JP6808073B2 - 偏光子、及び、画像表示装置 - Google Patents

偏光子、及び、画像表示装置 Download PDF

Info

Publication number
JP6808073B2
JP6808073B2 JP2019562516A JP2019562516A JP6808073B2 JP 6808073 B2 JP6808073 B2 JP 6808073B2 JP 2019562516 A JP2019562516 A JP 2019562516A JP 2019562516 A JP2019562516 A JP 2019562516A JP 6808073 B2 JP6808073 B2 JP 6808073B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
polarizer
polymer liquid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019562516A
Other languages
English (en)
Other versions
JPWO2019132020A1 (ja
Inventor
拓史 松山
拓史 松山
渉 星野
渉 星野
輝樹 新居
輝樹 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2019132020A1 publication Critical patent/JPWO2019132020A1/ja
Application granted granted Critical
Publication of JP6808073B2 publication Critical patent/JP6808073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Description

本発明は、偏光子、及び、画像表示装置に関する。
従来、レーザー光または自然光を含む照射光の減衰機能、偏光機能、散乱機能、または、遮光機能等が必要となった際には、それぞれの機能ごとに異なった原理によって作動する装置を利用していた。そのため、上記の機能に対応する製品も、それぞれの機能別に異なった製造工程によって製造されていた。
例えば、画像表示装置(例えば、液晶表示装置)では、表示における旋光性または複屈折性を制御するために直線偏光子または円偏光子が用いられている。また、有機発光ダイオード(Organic Light Emitting Diode:OLED)においても、外光の反射防止のために円偏光子が使用されている。
従来、これらの偏光子には、ヨウ素が二色性物質として広く使用されてきたが、ヨウ素の代わりに有機色素を二色性物質として使用する偏光子についても検討されている。
例えば、特許文献1には、高分子液晶化合物と二色性物質とを含有する偏光子形成用組成物が開示されている。
国際公開2017/154907号
このようななか、本発明者らが特許文献1の実施例を参考に偏光子を作製し、その配向度を評価したところ、今後予想される画像表示装置等の性能向上を鑑みると、配向度をさらに向上させることが望ましいことが明らかになった。
そこで、本発明は、上記実情を鑑みて、配向度の高い偏光子、及び、上記偏光子を有する画像表示装置を提供することを目的とする。
本発明者らは、上記課題について鋭意検討した結果、(i)高分子液晶化合物として結晶性高分子を用いることで配向度が向上すること、(ii)上記(i)の現象が高分子液晶化合物及び二色性物質が水平配向の場合に特異的に生じること、を見出し、本発明に至った。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 高分子液晶化合物と二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
上記高分子液晶化合物が、サーモトロピック性液晶、且つ、結晶性高分子であり、
上記高分子液晶化合物及び上記二色性物質が水平配向した、偏光子。
(2) 上記高分子液晶化合物の結晶化温度が、120℃以下である、上記(1)に記載の偏光子。
(3) 上記高分子液晶化合物の結晶化温度が、95℃以下である、上記(2)に記載の偏光子。
(4) 上記偏光子形成用組成物の結晶化温度が、100℃以下である、上記(1)〜(3)のいずれかに記載の偏光子。
(5) 上記偏光子形成用組成物の結晶化温度が85℃以下である、上記(4)に記載の偏光子。
(6) X線回折スペクトルにおいて、半値幅が2°未満のピークA及び半値幅が2°以上のピークBが観測される、上記(1)〜(5)のいずれかに記載の偏光子。
(7) 上記ピークAの強度が500cps以上である、上記(6)に記載の偏光子。
(8) 上記高分子液晶化合物が、後述する式(1)で表される繰り返し単位を含む、上記(1)〜(7)のいずれかに記載の偏光子。
(9) 上記式(1)中のM1で表されるメソゲン基が、3個の芳香族炭化水素基を有する、上記(8)に記載の偏光子。
(10) 上記式(1)中のSP1で表されるスペーサー基が、*−(CH−CHO)−*で表される基である、上記(8)又は(9)に記載の偏光子。ここで、*は、上記式(1)中のL1またはM1との結合位置を表す。
(11) 上記式(1)中のT1で表される末端基が、メトキシ基である、上記(8)〜(10)のいずれかに記載の偏光子。
(12) 上記高分子液晶化合物が、上記式(1)で表される繰り返し単位を2種含み、
一方の繰り返し単位は、上記式(1)中のT1がアルコキシ基であり、
他方の繰り返し単位は、上記式(1)中のT1がアルコキシ基以外の基である、上記(8)〜(11)のいずれかに記載の偏光子。
(13) 上記(1)〜(12)のいずれかに記載の偏光子を有する、画像表示装置。
以下に示すように、本発明によれば、配向度の高い偏光子、及び、上記偏光子を有する画像表示装置を提供することができる。
高分子液晶化合物L1を用いた本発明の偏光子の一態様のXRDスペクトルである。
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、各成分は、1種を単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上を併用する場合、その成分について含有量とは、特段の断りが無い限り、合計の含有量を指す。
また、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
[偏光子]
本発明の偏光子は、高分子液晶化合物と二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、上記高分子液晶化合物が、サーモトロピック性液晶、且つ、結晶性高分子であり、上記高分子液晶化合物及び上記二色性物質が水平配向した、偏光子である。
本発明の偏光子は、このような構成をとるため、高い配向度を示すものと考えられる。
なお、上述のとおり、高分子液晶化合物として結晶性高分子を用いた場合に配向度が向上するという現象は、高分子液晶化合物及び二色性物質が水平配向の場合に特異的に生じる現象である。
〔偏光子形成用組成物〕
本発明の偏光子に用いられる偏光子形成用組成物(以下、「本発明の組成物」とも言う)は、高分子液晶化合物と二色性物質とを含有する。ここで、上記高分子液晶化合物は、サーモトロピック性液晶、且つ、結晶性高分子である。
本発明の組成物は、上記高分子液晶化合物及び上記二色性物質以外の成分を含有していてもよい。
以下、各成分について説明する。
<高分子液晶化合物>
上述のとおり、本発明の組成物には、サーモトロピック性液晶、且つ、結晶性高分子である高分子液晶化合物(以下、「特定化合物」とも言う)が含有される。
(サーモトロピック液晶)
サーモトロピック液晶とは、温度変化によって液晶相への転移を示す液晶である。
特定化合物は、サーモトロピック液晶であり、ネマチック相及びスメクチック相のいずれを示してもよいが、偏光子の配向度がより高くなり、且つ、ヘイズがより観察され難くなる(ヘイズがより良好になる)理由から、少なくともネマチック相を示すことが好ましい。なお、以下、「偏光子の配向度がより高くなり、且つ、ヘイズがより観察され難くなる」ことを「本発明の効果がより優れる」とも言う。
ネマチック相を示す温度範囲は、本発明の効果がより優れる理由から、室温(23℃)〜450℃であることが好ましく、取り扱いや製造適性の観点から、50℃〜400℃であることがより好ましい。
(結晶性高分子)
結晶性高分子とは、温度変化によって結晶層への転移を示す高分子である。結晶性高分子は結晶層への転移の他にガラス転移を示すものであってもよい。
特定化合物は、本発明の効果がより優れる理由から、加熱した時に結晶相から液晶相への転移を持つ(途中にガラス転移があってもよい)高分子液晶化合物、又は、加熱により液晶状態した後で温度を下降させた時に結晶相への転移(途中にガラス転移があってもよい)を持つ高分子液晶化合物であることが好ましい。
なお、高分子液晶化合物の結晶性の有無は以下のように評価する。
光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の偏光子を互いに直交するように配置し、二枚の偏光子の間にサンプル台をセットする。そして、高分子液晶化合物をスライドガラスに少量乗せ、サンプル台上に置いたホットステージ上にスライドガラスをセットする。サンプルの状態を観察しながら、高分子液晶化合物が液晶性を示す温度までホットステージの温度を上げ、高分子液晶化合物を液晶状態にする。高分子液晶化合物が液晶状態になった後、ホットステージの温度を徐々に降下させながら液晶相転移の挙動を観察し、液晶相転移の温度を記録する。なお、高分子液晶化合物が複数の液晶相(例えばネマチック相とスメクチック相)を示す場合、その転移温度も全て記録する。
次に、高分子液晶化合物のサンプル約5mgをアルミパンに入れて蓋をし、示差走査熱量計(DSC)にセットする(リファレンスとして空のアルミパンを使用)。上記で測定した高分子液晶化合物が液晶相を示す温度まで加熱し、その後、温度を1分保持した。その後、10℃/分の速度で降温させながら、熱量測定を行う。得られた熱量のスペクトルから発熱ピークを確認する。
その結果、液晶相転移の温度以外の温度で発熱ピークが観測された場合は、その発熱ピークが結晶化によるピークであり、高分子液晶化合物は結晶性を有すると言える。
一方、液晶相転移の温度以外の温度で発熱ピークが観測されなかった場合は、高分子液晶化合物は結晶性を有さないと言える。
結晶性高分子を得る方法は特に制限されないが、具体例としては、後述する繰り返し単位(1)を含む高分子液晶化合物を用いる方法が好ましく、なかでも、後述する繰り返し単位(1)を含む高分子液晶化合物の中の好適な態様を用いる方法がより好ましい。
(結晶化温度)
上述のとおり、特定化合物は、結晶化高分子である。
特定化合物の結晶化温度は、本発明の効果がより優れる理由から、0℃以上150℃未満であることが好ましく、なかでも120℃以下であることがより好ましく、15℃以上120℃未満であることがさらに好ましく、なかでも95℃以下であることが特に好ましい。上記高分子液晶化合物の結晶化温度は、ヘイズを減らす観点から、150℃未満であることが好ましい。
なお、結晶化温度は、上述したDSCにおける結晶化による発熱ピークの温度である。
(好適な態様)
特定化合物は、本発明の効果がより優れる理由から、下記式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」とも言う)を含む高分子液晶化合物であることが好ましい。
上記式(1)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。
P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1−A)〜(P1−D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1−A)で表される基が好ましい。
式(P1−A)〜(P1−D)において、「*」は、式(1)におけるL1との結合位置を表す。式(P1−A)において、Rは水素原子またはメチル基を表す。式(P1−D)において、Rはアルキル基を表す。
式(P1−A)で表される基は、本発明の効果がより優れる理由から、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
式(P1−B)で表される基は、本発明の効果がより優れる理由から、エチレングリコールを重合して得られるポリエチレングリコールにおけるエチレングリコール単位であることが好ましい。
式(P1−C)で表される基は、本発明の効果がより優れる理由から、プロピレングリコールを重合して得られるプロピレングリコール単位であることが好ましい。
式(P1−D)で表される基は、本発明の効果がより優れる理由から、シラノールの縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。
L1は、単結合または2価の連結基である。
L1が表す2価の連結基としては、−C(O)O−、−OC(O)−、−O−、−S−、−C(O)NR−、−NRC(O)−、−SO−、および、−NR−などが挙げられる。式中、RおよびRはそれぞれ独立に、水素原子、置換基(例えば、後述する置換基W)を有していてもよい炭素数1〜6のアルキル基を表わす。
P1が式(P1−A)で表される基である場合には、本発明の効果がより優れる理由から、L1は−C(O)O−で表される基が好ましい。
P1が式(P1−B)〜(P1−D)で表される基である場合には、本発明の効果がより優れる理由から、L1は単結合が好ましい。
SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
ここで、SP1が表すオキシエチレン構造は、*−(CH−CHO)n1−*で表される基が好ましい。式中、n1は1〜20の整数を表し、*は、上記式(1)中のL1またはM1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2〜10の整数であることが好ましく、2〜4の整数であることがより好ましく、3であることが最も好ましい。
また、SP1が表すオキシプロピレン構造は、本発明の効果がより優れる理由から、*−(CH(CH)−CHO)n2−*で表される基が好ましい。式中、n2は1〜3の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すポリシロキサン構造は、本発明の効果がより優れる理由から、*−(Si(CH−O)n3−*で表される基が好ましい。式中、n3は6〜10の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すフッ化アルキレン構造は、本発明の効果がより優れる理由から、*−(CF−CFn4−*で表される基が好ましい。式中、n4は6〜10の整数を表し、*はL1またはM1との結合位置を表す。
M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「FlussigeKristalle in Tabellen II」(VEB DeutscheVerlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁〜第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
メソゲン基は、本発明の効果がより優れる理由から、芳香族炭化水素基を有するのが好ましく、2〜4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、並びに、本発明の効果がより優れるから、下記式(M1−A)または下記式(M1−B)で表される基が好ましく、式(M1−B)で表される基がより好ましい。
式(M1−A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基又は後述する置換基Wなどの置換基で置換されていてもよい。
A1で表される2価の基は、4〜6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
*は、SP1またはT1との結合位置を表す。
A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン−ジイル基、アントラセン−ジイル基およびテトラセン−ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン−ジイル基)、ピリダジン−ジイル基、イミダゾール−ジイル基、チエニレン(チオフェン−ジイル基)、キノリレン基(キノリン−ジイル基)、イソキノリレン基(イソキノリン−ジイル基)、オキサゾール−ジイル基、チアゾール−ジイル基、オキサジアゾール−ジイル基、ベンゾチアゾール−ジイル基、ベンゾチアジアゾール−ジイル基、フタルイミド−ジイル基、チエノチアゾール−ジイル基、チアゾロチアゾール−ジイル基、チエノチオフェン−ジイル基、および、チエノオキサゾール−ジイル基などが挙げられる。
A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。
式(M1−A)中、a1は1〜10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。
式(M1−B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1−A)のA1と同様であるので、その説明を省略する。
式(M1−B)中、a2は1〜10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上の整数であることが好ましく、2であることがより好ましい。
式(M1−B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、本発明の効果がより優れる理由から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
式(M1−B)中、LA1が表す2価の連結基としては、−O−、−(CH−、−(CF−、−Si(CH−、−(Si(CHO)−、−(OSi(CH−(gは1〜10の整数を表す。)、−N(Z)−、−C(Z)=C(Z’)−、−C(Z)=N−、−N=C(Z)−、−C(Z)−C(Z’)−、−C(O)−、−OC(O)−、−C(O)O−、−O−C(O)O−、−N(Z)C(O)−、−C(O)N(Z)−、−C(Z)=C(Z’)−C(O)O−、−O−C(O)−C(Z)=C(Z’)−、−C(Z)=N−、−N=C(Z)−、−C(Z)=C(Z’)−C(O)N(Z”)−、−N(Z”)−C(O)−C(Z)=C(Z’)−、−C(Z)=C(Z’)−C(O)−S−、−S−C(O)−C(Z)=C(Z’)−、−C(Z)=N−N=C(Z’)−(Z、Z’、Z”は独立に、水素、C1〜C4アルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、−C≡C−、−N=N−、−S−、−S(O)−、−S(O)(O)−、−(O)S(O)O−、−O(O)S(O)O−、−SC(O)−、および、−C(O)S−などが挙げられる。なかでも、本発明の効果がより優れる理由から、−C(O)O−が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。
M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。
T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数1〜10のアルキルチオ基、炭素数1〜10のアルコキシカルボニルオキシ基、炭素数1〜10のアルコキシカルボニル基(ROC(O)−:Rはアルキル基)、炭素数1〜10のアシルオキシ基、炭素数1〜10のアシルアミノ基、炭素数1〜10のアルコキシカルボニルアミノ基、炭素数1〜10のスルホニルアミノ基、炭素数1〜10のスルファモイル基、炭素数1〜10のカルバモイル基、炭素数1〜10のスルフィニル基、および、炭素数1〜10のウレイド基、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、−L−A(Lは単結合又は連結基を表す。連結基の具体例は上述したL1及びSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
T1は、本発明の効果がより優れる理由から、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜5のアルコキシがより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、特開2010−244038号公報に記載の重合性基によって、さらに置換されていてもよい。
T1の主鎖の原子数は、本発明の効果がより優れる理由から、1〜20が好ましく、1〜15がより好ましく、1〜10がさらに好ましく、1〜7が特に好ましい。T1の主鎖の原子数が20以下であることで、偏光子の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn−ブチル基である場合には主鎖の原子数は4であり、T1がsec−ブチル基である場合の主鎖の原子数は3である。
繰り返し単位(1)の含有量は、本発明の効果がより優れる理由から、特定化合物が有する全繰り返し単位100質量%に対して、20〜100質量%が好ましく、30〜99.9質量%がより好ましく、40〜99.0質量%がさらに好ましい。
本発明において、高分子液晶化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
繰り返し単位(1)は、特定化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。なかでも、本発明の効果がより優れる理由から、繰り返し単位(1)が特定化合物中に2種含まれているのがよい。
特定化合物が繰り返し単位(1)を2種含む場合、本発明の効果がより優れる理由から、一方(繰り返し単位A)においてT1が表す末端基がアルコキシ基であり、他方(繰り返し単位B)においてT1が表す末端基がアルコキシ基以外の基であることが好ましい。
上記繰り返し単位BにおいてT1が表す末端基は、本発明の効果がより優れる理由から、アルコキシカルボニル基、シアノ基、又は、(メタ)アクリロイルオキシ基含有基であることが好ましく、アルコキシカルボニル基、又は、シアノ基であることがより好ましい。
特定化合物中の上記繰り返し単位Aの含有量と特定化合物中の上記繰り返し単位Bの含有量との割合(A/B)は、本発明の効果がより優れる理由から、50/50〜95/5であることが好ましく、60/40〜93/7であることがより好ましく、70/30〜90/10であることがさらに好ましい。
(重量平均分子量)
特定化合物の重量平均分子量(Mw)は、本発明の効果がより優れる理由から、1000〜500000が好ましく、2000〜300000がより好ましい。特定化合物のMwが上記範囲内にあれば、特定化合物の取り扱いが容易になる。
特に、塗布時のクラック抑制の観点から、特定化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000〜300000がより好ましい。
また、配向度の温度ラチチュードの観点から、特定化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
・溶媒(溶離液):N−メチルピロリドン
・装置名:TOSOHHLC−8220GPC
・カラム:TOSOH TSKgelSuperAWM−H(6mm×15cm)を3本接続して使用
・カラム温度:25℃
・試料濃度:0.1質量%
・流速:0.35mL/min
・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000〜1050(Mw/Mn=1.03〜1.06)までの7サンプルによる校正曲線を使用
<二色性物質>
上記二色性物質は、特に限定されず、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、無機物質(例えば量子ロッド)、などが挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
具体的には、例えば、特開2013−228706号公報の[0067]〜[0071]段落、特開2013−227532号公報の[0008]〜[0026]段落、特開2013−209367号公報の[0008]〜[0015]段落、特開2013−14883号公報の[0045]〜[0058]段落、特開2013−109090号公報の[0012]〜[0029]段落、特開2013−101328号公報の[0009]〜[0017]段落、特開2013−37353号公報の[0051]〜[0065]段落、特開2012−63387号公報の[0049]〜[0073]段落、特開平11−305036号公報の[0016]〜[0018]段落、特開2001−133630号公報の[0009]〜[0011]段落、特開2011−215337号公報の[0030]〜[0169]、特開2010−106242号公報の[0021]〜[0075]段落、特開2010−215846号公報の[0011]〜[0025]段落、特開2011−048311号公報の[0017]〜[0069]段落、特開2011−213610号公報の[0013]〜[0133]段落、特開2011−237513号公報の[0074]〜[0246]段落、特開2016−006502号公報の[0005]〜[0051]段落、WO2016/060173号公報の[0005]〜[0041]段落、WO2016/136561号公報の[0008]〜[0062]段落、国際公開第2017/154835号の[0014]〜[0033]段落、国際公開第2017/154695号の[0014]〜[0033]段落、国際公開第2017/195833号の[0013]〜[0037]段落、国際公開第2018/164252号の[0014]〜[0034]段落などに記載されたものが挙げられる。
本発明においては、2種以上の二色性物質を併用してもよく、例えば、偏光子を黒色に近づける観点から、波長370〜550nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質と、波長500〜700nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質とを併用することが好ましい。
上記二色性物質は、架橋性基を有していてもよい。
上記架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
本発明の組成物において、二色性物質の含有量は、本発明の効果がより優れる理由から、上記特定化合物100質量部に対して1〜400質量部であることが好ましく、2〜100質量部であることがより好ましく、5〜30質量部であることがさらに好ましい。
<溶媒>
本発明の組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
溶媒としては、例えば、ケトン類(例えば、アセトン、2−ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、および、シクロペンチルメチルエーテルなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、および、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン(クロロホルム)、ジクロロエタン、ジクロロベンゼン、および、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、および、1,2−ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミドなど)、および、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
これらの溶媒のうち、本発明の効果がより優れる理由から、有機溶媒を用いることが好ましく、ハロゲン化炭素類またはケトン類を用いることがより好ましい。
本発明の組成物が溶媒を含有する場合、溶媒の含有量は、本発明の効果がより優れる理由から、本発明の組成物の全質量に対して、70〜99.5質量%であることが好ましく、80〜99質量%であることがより好ましく、85〜97質量%であることがさらに好ましい。
<界面改良剤>
本発明の組成物は、本発明の効果がより優れる理由から、界面改良剤を含むことが好ましい。界面改良剤を含むことにより、塗布表面の平滑性が向上し、配向度が向上したり、ハジキおよびムラを抑制して、面内の均一性の向上が見込まれる。
界面改良剤としては、高分子液晶化合物を水平配向させるものが好ましく、特開2011−237513号公報の[0253]〜[0293]段落に記載の化合物(水平配向剤)を用いることができる。また、特開2007−272185号公報の[0018]〜[0043]等に記載のフッ素(メタ)アクリレート系ポリマーも用いることができる。界面改良剤としては、これら以外の化合物を用いてもよい。
本発明の組成物が界面改良剤を含有する場合、界面改良剤の含有量は、本発明の効果がより優れる理由から、組成物中の特定化合物と二色性物質との合計100質量部に対し、0.001〜5質量部が好ましく、0.01〜3質量部が好ましい。
<重合開始剤>
本発明の組成物は、本発明の効果がより優れる理由から、重合開始剤を含有することが好ましい。
重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α−カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、および、アシルフォスフィンオキシド化合物(特公昭63−40799号公報、特公平5−29234号公報、特開平10−95788号公報および特開平10−29997号公報)等が挙げられる。
このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア184、イルガキュア907、イルガキュア369、イルガキュア651、イルガキュア819およびイルガキュアOXE−01等が挙げられる。
本発明の組成物が重合開始剤を含有する場合、重合開始剤の含有量は、本発明の効果がより優れる理由から、組成物中の特定化合物と二色性物質との合計100質量部に対し、0.01〜30質量部が好ましく、0.1〜15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であることで、偏光子の耐久性が良好となり、30質量部以下であることで、偏光子の配向がより良好となる。
<結晶化温度>
本発明の組成物の結晶化温度は、本発明の効果がより優れる理由から、0℃以上100℃以下であることが好ましく、15℃以上85℃以下であることがより好ましい。本発明の組成物の結晶化温度が0℃未満であると、本発明の組成物を結晶化するために低温装置が必要になり、本発明の組成物の110℃を超えると、ヘイズが発生し易くなる。
なお、本発明の組成物の結晶化温度は、高分子液晶化合物の代わりに本発明の組成物を用いる以外は、上述した高分子液晶化合物の結晶化温度と同様の手順に従って測定する。上記組成物の結晶化温度とは、高分子液晶化合物と二色性物質との混晶の結晶化温度と考えられる。
<置換基W>
本明細書における置換基Wについて記載する。
置換基Wとしては、例えば、ハロゲン原子、アルキル基(例えば、tert−ブチル基)(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(−B(OH)2)、ホスファト基(−OPO(OH)2)、スルファト基(−OSO3H)、その他の公知の置換基などが挙げられる。
なお、置換基の詳細については、特開2007-234651号公報の段落[0023]に記載される。
〔水平配向〕
上述のとおり、本発明の偏光子において、特定化合物及び二色性物質は水平配向している。
ここで水平配向とは、偏光子の主面に対して並行であることをいうが、厳密に並行であることを要求するものではなく、水平面となす平均傾斜角が±10度未満であることを意味する。なお、上記傾斜角は、AxoScan OPMF−1(オプトサイエンス社製)を用いて測定することができる。
具体的には、AxoScan OPMF−1(オプトサイエンス社製)を用いて、室温において、波長λにおける偏光子のミューラーマトリックスを極角を−50°〜50°まで10°毎に計測し、表面反射の影響を除去した後、スネルの式およびフレネルの式を考慮した下記理論式にフィッティングすることにより、消衰係数ko[λ](面内方向)およびke[λ](厚さ方向)を算出する。特に記載がないときは、波長λは、550nmとする。
k=−log(T)×λ/(4πd)
ここで、Tは透過率、dは偏光子の厚みを表す。
算出したko[λ]、ke[λ]より、面内方向および厚さ方向の吸光度、二色比を算出することで水平配向しているか否かを確認することができる。
〔X線回折ピーク〕
本発明の偏光子は、本発明の効果がより優れる理由から、X線回折(XRD)スペクトルにおいて、半値幅が2°未満のピーク(ピークA)及び半値幅が2°以上のピーク(ハロー)(ピークB)が観測されるのがよい。
ピークAは高分子液晶化合物の結晶に由来するピークと考えられ、ピークBはサーモトロピック液晶等に由来するピークと考えられる。
ピークAの回折角は、本発明の効果がより優れる理由から、17°未満であることが好ましい。
また、ピークBの回折角は、本発明の効果がより優れる理由から、17°以上であることが好ましい。
ベースラインに対するピークAの強度は、本発明の効果がより優れる理由から、100以上であることが好ましく、150以上であることがより好ましく、200以上であることがさらに好ましい。ピークAの強度の上限は特に制限されないが、本発明の効果がより優れる理由から、10000以下であることが好ましく、7000以下であることがより好ましく、3000以下であることがさらに好ましい。ここで、ピークの強度の単位はcps(count per second)である。
なお、ピークの強度とはベースライン強度とピークトップの強度との差である。
XRDスペクトルにおけるピーク強度は、インプレーン法を用いてX線回折分析をすることで求められる。以下において、インプレーン法を用いて行われるX線回折分析を、「インプレーン XRD」とも記載する。インプレーン XRDは、薄膜X線回折装置を用いて、以下の条件で、偏光子層表面にX線を照射して行うものとする。
Cu線源使用(CuKα、出力45kV、200mA)
X線入射角0.2°
使用光学系:平行光学系(CBO(Cross Beam Optics)(PB(Parallel Beam))
入射側 入射スリット0.2mm 入射平行スリットIn−plane PSC(Parallel Slit Collimator) 0.5deg(degree)、長手制限スリット 10mm
受光側 受光スリット 20 mm、受光平行スリットIn−plane PSA(Parallel Slit Analyzer) 0.5deg
検出器:リガク社製HyPix3000(0Dモード)
2θχ/φスキャン Scan条件:1〜40degreeの範囲を0.008degree/step、2.0degree/min(分)
φスキャン Scan条件:−120〜120degreeの範囲を0.5degree/step、9.6degree/min
上記条件は、薄膜X線回折装置における設定値である。薄膜X線回折装置としては、公知の装置を用いることができる。薄膜X線回折装置の一例としては、リガク社製SmartLabを挙げることができる。インプレーン XRDの分析に付す試料は、複数の試料間の比較を行う場合には同一サイズの試料を用いる。そして、高分子液晶及び二色性物質が長軸方向で配向した方向を方位角(φ)0°とし、15°刻みで全方向のインプレーン XRDを行い、観測されたピークに対して行ったφスキャンにより、ピーク強度が最大となる基板平面内における向きを決定する。上述したピークA及びピークBとして、上述のとおり得られた向きにおけるインプレーン XRDのスペクトルのピークを用いる。ピーク強度については、X線入射角0.2°におけるX線侵入長に相当する膜厚として規格化した値を用いる。
また、XRDスペクトルを測定する面積は、30mm×30mmとする。
以下、XRDスペクトルを用いて具体的に説明する。
図1は、高分子液晶化合物として後述する高分子液晶化合物L1を用いた本発明の偏光子の一態様のXRDスペクトルである。
ピークa1〜a3はいずれも半値幅が2°未満であり、上述したピークA(結晶に由来するピークと考えられるもの)に該当する。また、ピークbは半値幅が2°以上であり、上述したピークB(ハロー)(サーモトロピック性液晶に由来するピークと考えられるもの)に該当する。
〔厚み〕
本発明の偏光子の膜厚は、本発明の効果がより優れる理由から、0.1〜5.0μmであることが好ましく、0.3〜1.5μmであることがより好ましい。組成物中の二色性物質の濃度にもよるが、膜厚が0.1μm以上であると、より優れた吸光度の偏光子が得られ、膜厚が5.0μm以下であると、より優れた透過率の偏光子が得られる。
〔偏光子の製造方法〕
本発明の偏光子を製造する方法は特に制限されないが、得られる偏光子の配向度がより高くなり、且つ、ヘイズが観察され難くなる理由から、配向膜上に上述した本発明の組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」とも言う。)と、上記塗布膜に含まれる二色性物質を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に備える方法(以下、「本発明の方法」とも言う)が好ましい。なお、以下、「得られる偏光子の配向度がより高くなり、且つ、ヘイズが観察され難くなる」ことを「本発明の効果がより優れる」とも言う。
以下、各工程について説明する。
<塗布膜形成工程>
塗布膜形成工程は、配向膜上に上述した本発明の組成物を塗布して塗布膜を形成する工程である。塗布膜中の特定化合物は配向膜と(本発明の組成物が界面改良剤を含有する場合には)界面改良剤との相互作用により水平配向する。
上述した溶媒を含有する本発明の組成物を用いたり、本発明の組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、配向膜上に本発明の組成物を塗布することが容易になる。
本発明の組成物の塗布方法としては、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
(配向膜)
配向膜は、本発明の組成物に含有される特定化合物を水平配向させる膜であれば、どのような膜でもよい。
有機化合物(好ましくはポリマー)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュアブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。なかでも、本発明では、配向膜のプレチルト角の制御し易さの点からはラビング処理により形成する配向膜が好ましく、配向の均一性の点からは光照射により形成する光配向膜も好ましい。
(1)ラビング処理配向膜
ラビング処理により形成される配向膜に用いられるポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。本発明においては、ポリビニルアルコールまたはポリイミド、およびその誘導体が好ましく用いられる。配向膜については国際公開第2001/88574A1号公報の43頁24行〜49頁8行の記載を参照することができる。配向膜の厚さは、0.01〜10μmであることが好ましく、0.01〜1μmであることがさらに好ましい。
(2)光配向膜
光照射により形成される配向膜に用いられる光配向材料としては、多数の文献などに記載がある。本発明においては、例えば、特開2006−285197号公報、特開2007−76839号公報、特開2007−138138号公報、特開2007−94071号公報、特開2007−121721号公報、特開2007−140465号公報、特開2007−156439号公報、特開2007−133184号公報、特開2009−109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002−229039号公報に記載の芳香族エステル化合物、特開2002−265541号公報、特開2002−317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003−520878号公報、特表2004−529220号公報、または、特許第4162850号に記載の光架橋性ポリイミド、ポリアミドもしくはエステルが好ましい例として挙げられる。より好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、または、エステルである。
上記材料から形成した光配向膜に、直線偏光または非偏光照射を施し、光配向膜を製造する。
本明細書において、「直線偏光照射」「非偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光のピーク波長は、200nm〜700nmが好ましく、光のピーク波長が400nm以下の紫外光がより好ましい。
光照射に用いる光源は、通常使われる光源、例えばタングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプおよびカーボンアークランプなどのランプ、各種のレーザー[例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザーおよびYAG(イットリウム・アルミニウム・ガーネット)レーザー]、発光ダイオード、ならびに、陰極線管などを挙げることができる。
直線偏光を得る手段としては、偏光板(例えば、ヨウ素偏光板、二色性物質偏光板、および、ワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム)もしくはブリュースター角を利用した反射型偏光子を用いる方法、または、偏光を有するレーザー光源から出射される光を用いる方法が採用できる。また、フィルタまたは波長変換素子などを用いて必要とする波長の光のみを選択的に照射してもよい。
照射する光は、直線偏光の場合には、配向膜に対して上面、または裏面から配向膜表面に対して垂直、または斜めから光を照射する方法が採用される。光の入射角度は、光配向材料によって異なるが、0〜90°(垂直)が好ましく、40〜90°が好ましい。
非偏光の場合には、配向膜に対して、斜めから非偏光を照射する。その入射角度は、10〜80°が好ましく、20〜60°がより好ましく、30〜50°がさらに好ましい。
照射時間は、1分〜60分が好ましく、1分〜10分がより好ましい。
パターン化が必要な場合には、フォトマスクを用いた光照射をパターン作製に必要な回数施す方法、または、レーザー光走査によるパターンの書き込みによる方法を採用できる。
<配向工程>
配向工程は、塗布膜に含有される二色性物質を配向させる工程である。これにより、本発明の偏光子が得られる。配向工程では、配向膜によって配向した特定化合物に沿って、二色性物質が配向するものと考えられる。
配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
ここで、本発明の組成物に含有される二色性物質は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、本発明の組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、塗布膜に含有される二色性物質が配向して、本発明の偏光子が得られる場合がある。
配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる二色性物質がより配向し、得られる偏光子の配向度がより高くなる。
加熱処理は、製造適性などの面から10〜250℃が好ましく、25〜190℃がより好ましい。また、加熱時間は、1〜300秒が好ましく、1〜60秒がより好ましい。
配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20〜25℃)程度まで冷却する処理である。これにより、塗布膜に含有される二色性物質の配向がより固定され、得られる偏光子の配向度がより高くなる。冷却手段としては、特に限定されず、公知の方法により実施できる。
以上の工程によって、本発明の偏光子を得ることができる。
<他の工程>
本発明の方法は、上記配向工程後に、偏光子を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
硬化工程は、例えば、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって偏光子の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
[積層体]
本発明の積層体は、基材と、上記基材上に設けられた配向膜と、上記配向膜上に設けられた上述した本発明の偏光子とを有する。
また、本発明の積層体は、上記本発明の偏光子上に、λ/4板を有していてもよい。
さらに、本発明の積層体は、上記本発明の偏光子とλ/4板との間に、バリア層を有していてもよい。
以下、本発明の積層体を構成する各層について説明する。
〔基材〕
基材としては、適宜選択することができ、例えば、ガラスおよびポリマーフィルムが挙げられる。基材の光透過率は、80%以上であるのが好ましい。
基材としてポリマーフィルムを用いる場合には、光学的等方性のポリマーフィルムを用いるのが好ましい。ポリマーの具体例および好ましい態様は、特開2002−22942号公報の[0013]段落の記載を適用できる。また、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであっても国際公開第2000/26705号公報に記載の分子を修飾することで発現性を低下させたものを用いることもできる。
〔配向膜〕
配向膜については、上述したとおりであるので、その説明を省略する。
〔偏光子〕
本発明の偏光子については、上述したとおりであるので、その説明を省略する。
〔λ/4板〕
「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
例えば、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルムや、支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルムなどが挙げられ、また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
λ/4板と本発明の偏光子とは、接して設けられていてもよいし、λ/4板と本発明の偏光子との間に、他の層が設けられていてもよい。このような層としては、密着性担保のための粘着層または接着層、およびバリア層が挙げられる。
〔バリア層〕
本発明の積層体がバリア層を備える場合、バリア層は、本発明の偏光子とλ/4板との間に設けられる。なお、本発明の偏光子とλ/4板との間に、バリア層以外の他の層(例えば、粘着層または接着層)を備える場合には、バリア層は、例えば、本発明の偏光子と他の層との間に設けることができる。
バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素等のガス、水分、または、隣接する層に含まれる化合物等から本発明の偏光子を保護する機能を有する。
バリア層については、例えば、特開2014−159124号公報の[0014]〜[0054]段落、特開2017−121721号公報の[0042]〜[0075]段落、特開2017−115076号公報の[0045]〜[0054]段落、特開2012−213938号公報の[0010]〜[0061]段落、特開2005−169994号公報の[0021]〜[0031]段落の記載を参照できる。
〔用途〕
本発明の積層体は、例えば、偏光素子(偏光板)として使用でき、例えば、直線偏光板または円偏光板として使用できる。
本発明の積層体が上記λ/4板などの光学異方性層を有さない場合には、積層体は直線偏光板として使用できる。
一方、本発明の積層体が上記λ/4板を有する場合には、積層体は円偏光板として使用できる。
[画像表示装置]
本発明の画像表示装置は、上述した本発明の偏光子または上述した本発明の積層体を有する。
本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルなどが挙げられる。
これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
〔液晶表示装置〕
本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の偏光子と、液晶セルと、を有する態様が好ましく挙げられる。より好適には、上述した本発明の積層体(ただし、λ/4板を含まない)と、液晶セルと、を有する液晶表示装置である。
なお、本発明においては、液晶セルの両側に設けられる偏光素子のうち、フロント側の偏光素子として本発明の積層体を用いるのが好ましく、フロント側およびリア側の偏光素子として本発明の積層体を用いるのがより好ましい。
以下に、液晶表示装置を構成する液晶セルについて詳述する。
<液晶セル>
液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In−Plane−Switching)モード、またはTN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60〜120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer−Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006−215326号公報、および特表2008−538819号公報に詳細な記載がある。
IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10−54982号公報、特開平11−202323号公報、特開平9−292522号公報、特開平11−133408号公報、特開平11−305217号公報、特開平10−307291号公報などに開示されている。
〔有機EL表示装置〕
本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、上述した本発明の偏光子と、λ/4板と、有機EL表示パネルと、をこの順で有する態様が好適に挙げられる。
より好適には、視認側から、λ/4板を有する上述した本発明の積層体と、有機EL表示パネルと、をこの順に有する態様である。この場合には、積層体は、視認側から、基材、配向膜、本発明の偏光子、必要に応じて設けられるバリア層、および、λ/4板の順に配置されている。
また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容および処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[合成例]
〔高分子液晶化合物〕
<高分子液晶化合物L1>
高分子液晶化合物L1は、以下の手順により作製した。
(化合物L1−2の合成)
ブチルパラベン(201g)のN,N−ジメチルホルムアミド溶液(300mL)に2−クロロエトキシエトキシエタノール(244g)、および、炭酸カリウム(200g)を添加した。95℃で9時間攪拌した後、トルエン(262mL)と水(660mL)を添加して、濃塩酸(147g)を滴下した。10分撹拌した後に、静置し、分液操作により反応液を洗浄した。得られた有機層に、28wt%(28質量%)ナトリウムメトキシドメタノール溶液(500g)と水(402mL)を加え、50℃で2時間撹拌した。その後、濃縮により有機溶剤を留去し、水(402mL)を加え、重量が1.13kgになるまで50℃で再び濃縮を行った。得られた溶液に水(478mL)を添加し、濃塩酸(278g)を滴下した。そこに、酢酸エチル(1.45kg)を加え、30℃で10分撹拌し、分液操作により水層を除去した。次に、20wt%食塩水溶液(960mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。得られた有機層にN−メチルピロリドン(824g)を添加し、70℃で4時間濃縮操作を行い、化合物(L1−1)を含有するN−メチルピロリドン溶液を1.13kg得た。得られた(L1−1)を含有するN−メチルピロリドン溶液のうち、1085gを用いて次工程を実施した。得られた(L1−1)を含有するN−メチルピロリドン溶液(1085g)に、N,N−ジメチルアニリン(189g)と2,2,6,6−テトラメチルピペラジン(1.5g)を加え、内温を冷却した後に、内温が10℃を超えないように、アクリル酸クロリド(122g)を滴下した。内温10℃にて2時間撹拌した後に、メタノール(81g)を滴下し、30分攪拌した。そこに酢酸エチル(1.66kg)と、10wt%食塩水(700mL)と1N塩酸水(840mL)を加え、分液操作により水層を除去した。次に、10wt%食塩水溶液(800mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。次に、20wt%食塩水溶液(800mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。得られた有機層にヘキサン/イソプロピルアルコール(1780mL/900mL)の混合溶媒を添加し、5℃まで冷却して30分撹拌した後に、ろ過を行う事で、白色固体化合物(L1−2)を209g(3工程収率65%)得た。
H−NMR(溶媒:CDCl)δ(ppm):3.67−3.78(m,6H),3.87−3.92(m,2H),4.18−4.23(m,2H),4.31−4.35(m,2H),5.80−5.85(m,1H),6.11−6.19(m,1H),6.40−6.46(m,1H),6.93−6.98(m,2H),8.02−8.07(m,2H)
(化合物L1−3の合成)
メタンスルホニルクロリド(MsCl)(73.4mmol,5.7mL)のテトラヒドロフラン(THF)溶液(70mL)にジブチルヒドロキシトルエン(BHT)(200mg)を加え、内温を−5℃まで冷却した。そこに、化合物(L1−2)(66.7mmol,21.6g)とジイソプロピルエチルアミン(DIPEA)(75.6mmol,13.0mL)のTHF溶液を内温が0℃以上に上昇しないように滴下した。−5℃で30分撹拌した後、N,N−ジメチル−4−アミノピリジン(DMAP)(200mg)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)と、4−ヒドロキシ−4’−メトキシビフェニル(60.6mmol,12.1g)のテトラヒドロフラン(THF)およびジメチルアセトアミド(DMAc)溶液を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。メタノール(5mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(L1−3)18.7g(収率61%)を得た。構造式中、Meはメチル基を表す。
1H−NMR(溶媒:CDCl)δ(ppm):3.65−3.82(m,6H),3.85(s,3H),3.85−3.95(m,2H),4.18−4.28(m,2H),4.28−4.40(m,2H),5.82(dd,1H),6.15(dd,1H),6.43(dd,1H),6.90−7.05(m,4H),7.20−7.30(m,2H),7.45−7.65(m,4H),8.10−8.20(m,2H)
不純物としては、下記化合物(L1−b)が含まれる。
(化合物L1−23の合成)
4−(4−ヒドロキシフェニル)安息香酸メチルは、Jornal of Polymer Science,Part A:PolymerChemistry,2012,vol.50,p.3936−3943に記載の方法で合成を行った。
メタンスルホニルクロリド(MsCl)(54.8mmol,6.27g)の酢酸エチル溶液(44mL)に2,2,6,6−テトラメチルピペリジン1−オキシル(68mg)を加え、内温を−5℃まで冷却した。そこに、上述のとおり合成した化合物(L1−2)(52.6mmol,17.1g)とジイソプロピルエチルアミン(DIPEA)(57.0mol,7.36g)のTHF溶液を内温が0℃以上に上昇しないように滴下した。−5℃で30分撹拌した後、4−(4−ヒドロキシフェニル)安息香酸メチル(43.8mmol,10.0g)のDMAc溶液、N−メチル−イミダゾール(NMI)(1.8g)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。水と酢酸エチルを加えて反応を停止した。分液を行い、酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(L1−23)20.4g(収率87%)を得た。
H−NMR(溶媒:CDCl)δ(ppm):3.68−3.80(m,6H),3.87−3.95(m,2H),3.95(s,3H),4.20−4.27(m,2H),4.31−4.37(m,2H),5.83(dd,1H),6.16(dd,1H),6.43(dd,1H),6.97−7.05(m,2H),7.28−7.35(m,2H),7.64−7.72(m,4H),8.08−8.20(m,4H)
不純物としては、下記化合物(L1−b2)が含まれる。
(高分子液晶化合物L1の合成)
化合物(L1−3)(84g)、化合物(L1−23)(21g)、ジブチルヒドロキシトルエン(BHT)(158mg)をアニソール(337g)に溶解させた。そこに、2,2’−アゾビス(2−メチルプロピオン酸)ジメチル(1660mg)(商品名「V−601」)を室温で加え、撹拌した。得られたアニソール溶液を、窒素雰囲気化で80℃に加熱しておいたアニソール(84g)へと2時間かけて滴下し、滴下終了後、80℃で4時間撹拌した。得られた反応液を、メタノール(1080mL)へと滴下し、沈殿を濾過操作により集めた後に、アセトニトリルを用いて残渣の洗浄を行い、白色固体化合物(L1)100g(収率95%)を得た。得られたポリマーの重量平均分子量(Mw)は13300であった。
なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で算出、カラムはTOSOH TSKgelSuperAWM−H(東ソー社製)を3本接続して使用、溶媒はN−メチルピロリドンを使用した。
<高分子液晶化合物L2>
下記ステップ1〜2に従い、高分子液晶化合物L2を合成した。
(ステップ1)
メタンスルホニルクロリド(MsCl)(54.8mmol,6.27g)の酢酸エチル溶液(44mL)に2,2,6,6−テトラメチルピペリジン1−オキシル(68mg)を加え、内温を−5℃まで冷却した。そこに、後述のとおり合成した化合物(P1−1)(52.6mmol,17.1g)とジイソプロピルエチルアミン(DIPEA)(57.0mol,7.36g)のTHF溶液を内温が0℃以上に上昇しないように滴下した。−5℃で30分撹拌した後、4−シアノ−4’−ヒドロキシビフェニル(43.8mmol,8.55g)のDMAc溶液、N−メチル−イミダゾール(NMI)(1.8g)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。水と酢酸エチルを加えて反応を停止した。分液を行い、酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(P14−A)19.0g(収率87%)を得た。
H−NMR(溶媒:CDCl)δ(ppm):3.68−3.80(m,6H),3.87−3.95(m,2H),4.20−4.27(m,2H),4.32−4.37(m,2H),5.84(dd,1H),6.16(dd,1H),6.43(dd,1H),6.98−7.05(m,2H),7.30−7.37(m,2H),7.60−7.78(m,6H),8.13−8.20(m,2H)
(ステップ2)
後述のとおり合成した化合物P1−2(0.9g)および化合物P14−A(0.1g)のDMAc溶液(3.3mL)を、窒素気流下、内温80℃まで加熱した。そこに、2,2’−アゾビス(2−メチルプロピオン酸)ジメチル(0.054mmol,0.012g)(商品名「V−601」、和光純薬社製)のDMAc溶液(0.5mL)を加え、80℃で2時間撹拌した。その後、H−NMRスペクトル測定にて重合性基の消失を確認し、室温まで冷却した。メタノールを加えてろ過を行い、残渣をメタノールで洗浄することで白色固体である化合物(L2)を0.96g得た。得られた高分子液晶化合物L2をゲル浸透クロマトグラフ(GPC)で分析したところ、重量平均分子量(Mw)は14000(ポリスチレン換算)であった。
<高分子液晶化合物L3>
以下のとおり、高分子液晶化合物L3を合成した。
(P1−1の合成)
2−クロロエトキシエトキシエタノール(14.05g)のジメチルアセトアミド(DMAc)溶液(60mL)にジブチルヒドロキシトルエン(BHT)(100mg)を加え、氷冷下においてアクリル酸クロリド(7.54g)、および、トリエチルアミン(8.89g)を滴下した。1時間攪拌した後、反応液を濾過した。次に、炭酸カリウム(15.7g)、ヨウ化カリウム(0.57g)、p−ヒドロキシベンズアルデヒド(9.25g)、ジブチルヒドロキシトルエン(BHT)(100mg)を添加し、110℃にて4時間攪拌した後、酢酸エチルと水を加え、分液操作により反応液を洗浄した。さらに、反応液をエバポレーターにより濃縮した後、室温に戻して25mLのアセトニトリル、2.36gのリン酸二水素ナトリウム二水和物を8mLの水に溶解したリン酸緩衝液、および11.2mLの過酸化水素水(30質量%)を添加し、続けて33.4gの25質量%亜塩素酸ナトリウム水溶液を添加した。6時間室温で攪拌して8時間静置した後、水を加え、得られた沈殿を集め、白色固体の化合物(P1−1)を16.9g(収率69%)得た。
(P1−2の合成)
メタンスルホニルクロリド(MsCl)(73.4mmol,5.7mL)のテトラヒドロフラン(THF)溶液(70mL)にジブチルヒドロキシトルエン(BHT)(200mg)を加え、内温を−5℃まで冷却した。そこに、化合物(P1−1)(66.7mmol,21.6g)とジイソプロピルエチルアミン(DIPEA)(75.6mmol,13.0mL)のTHF溶液を内温が0℃以上に上昇しないように滴下した。−5℃で30分撹拌した後、N,N−ジメチル−4−アミノピリジン(DMAP)(200mg)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)と、4−ヒドロキシ−4’−メトキシビフェニル(60.6mmol,12.1g)のテトラヒドロフラン(THF)およびジメチルアセトアミド(DMAc)溶液を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。メタノール(5mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(P1−2)18.7g(収率61%)を得た。
1H−NMR(Nuclear Magnetic Resonance)(溶媒:CDCl)δ(ppm):3.65−3.82(m,6H),3.85(s,3H),3.85−3.95(m,2H),4.18−4.28(m,2H),4.28−4.40(m,2H),5.82(dd,1H),6.15(dd,1H),6.43(dd,1H),6.90−7.05(m,4H),7.20−7.30(m,2H),7.45−7.65(m,4H),8.10−8.20(m,2H)
(L3の合成)
化合物(P1−2)(1.0g)のDMAc溶液(3.3mL)を、内温が80℃まで加熱した。そこに、2,2’−アゾビス(2−メチルプロピオン酸)ジメチル(0.54mmol,0.12g)(商品名「V−601」、和光純薬社製)のDMAc溶液(0.5mL)を加え、80℃で2時間撹拌した。その後、1H−NMRスペクトル測定にて重合性基の消失を確認し、室温まで冷却した。メタノールを加えてろ過を行い、残渣をメタノールで洗浄することで白色固体である化合物(L3)を0.95g得た。得られた高分子液晶化合物L3をゲル浸透クロマトグラフ(GPC)で分析したところ、重量平均分子量(Mw)は10000(ポリスチレン換算)であった。
<高分子液晶化合物L5>
下記ステップ1〜3に従い、高分子液晶化合物L5を合成した。
(ステップ1)
水酸化ナトリウム(34.2g)を1Lの水に溶解させ、窒素雰囲気下で、4,4’−ジヒドロキシビフェニル(40.6g)およびブロモエタノール(37.2g)を添加し、95℃で10時間攪拌した。
その後、室温まで冷却し、濃塩酸を加えて反応系を酸性に調整してから濾過および乾燥を行い、化合物P9−Aを含む白色固体を得た。
得られた白色固体を400mLのジメチルアセトアミド(DMAc)に溶解させ、氷冷下、3−クロロプロピオニルクロリド(62.0g)を滴下し、5時間攪拌した。メタノール(40mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。
分液操作により洗浄した有機層を、ロータリーエバポレーターで溶媒除去し、得られた濃縮物にクロロホルムを加えた。析出した固体を濾過により取り除いた後、ロータリーエバポレーターで溶媒除去をし、酢酸エチル/クロロホルムを用いたカラムクロマトグラフィーによるに精製を行い、白色固体である化合物P9−Aを20.3g(収率29%)得た。
H−NMR(溶媒:DMSO−d)δ(ppm):2.80−2.90(t,2H),3.75−3.85(t,2H),4.15−4.25(m,2H),4.35−4.45(m,2H),6.75−6.85(m,2H),6.90−7.00(m,2H),7.30−7.50(m,4H),9.40(br s,1H)
(ステップ2)
化合物P9−Aの4.0gと、合成例1で調製した化合物P1−1の8.08gと、ジクロロメタン100mLとを混合し、室温で撹拌した。混合物に、N,N−ジメチルアミノピリジン152mg、および、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(EDCI)9.56gを加え、室温で12時間撹拌した。
その後、ロータリーエバポレーターで溶媒を除去し、メタノール120mLと1M、塩酸水120mLを加えて濾過を行い、白色固体を得た。得られた白色固体を酢酸エチルと水を加えて分液を行い、集めた有機層を1N塩酸水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィによる精製を行うことで化合物P9−Bを5.4g得た(収率69%)。
H−NMR(溶媒:CDCl)δ(ppm):2.87(t,2H)、3.68−3.82(m,8H),3.90(t,2H),4.18−4.28(m,4H),4.28−4.38(m,2H),4.46−4.54(m,2H),5.84(dd,1H),6.16(dd,1H),6.43(dd,1H),6.90−7.05(m,4H),7.20−7.30(m,2H),7.48−7.65(m,4H),8.10−8.20(m,2H)
(ステップ3)
化合物P1−2(0.8g)および化合物P9−B(0.2g)のDMAc溶液(3.3mL)を、窒素気流下、内温が80℃まで加熱した。そこに、2,2’−アゾビス(2−メチルプロピオン酸)ジメチル(0.054mmol,0.012g)のDMAc溶液(0.5mL)を加え、80℃で2時間撹拌した。その後、H−NMRスペクトル測定にて重合性基の消失を確認し、室温まで冷却した。メタノールを加えてろ過を行い、残渣をメタノールで洗浄することで白色固体である化合物P9−Cを0.90g得た。得られた化合物P9−Cのクロロホルム溶液(7mL)に、ジブチルヒドロキシトルエン(BHT)(50mg)、および、トリエチルアミン(0.7mL)を加え、内温を50℃まで加熱した。50℃で9時間撹拌した後、H−NMRスペクトル測定にて原料の消失を確認し、室温へと冷却した。そこに、メタノールを加えてろ過を行い、残渣をメタノールで洗浄することで白色固体である高分子液晶化合物L5を0.8g得た。得られた高分子液晶化合物L5をゲル浸透クロマトグラフ(GPC)で分析したところ、重量平均分子量(Mw)は17000(ポリスチレン換算)であった。
<高分子液晶化合物L6>
下記ステップ1〜2に従い、高分子液晶化合物L6を合成した。
(ステップ1)
4−(4−ヒドロキシフェニル)安息香酸エチルは、Macromolecules,2002,35,1663−1671に記載の方法で合成した。
メタンスルホニルクロリド(MsCl)(54.8mmol,6.27g)の酢酸エチル溶液(44mL)に2,2,6,6−テトラメチルピペリジン1−オキシル(68mg)を加え、内温を−5℃まで冷却した。そこに、化合物(P1−1)(52.6mmol,17.1g)とジイソプロピルエチルアミン(DIPEA)(57.0mol,7.36g)のTHF溶液を内温が0℃以上に上昇しないように滴下した。−5℃で30分撹拌した後、4−(4−ヒドロキシフェニル)安息香酸エチル(43.8mmol,10.6g)のDMAc溶液、N−メチル−イミダゾール(NMI)(1.8g)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。水と酢酸エチルを加えて反応を停止した。分液を行い、酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(P13−A)20.6g(収率86%)を得た。
H−NMR(溶媒:CDCl)δ(ppm):1.41(t,3H),3.68−3.80(m,6H),3.88−3.95(m,2H),4.20−4.27(m,2H),4.31−4.38(m,2H),4.41(q,2H),5.83(dd,1H),6.16(dd,1H),6.43(dd,1H),6.97−7.05(m,2H),7.28−7.35(m,2H),7.64−7.72(m,4H),8.08−8.20(m,4H)
(ステップ2)
化合物P1−2(0.8g)および化合物P13−A(0.2g)のDMAc溶液(3.3mL)を、窒素気流下、内温が80℃まで加熱した。そこに、2,2’−アゾビス(2−メチルプロピオン酸)ジメチル(0.054mmol,0.012g)(商品名「V−601」、和光純薬社製)のDMAc溶液(0.5mL)を加え、80℃で2時間撹拌した。その後、H−NMRスペクトル測定にて重合性基の消失を確認し、室温まで冷却した。メタノールを加えてろ過を行い、残渣をメタノールで洗浄することで白色固体である化合物(L6)を0.96g得た。得られた高分子液晶化合物L6をゲル浸透クロマトグラフ(GPC)で分析したところ、重量平均分子量(Mw)は16000(ポリスチレン換算)であった。
<高分子液晶化合物L4、L7、R1〜R3>
後述する高分子液晶化合物L4、L7、R1〜R3を、上述した高分子液晶化合物と同様又は公知の方法を利用して合成した。
〔二色性物質〕
<二色性物質D1>
まず、4−ヒドロキシブチルアクリレート(20g)およびメシルクロライド(16.8g、MsCl)を酢酸エチル(90mL)に溶解させた後、氷浴で冷却しながらトリエチルアミン(16.4g、NEt)を滴下した。その後、室温で2時間撹拌した後、1NのHClを加え分液した。得られた有機層を減圧留去し、下記構造の化合物X(30g)を得た。
そして、以下のルートにしたがって、二色性物質D1を合成した。
まず、文献(Chem.Eur.J.2004.10.2011)にしたがって、化合物A(10g)を合成した。
化合物A(10g)を水(300mL)および塩酸(17mL)に溶解させて、氷浴で冷却し、亜硝酸ナトリウム(3.3g)を添加して30分撹拌した。さらにアミド硫酸(0.5g)を添加後、m−トルイジン(5.1g)を加え室温で1時間撹拌した。撹拌後、塩酸で中和し得られた固体を吸引ろ過で回収し、化合物B(3.2g)を得た。
化合物B(1g)を、テトラヒドロフラン(30mL、THF)、水(10mL)、および、塩酸(1.6mL)からなるTHF溶液に溶解させ、氷浴で冷却し、亜硝酸ナトリウム(0.3g)を添加し30分間撹拌した後、さらにアミド硫酸(0.5g)を添加した。別途、フェノール(0.4g)を炭酸カリウム(2.76g)および水(50mL)に溶解させて、氷浴で冷却した後、上記のTHF溶液を滴下し室温で1時間撹拌した。撹拌後、水(200mL)を添加し、得られた化合物C(1.7g)を吸引ろ過した。
化合物C(0.6g)、化合物X(0.8g)および炭酸カリウム(0.95g)をDMAc(30mL、ジメチルアセトアミド)に溶解させ、90℃で3.5時間撹拌した。撹拌後、水(300mL)を添加し、得られた固体を吸引ろ過し、二色性物質D1(0.3g)を得た。
<二色性物質D2〜D3>
後述する二色性物質D2〜D3を、二色性物質D1と同様又は公知の方法を利用して合成した。
[偏光子の作製]
以下のとおり偏光子を作製した。なお、いずれの偏光子においても、高分子液晶化合物及び二色性物質は水平配向していた。水平配向の評価方法は上述のとおりである。
〔実施例1〕
<配向膜の作製>
ガラス基材(セントラル硝子社製、青板ガラス、サイズ300mm×300mm、厚み1.1mm)をアルカリ洗剤で洗浄し、次いで純水を注いだ後、ガラス基材を乾燥させた。
下記の配向膜形成用組成物1を#12のバーを用いて乾燥後のガラス基材上に塗布し、塗布した配向膜形成用組成物1を110℃で2分間乾燥して、ガラス基材上に塗布膜を形成した。
得られた塗布膜にラビング処理(ローラーの回転数:1000回転/スペーサー厚2.9mm、ステージ速度1.8m/分)を1回施して、ガラス基材上に配向膜1を作製した。
―――――――――――――――――――――――――――――――――
配向膜形成用組成物1の組成
―――――――――――――――――――――――――――――――――
・変性ビニルアルコール(下記式(PVA−1)参照) 2.00質量部
・水 74.08質量部
・メタノール 23.86質量部
・光重合開始剤
(IRGACURE2959、BASF社製) 0.06質量部
―――――――――――――――――――――――――――――――――
<偏光子の作製>
得られた配向膜1から30mm×30mmサイズを切り出し、下記の偏光子形成用組成物1を1000回転でスピンコートして、塗布膜を形成した。
塗布膜を室温で30秒間乾燥させた後、さらに150℃で15秒間加熱した。
次いで、塗布膜を室温になるまで冷却した後、80℃に加熱し、室温になるまで冷却することで配向膜1上に偏光子1を作製した。
―――――――――――――――――――――――――――――――――
偏光子形成用組成物1の組成
―――――――――――――――――――――――――――――――――
・下記高分子液晶化合物L1 6.584質量部
・下記二色性物質D1 0.362質量部
・下記界面改良剤F1 0.053質量部
・クロロホルム 93.000質量部
―――――――――――――――――――――――――――――――――


〔実施例2〜12、比較例1〜3〕
偏光子形成用組成物1の代わりに、表1に記載の組成の偏光子形成用組成物を使用した以外は、実施例1と同様の手順に従って偏光子を作製した。
〔高分子液晶化合物〕
以下に各例で使用した高分子液晶化合物をまとめて示す。
なお、L1〜L7はいずれも、サーモトロピック液晶であり、また、後述するとおり結晶性高分子であるため、上述した特定化合物に該当する。
一方、R1〜R3はいずれも、サーモトロピック液晶であるが、後述するとおり結晶性高分子ではないため、上述した特定化合物に該当しない。

〔二色性物質〕
以下に各例で使用した二色性物質をまとめて示す。
〔界面改良剤〕
以下に各例で使用した界面改良剤を示す。
[評価]
以下のとおり、高分子液晶化合物、偏光子形成用組成物及び偏光子について評価を行った。
〔高分子液晶化合物の結晶性及び結晶化温度〕
以下のとおり、高分子液晶化合物(L1〜L7、R1〜R3)について結晶性の有無及び結晶化温度を評価した。
光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の偏光子を互いに直交するように配置し、二枚の偏光子の間にサンプル台をセットした。そして、高分子液晶化合物をスライドガラスに少量乗せ、サンプル台上に置いたホットステージ上にスライドガラスをセットした。サンプルの状態を観察しながら、高分子液晶化合物が液晶性を示す温度までホットステージの温度を上げ、高分子液晶化合物を液晶状態にした。高分子液晶化合物が液晶状態になった後、ホットステージの温度を徐々に降下させながら液晶相転移の挙動を観察し、液晶相転移の温度を記録した。なお、高分子液晶化合物が複数の液晶相(例えばネマチック相とスメクチック相)を示す場合、その転移温度も全て記録した。
次に、高分子液晶化合物のサンプル約5mgをアルミパンに入れて蓋をし、示差走査熱量計にセットした(リファレンスとして空のアルミパンを使用)。上記で測定した高分子液晶化合物が液晶相を示す温度まで加熱し、その後、温度を1分保持した。その後、10℃/分の速度で降温させながら、熱量測定を行った。得られた熱量のスペクトルから発熱ピークを確認した。
その結果、L1〜L7については、上述した液晶相転移の温度以外に、結晶化による発熱ピークが観察された。すなわち、L1〜L7は結晶性高分子であることが確認された。L1〜L7の結晶化温度を表1に示す。
一方、R1〜R3については、上述した液晶相転移の温度以外に、結晶化による発熱ピークが観察されなかった。すなわち、R1〜R3は結晶性高分子ではない(非結晶性高分子である)ことが確認された。
〔偏光子形成用組成物の結晶性及び結晶化温度〕
各実施例及び比較例における偏光子形成用組成物を、上述したガラス基材上にキャストし、ホットプレートを用いて液晶相転移温度より10℃高い温度で15秒加熱した。室温になるまで冷却した後、キャスト膜をかきとり、上述した高分子液晶化合物と同様の方法により結晶性及び結晶化温度評価した。
その結果、実施例1〜12については、結晶化による発熱ピークが観察された。結晶化温度を表1に示す。
一方、比較例1〜3については、結晶化による発熱ピークが観察されなかった。
〔配向度〕
光学顕微鏡(株式会社ニコン製、製品名「ECLIPSE E600 POL」)の光源側に直線偏光子を挿入した状態で、サンプル台に実施例及び比較例の各偏光子をセットし、マルチチャンネル分光器(Ocean Optics社製、製品名「QE65000」)を用いて表1に記載の波長域における偏光子の吸光度を測定した。そして、以下の式により配向度を算出した。結果を表1に示す。実用上、0.93以上であることが好ましい。
配向度:S=((Az0/Ay0)−1)/((Az0/Ay0)+2)
Az0:偏光子の吸収軸方向の偏光に対する吸光度
Ay0:偏光子の偏光軸方向の偏光に対する吸光度
〔ヘイズ〕
光学顕微鏡(株式会社ニコン製、製品名「ECLIPSE E600 POL」)の光源側に直線偏光子を挿入した状態で、サンプル台に実施例および比較例の各偏光子をセットし、サンプル台を回転させながら観察し、目視にて以下の基準で評価した。結果を表1に示す。Aであることが好ましい。
A:ヘイズが観察されない。
B:ごくわずかに、ヘイズが観察される。
〔X線回折ピーク〕
得られた偏光子1について、薄膜評価用X線回折装置(リガク社製、商品名:「SmartLab」)を用いて偏光子層表面に下記条件にてX線を照射し、インプレーン XRDを行った。
Cu線源使用(CuKα、出力45kV、200mA)
X線入射角0.2°
使用光学系:平行光学系(CBO(PB))
入射側 入射スリット0.2mm 入射平行スリットIn−plane PSC 0.5deg、長手制限スリット 10mm
受光側 受光スリット 20 mm、受光平行スリットIn−plane PSA 0.5deg
検出器:リガク社製HyPix3000(0Dモード)
2θχ/φスキャン Scan条件:1〜40degreeの範囲を0.008degree/step、2.0degree/min
φスキャン Scan条件:−120〜120degreeの範囲を0.5degree/step、9.6degree/min
高分子液晶及び二色性物質が長軸方向で配向した方向を方位角(φ)0°とし、15°刻みで全方向のインプレーン XRD(2θχ/φスキャン)を行い、観測されたピークに対して行ったφスキャンにより、ピーク強度が最大となる基板平面内における向き(φ)と直交する方向を配向軸の方向とする。CuKαを用いて、入射角0.20°で実施した。配向軸方向と直交する方向のピークを用いて、下記の回折角と距離の関係から周期長を求めた。X線入射角0.2°におけるX線侵入長に相当する膜厚として規格化しピーク強度を算出した(cps表記)。
d=λ/(2×sinθ) (d:距離、λ:入射X線波長(CuKα;1.5418Å))
偏光子1ではφが90°の方向において、2θが2.8°(周期長:31.6Å)、4.9°(周期長:18.1Å)、7.9°(周期長:11.6Å)の位置にピークaが、2θがおよそ18〜22°(周期長:4〜5Å)の位置にブロードなピークb(ハロー)が観測された。
ここで、ピークaの半値幅はいずれも2°未満であるため、ピークaはいずれも上述したピークAに該当する。また、ピークbの半値幅は2°以上であるため、ピークbは上述したピークBに該当する。
ピークaの強度は、低角側から、それぞれ、1900、1670、1100、ピークb(ハロー)の強度は300であった。なお、ベースライン強度とピークトップの強度との差をピークの強度とした。
表1から分かるように、高分子液晶化合物として結晶性高分子である特定化合物を用いた実施例1〜12は、高い配向度を示した。なかでも、偏光子形成用組成物の結晶化温度が85℃以下である実施例1〜6、8〜10及び12は、より良好なヘイズを示した。
実施例1〜3及び11の対比(二色性物質としてD1のみを使用する態様同士の対比)から、特定化合物の結晶化温度が95℃以下である実施例1〜3は、より高い配向度を示した。なかでも、特定化合物が上述した式(1)で表される繰り返し単位(繰り返し単位(1))を含み、式(1)中のT1がシアノ基である実施例2は、さらに高い配向度を示した。
実施例3と実施例11との対比(二色性物質としてD1のみを使用し、且つ、特定化合物が1種の上述した式(1)で表される繰り返し単位のみからなる態様同士の対比)から、式(1)中のSP1が表すスペーサー基が*−(CH−CHO)n1−*で表される基であり、n1が3である実施例3は、より高い配向度及びより良好なヘイズを示した。
実施例5と7との対比(特定化合物が、T1がアルコキシ基である繰り返し単位AとT1がメトキシカルボニル基である繰り返し単位Bとを含む態様同士の対比)から、繰り返し単位Aの含有量と繰り返し単位Bの含有量との割合(A/B)が70/30〜85/15である実施例5は、ヘイズがより良好であった。
実施例5と8と10との対比(特定化合物が、T1がアルコキシ基である繰り返し単位AとT1がアルコキシ基以外の基である繰り返し単位Bとを含み、繰り返し単位Aの含有量と繰り返し単位Bの含有量との割合(A/B)が80/20である態様同士の対比)から、繰り返し単位BのT1がアルコキシカルボニル基である実施例5及び10は、より高い配向度を示した。
一方、高分子液晶化合物として非結晶性高分子を用いた比較例1〜3は、配向度が不十分であった。
[垂直配向における結晶性の影響]
高分子液晶化合物及び二色性物質が垂直配向した偏光子において、高分子液晶化合物の結晶性が配向度に与える影響を調べた。
〔参考例1〕
配向膜上に、下記偏光子形成用組成物X1を1000回転でスピンコートして、塗布膜を形成した。塗布膜を室温で30秒間乾燥させた後、140℃まで加熱して30秒間保持し、塗布膜を室温になるまで冷却した。次いで、塗布膜を80℃まで再加熱して30秒保持して後に室温まで冷却することで配向膜上に偏光子X1を作製した。
なお、偏光子X1において、高分子液晶化合物及び二色性物質は水平配向していない(垂直配向している)ことが確認された。垂直配向の評価方法は上述した水平配向と同様である。
―――――――――――――――――――――――――――――――――
偏光子形成用組成物X1の組成
―――――――――――――――――――――――――――――――――
・上記高分子液晶化合物L1 4.011質量部
・上記二色性物質D1 0.792質量部
・上記二色性物質D2 0.963質量部
・下記界面改良剤F2 0.087質量部
・下記界面改良剤F3 0.073質量部
・下記界面改良剤F4 0.073質量部
・テトラヒドロフラン 79.901質量部
・シクロペンタノン 14.100質量部
―――――――――――――――――――――――――――――――――
AxoScan OPMF−1(オプトサイエンス社製)に用いて、波長λにおける、偏光子X1のミューラーマトリックスを極角を−50°〜50°まで10°毎に計測した。表面反射の影響を除去した後、スネルの式およびフレネルの式を考慮した下記理論式にフィッティングすることにより、消衰係数ko[λ](面内方向)およびke[λ](厚さ方向)を算出した。特に記載がないときは、波長λは、550nmとする。
k=−log(T)×λ/(4πd)
ここで、Tは透過率、dは偏光子の厚みを表す。
算出したko[λ]、ke[λ]より、面内方向および厚さ方向の吸光度、二色比を算出し、最終的に垂直配向度を求めたところ、垂直配向度は0.92であった。
〔参考例2〕
偏光子形成用組成物X1の代わりに下記偏光子形成用組成物X2を用いた以外は参考例1と同様の手順に従って、偏光子X2を作製した。
なお、偏光子X2において、高分子液晶化合物及び二色性物質は水平配向していない(垂直配向している)ことが確認された。垂直配向の評価方法は上述した水平配向と同様である。
そして、参考例1と同様に垂直配向度を評価したところ、垂直配向度は0.92であった。
―――――――――――――――――――――――――――――――――
偏光子形成用組成物X2の組成
―――――――――――――――――――――――――――――――――
・上記高分子液晶化合物R3 4.001質量部
・上記二色性物質D1 0.875質量部
・上記二色性物質D2 1.125質量部
・上記界面改良剤F2 0.087質量部
・上記界面改良剤F3 0.073質量部
・上記界面改良剤F4 0.073質量部
・テトラヒドロフラン 79.701質量部
・シクロペンタノン 14.065質量部
―――――――――――――――――――――――――――――――――
参考例1及び2の垂直配向度の評価結果から分かるように、高分子液晶化合物が結晶性である参考例1の垂直配向度は、高分子液晶化合物が非結晶性である参考例2と同等であった。すなわち、高分子液晶化合物及び二色性物質が垂直配向している場合には、高分子液晶化合物の結晶性は配向度に影響を与えないことが確認された。
一方、上述のとおり、高分子液晶化合物及び二色性物質が水平配向している場合には、高分子液晶化合物として結晶性高分子を用いることで、配向度が大幅に向上する。
このことから、高分子液晶化合物として結晶性高分子を用いた場合に配向度が大幅に向上するという効果は、高分子液晶化合物及び二色性物質が水平配向している場合に特有の効果と言える。

Claims (11)

  1. 高分子液晶化合物と二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
    前記高分子液晶化合物が、下記式(1)で表される繰り返し単位を2種含み、
    前記高分子液晶化合物が、サーモトロピック性液晶、且つ、結晶性高分子であり、
    前記高分子液晶化合物及び前記二色性物質が水平配向した、偏光子。
    式(1)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。
    ただし、前記P1で表される繰り返し単位の主鎖は、下記式(P1−A)で表される基である。ここで、R は、水素原子またはメチル基を表し、*は、式(1)におけるL1との結合位置を表す。
    また、前記SP1で表されるスペーサー基は、*−(CH −CH O) n1 −*で表される基である。ここで、n1は、2〜4の整数を表し、*は、式(1)中のL1またはM1との結合位置を表す。
    また、前記M1で表されるメソゲン基は、2〜4個の芳香族炭化水素基を有する。
    また、前記2種の式(1)で表される繰り返し単位のうち、一方の繰り返し単位は、前記T1で表される末端基がアルコキシ基であり、他方の繰り返し単位は、前記T1で表される末端基がアルコキシ基以外の基である。
  2. 前記高分子液晶化合物の結晶化温度が、120℃以下である、請求項1に記載の偏光子。
  3. 前記高分子液晶化合物の結晶化温度が、95℃以下である、請求項2に記載の偏光子。
  4. 前記偏光子形成用組成物の結晶化温度が、100℃以下である、請求項1〜3のいずれか1項に記載の偏光子。
  5. 前記偏光子形成用組成物の結晶化温度が85℃以下である、請求項4に記載の偏光子。
  6. X線回折スペクトルにおいて、半値幅が2°未満のピークA及び半値幅が2°以上のピークBが観測される、請求項1〜5のいずれか1項に記載の偏光子。
  7. 前記ピークAの強度が500cps以上である、請求項6に記載の偏光子。
  8. 前記式(1)中のM1で表されるメソゲン基が、3個の芳香族炭化水素基を有する、請求項1〜7のいずれか1項に記載の偏光子。
  9. 前記式(1)中のSP1で表されるスペーサー基が、*−(CH−CHO)−*で表される基である、請求項1〜8のいずれか1項に記載の偏光子。ここで、*は、前記式(1)中のL1またはM1との結合位置を表す。
  10. 前記一方の繰り返し単位の、前記T1で表される末端基が、メトキシ基である、請求項のいずれか1項に記載の偏光子。
  11. 請求項1〜10のいずれか1項に記載の偏光子を有する、画像表示装置。
JP2019562516A 2017-12-28 2018-12-28 偏光子、及び、画像表示装置 Active JP6808073B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017254571 2017-12-28
JP2017254571 2017-12-28
PCT/JP2018/048530 WO2019132020A1 (ja) 2017-12-28 2018-12-28 偏光子、及び、画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2019132020A1 JPWO2019132020A1 (ja) 2020-07-16
JP6808073B2 true JP6808073B2 (ja) 2021-01-06

Family

ID=67067601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019562516A Active JP6808073B2 (ja) 2017-12-28 2018-12-28 偏光子、及び、画像表示装置

Country Status (5)

Country Link
US (2) US11467442B2 (ja)
JP (1) JP6808073B2 (ja)
KR (1) KR102575368B1 (ja)
CN (1) CN111819476B (ja)
WO (1) WO2019132020A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102575368B1 (ko) * 2017-12-28 2023-09-07 후지필름 가부시키가이샤 편광자, 및 화상 표시 장치
CN112189158B (zh) 2018-05-25 2022-10-11 富士胶片株式会社 偏振器及图像显示装置
WO2020003938A1 (ja) * 2018-06-27 2020-01-02 富士フイルム株式会社 偏光子、及び、画像表示装置
WO2020209089A1 (ja) * 2019-04-12 2020-10-15 富士フイルム株式会社 偏光子および画像表示装置
JPWO2022075475A1 (ja) * 2020-10-09 2022-04-14
JPWO2022138465A1 (ja) * 2020-12-25 2022-06-30
WO2023085255A1 (ja) * 2021-11-09 2023-05-19 富士フイルム株式会社 有機el表示装置
WO2023189885A1 (ja) * 2022-03-29 2023-10-05 富士フイルム株式会社 光吸収異方性層、光吸収異方性層の製造方法、積層体および画像表示装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101964A (ja) * 1997-08-01 1999-04-13 Sony Corp 偏光素子及び表示装置
JP3163539B2 (ja) * 1998-05-11 2001-05-08 工業技術院長 液晶性配向膜、液晶性配向膜の製造方法及びそれを用いた光学素子
JP3594868B2 (ja) * 1999-04-26 2004-12-02 日東電工株式会社 積層偏光板及び液晶表示装置
JP2002011951A (ja) * 2000-06-28 2002-01-15 National Institute Of Advanced Industrial & Technology 可逆記録媒体
JP4614407B2 (ja) * 2001-01-05 2011-01-19 日東電工株式会社 偏光フィルム及び液晶表示装置
JP2003156622A (ja) * 2001-11-19 2003-05-30 Nippon Oil Corp 円偏光板および液晶表示装置
EP2159611B1 (en) * 2003-11-06 2018-01-03 Sumitomo Chemical Company, Limited Polymerizable liquid crystal and oriented polymer film
DE112005000999B4 (de) * 2004-04-30 2017-09-07 Merck Patent Gmbh Flüssigkristallverbindungen, Flüssigkristallmedium und Flüssigkristallanzeige
JP4876549B2 (ja) * 2004-12-16 2012-02-15 三菱化学株式会社 アゾ色素、これを用いた異方性色素膜用組成物、異方性色素膜および偏光素子
JP5186116B2 (ja) * 2006-06-12 2013-04-17 富士フイルム株式会社 化合物、それを含有する液晶組成物、異方性材料、偏光板保護フィルム、光学補償フィルムならびに液晶表示装置
JP4823002B2 (ja) * 2006-09-27 2011-11-24 富士フイルム株式会社 光学異方性フィルム、およびその製造方法
JP2008181090A (ja) * 2006-12-26 2008-08-07 Nitto Denko Corp 光学積層体およびそれを用いた液晶パネル
JP2009053684A (ja) * 2007-07-30 2009-03-12 Fujifilm Corp 位相差フィルム、偏光板、及びそれを用いた液晶表示装置
EP2227513B1 (en) * 2008-01-11 2012-08-29 Merck Patent GmbH Reactive mesogenic compounds and mixtures
JP2009286976A (ja) * 2008-05-30 2009-12-10 Fujifilm Corp 重合性液晶組成物、光学異方性膜、光学部材、及び液晶表示素子
JP5257757B2 (ja) * 2008-06-04 2013-08-07 Dic株式会社 積層光学異方体
US7910020B2 (en) * 2008-06-27 2011-03-22 Transitions Optical, Inc. Liquid crystal compositions comprising mesogen containing compounds
US8927070B2 (en) * 2008-09-30 2015-01-06 Fujifilm Corporation Dichroic dye composition, light absorption anisotropic film, and polarizing element
JP5300776B2 (ja) * 2010-03-31 2013-09-25 富士フイルム株式会社 偏光フィルム、表示装置、及びその製造方法
JP5566178B2 (ja) * 2010-05-07 2014-08-06 富士フイルム株式会社 光吸収異方性膜、その製造方法、及びそれを用いた液晶表示装置
KR20120008425A (ko) * 2010-07-16 2012-01-30 주식회사 엘지화학 광학 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
JP2012078501A (ja) * 2010-09-30 2012-04-19 Fujifilm Corp 配向膜、光学フィルム、偏光板、及び液晶表示装置
JP5750069B2 (ja) * 2011-03-24 2015-07-15 富士フイルム株式会社 液晶配向促進剤、液晶組成物、高分子材料およびフィルム
EP2508588B1 (en) * 2011-04-07 2015-02-11 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display
KR101933220B1 (ko) * 2011-07-07 2018-12-27 스미또모 가가꾸 가부시키가이샤 편광 소자, 원편광판 및 이들의 제조 방법
KR102129135B1 (ko) * 2012-02-28 2020-07-01 스미또모 가가꾸 가부시키가이샤 편광막, 원편광판 및 이들의 제조 방법
JP2013217964A (ja) * 2012-04-04 2013-10-24 Osaka Organic Chem Ind Ltd 二色性色素残基を有する重合性モノマーおよび液晶性ポリマー、ならびにこれらを用いた液晶性組成物および偏光板
JP5905419B2 (ja) 2013-03-13 2016-04-20 富士フイルム株式会社 重合性液晶化合物、液晶組成物、高分子材料とその製造方法、フィルム、偏光板および液晶表示装置
JP2015043073A (ja) * 2013-07-25 2015-03-05 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
WO2015029958A1 (ja) * 2013-08-26 2015-03-05 富士フイルム株式会社 輝度向上フィルム、光学シート部材および液晶表示装置
JP6383608B2 (ja) * 2014-03-05 2018-08-29 富士フイルム株式会社 偏光板用組成物、偏光板保護フィルム、偏光子、偏光板および液晶表示装置
JP6047604B2 (ja) * 2014-03-31 2016-12-21 富士フイルム株式会社 液晶化合物および光学フィルム、ならびに光学フィルムの製造方法
JP6737180B2 (ja) 2014-10-17 2020-08-05 住友化学株式会社 化合物および組成物
US10059877B2 (en) * 2014-10-21 2018-08-28 Fujifilm Corporation Optically anisotropic layer, method for producing the optically anisotropic layer, a laminate, polarizing plate, display device, liquid crystal compound, method for producing the liquid crystal compound, and carboxylic acid compound
JP6483486B2 (ja) 2015-03-16 2019-03-13 住友化学株式会社 偏光板及び円偏光板
CN106978196B (zh) * 2015-10-29 2022-02-15 住友化学株式会社 组合物、偏振膜
JP6616489B2 (ja) 2016-03-08 2019-12-04 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
JP6698821B2 (ja) 2016-03-31 2020-05-27 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
CN111527426B (zh) * 2017-12-28 2022-06-28 富士胶片株式会社 偏振器及图像显示装置
KR102575368B1 (ko) * 2017-12-28 2023-09-07 후지필름 가부시키가이샤 편광자, 및 화상 표시 장치

Also Published As

Publication number Publication date
CN111819476A (zh) 2020-10-23
KR20200090861A (ko) 2020-07-29
US11467442B2 (en) 2022-10-11
US20200319507A1 (en) 2020-10-08
CN111819476B (zh) 2022-05-13
WO2019132020A1 (ja) 2019-07-04
KR102575368B1 (ko) 2023-09-07
JPWO2019132020A1 (ja) 2020-07-16
US20230028750A1 (en) 2023-01-26
US11822180B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6808073B2 (ja) 偏光子、及び、画像表示装置
JP6797937B2 (ja) 液晶性組成物、高分子液晶化合物、光吸収異方性膜、積層体および画像表示装置
JP6808072B2 (ja) 偏光子、及び、画像表示装置
JP6778353B2 (ja) 偏光子および画像表示装置
JP7402951B2 (ja) 偏光子および画像表示装置
US11543697B2 (en) Polarizer and image display device
JP7169352B2 (ja) 偏光子、および、画像表示装置
JP6741743B2 (ja) 液晶組成物、光吸収異方性膜、積層体および画像表示装置
JPWO2020129729A1 (ja) 液晶組成物、高分子液晶性化合物の製造方法、光吸収異方性膜、積層体および画像表示装置
JP6987892B2 (ja) 液晶性組成物、側鎖型高分子液晶性化合物、光吸収異方性膜、積層体および画像表示装置
JP7011004B2 (ja) 液晶組成物、光吸収異方性膜、積層体および画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6808073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250