JP6772791B2 - 電池システム - Google Patents

電池システム Download PDF

Info

Publication number
JP6772791B2
JP6772791B2 JP2016231932A JP2016231932A JP6772791B2 JP 6772791 B2 JP6772791 B2 JP 6772791B2 JP 2016231932 A JP2016231932 A JP 2016231932A JP 2016231932 A JP2016231932 A JP 2016231932A JP 6772791 B2 JP6772791 B2 JP 6772791B2
Authority
JP
Japan
Prior art keywords
amount
positive electrode
potential
memory
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016231932A
Other languages
English (en)
Other versions
JP2018088376A (ja
Inventor
高橋 賢司
賢司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016231932A priority Critical patent/JP6772791B2/ja
Publication of JP2018088376A publication Critical patent/JP2018088376A/ja
Application granted granted Critical
Publication of JP6772791B2 publication Critical patent/JP6772791B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本開示は、電池システムに関し、より特定的には、水酸化ニッケルを正極活物質として含むアルカリ二次電池を備えた電池システムに関する。
二次電池の正極電位が所定の下限電位よりも低くなったり所定の上限電位よりも高くなったりした場合には、正極での劣化反応が起こり、正極が劣化し得る。負極についても同様に、負極電位が所定の電位範囲外になることで劣化する可能性がある。よって、正極および負極の劣化抑制を目的に、正極電位および負極電位の各々を算出(監視)する技術が提案されている。たとえば国際公開第2013/105140号(特許文献1)には、正極開放電位および負極開放電位から正極電位および負極電位がそれぞれ算出され、正極電位および負極電位の各々が所定の電位範囲内で変化するように二次電池の充放電が制御される技術が開示されている。
国際公開第2013/105140号 特開2016−103449号公報 特開2016−91978号公報 特開2013−72659号公報 特開2008−243373号公報 特開2010−60384号公報
近年、水酸化ニッケルを正極活物質として含むアルカリ二次電池の一種であるニッケル水素電池が、車載用などの各種用途に広く普及している。ニッケル水素電池等のアルカリ二次電池ではメモリ効果が生じ得ることが知られている。メモリ効果とは、アルカリ二次電池に蓄えられた電力が十分に消費されていない状態での充電(いわゆる継ぎ足し充電)が繰り返された場合に、放電電圧が初期状態(メモリ効果が生じていない状態)と比べて低くなる現象である。メモリ効果はアルカリ二次電池の充電側においても生じる可能性があり、メモリ効果によって充電電圧が初期状態と比べて高くなる。より詳細には、メモリ効果が生じると、放電時には正極開放電位が初期状態と比べて低くなり、その結果、放電電圧が低下する。一方、充電時には正極開放電位が初期状態と比べて高くなり、その結果、充電電圧が上昇する。
特許文献1に開示された正極電位および負極電位の算出手法は、主にリチウムイオン二次電池に適用されるものである。リチウムイオン二次電池では顕著なメモリ効果は生じないので、特許文献1に開示の手法では、メモリ効果について何ら考慮されていない。
また、たとえばニッケル水素電池等のアルカリ二次電池が車両に搭載される場合、車両の電池システムが停止している期間(オフから次回オンまでの期間)には、制御装置も停止している。アルカリ二次電池では、電池システム停止期間中であってもメモリ効果が生じ得るが、制御装置が停止していると、その影響を算出することができない。特許文献1では、電池システム停止期間中のメモリ効果についても特に考慮されていない。このように、特許文献1に開示の手法では、アルカリ二次電池の正極電位の算出精度に改善の余地が存在する。
本開示は上記課題を解決するためになされたものであり、その目的は、アルカリ二次電池を備えた電池システムにおいて、電池システムの停止期間中のメモリ効果を考慮して正極電位の算出精度を向上可能な技術を提供することである。
本開示のある局面に従う電池システムは、水酸化ニッケルを正極活物質として含むアルカリ二次電池と、制御装置とを備える。制御装置は、アルカリ二次電池の正極開放電位と、正極開放電位のメモリ効果による電位変化量である「メモリ量」とからアルカリ二次電池の正極電位を算出し、算出された正極電位と、アルカリ二次電池の負極電位とを用いて、アルカリ二次電池の充放電を制御する。制御装置は、第1および第2のデータを記憶する。第1のデータは、正極活物質の内部における水素濃度と、正極開放電位との関係を示す。第2のデータは、アルカリ二次電池の温度毎に、メモリ量と経過時間との関係を示す。制御装置は、電池システムの停止時刻における第1の温度と、電池システムの起動時刻における第2の温度とを取得し、停止時刻から起動時刻までの電池システムの停止期間中の温度を、第1および第2の温度を用いて電池システムの起動後に補完し、補完された温度に対応する第2のデータを参照することによって、停止期間中に生じたメモリ量を算出する。制御装置は、停止期間中に生じたメモリ量を用いて第1のデータを更新し、更新された第1のデータを参照することによって正極開放電位を算出する。
上記構成によれば、電池システムの停止期間中に生じたメモリ量を用いて第1のデータが更新され、更新された第1のデータを参照することで、電池システムの起動後に生じたメモリ量が算出される。このように、電池システムの停止期間中のメモリ効果についても考慮することで、正極電位の算出精度を向上させることができる。
本開示によれば、アルカリ二次電池を備えた電池システムにおいて、電池システムの停止期間中のメモリ効果を考慮して正極電位の算出精度を向上させることができる。
本実施の形態に係る電池システムが搭載された車両の全体構成を概略的に示すブロック図である。 単電池の構成を示す図である。 本実施の形態における電池モデルの概念図である。 電池モデルに使用されるパラメータを説明するための図である。 正極活物質の内部における水素濃度分布の算出手法を説明するための図である。 開放電位と局所水素量との関係を示す図である。 メモリ効果による正極開放電位の変化の一例を示す図である。 単電池の使用に伴いメモリ量Mが増加する様子を示す図である。 微小メモリ量の積算を説明するための図である。 メモリ効果発生後の充放電カーブの算出手法を概念的に説明するための図である。 本実施の形態におけるマップの概念図である。 IG−OFF直後およびIG−ON直後における、開放電位と局所水素量との関係の一例を示す図である。 IG−OFF期間中に生じたメモリ量の推定処理を説明するためのタイムチャートである。 IG−OFF期間中に生じたメモリ量の推定処理を示すフローチャートである。 本実施の形態における電位算出処理に関するECU30の機能ブロック図である。 車両のIG−OFF時およびIG−ON時における開放電位算出部およびメモリ量算出部のより詳細な構成を示す機能ブロック図である。 車両のIG−ON操作後の通常時の電位算出処理を示すフローチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態]
<電池システムの構成>
図1は、本実施の形態に係る電池システムが搭載された車両の全体構成を概略的に示すブロック図である。車両100は、車両(ハイブリッド自動車、電気自動車または燃料電池車)であって、モータジェネレータ(MG:Motor Generator)1と、動力伝達ギア2と、駆動輪3と、電力制御ユニット(PCU:Power Control Unit)4と、システムメインリレー(SMR:System Main Relay)5と、電池システム200とを備える。電池システム200は、組電池10と、電圧センサ21と、電流センサ22と、温度センサ23と、電子制御ユニット(ECU:Electronic Control Unit)30とを備える。
MG1は、たとえば三相交流回転電機である。MG1の出力トルクは、減速機および動力分割機構を含んで構成された動力伝達ギア2を介して駆動輪3に伝達される。MG1は、車両100の回生制動動作時には、駆動輪3の回転力によって発電することも可能である。MG1に加えてエンジン(図示せず)が搭載されたハイブリッド自動車では、エンジンおよびMG1を協調的に動作させることによって必要な車両駆動力を発生させる。なお、図1ではMGが1つだけ設けられる構成が示されるが、MGの数はこれに限定されず、MGを複数(たとえば2つ)設ける構成としてもよい。
PCU4は、いずれも図示しないが、インバータとコンバータとを含む。組電池10の放電時には、コンバータは、組電池10から供給された電圧を昇圧してインバータに供給する。インバータは、コンバータから供給された直流電力を交流電力に変換してMG1を駆動する。一方、組電池10の充電時には、インバータは、MG1によって発電された交流電力を直流電力に変換してコンバータに供給する。コンバータは、インバータから供給された電圧を降圧して組電池10に供給する。
SMR5は、組電池10とPCU4とを結ぶ電力線に電気的に接続されている。SMR5がECU30からの制御信号に応じて閉成されている場合、組電池10とPCU4との間で電力の授受が行なわれ得る。
組電池10は、複数(たとえば数個)の電池ブロック(図示せず)を含んで構成され、各電池ブロックは、複数(たとえば数個〜数十個)の単電池11を含んで構成される。複数の単電池11の各々は、アルカリ二次電池である。本実施の形態では、上記アルカリ二次電池としてニッケル水素電池を用いた構成を例に説明する。
電圧センサ21は、各単電池11の電圧Vbを検出する。電流センサ22は、組電池10に入出力される電流Ibを検出する。温度センサ23は、電池ブロックの温度Tbを検出する。各センサは、その検出結果をECU30に出力する。なお、電圧センサ21は、電池ブロックの電圧を検出してもよい。電圧ブロックの電圧を単電池数で割ることにより、単電池11の電圧Vbを算出することができる。また、温度センサ23は、各単電池11の温度を検出してもよいし、組電池10全体の温度を検出してもよい。
ECU30は、CPU(Central Processing Unit)31と、メモリ(ROM(Read Only Memory)およびRAM(Random Access Memory))32と、入出力バッファ(図示せず)とを含んで構成される。ECU30は、各センサから受ける信号ならびにメモリ32に記憶されたマップおよびプログラムに基づいて、車両100および電池システム200が所望の状態となるように各機器を制御する。ECU30により実行される主要な処理として、単電池11の正極電位Vおよび負極電位Vを算出する「電位算出処理」が挙げられるが、この処理については後述する。
図2は、単電池11の構成を示す図である。各単電池11の構成は共通であるため、図2では1つの単電池11のみを代表的に示す。単電池11は、たとえば角形密閉式のセルであり、ケース12と、ケース12に設けられた安全弁13と、ケース12内に収容された電極体14および電解液(図示せず)とを含む。なお、図2ではケース12の一部を透視して電極体14を示している。
ケース12は、いずれも金属からなるケース本体121および蓋体122を含み、ケース本体121に設けられた開口上で蓋体122が全周溶接されることにより密閉されている。安全弁13は、ケース12内部の圧力が所定値を超えると、ケース12内部のガス(水素ガス等)の一部を外部に排出する。電極体14は、正極141と、負極142と、セパレータ143とを含む。正極141は袋状のセパレータ143内に挿入されており、セパレータ143内に挿入された正極141と、負極142とが交互に積層されている。正極141および負極142は、図示しない正極端子および負極端子にそれぞれ電気的に接続されている。
電極体14および電解液の材料としては従来公知の各種材料を用いることができる。本実施の形態においては、一例として、正極141には、水酸化ニッケル(水酸化ニッケル(II)(Ni(OH))またはオキシ水酸化ニッケル(III)(NiOOH))を含む正極活物質層と、発泡ニッケルなどの活物質支持体とを含む電極板が用いられる。負極142には、水素吸蔵合金を含む電極板が用いられる。セパレータ143には、親水化処理された合成繊維からなる不織布が用いられる。電解液には、水酸化カリウム(KOH)または水酸化ナトリウム(NaOH)などを含むアルカリ水溶液が用いられる。
電池システム200においては、単電池11の正極電位Vおよび負極電位Vの各々が電位算出処理により算出される。正極電位Vとは、単電池11が通電状態にあるときの単電池11の正極141の電位である。負極電位Vとは、単電池11が通電状態にあるときの単電池11の負極142の電位である。一方、単電池11が非通電状態(無負荷状態)にあるとき、単電池11の正極141の電位を正極開放電位Uと言い、負極142の電位を負極開放電位Uと言う。
メモリ効果が生じると、その発生度合いに応じて正極開放電位Uが変化する。以下では、正極開放電位Uのメモリ効果による電位変化量を「メモリ量」Mと記載する。また、単電池11の充放電時には、単電池11の抵抗成分に応じた電位変化量である「過電圧」ηについても考慮しなくてはならない(後述の式(10)参照)。したがって、下記式(1)に示すように、正極電位Vは、正極開放電位U(たとえば初期値E)と、メモリ量Mと、過電圧ηとの和により表される。
Figure 0006772791
一方、単電池11の負極142ではメモリ効果については特に考慮しなくてよい。したがって、下記式(2)に示すように、負極電位Vは、負極開放電位Uと、過電圧ηとの和により表される。
Figure 0006772791
単電池11の充電時には、正極電位Vが正極開放電位Uよりも過電圧ηだけ高くなり、負極電位Vが負極開放電位Uよりも過電圧ηだけ低くなる。一方、単電池11の放電時には、正極電位Vが正極開放電位Uよりも過電圧ηだけ低くなり、負極電位Vが負極開放電位Uよりも過電圧ηだけ高くなる。電池システム200では、正極電位Vおよび負極電位Vのうちの少なくとも一方が過度に低くなったり高くなったりした場合に、電極劣化を抑制するために単電池11の充放電が通常時と比べて抑制される。
より具体的には、正極電位Vが過度に上昇したり過度に低下したりした場合には、正極141の劣化につながる副反応(劣化反応)が起こり得る。負極電位V2についても同様である。本実施の形態では、組電池10の充電電力の制御上限値である充電電力上限値Winが低く設定される。これにより、過電圧η,ηの大きさが小さくなるので、正極電位Vの過度の上昇が抑制されるとともに、負極電位Vの過度の低下が抑制される。また、組電池10の放電電力の制御上限値である放電電力上限値Woutが低く設定される。これにより、過電圧η,ηの大きさが小さくなるので、正極電位Vの過度の低下が抑制されるとともに、負極電位Vの過度の上昇が抑制される。よって、正極141および負極142での劣化反応の発生を抑制することができる。
<電池モデル>
次に、正極電位Vおよび負極電位Vの算出に用いられる電池モデルについて詳細に説明する。
図3は、本実施の形態における電池モデルの概念図である。ニッケル水素電池の正極は、球状の正極活物質の集合体を含み、負極は、球状の負極活物質の集合体を含む。ニッケル水素電池の放電時には、負極活物質と電解液との界面では水素イオン(プロトン、Hで示す)および電子(eで示す)が放出される一方で、正極活物質と電解液との界面では水素イオンおよび電子が吸収される。ニッケル水素電池の充電時には、水素イオンおよび電子の放出/吸収に関し、上記反応とは逆の反応が起こる。
本実施の形態においては、以下のように電池モデルが単純化される。すなわち、正極141には多数の正極活物質が含まれるところ、各正極活物質における電気化学反応が均一であるとの仮定の下に、多数の正極活物質を単一の正極活物質(正極活物質モデル)151で代表させる。同様に、負極142に含まれる多数の負極活物質における電気化学反応が均一であるとの仮定の下に、多数の負極活物質を単一の負極活物質(負極活物質モデル)152で代表させる。このように単純化された活物質モデルを採用した上で、正極活物質151の内部における水素濃度分布と、負極活物質152の内部における水素濃度分布とが算出される。
図4は、電池モデルに使用されるパラメータ(変数および定数)を説明するための図である。以下に説明するパラメータでは、特許文献1等と同様に、添字eが付されたものは電解液中の値であることを意味し、添字sが付されたものは活物質中の値であることを意味する。添字jは、正極および負極を区別するためのものであり、j=1の場合には正極活物質151における値であることを意味し、j=2の場合には負極活物質152における値であることを意味する。添字jが省略された場合には、は正極活物質151および負極活物質152における値を包括的に表している。
図5は、正極活物質151の内部における水素濃度分布の算出手法を説明するための図である。本電池モデルでは、球状の正極活物質151の内部において、極座標の周方向の水素濃度分布は一様と仮定され、径方向の水素濃度分布のみが考慮される。言い換えると、正極活物質151は、水素の移動方向を径方向に限定した1次元モデルである。
正極活物質151は、その径方向にN個(N:2以上の自然数)の領域に仮想的に分割され、各領域が添字k(k=1〜N)により区別される。領域kにおける水素濃度cs1kは、正極活物質151の径方向における領域kの位置r1kと、時間tとの関数として表される(下記式(3)参照)。
Figure 0006772791
詳細な手法については後述するが、本実施の形態では、各領域kの水素濃度cs1kが算出され(すなわち水素濃度分布が算出され)、さらに、算出された水素濃度cs1kが規格化される。具体的には、下記式(4)に示すように、水素の最大濃度(限界水素濃度)cs1,maxに対する、領域kにおける水素濃度cs1kの比率が算出される。なお、限界水素濃度cs1,maxは既知であるとする。
Figure 0006772791
以下では、規格化後の値であるθ1kを領域kの「局所水素量」と称する。すなわち、局所水素量θ1kは、規格化された指標であり、正極活物質151の領域kに存在する水素の量に応じて0〜1の範囲内で変化し得る。
また、k=Nである最外周領域N(すなわち正極活物質151の表面)における局所水素量θ1Nを「表面水素量」と称する。さらに、下記式(5)に示すように、全領域k(k=1〜N)の局所水素量θ1kの平均量を「平均水素量」と称し、θ1,aveで表す。
Figure 0006772791
図5では正極活物質151を例に説明したが、負極活物質152の内部における水素濃度(の分布)cs2kおよび局所水素量(の分布)θ2kの算出手法についても同等である。なお、正極活物質151と負極活物質152とでは領域の分割数が異なってもよいが、本実施の形態では説明の簡易化のため、分割数がいずれもNであるとする。
図6は、開放電位と局所水素量との関係を示す図である。図6上部には、正極活物質151の局所水素量θと正極開放電位U(より詳細には、メモリ効果が生じていない状態での正極開放電位Uの初期値E)との関係を示す。図6下部には、負極活物質152の局所水素量θと負極開放電位Uとの関係を示す。
図6に示すように、正極開放電位Uおよび負極開放電位Uは、局所水素量θおよび局所水素量θにそれぞれ依存して変化する特性を有する。また、図6の横軸の向きから分かるように、局所水素量θと局所水素量θとは、一方が増加すると他方が減少する関係を有する。単電池11の初期状態(たとえば製造直後の状態)において、局所水素量θと正極開放電位Uの初期値Eとの関係、および、局所水素量θと負極開放電位Uとの関係を測定することにより、局所水素量θの変化に対する初期値Eの変化特性、および、局所水素量θの変化に対する負極開放電位Uの変化特性を規定したマップMP0を作成し、メモリ32に記憶させておく。なお、このようなマップMP0は、電極を完全に緩和させた状態で取得するのが一般的である。換言すれば、完全緩和状態では、領域k全体で局所量θ1kの値は等しい。同様に、完全緩和状態では、領域k全体で局所水素量θ2kの値も等しい。したがって、図6では添字kの記載を省略することができる。
単電池11の初期状態においては、電圧センサ21を用いて局所水素量θ,θを求めることができる。より詳細に説明すると、ECU30は、単電池11が無負荷状態のとき(具体的には車両100のイグニッションオン(IG−ON)時)(電気自動車の場合にはスタートスイッチ操作時)に、電圧センサ21により検出された電圧Vbを単電池11の端子間電圧Vとして取得する。IG−ONの時点では、活物質の内部から表面までの全領域kで局所水素量は一定とみなすことができる。このため、ECU30は、マップMP0を参照することによって、正極開放電位Uの初期値Eと負極開放電位Uとの差が端子間電圧Vと等しくなるような局所水素量θ,θを決定する。同時に、局所水素量θ,θから、正極開放電位Uの初期値Eおよび負極開放電位Uをそれぞれ決定することができる。なお、マップMP0に代えて、データテーブルまたは関数を用いてもよい。
<ニッケル水素電池のメモリ効果>
図6に示したマップMP0(特に図6上部の正極開放電位Uの変化を示すカーブ参照)にはメモリ効果の影響が反映されていないので、正極開放電位Uにメモリ効果の影響を反映させるための手法について以下に詳細に説明する。
図7は、メモリ効果による正極開放電位Uの変化の一例を示す図である。メモリ効果が生じていない状態(初期状態)における正極開放電位U(=初期値E)を1点鎖線で表し、メモリ効果が生じた状態における正極開放電位Uを実線で表す。
図7(A)において、横軸は単電池11のSOCを示し、縦軸は単電池11の電圧を示す。単電池11がある程度の期間、放置された後に放電された場合、正極開放電位Uは、放電側のメモリ効果によって初期値Eよりも低くなる。この放電側のメモリ効果による電位差(放電カーブ間の電位差)を「放電メモリ量」Mdcと称する。
図示しないが、単電池11の充電時には、充電側のメモリ効果によって、正極開放電位Uが初期値Eよりも高くなる。この充電側のメモリ効果による電位差(充電カーブ間の電位差)を「充電メモリ量」Mchと称する。式(1)にて説明したメモリ量Mとは、放電メモリ量Mdcおよび充電メモリ量Mchを包括的に表すものである。
本実施の形態では、横軸を図6に示すようなSOCから、図7(B)に示すように、正極活物質151の平均水素量θ1,aveへと変更する。このように、メモリ効果の影響を考慮する際の視点(切り口)をSOCから平均水素量θ1,aveへと変えることにより、水素濃度分布(局所水素量分布)とメモリ量Mとの橋渡しが可能になるためである。
単電池11が使用されているときの平均水素量(ここでは放電開始前の平均水素量)を「使用水素量」θと称する。放電側のメモリ効果は、使用水素量θよりも高い平均水素量θ1,aveの範囲で生じる。放電メモリ量Mdcの大きさは、平均水素量θ1,ave(使用水素量θよりも多い平均水素量)によって異なる。図示しないが、充電メモリ量Mchの大きさも同様に、平均水素量θ1,ave(使用水素量θよりも少ない平均水素量)によって異なる。よって、以下、各平均水素量θ1,aveにおけるメモリ量M(Mdc,Mch)の具体的な算出手法について説明する。
<微小メモリ量の積算>
図8は、単電池11の使用に伴いメモリ量Mが増加する様子を示す図である。図8において、横軸は単電池11の初期状態からの経過時間を示し、縦軸はメモリ量M(の大きさ)を示す。
本発明者らは、様々な使用条件下(たとえば温度Tb等が異なる条件下)で使用された単電池11に生じたメモリ量を評価する各種評価試験を実施し、単電池11の使用条件毎にメモリ量Mと経過時間との関係を示すデータを取得した。図8および後述する図9では、理解を容易にするため、3種類の使用条件A〜Cにそれぞれ対応するカーブL〜Lが取得された例について説明するが、実際には、より多くの使用条件について同様のカーブが取得される。上記評価試験の結果から、本発明者らは、ある期間が経過する間に生じたメモリ量Mは、たとえば所定の演算周期Δt毎に、Δtの間に生じたメモリ量である「微小メモリ量」ΔMを逐次算出し、微小メモリ量ΔMを積算することによって算出可能であることを見出した。また、本発明者らは、使用条件が途中で変わっても微小メモリ量ΔMの積算が可能であることを見出した。
図9は、微小メモリ量ΔMの積算を説明するための図である。図9において、横軸は、単電池11の初期状態からの経過時間を示す。縦軸は、上から順に、単電池11の使用条件(たとえば温度Tb)およびメモリ量Mの大きさを示す。ここでは、上図に示すように、演算周期Δtが経過する度に使用条件が判定され、使用条件がA,B,Cの順に変化した場合について説明する。
まず、使用条件A下ではカーブLが参照され、演算周期Δt毎に微小メモリ量ΔMが算出され、さらに積算される。その結果、使用条件A下で生じたメモリ量Mは、Mとなる。
次に、時刻tbにおいて使用条件がAからBに変化すると、カーブL(図10に示したカーブLを時間軸方向に平行移動したカーブ)においてメモリ量M=Mの点からカーブLが参照される。そして、演算周期Δt毎に微小メモリ量ΔMが算出され、さらに積算される。使用条件B下で生じたメモリ量MがMである場合、使用条件Bの終了時点でのメモリ量Mは、MとMとの和(M+M)となる。
さらに、時刻tcにおいて使用条件がBからCに変化すると、カーブL(図8に示したカーブLを時間軸方向に平行移動したカーブ)においてメモリ量M=(M+M)の点からカーブLが参照される。そして、演算周期Δt毎に微小メモリ量ΔMが算出され、さらに積算される。使用条件C下で生じたメモリ量MがMである場合、全期間で生じたメモリ量Mは、MとMとMとの和(M+M+M)となる。
このように、本実施の形態では、単電池11の使用条件が変化した場合に、微小メモリ量ΔMを算出するために参照するカーブを、あるカーブから他のカーブへと切り替える。切替前のカーブに従って算出されたメモリ量Mは、切替後にも引き継ぐことが可能である。そして、切替時点からは、切替後のカーブに従って微小メモリ量ΔMが算出され、切替前から引き継がれたメモリ量Mに積算されていく。なお、このような積算(カーブの引き継ぎ)が可能であるのは、あるカーブに従って算出されたメモリ量Mと、他のカーブに従って算出されたメモリ量Mとが等しい場合には、正極活物質151の状態が同じと考えられるためである。
<平均水素量の範囲>
図7(B)にて説明したように、単電池11が使用されているときの使用水素量θから単電池11が放電された場合には、使用水素量θよりも多い平均水素量θ1,aveの範囲において、正極開放電位Uが初期状態と比べて放電メモリ量Mdcだけ低くなる。一方、単電池11が充電された場合、使用水素量θよりも少ない平均水素量θ1,aveの範囲において、正極開放電位Uが初期状態と比べて充電メモリ量Mchだけ高くなる。
このように、メモリ効果発生後の単電池11の充放電時に正極開放電位Uがどのように変化するかを算出するためには、使用水素量θを始点(基準点)とする充放電カーブを算出することを要する(たとえば図7(B)の実線参照)。この充放電カーブは、以下に説明するように、使用水素量θよりも多い平均水素量θ1,aveの範囲内の各値での放電メモリ量Mdcを算出するとともに、使用水素量θよりも少ない平均水素量θ1,aveの範囲内の各値での充電メモリ量Mchを算出することにより求めることができる。
図10は、メモリ効果発生後の充放電カーブの算出手法を概念的に説明するための図である。図10において、横軸は正極活物質151の平均水素量θ1,aveを示し、縦軸は電位を示す。
上述のように、メモリ量Mは平均水素量θ1,aveによって異なる。そのため、本実施の形態では、平均水素量θの範囲(0〜1の範囲)が、たとえば0.05幅の20個の範囲に分割される。そして、20個の範囲毎に、所定の演算周期Δtが経過する度に単電池11の使用条件に応じて微小メモリ量ΔMが遂次算出され、算出された微小メモリ量Δtが積算されることによって、各範囲におけるメモリ量Mが算出される。
単電池11の使用条件とは、より具体的には、演算周期Δtが経過する間の平均水素量θ1,aveと単電池11の絶対温度Tとの組合せ(θ1,ave,T)により定義される条件である。単電池11の使用条件(θ1,ave,T)毎に評価試験を予め行なうことにより、マップMP2を予め準備することができる。
<車両の電池システムの停止>
図11は、本実施の形態におけるマップMP2の概念図である。マップMP2(第2のデータ)では、20個の平均水素量θ1,aveの範囲毎に別個に、単電池11の使用条件(θ1,ave,T)と、その使用条件(θ1,ave,T)下で演算周期Δtが経過する間に生じる微小メモリ量ΔMとの対応関係を示すデータ(たとえば図8のカーブL〜L参照)が規定されている。なお、データ形式は特に限定されず、データテーブルまたは関数(関係式)であってもよい。
ECU30は、20個の平均水素量θ1,aveの範囲毎に、演算周期Δtの間の単電池11の使用条件(θ1,ave,T)に応じたデータ(カーブ)を参照することで、演算周期Δtの間に新たに生じた微小メモリ量ΔMを算出する。さらに、ECU30は、20個の範囲毎に、それまでの全期間の微小メモリ量ΔMを積算することによってメモリ量Mを算出する。上述のように、途中で使用条件が変わった場合であっても微小メモリ量ΔMの積算が可能である。
なお、平均水素量θ1,aveの範囲の分割数(上述の例では20個)および各範囲内での使用条件数に関し、できるだけ大きな値を用いることで、より詳細な評価試験結果をマップMP2に反映させることが可能になるので、メモリ量Mの算出精度が向上する。その一方で、分割数が過度に多くなったり使用条件数が過度に多くなったりすると、マップサイズ(マップMP2のデータ量)が増大し、メモリ32に必要な容量が大きくなるとともにCPU31の演算負荷が大きくなり得る。したがって、平均水素量θ1,aveの範囲の分割数および各範囲内での使用条件数は、メモリ量Mの算出精度とECU30の処理能力とのバランスが取れるように決定することが望ましい。
車両100のイグニッションオフ(IG−OFF)に伴いECU30が停止すると、微小メモリ量ΔMを遂次算出し、算出された微小メモリ量ΔMを積算する処理を実行することはできなくなる。しかし、車両100がIG−OFF状態である期間(以下「IG−OFF期間」とも称する)中にもメモリ効果は生じ得る(あるいは進行し得る)。また、ニッケル水素電池である単電池11では、IG−OFF期間中であっても正極141内に水素イオンが入り酸素ガスが発生する自己放電反応が起こり、局所水素量θも増加し得る。
微小メモリ量ΔM(およびその積算量であるメモリ量M)を常時算出するために、IG−OFF期間中であってもECU30の動作を継続することも考えられるが、そうするとECU30の消費電力が増大してしまう。そのため、以下では、IG−OFF期間中にはECU30を停止させ、車両100のIG−ON後にIG−OFF期間中のメモリ量Mを推定する処理について説明する。
図12は、IG−OFF直後およびIG−ON直後における、開放電位と局所水素量との関係の一例を示す図である。図12では、IG−OFF直後の正極開放電位Uを破線で示し、IG−ON直後の正極開放電位Uを実線で示す。図12は図6と対比される。単電池11の初期状態では図6に示したマップMP0が用いられるが、メモリ効果が生じて以降はマップMP0に代えて、図12に示したマップMP1(第1のデータ)が用いられる。
正極141では、自己放電にともに、平均水素量θ1,aveが増加する。また、この際、正極141から発生した酸素が負極142の水素と反応して水が生成する再結合反応も同時に起こる。すなわち、正極141から発生した酸素量(自己放電量)に応じて、負極142の平均水素量θ2,aveも変化(減少)する。
図12に示すように、IG−OFF期間中に生じたメモリ効果により正極開放電位Uを示すカーブが変化しており、かつ、自己放電により平均水素量θ1,aveも変化している。それにもかかわらず、車両100のIG−ON時に、IG−OFF時よりも前に取得した正極開放電位Uを示すカーブを用いたのでは、後に続く状態推定精度の悪化につながる可能性がある。そこで、本実施の形態では、以下のような手法を用いてIG−OFF期間中に生じたメモリ量Mを推定し、IG−OFF期間後の正極開放電位Uを示すカーブに反映させる。
図13は、IG−OFF期間中に生じたメモリ量Mの推定処理を説明するためのタイムチャートである。図13において、横軸は経過時間を示し、縦軸は単電池11の温度Tbを表す。時刻tOFFまでの期間、車両100はIG−ON状態である。時刻tOFFにおいてユーザによるIG−OFF操作が行なわれ、車両100はIG−OFF状態へと移行する。その後、時刻tONにおいて、IG−ON操作が行なわれる。このような場合、時刻tOFFから時刻tONまでのIG−OFF期間(停止期間)、ECU30は、温度Tbを取得することができない。
そのため、ECU30は、時刻tOFFにおける単電池11の温度TbOFFと、時刻tONにおける単電池11の温度TbONとから、IG−OFF期間中の温度TbをIG−ON後に補完する。より具体的には、IG−OFF期間中には、温度Tbが所定の関数に従って変化すると仮定される。関数の種類(関数形)は実験結果またはシミュレーション結果に基づいて予め設定されるが、たとえば線形関数(C1参照)または指数関数(C2参照)を用いることができる。ECU30は、温度TbOFFと温度TbONとが上記関数により接続されるように、IG−OFF期間中の温度Tbを補完する。
図14は、IG−OFF期間中に生じたメモリ量Mの推定処理を示すフローチャートである。このフローチャートは、車両100のIG−ON操作が行なわれた場合に実行される。図14および後述する図17に示すフローチャートに含まれる各ステップは、基本的にはECU30によるソフトウェア処理によって実現されるが、その一部または全部がECU30内に作製されたハードウェア(電気回路)によって実現されてもよい。
なお、IG−OFF操作が行なわれた場合、ECU30は、その動作を停止する前に、IG−OFF操作時(時刻tOFF)における、単電池11の温度TbOFFと、平均水素量θ1,aveと、正極開放電位Uと局所水素量θとの関係を示すカーブ(たとえば図12参照)とをメモリ32に不揮発的に記憶するものとする。
S11において、ECU30は、前回のIG−OFF操作時における温度TbOFFをメモリ32から読み出す。また、S12において、前回のIG−OFF操作時における平均水素量θ1,aveと、正極開放電位Uと局所水素量θとの関係を示すカーブをメモリ32から読み出す。
S13において、ECU30は、IG−ON操作時における温度TbONを温度センサ23から取得する。
S14において、ECU30は、S11にて読み出した温度TbOFFと、S13にて取得した温度TbONとから、IG−OFF期間中の温度Tbを補完するための関数を算出する。この補完手法は図13にて詳細に説明したため、説明は繰り返さない。
S15において、ECU30は、IG−OFF期間を所定期間Δt毎に仮想的に分割する。そして、S16において、ECU30は、S14にて算出された関数に従って、分割された期間のうちのi番目の期間における単電池11の温度Tb(i)を算出する。なお、iは自然数であり、iの初期値は1である。温度Tb(i)は、以下では使用条件を規定するパラメータである絶対温度T(単位:ケルビン)に換算される。
S17において、ECU30は、使用条件(θ1,ave,T)に対応するカーブをマップMP2(図11参照)から参照して、各平均水素量θ1,aveについて、(i−1)番目の期間までのメモリ量M(i−1)からi番目の期間の微小メモリ量ΔM(i)を算出する。なお、i=1の場合には、IG−OFF操作時の使用条件とメモリ量Mとから1番目の期間のメモリ量M(1)が算出される。
S18において、ECU30は、平均水素量θ1,ave毎に、S17にて算出された微小メモリ量ΔM(i)を(i−1)番目の期間までのメモリ量M(i−1)に加算することにより、i番目の期間までのメモリ量M(i)を算出する。なお、i=1の場合には、IG−OFF操作時のメモリ量MにM(1)が加算される。
S19において、ECU30は、すべてのiについてS16〜S18の処理が実行されて微小メモリ量ΔM(i)が積算されたか否かを判定する。すべてのiについて微小メモリ量ΔM(i)の積算が完了していない場合(S19においてNO)、ECU30は、iを1だけインクリメントし(S20)、処理をS16に戻す。これにより、すべてのiについて微小メモリ量ΔM(i)の積算が完了するまでS16〜S18の処理が繰り返される。
微小メモリ量ΔM(i)の積算が完了すると(S19においてYES)、ECU30は、正極開放電位Uと局所水素量θとの関係を示すカーブにおいて、平均水素量θ1,ave毎に、積算により得られたメモリ量Mを正極開放電位Uに加算する。加算後のカーブはメモリ32に記憶される。すなわち、正極開放電位Uと局所水素量θとの関係を示すカーブ(マップMP1)が更新される(S21)、その後、処理はメインルーチンへと戻され、IG−ON後のフローチャートの処理が実行される(後述する図17参照)。
このように、本実施の形態によれば、IG−OFF期間中に生じたメモリ量Mを用いてマップMP1が更新され、更新されたマップMP1を参照することで、IG−ON後に生じたメモリ量Mが算出される。IG−OFF期間中に生じたメモリ効果についても考慮することによって、メモリ量Mの推定精度を向上させることができる。その結果、後に続く状態推定を精度良く実施することが可能となる。
<機能ブロック>
図15は、本実施の形態における電位算出処理に関するECU30の機能ブロック図である。ECU30は、電池パラメータ決定部310と、電流密度算出部320と、過電圧算出部330と、濃度分布算出部340と、水素量算出部350と、開放電位算出部360と、メモリ量算出部370と、電位算出部380とを含む。
電池パラメータ決定部310は、電圧センサ21から単電池11の電圧Vbを受けるとともに、温度センサ23から電池ブロック(図示せず)の温度Tbを受ける。電池パラメータ決定部310は、電圧Vbを単電池11の端子間電圧Vとして設定するとともに、温度Tbを絶対温度Tに換算する。また、電池パラメータ決定部310は、後述する電池モデル式中の他のパラメータを絶対温度T等に応じて決定する。より具体的には、電池パラメータ決定部310は、交換電流密度ioj、活物質の拡散係数Dsj、反応抵抗Rr、直流抵抗Rd等のパラメータを絶対温度T等に応じて決定する。
交換電流密度io1とは、正極活物質151における酸化電流密度(アノード電流密度)と還元電流とが等しくなるときの電流密度である。交換電流密度io1は、表面水素量θ1Nおよび絶対温度Tに依存して変化する特性を有する。したがって、交換電流密度io1と局所水素量θおよび絶対温度Tとの対応関係を規定した特性マップ(図示せず)を予め準備しておくことにより、水素量算出部350により算出される表面水素量θ1N(後述)と、絶対温度Tとから、交換電流密度io1を算出することができる。交換電流密度io2についても同様であるため、詳細な説明は繰り返さない。
反応抵抗Rrとは、正極活物質151および負極活物質152の表面において電荷の授受が行われるときの抵抗成分である。反応抵抗Rrは、下記式(6)に従って、絶対温度Tおよび交換電流密度ioj(j=1,2)から算出することができる。
Figure 0006772791
直流抵抗Rdとは、水素イオンおよび電子が正極活物質151と負極活物質152との間を移動するときの抵抗成分である。直流抵抗Rdは、絶対温度Tに依存して変化する特性を有する。したがって、直流抵抗Rdの測定結果に基づき、直流抵抗Rdと絶対温度Tとの対応関係を規定した特性マップ(図示せず)を予め準備しておくことにより、絶対温度Tから直流抵抗Rdを算出することができる。
活物質の拡散係数Dsjについても同様に、表面水素量θ1N,θ2Nおよび絶対温度Tに対する依存性を有するため、予め準備されたマップ(図示せず)を用いて算出することができる。なお、表面水素量θ1N,θ2Nおよび絶対温度Tの両方を上述の各マップの引数とすることは必須ではなく、精度は低下し得るものの、いずれか一方のみ(たとえば絶対温度Tのみ)を引数としてもよい。電池パラメータ決定部310により決定された各パラメータは、他の機能ブロックに適宜出力される。
電流密度算出部320は、電池パラメータ決定部310から端子間電圧V、交換電流密度iojおよび直流抵抗Rd等のパラメータを受けるとともに、電位算出部380から正極開放電位Uおよび負極開放電位Uを受ける。電流密度算出部320は、下記式(7)に従って電流密度Iを算出する。式(7)における正極開放電位Uおよび負極開放電位Uには、前回の演算周期での算出結果が代入される。
Figure 0006772791
式(7)は非線形方程式である。式(7)から電流密度Iを算出するには、ニュートン法等の反復法が用いられる。すなわち、電流密度Iを仮定した上で、絶対温度T、交換電流密度ioj等の各パラメータを式(7)に代入して端子間電圧Vを算出する。このようにして算出された端子間電圧Vと、端子間電圧Vの真値(電圧センサ21による検出値)とがほぼ一致する(収束する)まで反復計算(収束演算)を行なうことにより、電流密度Iを求めることができる。なお、ここでは電圧入力の例を説明したが、電流入力、すなわち電流センサ22による検出値から電流密度Iを算出してもよく、電流入力の場合には収束演算は不要になる。
また、電流密度算出部320は、式(7)に代えて下記式(8)を用いて電流密度Iを算出してもよい。式(8)は、式(7)の簡易式である。具体的には、式(8)は、arcsinh項を線形近似し、さらに式(7)に含まれる上記式(6)の右辺のパラメータを反応抵抗Rrに置換したものである。
Figure 0006772791
さらに、電流密度算出部320は、電流密度Iから反応電流密度jを算出し、過電圧算出部330および濃度分布算出部340に出力する。反応電流密度jとは、活物質の単位体積当たりの水素生成速度に相当する。電流密度Iと反応電流密度jとの間には下記式(9)が成立するため、電流密度Iを反応電流密度jに換算することができる。
Figure 0006772791
過電圧算出部330は、電池パラメータ決定部310から絶対温度Tおよび交換電流密度iojを受けるとともに、電流密度算出部320から反応電流密度jを受ける。過電圧算出部330は、バトラー・ボルマー(Butler-Volmer)の関係式から導かれる下記式(10)(詳細については特許文献1参照)に従って、正極側の過電圧(より詳細には活性化過電圧および抵抗過電圧)ηおよび負極側の過電圧ηを算出し、電位算出部380に出力する。
Figure 0006772791
濃度分布算出部340は、電池パラメータ決定部310から活物質の拡散係数Dsjを受けるとともに、電流密度算出部320から反応電流密度jを受ける。詳細は特許文献1等に記載されているが、下記式(11)は、極座標系での拡散方程式である。式(11)の境界条件は、下記式(12)および式(13)のように設定することができる。濃度分布算出部340は、式(11)〜式(13)に従って、正極活物質151の内部の水素濃度分布cs1k(k=1〜N)と、負極活物質152の内部の水素濃度分布cs2kとを算出し、水素量算出部350に出力する。
Figure 0006772791
水素量算出部350は、濃度分布算出部340から水素濃度分布csjk(j=1,2)を受ける。水素量算出部350は、水素濃度分布cs1kに基づき正極活物質151の局所局所量θ(表面水素量θ1N)を算出するとともに、水素濃度分布cs2kに基づき負極活物質152の局所水素量θ(表面水素量θ2N)を算出し、開放電位算出部360に出力する(上記式(4)参照)。さらに、水素量算出部350は、上記式(5)に従って、水素濃度分布cs1kから平均水素量θ1,aveを算出し、メモリ量算出部370に出力する。
開放電位算出部360は、電池パラメータ決定部310から絶対温度Tを受けるとともに、水素量算出部350から表面水素量θ1N,θ2Nを受ける。開放電位算出部360は、マップMP1を参照することによって、正極開放電位Uおよび負極開放電位Uを算出する。算出された正極開放電位Uおよび負極開放電位Uは、電位算出部380に出力される。
メモリ量算出部370は、平均水素量θ1,aveの各範囲について、メモリ量Mを算出し、算出されたメモリ量Mを開放電位算出部360および電位算出部380に出力する。
電位算出部380は、開放電位算出部360から正極開放電位Uおよび負極開放電位Uを受け、メモリ量算出部370からメモリ量Mを受け、過電圧算出部330から過電圧η,ηを受ける。電位算出部380は、正極開放電位Uおよび負極開放電位Uを電流密度算出部320に出力する。さらに、電位算出部380は、上記式(1)に従って正極電位Vを算出するとともに(V=E+M+η)、上記式(2)に従って負極電位Vを算出する(V=U+η)。電位算出部380により算出された正極電位Vおよび負極電位Vは、図示しない充放電制御部に出力され、この充放電制御部により、組電池10の充放電制御が実行される。
図16は、車両100のIG−OFF時およびIG−ON時における開放電位算出部360およびメモリ量算出部370のより詳細な構成を示す機能ブロック図である。開放電位算出部360は、記憶部361と、更新部362と、局所水素量決定部363と、開放電位決定部364とを含む。メモリ量算出部370は、使用条件設定部371と、微小メモリ量算出部372と、積算部373とを含む。
使用条件設定部371は、電池パラメータ決定部310から絶対温度Tを受けるとともに、水素量算出部350から平均水素量θ1,aveを受ける。使用条件設定部371は、図11に示したマップMP2を参照することによって、単電池11の使用条件(θ1,ave,T)に応じた選択し、微小メモリ量算出部372に出力する。
微小メモリ量算出部372は、使用条件設定部371からのカーブを用いて、所定の演算周期Δtの間に新たに生じた微小メモリ量ΔMを平均水素量θ1,aveの範囲毎に算出し、積算部373に出力する。
積算部373は、平均水素量θ1,aveの範囲毎に、微小メモリ量算出部372からの微小メモリ量ΔMを積算することにより、メモリ量M(MdcまたはMch)を算出する。積算部373により算出されたメモリ量Mは、電位算出部380および更新部362に出力される。
記憶部361は、図12に示したような正極開放電位Uと局所水素量θとの関係を示すカーブ、および、負極開放電位Uと局所水素量θとの関係を示すカーブを記憶する。車両100のIG−OFF操作が行なわれると、IG−OFF直前のカーブ(正極開放電位Uと局所水素量θとの関係を示すカーブ)が記憶部361に記憶される。そして、記憶部361は、IG−ON後の最初の演算時には、記憶したカーブ(更新前のカーブ)を更新部362に出力する。
更新部362は、記憶部361から更新前の正極開放電位Uと局所水素量θとの関係を示すカーブを受けると、そのカーブを積算部373からのメモリ量を用いて更新する。この手法については、図14にて詳細に説明したため、説明は繰り返さない。更新後のカーブは、記憶部361に記憶され、負極開放電位Uと局所水素量θとの関係を示すカーブとともに局所水素量決定部363に出力される。
上述のように、平均水素量θ1,aveは、IG−OFF期間中も自己放電により変化し得る。局所水素量決定部363は、図13にて説明した補完手法により求められたIG−OFF期間中の絶対温度Tを用いて、IG−ON時の平均水素量θ1,aveを算出する。また、それとともに、局所水素量決定部363は、正極141の平均水素量θ1,aveの変化量(自己放電量)に応じて、負極142の平均水素量θ2,aveも補正し(減少させ)、補正後の平均水素量θ2,aveを記憶する。この平均水素量θ2,aveは、IG−ON時に用いられる。
平均水素量θ1,aveの算出手法の一例について詳細に説明すると、自己放電による電流の密度(自己放電電流密度i side)は、たとえばターフェル(Tafel)の関係式またはバトラー・ボルマーの関係式を用いて表すことができる。下記式(14)は、ターフェルの関係式により自己放電電流密度i sideを表したものである。なお、式(14)では、自己放電が発生する基準電位をUeqで表している。
Figure 0006772791
自己放電電流密度i sideは、絶対温度Tの関数である。また、自己放電電流密度i sideは、正極活物質151の局所水素量θの関数ともなり得る。よって、自己放電交換電流密度i0,1 sideの絶対温度T(および局所水素量θ)に対する依存性を事前の評価試験により求め、マップ(図示せず)を予め作成しておく。これにより、たとえば、補完により求められたIG−OFF期間中の絶対温度Tから、IG−OFF期間中の各時刻における自己放電電流密度i sideを算出することができる。式(14)を電池モデルと錬成し収束演算を解けば、通電中の自己放電の影響も加味できるので、通電中も精度良く状態推定可能となる。一方、無負荷状態では過電圧ηは0と見なせるため、式(14)のみから自己放電電流密度i sideを算出でき、それを積算することにより、平均水素量θ1,aveを算出することができる。これにより、IG−OFF期間中の自己放電の影響が反映された、IG−ON時の平均水素量θ1,aveを算出することができる。
開放電位決定部364は、局所水素量決定部363により決定された局所水素量θ,θから、IG−ON時の正極開放電位Uおよび負極開放電位Uをそれぞれ決定する。より具体的には、正極開放電位Uと局所水素量θとの関係を示すカーブ(図12参照)は、更新部362により更新されているので、この更新後のカーブを用いることで、IG−ON時の平均水素量θ1,ave(局所水素量決定部363により決定された値)に対応する正極開放電位Uを算出することができる。なお、メモリ量Mを更新する際にも、上述のIG−OFF期間の自己放電による平均水素量θ1,aveの変化を考慮するのが望ましい。一方、負極開放電位Uと局所水素量θとの関係を示すカーブにはメモリ効果の影響はなく、ほとんど変化しない。よって、開放電位決定部364は、記憶部361に記憶されたカーブと、IG−OFF時の平均水素量θ2,aveにIG−OFF期間の正極141の自己放電に由来する平均水素量θ2,aveの変化量を加味した値(局所水素量決定部363に記憶された値)とから、IG−ON時の負極開放電位Uを算出することができる。
開放電位決定部364に決定されたIG−ON時の正極開放電位Uおよび負極開放電位Uは、電位算出部380に出力される。これにより、電位算出部380は、IG−ON時の端子間電圧V(=V−V)を算出することができる。
また、IG−ONと同時(直後)に、IG−OFF期間中に生じたメモリ効果も反映させた最新の正極開放電位U1と局所水素量θ1との関係を示すカーブが取得できているため、その関係に基づいて、図6にて説明したようにIG−ON時の(すなわち無負荷状態での)センサ電圧から局所水素量θ,θを決定してもよい。開放電位決定部364の説明で記載した手法と同様にすることで、高精度に初期の局所水素量θ,θを決定することができる。
<電位算出処理の処理フロー>
図17は、車両100のIG−ON後(すなわち通常の演算処理時)の電位算出処理を示すフローチャートである。このフローチャートは、図14にて説明したフローチャートの実行後に、所定の演算周期Δt(たとえばΔt=100ms)毎にメインルーチン(図示せず)から呼び出されて実行される。
S101において、ECU30は、電圧センサ21から単電池11の電圧Vbを取得するとともに、電流センサ22から電池ブロック(図示せず)の温度Tbを取得する。ECU30は、以降の処理において、電圧Vbを端子間電圧Vとして使用するとともに、温度Tbを絶対温度Tに換算する。
ECU30のメモリ32には、前回の演算周期で算出された、正極活物質151の内部における水素濃度分布cs1k(k=1〜N)と、負極活物質152の内部における水素濃度分布cs2kとが記憶されている。ECU30は、前回の演算周期で算出された水素濃度分布csjk(j=1,2)を読み出す。なお、車両100のIG−ON後の最初の演算周期では、車両100のIG−OFF直前の演算周期でメモリ32に記憶された水素濃度分布csjkが読み出される。ECU30は、正極活物質151の最外周領域の水素濃度cs1Nから表面水素量θ1Nを算出するとともに、負極活物質152の最外周領域Nの水素濃度cs2Nから表面水素量θ2Nを算出する(上記式(4)参照)(S102)。
S103において、ECU30は、図8に示したマップMP1を参照することによって、表面水素量θ1Nから正極開放電位Uを算出するとともに、表面水素量θ2Nから負極開放電位Uを算出する。
S104において、ECU30は、交換電流密度ioj、反応抵抗Rr、直流抵抗Rd、および活物質の拡散係数Dsjの各パラメータを算出する。この算出手法については、図15にて詳細に説明したため、説明は繰り返さない。
S105において、ECU30は、上記式(7)および式(8)のいずれか一方に従って、端子間電圧V、正極開放電位U、負極開放電位U、交換電流密度iojおよび絶対温度Tから電流密度Iを算出する。さらに、ECU30は、上記式(9)に従って、電流密度Iを反応電流密度j(j=1,2)に換算する。
S106において、ECU30は、上記式(10)に従って、絶対温度T、反応電流密度jおよび交換電流密度iojから過電圧η(j=1,2)を算出する。
S107において、ECU30は、上記式(11)〜式(13)に従って、正極活物質151の内部の水素濃度分布cs1k(k=1〜N)と、負極活物質152の内部の水素濃度分布cs2kとを算出する。水素濃度分布csjk(j=1,2)の算出結果は、次回の演算周期でのS102の処理に備えてメモリ32に記憶される。
S108において、ECU30は、S107にて算出された正極活物質151の内部の水素濃度分布cs1kから、上記式(4)に従って局所水素量分布θ1k(k=1〜N)を算出する。
S109において、ECU30は、S108にて算出された局所水素量分布θ1kから、全領域kの平均量である平均水素量θ1,aveを算出する(上記式(5)参照)。
S110において、ECU30は、20個の平均水素量θ1,aveの範囲毎に、今回の演算周期における微小メモリ量ΔMを算出する。この算出手法については、図10および図11にて詳細に説明したため、説明は繰り返さない。
S111において、ECU30は、上記20個の範囲毎に、S110にて算出された微小メモリ量ΔMを積算することによってメモリ量Mを算出する。
S113において、ECU30は、上記20個の範囲毎に、S103にて算出された正極開放電位U(IG−ON後に更新されたもの)と、S106にて算出された過電圧ηと、S111にて算出されたメモリ量Mとを用いて、正極電位Vを算出する(式(1)参照)。
さらに、ECU30は、上記20個の範囲毎に、S103にて算出された負極開放電位Uと、S106にて算出された過電圧ηとを用いて、負極電位Vを算出する(式(2)参照)。
以上のように、本実施の形態によれば、予め準備されたマップMP2(図11参照)を参照することによって、平均水素量θ1,aveの範囲毎に、単電池11の使用条件(θ1,ave,T)に応じた微小メモリ量ΔMが遂次算出され、さらに積算される。このようにして算出されたメモリ量Mが、マップMP1(図8参照)を参照して局所水素量θから算出された正極開放電位Uに加算される。これにより、正極141に生じたメモリ効果の影響を正極開放電位Uに反映させることができるので、正極電位Vの算出精度を向上させることができる。
さらに、IG−OFF直前の温度TbOFFとIG−ON直後の温度TbONとを用いて温度Tbを補完することにより、IG−OFF期間中に生じたメモリ効果についても考慮される。また、本実施の形態では、自己放電の影響についても電池モデルに加味される。これにより、メモリ量Mの推定精度を一層向上させることができる。その結果、後に続く状態推定または制御を精度良く実施することが可能となる。また、IG−OFF期間中にはECU30を停止させつつ、IG−ON後にメモリ量Mが算出されるので、ECU30を常時動作させる構成と比べて、ECU30の消費電力を低減することができる。
また、S105にて説明したように、電流密度Iを算出する際には、前回の演算周期での正極開放電位Uおよび負極開放電位Uの算出結果が用いられる。この正極開放電位Uはメモリ効果の影響を考慮した上で高精度に算出されたものであるため、電流密度Iについても、メモリ効果の影響を考慮されていない場合と比べて、高精度に算出することができる。これにより、負極活物質152の反応電流密度jおよび過電圧ηも高精度に算出されることになる(式(10)参照)。その結果、S112にて、今回の演算周期における負極電位Vの算出精度についても向上させることができる(式(2)参照)。
なお、本実施の形態では、アルカリ二次電池の一例としてニッケル水素電池を用いた場合について説明したが、本実施の形態で説明した手法が適用可能なアルカリ二次電池はこれに限定されるものではない。本実施の形態の手法は、水酸化ニッケルを正極活物質として含み、メモリ効果が発生する他のアルカリ二次電池(たとえばニッケルカドミウム電池またはニッケル亜鉛電池)にも適用することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 モータジェネレータ(MG)、2 動力伝達ギア、3 駆動輪、4 電力制御ユニット(PCU)、5 システムメインリレー(SMR)、10 組電池、11 単電池、12 ケース、13 安全弁、14 電極体、21 電圧センサ、22 電流センサ、23 温度センサ、30 電子制御ユニット(ECU)、31 CPU、32 メモリ、100 車両、121 ケース本体、122 蓋体、141 正極、142 負極、143 セパレータ、151 正極活物質、152 負極活物質、153 クラック、200 電池システム、310 電池パラメータ決定部、320 電流密度算出部、330 過電圧算出部、340 濃度分布算出部、350 水素量算出部、360 開放電位算出部、361 記憶部、362 更新部、363 表面水素量決定部、364 開放電位決定部、370 メモリ量算出部、371 使用条件設定部、372 微小メモリ量算出部、373 積算部、380 電位算出部。

Claims (1)

  1. 電池システムであって、
    水酸化ニッケルを正極活物質として含むアルカリ二次電池と、
    前記アルカリ二次電池の正極開放電位と、前記正極開放電位のメモリ効果による電位変化量であるメモリ量とから前記アルカリ二次電池の正極電位を算出し、算出された正極電位と、前記アルカリ二次電池の負極電位とを用いて、前記アルカリ二次電池の充放電を制御する制御装置とを備え、
    前記制御装置は、第1および第2のデータを記憶し、
    前記第1のデータは、前記正極活物質の内部における水素濃度と、前記正極開放電位との関係を示すデータであり、
    前記第2のデータは、前記アルカリ二次電池の温度毎に、前記メモリ量と経過時間との関係を示すデータであり、
    前記制御装置は、
    前記電池システムの停止時刻における第1の温度と、前記電池システムの起動時刻における第2の温度とを取得し、
    前記停止時刻から前記起動時刻までの前記電池システムの停止期間中の温度を、前記第1および第2の温度を用いて前記電池システムの起動後に補完し、補完された温度に対応する前記第2のデータを参照することによって、前記停止期間中に生じたメモリ量を算出し、
    前記電池システムの起動後には、前記停止期間中に生じたメモリ量を用いて前記第1のデータを更新し、更新された第1のデータを参照することによって前記正極開放電位を算出する、電池システム。
JP2016231932A 2016-11-30 2016-11-30 電池システム Active JP6772791B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231932A JP6772791B2 (ja) 2016-11-30 2016-11-30 電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231932A JP6772791B2 (ja) 2016-11-30 2016-11-30 電池システム

Publications (2)

Publication Number Publication Date
JP2018088376A JP2018088376A (ja) 2018-06-07
JP6772791B2 true JP6772791B2 (ja) 2020-10-21

Family

ID=62493772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231932A Active JP6772791B2 (ja) 2016-11-30 2016-11-30 電池システム

Country Status (1)

Country Link
JP (1) JP6772791B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087785A (ja) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 電池システム
JP2018087784A (ja) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872743B2 (ja) * 2007-03-23 2012-02-08 トヨタ自動車株式会社 二次電池の状態推定装置
JP5442718B2 (ja) * 2008-05-07 2014-03-12 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 電池の残存容量の推定方法
JP4649682B2 (ja) * 2008-09-02 2011-03-16 株式会社豊田中央研究所 二次電池の状態推定装置
JP5737106B2 (ja) * 2011-09-26 2015-06-17 トヨタ自動車株式会社 二次電池の状態推定装置
US9728992B2 (en) * 2012-01-13 2017-08-08 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for secondary battery
JP6102891B2 (ja) * 2014-11-11 2017-03-29 トヨタ自動車株式会社 電池システム
JP6375215B2 (ja) * 2014-11-28 2018-08-15 プライムアースEvエナジー株式会社 メモリ効果有無の判定方法及びメモリ効果有無の判定装置
JP6834416B2 (ja) * 2016-11-30 2021-02-24 トヨタ自動車株式会社 電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087785A (ja) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 電池システム
JP2018087784A (ja) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 電池システム

Also Published As

Publication number Publication date
JP2018088376A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP5656415B2 (ja) 二次電池の状態判定装置及び制御装置
KR101245788B1 (ko) 배터리의 작동점 제어 방법 및 장치
US10859632B2 (en) Secondary battery system and SOC estimation method for secondary battery
KR101619634B1 (ko) 배터리 모델 파라미터를 이용한 배터리 성능상태 추정 시스템 및 그 방법
CN107492685B (zh) 电池系统
US10209319B2 (en) State of deterioration or state of charges estimating apparatus for secondary battery
US9529056B2 (en) Battery system and deterioration determining method
KR20170023583A (ko) 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템
JPWO2013105140A1 (ja) 二次電池の制御装置および制御方法
JP2015026478A (ja) 制御装置及び制御方法
US10557891B2 (en) Battery system and control method thereof
JP6834416B2 (ja) 電池システム
JPWO2012137456A1 (ja) 余寿命判定方法
JP6790573B2 (ja) 電池システム
JP6772791B2 (ja) 電池システム
CN111969262A (zh) 具有混合电极的电池管理系统
JP2021082426A (ja) 電池の充電方法および充電システム
JP2018007410A (ja) 電池システム
JP6683058B2 (ja) 電池システム
JP6834415B2 (ja) 電池システム
JP7100151B2 (ja) 電池制御装置
JP2017229139A (ja) 電池システム
JP2017221076A (ja) 電池システム
JP2018007359A (ja) 電池システム
JP6747333B2 (ja) 二次電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151