障した事象を示している。つまり、図3右図の相関モデルにおいては、発電機Aの故障は事象「DGa」によって生じ、発電機Bの故障は事象「DGb」によって生じるとして設定されている。従って、図3右図の相関モデルでは、発電機Aの故障と発電機Bの故障が完全に独立しており、地震発生によって発電機Aが故障したとしても、相関関係による共通要因で発電機Bが同時に故障するとは考えない。同様に発電機Bが地震によって故障したとしても、相関関係による共通要因で発電機Aが同時に故障するとは考えない。
相関モデル切替部134は、ユーザが待機除外の設定入力をリスク評価装置10に対して行うと、発電機システム1の故障を判定する相関モデルを、図3の左図に示す完全相関に基づく相関モデルから、図3の右図に示す完全独立に基づく相関モデルへ切り替える。次に切替後の相関モデルを用いたときの待機除外後のリスク増加量の評価方法について説明する。
図4は、本発明の一実施形態における待機除外後のリスク増加量の評価方法を説明する第一の図である。
図4に、図3で例示した相関モデルによって評価した場合の、地震発生時の発電機システム1の状態変化とCDFとの関係を示す。図4のグラフの縦軸はCDF、横軸は時間経過を示す。図中、「Model1」で示すCDFの値は、リスク評価部13が備える第一リスク評価部131が算出したリスク評価値である。第一リスク評価部131は、発電機システム1の地震による故障を、冗長機器の故障が完全相関すると仮定した相関モデルによって評価する。第一リスク評価部131は、地震による発電機システム1の故障の評価値(どの程度故障しやすいか)に基づいて地震によって生じるCDFを算出する。また、発電機システム1のランダム故障による故障の評価値を、2重に冗長化された発電機A、Bについて予め定められた相関係数k1に基づく相関モデルによって評価する。第一リスク評価部131は、ランダム故障による発電機システム1の故障の評価値に基づいて、ランダム故障によって生じるCDFを算出する。第一リスク評価部131は、地震によるCDFとランダム故障によるCDFとを合計して「Model1」で示すCDFの値を算出する。
「Model2」で示すCDFの値は、リスク評価部13が備える第二リスク評価部132が算出したリスク評価値である。第二リスク評価部132は、発電機システム1の地震による故障を、冗長機器の故障が完全独立すると仮定した相関モデルによって評価する。第二リスク評価部132は、地震による発電機システム1の故障の評価値に基づいて、地震によるCDFを算出する。また、発電機システム1のランダム故障による故障の評価値を、2重に冗長化された発電機A、Bについて予め定められた故障の相関係数k1に基づく相関モデルによって評価する。第二リスク評価部132は、ランダム故障による発電機システム1の故障の評価値に基づいてランダム故障によるCDFを算出する。第二リスク評価部132は、ランダム故障による発電機システム1の故障の評価値に基づいてランダム故障によるCDFを算出する。第二リスク評価部132は、地震によるCDFとランダム故障によるCDFとを合計して「Model2」で示すCDFの値を算出する。
「Model3」で示すCDFの値は、リスク評価部13が備える第三リスク評価部133が算出したリスク評価値である。第三リスク評価部133は、発電機システム1の地震による故障を、冗長機器の故障が完全相関すると仮定した相関モデルによって評価する。第三リスク評価部133は、地震による発電機システム1の故障の評価値に基づいて地震によるCDFを算出する。また、発電機システム1のランダム故障による故障の評価値を、待機除外により冗長化されていない状態での発電機Aまたは発電機Bについての所定のリスクの評価方法によって評価する。第三リスク評価部133は、ランダム故障による発電機システム1の故障の評価値に基づいてランダム故障によるCDFを算出する。第三リスク評価部133は、地震によるCDFとランダム故障によるCDFとを合計して「Model3」で示すCDFの値を算出する。
なお、例えば、記憶部14には、発電機システム1の故障の評価値に基づくCDFを算出に用いる評価モデルが記録されていて、第一リスク評価部131等は、この評価モデルに基づいてCDFを算出する。
ここで、「Model1」および「Model3」で示すCDFの値の各々は、ランダム故障による発電機システム1の故障の評価値に基づくCDFと、地震による冗長機器の故障が完全相関すると仮定した場合の発電機システム1の故障の評価値に基づくCDFの合計である。つまり、これらの区間におけるCDFの値は、図8(a)で例示したものと同様である。
一方、「Model2」が示すCDFの値は、ランダム故障による発電機システム1の故障の評価値に基づくCDFと、地震による冗長機器の故障が完全独立すると仮定した場合の発電機システム1の故障の評価値に基づくCDFとの合計である。冗長機器の故障が完全独立すると仮定した場合、発電機Aが故障したとしても、発電機Bは故障するとは限らず、発電機Bが故障しない場合、発電機システム1は故障とはみなされない。従って、発電機Aと発電機Bとが稼働可能な状態における「Model2」が示すCDFの値は、発電機Aと同時に発電機Bが故障すると仮定した「Model1」が示すCDFの値よりも小さな値となる。
次にユーザが待機除外の設定を行った後のCDFについて検討する。ユーザが、待機除外の設定を行うと発電機Aと発電機Bとのうち一方が故障し、1台のみが稼働可能な状態となる。その状態では、予備の発電機が存在しない(冗長性が無い)ため、発電機システム1が故障する確率は、発電機Aと発電機Bの故障が完全相関すると仮定した場合の発電機システム1の故障確率と同じになる。つまり、待機除外後の地震による故障によって生じるCDFの増加量は、「Model1」が示すCDFの値と「Model2」が示すCDFの値との差として表わすことができる。この差を図中「地震によるリスク増加」にて示す。また、待機除外後には、地震とは関係のないランダム故障に基づくCDFについても、冗長性が低下することによるCDFの増加が発生する。この増加を図中「ランダム故障によるリスク増加」にて示す。リスク評価部13は、第一リスク評価部131が算出したCDF(「Model1」)から、第二リスク評価部132が算出したCDF(「Model2」)を減算して、「地震によるリスク増加量」を算出する。また、リスク評価部13は、第三リスク評価部133が算出したCDF(「Model3」)から、第一リスク評価部131が算出したCDF(「Model1」)を減算して、「ランダム故障によるリスク増加量」を算出する。そして、リスク評価部13は、「地震によるリスク増加量」と「ランダム故障によるリスク増加量」とを合計して、待機除外後のリスク増加量を算出する。
このように、本実施形態では、待機除外後に冗長性が低下することによるリスク増加量は、冗長機器の故障が完全相関すると仮定して算出した待機除外前のリスクから、完全独立すると仮定して算出した待機除外前のリスクへのリスク低減量と考えることができることに着目して、待機除外後のリスク増加量を算出する。つまり、待機除外設定の所定時間前のタイミングにおいて、冗長機器の各々が故障するという事象の相関を、完全相関から完全独立に切り替える処理を行い、リスク低減量を算出する。そして、算出したリスク低減量(待機除外後に冗長性が失われることによるリスク増加量)と待機除外後のランダム故障によるリスク増加量とを合計して待機除外によるリスク増加量を算出する。これにより、リスク評価装置10は、待機除外後に冗長性が低減したことによるリスク増加を見込んだ適切なリスク増加量を評価することができる。
図5は、本発明の一実施形態における待機除外後のリスク増加量の評価方法を説明する第二の図である。
図5を用いて、図4の説明を補足する。図5のグラフの縦軸はCDF、横軸は時間経過を示す。図5のCDF(d)は、発電機Aおよび発電機Bの故障が完全相関(相関係数k=1)すると仮定した場合のCDFである。また、CDF(i)は、発電機Aおよび発電機Bの故障が完全独立(相関係数k=0)すると仮定した場合のCDFである。また、CDF(a)は、発電機Aの故障と発電機Bの故障との相関に実際の相関係数(0≦相関係数k≦1)を仮定した場合のCDFである。図5に示すように、待機除外前の状態において、CDF(i)<CDF(a)<CDF(d)が成立する。また、待機除外後のリスク増加量について、ΔCDF2=CDF(d)−CDF(i)、ΔCDF1=CDF(d)−CDF(a)としたとき、ΔCDF2>ΔCDF1が成立する。このことから、本実施形態のように、待機除外前に完全独立と仮定した相関モデルに切り替えてCDFを算出することで、最も大きなリスクを想定した最も保守的なリスク増加量(ΔCDF)を算出できることがわかる。
図6は、本発明の一実施形態におけるリスク評価装置の処理の一例を示すフローチャートである。
図6を用いて、図1、図2の構成を例に、図4で例示したCDF及び待機除外後のリスク増加量の算出処理の流れについて説明する。
前提としてリスク評価部13は、地震発生時の発電機システム1の故障に対するCDFを評価する。
まず、プラント運転情報取得部111が、プラント運転情報を取得する(ステップS11)。プラント運転情報には、発電機システム1の冗長度や稼働可能な発電機の台数などの情報が含まれている。プラント運転情報取得部111は、取得したプラント運転情報をリスク評価部13に出力する。次にリスク評価部13が、完全相関に基づくリスク評価値を算出する(ステップS12)。具体的には、プラント運転情報に含まれる発電機Aおよび発電機Bが稼働可能な状態であるという情報に基づいて、リスク評価部13が第一リスク評価部131にリスク評価の指示を行う。第一リスク評価部131は、完全相関することを示す相関モデルに基づいて、待機除外前の地震によるCDFを算出する。また、第一リスク評価部131は、所定の相関係数k1に基づく相関モデルによって、待機除外前のランダム故障によるCDFを算出する。第一リスク評価部131は、地震によるCDFとランダム故障によるCDFを合計して、待機除外前における完全相関に基づくリスク評価値を算出する。第一リスク評価部131は、算出した完全相関に基づくリスク評価値(図4の「Model1」が示すCDFの値)を記憶部14に記録する。
次に相関モデル切替部134が、待機除外後のリスク増加量を算出すべきシステムがあるかどうかを判定する(ステップS13)。図1の構成例の場合、記憶部14には、予め発電機システム1が発電機Aと発電機Bを備えた冗長化システムであって、地震などの外的事象に対する発電機Aおよび発電機Bの故障の相関に完全相関が仮定されていることを示す情報が記録されている。相関モデル切替部134は、この情報に基づいて、リスク増加量を算出すべきシステム(発電機システム1)があると判定する。また、故障時の相関モデルとして完全相関を仮定するシステムが存在しない場合等、リスク増加量を算出する必要が無いと判定する。なお、故障時の相関モデルとして完全相関を仮定するシステムが存在しない場合とは、例えば、リスクの評価対象としている故障の要因について、相関係数の値が既知である場合(地震のように相関係数の値が不明な要因が含まれない場合)である。
リスク増加量を算出すべきシステムがないと判定した場合(ステップS13;No)、後述するステップS16へ進む。一方、リスク増加量を算出すべきシステムがあると判定した場合(ステップS13;Yes)、相関モデル切替部134は、システムの故障を評価する相関モデルを完全相関から完全独立へ切り替える(ステップS14)。例えば、相関モデル切替部134は、冗長機器の故障の発生が完全独立することを示す相関モデルをリスク評価部13に対して設定する。次にリスク評価部13は、完全独立に基づくリスク評価値を算出する(ステップS15)。具体的には、相関モデル切替部134が相関モデルを切り替えたことに基づいて、リスク評価部13が第二リスク評価部132にリスク評価の指示を行う。第二リスク評価部132は、完全独立することを示す相関モデルに基づいて、待機除外前の地震によるCDFを算出する。また、第二リスク評価部132は、所定の相関係数k1に基づく相関モデルによって、待機除外前のランダム故障によるCDFを算出する。第二リスク評価部132は、地震によるCDFとランダム故障によるCDFを合計して、待機除外前における完全独立に基づくリスク評価値を算出する。第二リスク評価部132は、算出した完全独立に基づくリスク評価値(図4の「Model2」が示すCDFの値)を記憶部14に記録する。
次に、待機除外設定取得部112が、ユーザによる待機除外の設定の入力を受け付ける(ステップS16)。待機除外設定取得部112は、待機除外の設定が入力されたことを示す情報(待機除外設定情報)をリスク評価部13に出力する。次にリスク評価部13が、待機除外後のリスクについて完全相関に基づくリスク評価値を算出する(ステップS17)。具体的には、待機除外が設定されたことに基づいて、リスク評価部13が第三リスク評価部133にリスク評価の指示を行う。第三リスク評価部133は、完全相関することを示す相関モデルに基づいて、待機除外後の地震によるCDFを算出する。また、第三リスク評価部133は、待機除外後のランダム故障によるCDFを算出する。第三リスク評価部133は、地震によるCDFとランダム故障によるCDFを合計して、待機除外後の完全相関に基づくリスク評価値を算出する。第三リスク評価部133は、算出した待機除外後の完全相関に基づくリスク評価値(図4の「Model3」が示すCDFの値)を記憶部14に記録する。
次にリスク評価部13が、待機除外後のリスク増加量を算出する(ステップS18)。具体的には、リスク評価部13が、ステップS12で算出した待機除外前の完全相関に基づくリスク評価値(リスク評価値Aとする)、ステップS15で算出した待機除外前の完全独立に基づくリスク評価値(リスク評価値Bとする)、ステップS17で算出した待機除外後の完全相関に基づくリスク評価値(リスク評価値Cとする)のそれぞれの値を記憶部14から読み出して以下の計算を行う。
待機除外後のリスク増加量 = (リスク評価値A − リスク評価値B)+
(リスク評価値C − リスク評価値A)
リスク評価部13は、算出した待機除外後のリスク増加量を記憶部14に記録する。
出力部12は、例えば、リスク評価値Cと待機除外後のリスク増加量とを記憶部14から読み出して、ディスプレイ等に表示する。これにより、ユーザ(プラント管理者)は地震発生時のCDFの最大値と待機除外後のリスク増加量とを把握することができる。
本実施形態によれば、地震などの冗長機器に引き起こす故障の相関係数が不明な外的事象に対しても、プラント機器の待機除外後におけるリスクの増加量を算出することができる。また、適切なリスク増加量を算出することで、許容待機除外期間が過大評価される問題を解決することができる。
なお、上記例では、相関係数が不明で完全相関を仮定する要因の例として地震を挙げたが、冗長機器の故障が完全相関するとして扱う要因であれば、地震以外の要因に対しても本実施形態のリスク評価装置10を適用することができる。また、上記例では最も保守的なリスク増加量を算出するために待機除外後の相関モデルを完全独立としたが、より実態に近い相関係数(完全相関よりも相関の度合いが低い相関係数)が分かっている場合、その相関係数に基づく相関モデルによってリスク増加量の算出を行ってもよい。
また、上記例では、発電機システム1の冗長度(多重度)が2台であったが、冗長システムの冗長度は3台や4台、あるいはそれ以上であってもよい。例えば、発電機システム1が3台の発電機A、発電機B、発電機Cによって構成され、何れか1台の発電機が稼働すれば発電機システム1が稼働しているとみなせる場合、待機除外後の最も保守的なリスク増加量は、完全独立による相関モデルを適用して得られる3台が稼働可能な状態(待機除外前)におけるCDFと、完全相関による相関モデルを適用して得られる待機除外前におけるCDFとの差となる。
なお、上述したリスク評価装置10における各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをリスク評価装置10のコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。なお、発電機A、発電機Bは、プラントが備える冗長化された機器群の一例である。ΔCDFはリスク変化量の一例である。
1・・・発電機システム
10・・・リスク評価装置
11・・・入力部
12・・・出力部
13・・・リスク評価部
14・・・記憶部
111・・・プラント運転情報取得部
112・・・待機除外設定取得部
131・・・第一リスク評価部
132・・・第二リスク評価部
133・・・第三リスク評価部
134・・・相関モデル切替部
A、B・・・発電機
100・・・プラント

Claims (9)

  1. プラントが備える冗長化された機器群に生じる故障の相関を示す相関モデルについて、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づいて前記プラントに生じるリスク評価値の算出を行うリスク評価部と、
    前記冗長化された機器群のうちの一部が待機除外となった場合前記待機除外の前後におけるリスク変化量を算出するにあたり、前記待機除外の前に第1の前記相関モデルを、前記相関の度合いがより低い第2の前記相関モデルに切り替える相関モデル切替部と、
    を備えるリスク評価装置。
  2. 記相関モデル切替部は、前記リスク変化量の算出にあたって、前記待機除外の前に前記機器群の故障が完全独立することを示す第2の前記相関モデルに切り替える、
    請求項に記載のリスク評価装置。
  3. 前記リスク評価部は、前記待機除外の前後におけるリスク変化量を、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づくリスク評価値と、前記待機除外の前に前記相関モデル切替部が切り替えた第2の前記相関モデルに基づくリスク評価値との差によって算出する、
    請求項1または請求項2に記載のリスク評価装置。
  4. 前記リスク評価部は、所定の要因の発生によって生じる前記機器群における故障の相関が不明な場合に、第1の前記相関モデルとして前記完全相関することを示す相関モデルを用いてリスク評価を行う、
    請求項から請求項の何れか1項に記載のリスク評価装置。
  5. 前記所定の要因は地震である、
    請求項に記載のリスク評価装置。
  6. 前記リスク評価部は、所定の要因の発生時のリスクを算出するにあたり、前記待機除外前について、前記完全相関することを示す第1の前記相関モデルに基づく第一リスク評価値を算出し、前記待機除外後について、前記完全相関することを示す第3の前記相関モデルに基づく第二リスク評価値を算出し、
    さらに、前記所定の要因の発生時に、前記所定の要因の発生とは関係なく生じる前記機器群における故障について、前記待機除外前における第三リスク評価値と、前記待機除外後における第四リスク評価値とをそれぞれ算出し、
    前記所定の要因の発生時における前記待機除外前の前記プラントに生じるリスクについて、前記第一リスク評価値と前記第三リスク評価値とを合計して算出し、前記所定の要因の発生時における前記待機除外後の前記プラントに生じるリスクについて、前記第二リスク評価値と前記第四リスク評価値を合計して算出する、
    請求項から請求項の何れか1項に記載のリスク評価装置。
  7. 前記リスク評価部は、前記待機除外前における第2の前記相関モデルに基づく第五リスク評価値をさらに算出し、
    前記所定の要因の発生時における前記待機除外後のリスクの増加量を、前記第一リスク評価値から前記第五リスク評価値を減じた値と、前記第二リスク評価値と前記第四リスク評価値を合計した値から前記第一リスク評価値と前記第三リスク評価値を合計した値を減じた値と、の合計によって算出する、
    請求項に記載のリスク評価装置。
  8. プラントが備える冗長化された機器群に生じる故障の相関を示す相関モデルについて、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づいて前記プラントに生じるリスク評価値の算出を行うリスク評価装置が、前記冗長化された機器群のうちの一部が待機除外となった場合前記待機除外の前後におけるリスク変化量を算出するにあたり、前記待機除外の前に第1の前記相関モデルを前記相関の度合いがより低い第2の前記相関モデルに切り替える、
    リスク変化量の評価方法。
  9. リスク評価装置のコンピュータを、
    プラントが備える冗長化された機器群に生じる故障の相関を示す相関モデルについて、前記機器群の故障が完全相関することを示す第1の前記相関モデルに基づいて前記プラントに生じるリスク評価値の算出を行う手段、
    前記冗長化された機器群のうちの一部が待機除外となった場合前記待機除外の前後におけるリスク変化量を算出するにあたり、前記待機除外の前に第1の前記相関モデルを前記相関の度合いがより低い第2の前記相関モデルに切り替える手段、
    として機能させるためのプログラム。
JP2016193483A 2016-09-30 2016-09-30 リスク評価装置、リスク変化量の評価方法及びプログラム Active JP6811066B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193483A JP6811066B2 (ja) 2016-09-30 2016-09-30 リスク評価装置、リスク変化量の評価方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193483A JP6811066B2 (ja) 2016-09-30 2016-09-30 リスク評価装置、リスク変化量の評価方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2018055567A JP2018055567A (ja) 2018-04-05
JP6811066B2 true JP6811066B2 (ja) 2021-01-13

Family

ID=61835884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193483A Active JP6811066B2 (ja) 2016-09-30 2016-09-30 リスク評価装置、リスク変化量の評価方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6811066B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214440B2 (ja) * 2018-11-01 2023-01-30 三菱重工エンジニアリング株式会社 検証処理装置、検証処理方法及びプログラム
CN112233420B (zh) * 2020-10-14 2023-12-15 腾讯科技(深圳)有限公司 一种智能交通控制系统的故障诊断的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632802A (en) * 1982-09-16 1986-12-30 Combustion Engineering, Inc. Nuclear plant safety evaluation system
JP3708456B2 (ja) * 2001-07-18 2005-10-19 株式会社エヌ・ティ・ティ ファシリティーズ 地震リスク診断システム、地震リスク診断方法、地震リスク診断プログラムおよび地震リスク診断プログラムを記録した記録媒体
JP2016004452A (ja) * 2014-06-18 2016-01-12 日立Geニュークリア・エナジー株式会社 プラントの機器損傷可能性予測表示システム
WO2016038803A1 (ja) * 2014-09-11 2016-03-17 日本電気株式会社 情報処理装置、情報処理方法、及び、記録媒体

Also Published As

Publication number Publication date
JP2018055567A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
Liu et al. A resilience assessment approach for power system from perspectives of system and component levels
Gatto et al. Virtual simulation of a nuclear power plant's control room as a tool for ergonomic evaluation
Kim et al. A computational method for probabilistic safety assessment of I&C systems and human operators in nuclear power plants
JP4556946B2 (ja) 潮流計算方法及びその装置
JP6811066B2 (ja) リスク評価装置、リスク変化量の評価方法及びプログラム
CN109725827A (zh) 管理存储系统的方法、系统和计算机程序产品
Cai et al. A framework analyzing system status and human activities: Illustrated using 2011 Fukushima nuclear power plant accident scenarios
Cai et al. Formulation of a risk assessment framework capable of analyzing nuclear power multiunit accident scenarios
JP5962367B2 (ja) フォールトツリー生成プログラム
Park et al. Estimating the response times of human operators working in the main control room of nuclear power plants based on the context of a seismic event–A case study
Mkandawire et al. Component risk trending based on systems thinking incorporating Markov and Weibull inferences
JP2022111584A (ja) リスク影響評価方法、リスク影響評価装置及びプログラム
Kang et al. Development of the IPRO-ZONE for internal fire probabilistic safety assessment
Boring Human reliability analysis in cognitive engineering and system design
Bareith et al. A pilot study on developing a site risk model
Tsarouhas Measuring the efficiency of medical equipment
Tyrväinen et al. A methodology for preliminary probabilistic multi-unit risk assessment
WO2020100634A1 (ja) 復旧支援装置、復旧支援方法及びプログラム
Varde et al. System reliability modeling
Čepin Shutdown probabilistic safety assessment
Jeong et al. Development of severe accident management advisory and training simulator (SAMAT)
Lee et al. Accuracy enhancement in estimation of the initiating event frequencies in risk monitor application on Kuosheng NPP
Guo et al. Design and Development Framework of Safety‐Critical Software in HTR‐PM
JP7340716B1 (ja) フォールトツリー簡素化方法、フォールトツリー簡素化装置およびプログラム
CN118113526B (zh) 提高数据中心容灾能力的分布式数据存储规划方法及系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161003

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6811066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150