JP6790573B2 - 電池システム - Google Patents

電池システム Download PDF

Info

Publication number
JP6790573B2
JP6790573B2 JP2016158447A JP2016158447A JP6790573B2 JP 6790573 B2 JP6790573 B2 JP 6790573B2 JP 2016158447 A JP2016158447 A JP 2016158447A JP 2016158447 A JP2016158447 A JP 2016158447A JP 6790573 B2 JP6790573 B2 JP 6790573B2
Authority
JP
Japan
Prior art keywords
voltage
soc
cell
nickel
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016158447A
Other languages
English (en)
Other versions
JP2018025500A (ja
Inventor
雅文 野瀬
雅文 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016158447A priority Critical patent/JP6790573B2/ja
Publication of JP2018025500A publication Critical patent/JP2018025500A/ja
Application granted granted Critical
Publication of JP6790573B2 publication Critical patent/JP6790573B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本開示は電池システムに関し、より特定的には、ニッケル水素電池を含む電池システムに関する。
二次電池の無負荷電圧(OCV:Open Circuit Voltage)とSOCとの対応関係(OCV−SOC特性)を用いて、OCVからSOCを推定する技術が広く用いられている。そして、二次電池のSOCの推定精度を向上させるための各種技術が提案されている。たとえば特開2009−052925号公報(特許文献1)は、二次電池の総放電量と所定しきい値との大小関係に応じてOCV−SOC特性を補正する処理を開示する。
特開2009−052925号公報
近年、ニッケル水素電池の普及が進んでおり、ニッケル水素電池を含む電池システムが電動車両(たとえばハイブリッド車両)等に搭載されている。一般に、ニッケル水素電池においては、使用期間の経過とともにメモリ効果が生じるため、OCV−SOC特性が初期のOCV−SOC特性(初期特性)から変化し得る。さらに、ニッケル水素電池のOCV−SOC特性にはヒステリシスが存在すると言える。したがって、単にOCV−SOC特性を予め準備し、OCVからSOCを推定する手法では、SOCの推定精度に向上の余地がある。
本開示は上記課題を解決するためになされたものであり、その目的は、ニッケル水素電池を含む電池システムにおいて、SOCを高精度に推定可能な技術を提供することである。
本開示のある局面に従う電池システムは、ニッケル水素電池と、ニッケル水素電池のSOCを推定するように構成された推定装置とを備える。推定装置は、ニッケル水素電池の第1の無負荷電圧を取得し、第1の無負荷電圧が所定電圧よりも低い場合に、ニッケル水素電池が所定容量だけ充電された後、ニッケル水素電池の第2の無負荷電圧を取得する。推定装置は、ニッケル水素電池を所定容量だけ充電した場合の、第1および第2の無負荷電圧の電圧差とニッケル水素電池のSOCとの相関関係を示すデータを用いて、上記電圧差からSOCを推定する。
上記構成によれば、ニッケル水素電池が所定容量だけ充電され、充電後の第2の無負荷電圧が取得される。第2の無負荷電圧には充電側メモリ効果が反映されている。充電側メモリ効果による電圧上昇量(いわゆる充電メモリ量)にはSOC依存性が存在するので、上記相関関係を示すデータ(言い換えると、充電メモリ量とSOC依存性との相関関係を示すデータ)を予め準備し、当該データを参照することによってSOCを推定することが可能である。
さらに、上記構成によれば、ニッケル水素電池の電圧(第1の無負荷電圧)が所定電圧よりも低くなった場合に(すなわち、ニッケル水素電池が長期間放置された場合に)、第2の無負荷電圧が検出される。このときの第1の無負荷電圧は、水の分解電圧程度の電圧であって、充放電履歴(ヒステリシス)の影響をほとんど受けない。したがって、第1の無負荷電圧を基準とし、そこからニッケル水素電池を充電することにより、ヒステリシスの影響を低減し、SOC推定に用いる電圧条件(第2の無負荷電圧を取得するための条件)を揃えることができる。したがって、ニッケル水素電池のSOCを高精度に推定することができる。
本開示によれば、ニッケル水素電池を含む電池システムにおいて、SOCを高精度に推定することができる。
本実施の形態に係る電池システムが搭載されたハイブリッド車両の全体構成を概略的に示すブロック図である。 組電池に含まれる各セルの構成をより詳細に示す図である。 セルが新品の状態と使用後の状態とでセルの放電曲線を比較するための図である。 長期間放置後のセルの電圧を説明するための図である。 長期間放置後のセルの充電曲線を説明するための図である。 充電後のセルの電圧を説明するための図である。 電圧差とSOCとの相関関係の一例を示す図である。 本実施の形態に係るSOCの推定処理を示すフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
以下では、本実施の形態に係る電池システムがハイブリッド車両に搭載される構成を例に説明する。しかし、本実施の形態に係る電池システムは、電気自動車または燃料電池車等の他の電動車両に搭載されてもよい。また、電池システムの用途は車両用に限定されるものではなく、たとえば定置用であってもよい。
[実施の形態]
<電池システムの構成>
図1は、本実施の形態に係る電池システムが搭載されたハイブリッド車両の全体構成を概略的に示すブロック図である。車両1は、電池システム2と、モータジェネレータ(MG:Motor Generator)10,20と、動力分割機構30と、エンジン40と、駆動輪50とを備える。電池システム2は、組電池100と、システムメインリレー(SMR:System Main Relay)150と、電力制御ユニット(PCU:Power Control Unit)200と、電子制御ユニット(ECU:Electronic Control Unit)300とを備える。
モータジェネレータ10,20の各々は、たとえば三相交流回転電機である。モータジェネレータ10は、動力分割機構30を介してエンジン40のクランク軸に連結される。モータジェネレータ10は、エンジン40を始動させる際には組電池100の電力を用いてエンジン40のクランク軸を回転させる。また、モータジェネレータ10はエンジン40の動力を用いて発電することも可能である。モータジェネレータ10によって発電された交流電力は、PCU200により直流電力に変換されて組電池100に充電される。また、モータジェネレータ10によって発電された交流電力は、モータジェネレータ20に供給される場合もある。
モータジェネレータ20は、組電池100からの電力およびモータジェネレータ10により発電された電力のうちの少なくとも一方を用いて駆動軸を回転させる。また、モータジェネレータ20は回生制動によって発電することも可能である。モータジェネレータ20によって発電された交流電力は、PCU200により直流電力に変換されて組電池100に充電される。
動力分割機構30は、たとえば遊星歯車機構であり、エンジン40のクランク軸、モータジェネレータ10の回転軸、および駆動軸の三要素を機械的に連結する。エンジン40は、ガソリンエンジン等の内燃機関であり、ECU300からの制御信号に応じて車両1が走行するための駆動力を発生する。
PCU200は、組電池100とモータジェネレータ10,20との間で電力を変換する。PCU200は、インバータおよびコンバータ(いずれも図示せず)を含む。インバータは、一般的な三相インバータである。コンバータは、昇圧動作時には組電池100から供給された電圧を昇圧してインバータに供給する。コンバータは、降圧動作時にはインバータから供給された電圧を降圧して組電池100を充電する。SMR150は、組電池100とPCU200とを結ぶ電流経路に電気的に接続される。SMR150がECU300からの制御信号に応じて閉成されている場合、組電池100とPCU200との間で電力の授受が行なわれ得る。
組電池100は、各々がニッケル水素電池である複数のセル101を含む。各セル101の構成については図2にて説明する。組電池100には、電圧センサ110と、電流センサ120と、温度センサ130とが設けられる。電圧センサ110は、組電池100の電圧Vb(より詳細には各セル101の電圧)を検出する。電流センサ120は、組電池100に入出力される電流Ibを検出する。温度センサ130は、組電池100の温度Tbを検出する。各センサは、その検出結果をECU300に出力する。ECU300は、各センサによる検出結果に基づいて組電池100(より詳細には各セル101)のSOC(State Of Charge)を算出する。
ECU300は、CPU(Central Processing Unit)301と、メモリ302と、入出力バッファ(図示せず)とを含んで構成される。ECU300は、各センサから受ける信号、ならびにメモリ302に記憶されたマップおよびプログラムに基づいて、車両1が所望の状態となるように各機器を制御する。ECU300により実行される主要な制御として、組電池100(各セル)のSOC推定処理が挙げられる。つまり、ECU300は、本開示に係る「推定装置」に相当する。ECU300によるSOC推定処理については後に詳細に説明する。
図2は、組電池100に含まれるセル101の構成を示す図である。各セル101の構成は共通であるため、図2では1つのセル101のみを代表的に示す。セル101は、たとえば角形密閉式のセルであり、ケース102と、ケース102に設けられた安全弁103と、ケース102内に収容された電極体104および電解液(図示せず)とを含む。なお、図2ではケース102の一部を透視して電極体104を示す。
ケース102は、いずれも金属からなるケース本体および蓋体を含み、蓋体がケース本の開口部上で全周溶接されることにより密閉される。安全弁103は、ケース102内部の圧力が所定値を超えると、ケース102内部のガス(水素ガス等)の一部を外部に排出する。電極体104は、正極板と、負極板と、セパレータとを含む。正極板は袋状のセパレータ内に挿入されており、セパレータ内に挿入された正極板と、負極板とが交互に積層されている。正極板および負極板は、図示しない正極端子および負極端子にそれぞれ電気的に接続される。
電極体104および電解液の材料としては従来公知の各種材料を用いることができる。本実施の形態においては、一例として、正極板には、水酸化ニッケル(Ni(OH)またはNiOOH)を含む正極活物質層と、発泡ニッケルなどの活物質支持体とを含む電極板が用いられる。負極板には、水素吸蔵合金(たとえばLaNiまたはReNi)を負極活物質として含む電極板が用いられる。セパレータには、親水化処理された合成繊維からなる不織布が用いられる。電解液には、水酸化カリウム(KOH)または水酸化ナトリウム(NaOH)などを含むアルカリ水溶液が用いられる。
<SOC推定処理>
一般に、ニッケル水素電池においては、使用期間の経過とともにメモリ効果(放電側メモリ効果および充電側メモリ効果)が発生するため、OCV−SOC特性が初期のOCV−SOC特性から変化し得る。さらに、ニッケル水素電池のOCV−SOC特性にはヒステリシスが存在する。したがって、OCVからSOCを推定する手法では、SOCの推定精度に向上の余地があると言える。そこで、SOCの推定精度を向上させるべく、本発明者は以下の2点の事実に着目した。
第1に、ニッケル水素電池を放置すると自己放電(4NiOOH+2HO→4Ni(OH)+O)が起こる。この自己放電の駆動力は、水の分解による酸素発生反応(4OH→2HO+O+4e)である。したがって、長期間(たとえば数週間〜数カ月間)放置したニッケル水素電池の電圧は、水の分解電圧程度(たとえば約1.23V)に低下し、その後はその状態が保たれる。
第2に、ニッケル水素電池を所定容量ΔQ(あるいは所定のSOC変化量ΔSOC)だけ充電した場合に、ニッケル水素電池の充電側メモリ効果による電圧上昇量にはSOC依存性が存在する。
本実施の形態においては、上記2点の知見に基づき、長期間の放置に伴う自己放電による低下後の電圧(OCV1)と、所定容量ΔQの充電による上昇後の電圧(OCV2)とが測定され、OCV1とOCV2との電圧差ΔV(=OCV2−OCV1)が算出される。そして、予め求められた電圧差ΔVとSOCとの間の相関関係を示すマップMP(図7参照)を用いて、電圧差ΔVからSOCが推定される。この推定手法について、以下に詳細に説明する。
なお、以下では、充電側メモリ効果による電圧上昇量を「充電メモリ量」とも称し、放電側メモリ効果による電圧低下量を「放電メモリ量」とも称する。また、説明の簡略化のため、代表的な1つのセル101を用いて説明するが、本実施の形態に係るSOC推定処理を適用可能なセル数は1つに限定されるものではなく、たとえば、すべてのセル101のSOCを推定することができる。そうすることにより、組電池100全体としてのSOCを推定することも可能である。
図3は、セル101が新品の状態と使用後の状態(たとえば耐久試験実施後の状態)とでセル101の放電曲線を比較するための図である。図3および後述する図4〜図6において、横軸はセル101のSOCを表し、縦軸はセル101の電圧を表す。
新品の状態のセル101の充電曲線L1と放電曲線L2とが大きく乖離していることから分かるように、セル101の充放電にはヒステリシスが存在する。また、使用後のセル101の放電曲線L3は、放電側メモリ効果に起因して、新品の状態のセル101の放電曲線L2よりも高電圧側にシフトする。したがって、セル101のOCVからSOCを高精度に推定することは難しい。そこで、本実施の形態においては、セル101が長期間(たとえば数週間〜数カ月間)放置された場合に以下のような処理を実施する。
図4は、長期間放置後のセル101の電圧を説明するための図である。図4に示すように、セル101を長期間放置すると、セル101の自己放電が進むことにより、セル101の電圧(OCV)がOCV0からOCV1まで低下する。OCV0は、セル101の充放電終了後からある程度の期間(たとえば30分〜数時間程度)が経過し、セル101の分極が緩和された状態での無負荷電圧である。
一方、OCV1は、水の分解電圧Vs程度の電圧であって、理論的な分解電圧Vs(最小値は1.229V)よりもわずかに高い電圧である。セル101の自己放電の駆動力は水の分解(より詳細には、水の分解による酸素発生)であるため、セル101の電圧は、分解電圧Vs程度にまで徐々に低下した後は、分解電圧Vs程度に留まる。本実施の形態では、まず、OCV1が取得される。
図5は、長期間放置後のセル101の充電曲線を説明するための図である。図5では、セル101の使用後の充電曲線L4と、セル101が新品の状態での充電曲線L1とが対比される。
セル101が中間程度のSOC領域(たとえばSOC60%程度の領域)で長期間放置されると、セル101には充電側メモリ効果も発生する。この充電側メモリ効果に起因して、たとえSOCが同じであっても、低レートで充電時のセル101の電圧(CCV:Closed Circuit Voltage)の方が、セル101が新品の状態での電圧よりも高くなる。
本実施の形態では、所定容量ΔQだけセル101が充電される。所定容量ΔQとは、たとえば、セル101のSOCの増加量ΔSOC=10%に相当する電気容量であって、実験等により予め定められる。同じ所定容量ΔQだけ充電する場合、SOCが相対的に低い状態から充電するときの方が(充電曲線L5参照)、SOCが相対的に高い状態から充電するとき(充電曲線L4参照)と比べて、充電メモリ量が大きくなる。このように、充電メモリ量には、SOCが低いほど充電メモリ量が大きくなるというSOC依存性が存在する。
図6は、充電後のセル101の電圧を説明するための図である。セル101を所定容量ΔQだけ充電することにより、セル101の電圧は、充電側メモリ効果が現れる電圧領域(充電メモリ量が正の電圧領域)まで上昇する。この上昇後の電圧であるOCV2が取得される。なお、OCV2は、OCV1と同様に、セル101の充電終了後からある程度の期間(たとえば30分〜数時間程度)が経過し、セル101の分極が緩和された状態での無負荷電圧であることが望ましい。
さらに、本実施の形態では、OCV2とOCV1との電圧差ΔV(=OCV2−OCV1)が算出される。上述のように、セル101のSOCが低いほど充電メモリ量は大きくなる。このような充電メモリ量のSOC依存性、言い換えると電圧差ΔVとSOCとの間の相関関係を利用することにより、電圧差ΔVからSOCを推定することができる。
図7は、電圧差ΔVとSOCとの相関関係の一例を示す図である。図7において、横軸は、所定容量ΔQだけ充電した後(あるいは充電前であってもよい)のセル101のSOCを示す。縦軸は、所定容量ΔQだけ充電する前と充電した後とのセル101の電圧差ΔVを示す。
所定容量ΔQだけ充電する場合、セル101のSOCが低いほど充電メモリ量は大きくなるので、図7に示すように、セル101のSOCが低いほど電圧差ΔVは大きくなる。このような相関関係を実験により予め取得し、マップMPとしてメモリ302に記憶させておくことにより、電圧差ΔVの検出値からSOCを算出することができる。なお、相関関係を規定するための手法はマップに限定されるものではなく、たとえば関数(関係式)であってもよい。
このように、本実施の形態によれば、セル101が所定容量ΔQだけ充電され、充電後の電圧がOCV2として検出(取得)される。OCV2には充電側メモリ効果が反映されている。上述のように充電メモリ量にはSOC依存性が存在するので、図7に示すようなマップMPを予め準備し、マップMPを参照することによって、所定容量ΔQだけ充電した場合の電圧変化量(電圧差ΔV)からSOCを推定することが可能である。
また、本実施の形態では、セル101を長期間放置することにより、セル101の電圧(OCV1)を十分に低下させる。長期間放置後の電圧(OCV1)は、水の分解電圧Vs程度の電圧であって、放電側メモリ効果の影響およびヒステリシス(充放電履歴)の影響をほとんど受けない。つまり、所定容量ΔQだけ充電した場合の電圧変化量を算出する際に、長期間放置後の電圧(OCV1)を基準(充電開始時の電圧)として用いることにより、ヒステリシスの影響を低減し、OCV2の検出条件を揃えることができる。よって、セル101のSOCを高精度に推定することができる。
<SOCの推定フロー>
図8は、本実施の形態に係るSOCの推定処理を示すフローチャートである。このフローチャートは、所定条件成立時(たとえば車両1の前回走行時からの経過時間が所定期間よりも長い状態で車両1のイグニッションオン(IG−ON)操作が行なわれた場合)にメインルーチンから呼び出されて実行される。
なお、以下に説明する処理は、組電池100に含まれるセル101毎に別々に実施することができる。また、このフローチャートに含まれる各ステップ(以下「S」と略す)は、基本的にはECU300によるソフトウェア処理によって実現されるが、ECU300内に作製された専用のハードウェア(電気回路)によって実現されてもよい。
S10において、ECU300は、電圧センサ110を用いて、車両1のIG−ON直後において、セル101に充放電電流が流れていない状態でのセル101の電圧を取得する。この電圧は、車両1が長期間放置された後の電圧であるため、図4にて説明したOCV1に相当する。
S20において、ECU300は、OCV1が所定電圧V0未満であるか否かを判定する。所定電圧V0は、長期間放置中の自己放電によりセル101の電圧が到達(漸近)する電圧(すなわち水の分解電圧Vs=1.229V)よりもわずかに高い電圧であって、好ましくは1.230V〜1.260V程度である。所定電圧V0は、理論的に設定してもよいし実験またはシミュレーションの結果に基づき設定してもよい。OCV1が所定電圧V0以上の場合(S20においてNO)、ECU300は、セル101の電圧が自己放電により十分に低下していないとして、以下の処理をスキップして処理をメインルーチンへと戻す。
OCV1が所定電圧V0未満の場合(S20においてYES)、ECU300は、セル101の電圧が自己放電により十分に低下した状態であるとして、処理をS30に進める。S30において、ECU300は、セル101が所定容量ΔQだけ充電されるようにPCU200を制御する。より具体的には、ECU300は、車両1の通常走行時と比べて、制御中心のSOCを高めに設定することで組電池100からの放電電力を減少させることができる。なお、車両1がプラグインハイブリッド車両または電気自動車である場合には、車両1外部からの供給電力により組電池100を強制的に充電してもよい。
S40において、ECU300は、所定容量ΔQだけ充電後のセル101の電圧を、電圧センサ110を用いて取得する。組電池100の充電を停止してからある程度の期間(たとえば30分間)以上休止した後の電圧を検出することにより、セル101の分極が緩和されるので、図6にて説明したOCV2を取得することができる。
S50において、ECU300は、S40にて取得したOCV2と、S10にて取得したOCV1との電圧差ΔV(=OCV2−OCV1)を算出する。
S60において、ECU300は、メモリ302に記憶されたマップMP(図7参照)を参照して、S50にて算出した電圧差ΔVからSOCを算出する。その後、ECU300は、処理をメインルーチンへと戻す。
以上のように、本実施の形態によれば、ニッケル水素電池を長期間放置すると、自己放電によりニッケル水素電池の電圧が水の分解電圧程度にまで低下するとの知見に基づき、OCV1が取得される。これにより、ヒステリシスの影響を低減(排除)することができる。さらに、ニッケル水素電池のSOCが低いほど充電メモリ量が大きくなるとの知見に基づき、OCV2が取得される。そして、OCV1およびOCV2の電圧差ΔVとSOCとの間の相関関係(図7に示すマップMP)を用いて、電圧差ΔVからSOCが推定される。このように、メモリ効果の影響およびヒステリシスの影響を適切に考慮することによって、セル101のSOCを高精度に推定することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、2 電池システム、10,20 モータジェネレータ、30 動力分割機構、40 エンジン、50 駆動輪、100 組電池、101 セル、102 ケース、103 安全弁、104 電極体、110 電圧センサ、120 電流センサ、130 温度センサ、200 PCU、300 ECU、301 CPU、302 メモリ。

Claims (3)

  1. ニッケル水素電池と、
    前記ニッケル水素電池のSOC(State Of Charge)を推定するように構成された推定装置とを備え、
    前記推定装置は、
    前記ニッケル水素電池の第1の無負荷電圧を取得し、
    前記第1の無負荷電圧が水の分解電圧より微小電圧だけ高い所定電圧よりも低い場合に、前記ニッケル水素電池が所定容量だけ充電された後、前記ニッケル水素電池の第2の無負荷電圧を取得し、
    前記ニッケル水素電池が前記所定容量だけ充電された場合の、前記第1および第2の無負荷電圧の電圧差と前記ニッケル水素電池のSOCとの相関関係を示すデータを用いて、前記電圧差から前記SOCを推定する、電池システム。
  2. 前記微小電圧は、0.001Vから0.031Vまでの範囲内の電圧である、請求項1に記載の電池システム。
  3. 前記分解電圧は、1.229Vであり、
    前記所定電圧は、1.230Vから1.260Vまでの範囲内の電圧である、請求項1または2に記載の電池システム。
JP2016158447A 2016-08-12 2016-08-12 電池システム Active JP6790573B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016158447A JP6790573B2 (ja) 2016-08-12 2016-08-12 電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016158447A JP6790573B2 (ja) 2016-08-12 2016-08-12 電池システム

Publications (2)

Publication Number Publication Date
JP2018025500A JP2018025500A (ja) 2018-02-15
JP6790573B2 true JP6790573B2 (ja) 2020-11-25

Family

ID=61194291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016158447A Active JP6790573B2 (ja) 2016-08-12 2016-08-12 電池システム

Country Status (1)

Country Link
JP (1) JP6790573B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832205A (zh) * 2018-06-19 2018-11-16 合肥国轩高科动力能源有限公司 一种动力磷酸铁锂电池的配组方法
JP2020038146A (ja) * 2018-09-05 2020-03-12 トヨタ自動車株式会社 二次電池システムおよび二次電池のsoc推定方法
CN109655756B (zh) * 2018-12-25 2021-07-27 东莞钜威动力技术有限公司 Soc估算方法、电池管理系统及可读存储介质
CN110716141B (zh) * 2019-11-27 2022-02-08 四川长虹电器股份有限公司 一种基于扩展卡尔曼滤波的电池荷电状态估计方法
CN111157906B (zh) * 2020-01-07 2022-06-14 深圳天邦达科技有限公司 Soc精度测试方法、装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304923B2 (ja) * 2002-06-17 2009-07-29 トヨタ自動車株式会社 二次電池の残存容量推定装置および残存容量推定方法
JP5009721B2 (ja) * 2007-08-24 2012-08-22 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置及びプログラム

Also Published As

Publication number Publication date
JP2018025500A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6790573B2 (ja) 電池システム
CN107492685B (zh) 电池系统
JP6683058B2 (ja) 電池システム
JP6863688B2 (ja) 電池システム
JP6834416B2 (ja) 電池システム
CN113346152B (zh) 电池系统及其控制方法
CN113036834B (zh) 电池系统以及锂离子电池的控制方法
JP6699390B2 (ja) 電池システム
JP6927016B2 (ja) 電池システム
JP6772791B2 (ja) 電池システム
JP6717066B2 (ja) 電池システム
JP6662219B2 (ja) 電池システム
JP6613969B2 (ja) 二次電池システム
JP6658321B2 (ja) 電池システム
JP2021141656A (ja) 電池システム
JP2017220329A (ja) 二次電池システム
JP6834415B2 (ja) 電池システム
JP2017224518A (ja) 電池システム
JP6668983B2 (ja) 電池システム
JP6772968B2 (ja) 二次電池システム
JP6951041B2 (ja) 二次電池システム
JP2022180715A (ja) 電池システム
JP6743577B2 (ja) 電池システム
US20230249572A1 (en) Diagnostic system for battery module and vehicle
JP6927028B2 (ja) 電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151