実施の形態1.
実施の形態1のモータインダクタンス測定装置50について、図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。他の実施の形態においても、同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。図1は、実施の形態1に係るモータインダクタンス測定装置の構成を示す図である。図2は、図1のq軸電圧指令vq*における交流成分vqAC*の測定波形を示す図である。図3は、図1のq軸電流iqsにおける交流成分iqsACの測定波形を示す図である。図4は、図1の磁束演算部にて演算されるq軸磁束Φqsの交流成分ΦqsACの測定波形を示す図である。図5は図1のループ状磁束データdata1を示す図であり、図6は図1のシーケンス設定部の動作フローを示す図である。モータインダクタンス測定装置50は、インダクタンスの値を直接測定するのではなく、モータ電流とそれに応じたモータ磁束との関係又は特性をインダクタンスに相当する情報であるモータインダクタンス情報InfLとして測定するものである。モータインダクタンス情報InfLを利用することで、モータ制御性能を向上させることができる。
モータインダクタンス測定装置50は、通電制御部2とインダクタンス演算部3とを備えている。なお、図1では、モータインダクタンス情報InfLを測定する方法を説明するために、モータ1、インバータ装置4、電流センサ5を接続して記載している。インバータ装置4は、インバータ41とインバータ41を制御する制御信号生成器42とを備えている。制御信号生成器42では電圧指令(vu*,vv*,vw*)を入力してPWM(Pulse Width Modulation)処理を行い、インバータ41を制御する指令を生成するが、詳細は「ACサーボシステムの理論と設計の実際」(総合電子出版、1997)(文献A)に記載されているので、ここでは説明を省略する。モータ1を誘導モータとして記載しているが、同期モータでも同様にモータインダクタンス情報InfLの測定が可能である。なお本実施の形態においては、インバータ装置4は電圧指令92を入力してPWMを行う構成として説明しているが、モータインダクタンス測定装置50側でPWMを行ってスイッチング指令を出力し、インバータ装置4を駆動する構成としてもよい。電圧指令92は、交流電圧の振幅指令値及び直流電圧の大きさの指令値を含んでいる。直流電圧は交流電圧が重畳されるバイアス電圧である。なお、後述する他の電圧指令も、交流電圧の振幅指令値及び直流電圧の大きさの指令値を含んでいる。
通電制御部2はモータ1に予め設定された電流が流れるよる通電制御処理を行う。通電制御部2は、座標変換部21、電流制御部22、電流指令出力部23、座標変換部24を備えている。通電制御部2は、dq軸の2軸直交回転座標上に構築され、かつ電流指令出力部23から出力される電流指令90に応じた電流が流れるように、インバータ装置4を制御する。電流指令90は、2つの成分すなわちd軸電流指令ids*、q軸電流指令iqs*を有している。電流指令90のベクトル表記は、(ids*,iqs*)である。電流指令90は2軸直交回転座標上の2軸(d軸、q軸)に対する電流指令なので、2軸電流指令と表現することもできる。電流指令(ids*,iqs*)は、適宜dq軸電流指令(ids*,iqs*)と表記する。電流指令90は、交流電流の振幅指令値及び直流電流の大きさの指令値を含んでいる。直流電流は交流電流が重畳されるバイアス電流である。なお、後述する他の電流指令も、交流電流の振幅指令値及び直流電流の大きさの指令値を含んでいる。インバータ装置4では電流指令90に応じた駆動電圧93をモータ1に印加して電力供給を行う。駆動電圧93は、3つの成分すなわちu相駆動電圧vu、v相駆動電圧vv、w相駆動電圧vwを有している。駆動電圧93のベクトル表記は、(vu,vv,vw)である。インバータ装置4の制御はPWM処理等が必要であるが、公知の技術となるので説明を省略する。電流センサ5は、モータ1に流れる電流である検出電流94を検出する。検出電流94は、3つの成分すなわちu相検出電流iu、v相検出電流iv、w相検出電流iwを有している。検出電流94のベクトル表記は、(iu,iv,iw)である。
座標変換部24は、検出電流94をdq軸の2軸直交回転座標上の検出電流であるdq軸電流95に変換する。dq軸電流95は、2つの成分すなわちd軸電流ids、q軸電流iqsを有している。dq軸電流95のベクトル表記は、(ids,iqs)である。dq軸電流95は、2軸直交回転座標上の2軸(d軸、q軸)に流れる電流なので、2軸電流と表現することもできる。電流制御部22は電流指令90及びdq軸電流95を入力して、PI(Proportional Integral)制御、非干渉制御等の処理を行い、電圧指令91を出力する。電圧指令91は、2つの成分すなわちd軸電圧指令vd*、q軸電圧指令vq*を有している。電圧指令91のベクトル表記は、(vd*,vq*)である。電流制御部22は、電流指令90にて指令された交流電流及び直流電流がモータ1に流れるように、交流電圧の振幅指令値及び直流電圧の大きさの指令値を生成する。モータ1に流れる直流電流は直流電圧によって制御される。この電流制御部22における処理及び詳細な構成は公知の技術である。例えば誘導モータに通電してインダクタンス測定を行う場合は、誘導モータ向けの電流制御を実施すればよく、文献Aに詳細が記載されている。
座標変換部21は、電圧指令91を3相の電圧指令92に変換し、インバータ装置4に出力する。電圧指令92は、3つの成分すなわちu相電圧指令vu*、v相電圧指令vv*、w相電圧指令vw*を有している。電圧指令92のベクトル表記は、(vu*,vv*,vw*)である。
通電制御部2は、座標変換部21、電流制御部22、電流指令出力部23、座標変換部24の処理を繰り返して、モータ1に所望の電流が流れるように動作する。なお座標変換部21及び座標変換部24に用いる座標変換位相θは、モータ制御方式に応じて算出方法が異なるが、モータ回転子磁極位置あるいは回転子磁束の位相の推定値等となる。また、実施の形態1のモータインダクタンス測定方法は、モータ1の回転速度に依存せずに実施できるため、速度制御等のその他の処理の記載は省略している。
次にインダクタンス演算部3について説明する。モータ1を誘導モータとし、同モータ1のq軸回路におけるモータインダクタンス情報InfLを測定する場合における、インダクタンス演算部3の構成及び動作を説明する。このとき測定するモータインダクタンス情報InfLは、誘導モータであるモータ1の漏れインダクタンスに対応する情報となる。このため、実施の形態1のモータインダクタンス測定装置50は、2軸直交回転座標上のd軸側に一定の電流を流し、q軸側に交流電流を流してモータインダクタンス情報InfLの測定を行う。したがって、通電制御部2の電流指令出力部23は、d軸電流指令ids*に直流値、q軸電流指令iqs*に交流値と直流値の和を電流指令90として出力することとなる。
インダクタンス演算部3は、ハイパスフィルタ31a、31b、磁束演算部32、データ記録部33、シーケンス設定部34を備えている。ハイパスフィルタ31bは、電圧指令91を入力として、その中に含まれる交流成分である電圧指令交流成分96を出力する。電圧指令交流成分96は、2つの成分すなわちd軸電圧指令交流成分vdAC*、q軸電圧指令交流成分vqAC*を有している。電圧指令交流成分96のベクトル表記は、(vdAC*,vqAC*)である。ハイパスフィルタ31aは、dq軸電流95を入力として、その中に含まれる交流成分であるdq軸電流交流成分97を出力する。dq軸電流交流成分97は、2つの成分すなわちd軸電流交流成分idsAC、q軸電流交流成分iqsACを有している。dq軸電流交流成分97のベクトル表記は、(idsAC,iqsAC)である。ここではq軸側に交流通電をするのでvqAC*とiqsACを利用する。
磁束演算部32は、電圧指令交流成分96、dq軸電流交流成分97に基づいて後述するq軸磁束交流成分ΦqsACを演算し、モータインダクタンス情報InfLを生成する。データ記録部33は、モータインダクタンス情報InfLを記録する。シーケンス設定部34は、測定実行信号sig1を電流指令出力部23に出力し、記録実行信号sig2をデータ記録部33に出力する。モータインダクタンス情報InfLは、例えば図5に示す特性56a、56b等のループ状磁束データdata1である。次に、磁束演算部32がq軸磁束交流成分ΦqsACを演算する方法を説明する。
ここでモータ1は誘導モータであるので、文献Aよりq軸電流iqsの状態方程式は式(1)となる。式(1)において、測定対象は漏れインダクタンスσLsとなる。滑り周波数ωseは式(2)となる。なお、式(1)はd軸を誘導モータの回転子磁束の方向にとった場合の式であり、q軸方向の回転子磁束はゼロとなる。
電源周波数ωと滑り周波数ωseと電気角周波数ωreとの関係は式(3)となる。また、漏れ係数σは式(4)で得られる。d軸回転子磁束Φdrは式(5)となる。
ここで、vqはq軸電圧であり、Rsは固定子抵抗であり、Rrは回転子抵抗である。Lsは固定子インダクタンスであり、Lrは回転子インダクタンスであり、Mは相互インダクタンスである。なお、電気角周波数ωreはモータ回転速度の極対数倍の値である。
式(1)〜式(5)を統合して変形すると式(6)が得られる。
q軸電流iqsに比例してモータトルクが発生するので、q軸電流iqsに交流成分すなわちq軸電流交流成分iqsACが含まれる場合、モータトルクもこれに応じて変化し、さらにモータ1の回転速度も変動する。式(6)において、モータ1の回転速度は電気角速度すなわち電気角周波数ωreに相当する。しかし、q軸電流交流成分iqsACの周波数が十分高い場合、モータ回転子のイナーシャにより、誘導モータの回転速度は交流電流であるq軸電流交流成分iqsACによるトルクに反応できない。このため、モータ回転速度に相当する電気角速度(電気角周波数ωre)は一定となる。従ってq軸電流iqsへの交流通電の周波数が十分高い場合、交流成分のみを取り出すと式(7)が得られる。ここで、固定子インダクタンスLsと回転子インダクタンスLrはほぼ等しいと仮定している。vqACは、q軸電圧vqのq軸電圧交流成分である。
q軸磁束交流成分ΦqsACは式(8)で表され、この式(8)を用いて式(7)を変形すると、式(9)が得られる。
ここで、固定子抵抗Rsと回転子抵抗Rrは既知とする。q軸電圧交流成分vqACはq軸電圧指令交流成分vqAC*で代用し、q軸電流交流成分iqsACは電流センサ5にて検出された検出電流94より得られる。このため式(9)の右辺は演算が可能である。磁束演算部32では式(9)の演算を行い、q軸磁束交流成分ΦqsACを生成する。さらに式(8)より、q軸磁束交流成分ΦqsACとq軸電流交流成分iqsACとの関係すなわちq軸磁束交流成分ΦqsACとq軸電流交流成分iqsACとの特性を抽出して、測定対象の漏れインダクタンスσLsを演算すればよいことになる。
式(9)は、印加した交流電圧であるq軸電圧交流成分vqACから、交流電流であるq軸電流交流成分iqsACによる抵抗電圧すなわち(Rs+Rr)・iqsACを差し引いた残存電圧を積分することで交流磁束が演算できることを示している。図5に示す特性56a、56bは、ある誘導モータの交流電流の瞬時値に対する交流磁束の瞬時値を表した特性の一例である。特性56a、56bは、ループ状になっており、それぞれループ状磁束データdata1すなわちモータインダクタンス情報InfLである。モータインダクタンス情報InfLは、交流電流の瞬時値に対する交流磁束の瞬時値を表した特性ということもできる。
モータインダクタンス情報InfLの具体例を説明する。ある誘導モータでの測定結果を図2〜図5に示した。図2ではq軸電圧指令交流成分vqAC*の波形53a、53bが示されており、図3ではq軸電流交流成分iqsACの波形54a、54bが示されており、図4ではq軸磁束交流成分ΦqsACの波形55a、55bが示されている。図2〜図4において横軸は時間[sec]である。図2〜図4において縦軸は、それぞれq軸電圧指令交流成分vqAC*の電圧[V]、q軸電流交流成分iqsACの電流[A]、q軸磁束交流成分ΦqsACの磁束[Wb]である。図2〜図4のTは交流成分の周期である。図5では、モータインダクタンス情報InfLの一例であるループ状磁束データdata1の特性56a、56bが示されている。図5において、横軸はq軸電流交流成分iqsACの電流[A]であり、縦軸はq軸磁束交流成分ΦqsACの磁束[Wb]である。
図2のq軸電圧指令交流成分vqAC*、図3のq軸電流交流成分iqsACは、それぞれ式(9)の右辺のパラメータであるvqAC、iqsACに対応する信号の測定結果である。図4のq軸磁束交流成分ΦqsACは、式(9)を用いて演算した結果である。ここで、式(9)の演算においてvqACの代用としてvqAC*を用いる。図2〜図4では、交流成分の振幅が小さい場合と大きい場合とを示しており、波形53a、54a、55aがq軸電流指令iqs*に含まれる交流成分の振幅が小さい場合であり、波形53b、54b、55bが交流成分の振幅が大きい場合である。図5の特性56aは、q軸電流指令iqs*に含まれる交流成分の振幅が小さい場合であり、q軸電流交流成分iqsACの波形54aとq軸磁束交流成分ΦqsACの波形55aとによる特性である。図5の特性56bは、交流成分の振幅が大きい場合であり、q軸電流交流成分iqsACの波形54bとq軸磁束交流成分ΦqsACの波形55bとによる特性である。
式(8)に従えば、漏れインダクタンスσLsを演算するには、q軸電流交流成分iqsACに対するq軸磁束交流成分ΦqsACの傾き(比例係数)を演算すればよいことになる。しかし、q軸電流交流成分iqsAC、q軸磁束交流成分ΦqsACの各信号を軸にとりプロットすると、図5に示したようにq軸電流交流成分iqsACに対してヒステリシス特性を伴って変化する歪んだループ状の特性となり(現象1)、単純な比例係数として取り扱う場合は漏れインダクタンスσLsの精度が低下する。なお、この現象1の説明は、前述した現象1の説明と異なるが、同様の現象である。特許文献1の漏れインダクタンスを測定する技術では、電圧及び電流の実効値に基づいたインダクタンスの値の演算を行っていた。しかし、図3及び図4に示したように、q軸電流交流成分iqsACに対してq軸磁束交流成分が瞬時的に変化し、特許文献1の漏れインダクタンスを測定する技術では十分な精度を持ったインダクタンス情報を演算できない結果となると言える。
これに対し実施の形態1のモータインダクタンス測定装置50は、データ記録部33が、式(8)に示す単純な傾きの係数としての漏れインダクタンスσLsではなく、q軸電流交流成分iqsACに対するq軸磁束交流成分ΦqsACの変化特性(特性56a、56b)であるループ状磁束データdata1をモータインダクタンス情報InfLとしてそのまま記録する。これにより、実施の形態1のモータインダクタンス測定装置50は、非常に高精度に漏れインダクタンスに演算可能なモータインダクタンス情報InfLを測定でき、かつ保持することが可能となる。また、実施の形態1のモータインダクタンス測定装置50は、漏れインダクタンスの影響が反映されたq軸磁束交流成分ΦqsAC等の磁束を利用してモータ1を制御するモータ駆動装置に適したモータインダクタンス情報InfLを測定でき、かつ保持することが可能となる。なお、本実施の形態1ではq軸側に交流通電を行ってモータインダクタンス情報InfLを測定する場合について説明したが、d軸側に交流通電を行って同様のモータインダクタンス情報InfLを測定する場合も、同様に可能である。また、モータ1を同期モータとした場合でも、同様な手順でインダクタンス情報を測定できる。
図5では、大小2種類の振幅のq軸電流交流成分iqsACに対するq軸磁束交流成分ΦqsACの測定結果を記載している。図5から分かるように、q軸電流交流成分iqsACの振幅の変化に伴い、q軸電流交流成分iqsACに対するq軸磁束交流成分ΦqsACのループの形状も変化する。従って、モータ1の実際の運転条件すなわち通電条件と同じ条件で測定を行い、運転条件毎にモータインダクタンス情報InfLであるループ形状のデータすなわちループ状磁束データdata1を記録すれば、実際のモータ運転時に即したモータインダクタンス情報InfLを用いてモータ1の制御を行える。このため、モータインダクタンス情報InfLを用いてモータ1の制御を行うことで、モータ制御性能を向上させる効果がある。モータ制御性能の向上の詳細については、実施の形態5〜8のモータ駆動システム70において説明する。
図5では、例としてq軸電流交流成分iqsACの振幅のみを変更した測定結果を記載したが、直流となるd軸電流idsの大きさ、q軸電流iqsに含まれる直流電流(直流成分)等も、モータインダクタンス情報InfLであるループ形状のデータ(ループ状磁束データdata1)を変化させる。従って、シーケンス設定部34は、モータ1の運転状況に即した、高精度なモータインダクタンス情報InfLを測定するように動作する。具体的には、シーケンス設定部34は通電シーケンスを設定して電流指令出力部23に指示を与え、同時にデータ記録部33にもモータインダクタンス情報InfLの記録の指示を与える。シーケンス設定部34は、電流指令出力部23に測定実行信号sig1を出力し、データ記録部33に記録実行信号sig2を出力する。
図6は、シーケンス設定部34の動作フローの一例であり、q軸側に交流通電する場合のフローチャートである。モータ1の運転条件を余さずカバーして測定するために、シーケンス設定部34は電流指令条件を適宜変更して、検出電流94の測定及びモータインダクタンス情報InfLの測定を行うように電流指令出力部23、データ記録部33へ指示を出力する。ここでは、モータ1の運転条件により予め定められた、q軸電流指令iqs*における交流成分の値である交流信号振幅値Iac1、直流成分の値である直流信号値Idc1、さらにモータ1の運転条件により予め定められたd軸電流指令ids*の直流成分の値である直流信号値Idc2を変更する例を説明する。
誘導モータにおいては、d軸電流指令ids*は固定した一定値とする場合がある。あるいはd軸回転子磁束Φdrに対し、磁束制御により弱めの制御等を行ってd軸電流指令ids*を変化させる。この場合も誘導モータの回転子磁束の応答が低いため、磁束指令を急激に変化させることは少なく、d軸電流指令ids*も急激に変化させることはない。このためd軸電流指令ids*は一定値の直流信号値Idc2として設定する。
一方でq軸電流指令iqs*はトルク電流指令となる。モータ1に接続された負荷装置を駆動させるには、一定の負荷トルクが必要であり、さらにモータ1の速度制御に応じ高応答に変化するトルクを要する場合もある。これに対応するために、q軸電流指令iqs*は、一定値の直流信号値Idc1と変化する交流信号振幅値Iac1との和で設定する。なおq軸電流指令iqs*に含ませる交流信号の周波数は、高いほどq軸磁束交流成分ΦqsACの時間変化に起因する電圧が大きくなり、ノイズに対するS/N比を改善して測定ができる。ただし、インバータ装置4で出力できる電圧には上限があるため、これを考慮する必要がある。またモータ回転速度が一定とみなせる、すなわち式(9)が成立する程度の周波数を、モータ1に接続した負荷装置の特性を考慮して設定する。
図6に示したシーケンス設定部34のフロー及び実施の形態1のモータインダクタンス測定方法を説明する。ステップST01にて、シーケンス設定部34は、q軸電流指令iqs*に反映される直流信号値Idc1を設定する。ステップST02にて、シーケンス設定部34は、q軸電流指令iqs*に反映される交流信号振幅値Iac1を設定する。ステップST03にて、シーケンス設定部34は、d軸電流指令ids*に反映される直流信号値Idc2を設定する。ステップST01、ST02、ST03は、電流指令設定手順である。ステップST04にて、シーケンス設定部34は、モータインダクタンス情報InfLを測定するシーケンスを実行する(モータインダクタンス情報測定手順)。具体的には、シーケンス設定部34は、直流信号値Idc1、交流信号振幅値Iac1、直流信号値Idc2を含む測定実行信号sig1を電流指令出力部23に出力する。シーケンス設定部34は、交流電圧を印加するq軸に対してさらに直流電圧を印加して直流電流を重畳して流すように、交流電流の振幅指令値(交流信号振幅値Iac1)及び直流電流の大きさの指令値(直流信号値Idc1)を含む測定実行信号sig1を通電制御部2の電流指令出力部23に出力する。磁束演算部32は、測定実行信号sig1をトリガとして生成された電圧指令交流成分96、及び測定実行信号sig1によって駆動しているモータ1から検出された検出電流94により生成されたdq軸電流交流成分97に基づいてモータインダクタンス情報InfLであるループ状磁束データdata1を生成する(測定実行手順)。なお、電流指令設定手順で設定された電流指令90に基づいてモータ1から検出電流94を検出する手順は電流検出手順である。測定実行手順は、モータインダクタンス情報InfLであるループ状磁束データdata1を生成するので、インダクタンス情報生成手順ということもできる。測定実行手順により、モータインダクタンス測定装置50は、モータインダクタンス情報InfLであるループ状磁束データdata1を測定する。また、シーケンス設定部34は、磁束演算部32が生成したループ状磁束データdata1をモータインダクタンス情報InfLとして記録するように、記録実行信号sig2をデータ記録部33に出力する(データ記録実行手順)。
ステップST04が実行されると、1組のq軸電流指令iqs*、d軸電流指令ids*に対応するループ状磁束データdata1が磁束演算部32にて生成され、ループ状磁束データdata1がデータ記録部33に記録される。記録実行信号sig2を出力するタイミングは、例えば、測定実行信号sig1を出力してから磁束演算部32の処理が終わる想定時間後に出力する。また、シーケンス設定部34は、磁束演算部32からループ状磁束データdata1の生成が終了したことを示す生成終了信号を受けて、データ記録部33に記録実行信号sig2を出力してもよい。
ステップST05にて、シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1を変更する(電流指令変更手順)。ステップST06にて、シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1の全ての条件で通電したかを判定する(測定終了判定手順)。シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1の全ての条件で通電したと判定した場合は、終了する。また、シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1の全ての条件で通電していないと判定した場合は、ステップST01に戻る。例えば、シーケンス設定部34は、最後の直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1の設定値に終了を示す値を設定した場合に、ステップST06にて全ての条件で通電した判定する。終了を示す値は、例えば、ヌル(null)、マイナスの値等である。
ステップST01〜ステップST06を繰り返し実行することで、複数の電流指令条件に対応した複数の特性56a、56bを含むループ状磁束データdata1のセットを測定することができる。ステップST01〜ステップST06をn回繰り返し実行することで、n個の電流指令条件に対応したループ状磁束データdata1のセット、すなわちn個の電流指令条件に対応したモータインダクタンス情報InfLのセットを取得することができる。したがって、データ記録部33には、複数のループ状磁束データdata1を含むループ状磁束データセット、すなわち複数のモータインダクタンス情報InfLを含むモータインダクタンス情報セットが記録される。なお、図6ではステップST05の電流指令変更手順がステップST06の測定終了判定手順の前に実行されている例を説明したが、ステップST05の電流指令変更手順はステップST06の測定終了判定手順においてNo判定の後に実行するようにしてもよい。この場合は、有効な直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1の設定値が終了した後に、直流信号値Idc1、直流信号値Idc2、交流信号振幅値Iac1を変更することなく終了する。
図6に示したシーケンス設定部34のフローチャートでは、dq軸電流指令(ids*,iqs*)すなわち電流指令90を変化させて、各条件のモータインダクタンス情報InfLであるループ状磁束データdata1を測定するシーケンスを実行する例を示している。実施の形態1のモータインダクタンス測定装置50は、図6に示したシーケンス設定部34の動作により、モータ1の実際の運転条件に応じたモータインダクタンス情報InfLの測定が可能となる。なお、図6のフローチャートでは、q軸側に交流通電する場合について説明したが、測定対象となるモータ1の種類及び通電パターンに応じ、電流指令90の条件をカバーするように複数のモータインダクタンス情報InfLを測定するための通電シーケンスを設定すればよい。
実施の形態1のモータインダクタンス測定装置50は、モータインダクタンス情報InfLとして、モータ電流と磁束とを結びつける係数ではなく、図5のようなループ状磁束データdata1を生成して記録する。実施の形態1のモータインダクタンス測定装置50は、ループ状磁束データdata1から漏れインダクタンスの影響が反映されたq軸磁束交流成分ΦqsAC等の磁束を利用してモータ1を制御できるので、モータ電流の瞬時的な値に応じた精度の良いモータインダクタンス情報InfLを測定できると言える。言い換えると、実施の形態1のモータインダクタンス測定装置50は、モータ電流が高応答に変化する場合に適した、モータインダクタンス情報InfLを精度良く測定することが可能となる。
なお、モータインダクタンス情報InfLの一例として、ループ形状のデータすなわちループ状磁束データdata1を説明した。しかし、インダクタンス演算部3の磁束演算部32が生成する磁束データの形状は、モータの特性に依存するので、ループ形状に限定されない。したがって、モータインダクタンス情報InfLは、第一形状のデータすなわち第一磁束データであってもよい。ループ状磁束データdata1は、第一磁束データdata1ということもできる。
以上のように、実施の形態1のモータインダクタンス測定装置50は、モータ1に流れる交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56bを含むインダクタンス情報(モータインダクタンス情報InfL)を測定するモータインダクタンス測定装置である。実施の形態1のモータインダクタンス測定装置50は、モータ1の2軸直交回転座標上の少なくとも1つの軸(q軸)に交流電圧(q軸電圧交流成分vqAC)を印加して交流電流(q軸電流交流成分iqsAC)を流すように、モータ1の通電制御を行う通電制御部2と、モータ1から検出された検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr)とによる抵抗電圧((Rs+Rr)・iqsAC)を交流電圧(q軸電圧交流成分vqAC)から差し引いた残存電圧を積分することで交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56bをインダクタンス情報(モータインダクタンス情報InfL)として生成するインダクタンス演算部3と、を備えている。実施の形態1のモータインダクタンス測定装置50は、この構成により、検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr)とによる抵抗電圧((Rs+Rr)・iqsAC)及び交流電圧に基づいて交流磁束(q軸磁束交流成分ΦqsAC)を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56bをインダクタンス情報(モータインダクタンス情報InfL)として生成するので、モータ1のインダクタンスに相当するモータインダクタンス情報InfLを高精度に測定することができる。
実施の形態1のモータインダクタンス測定方法は、モータ1に流れる交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56bを含むインダクタンス情報(モータインダクタンス情報InfL)を測定するモータインダクタンス測定方法である。実施の形態1のモータインダクタンス測定方法は、モータ1の2軸直交回転座標上の少なくとも1つの軸(q軸)に交流電圧(q軸電圧交流成分vqAC)を印加して交流電流(q軸電流交流成分iqsAC)を流すように、モータ1の2軸直交回転座標上の2軸(d軸、q軸)に対して流す電流(dq軸電流95)を制御する電流指令90の電流値(直流信号値Idc2、直流信号値Idc1、交流信号振幅値Iac1)を設定する電流指令設定手順と、電流指令設定手順で設定された電流指令90に基づいてモータ1から検出電流94を検出する電流検出手順と、を含んでいる。更に、実施の形態1のモータインダクタンス測定方法は、電流検出手順にて検出された検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr)とによる抵抗電圧((Rs+Rr)・iqsAC)を交流電圧(q軸電圧交流成分vqAC)から差し引いた残存電圧を積分することで交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56bをインダクタンス情報(モータインダクタンス情報InfL)として生成するインダクタンス情報生成手順と、を含んでいる。実施の形態1のモータインダクタンス測定装置50は、この構成により、検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr)とによる抵抗電圧((Rs+Rr)・iqsAC)及び交流電圧に基づいて交流磁束(q軸磁束交流成分ΦqsAC)を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56bをインダクタンス情報(モータインダクタンス情報InfL)として生成するので、モータ1のインダクタンスに相当するモータインダクタンス情報InfLを高精度に測定することができる。
実施の形態2.
図7は、実施の形態2に係るモータインダクタンス測定装置の構成を示す図である。図8は図7の非ループ状磁束データdata2を示す図であり、図9は図7のシーケンス設定部の動作フローを示す図である。実施の形態2のモータインダクタンス測定装置50は、インダクタンス演算部3において情報変換部35が追加され、磁束演算部32で生成されたループ状磁束データdata1から情報変換部35が非ループ状磁束データdata2及び負性抵抗Rnに変換して、これらをモータインダクタンス情報InfLとしてデータ記録部33に記録する点で、実施の形態1のモータインダクタンス測定装置50と異なる。実施の形態1のモータインダクタンス測定装置50と異なる部分を主に説明する。
磁束演算部32は、図5に示した歪んだループ形状のループ状磁束データdata1を生成する。実施の形態1と同様に、モータ1を誘導モータとし、q軸側に交流通電を行って、漏れインダクタンスに対応するモータインダクタンス情報InfLを測定する場合を例に取って説明する。実施の形態2のモータインダクタンス測定装置50では、式(9)に代えて式(10)を用いてq軸磁束ΦqsACの演算を行う。
式(10)中のRnは負の抵抗値であり、すなわち負性抵抗である。式(10)で「−Rn」と記載し、式(10)においてはマイナス記号にて負性抵抗Rnが負値であることを明記している。負の抵抗値であるRnによる抵抗電圧(−Rn・iqsAC)が、正の抵抗値である固定子抵抗Rs及び回転子抵抗Rrの抵抗電圧(Rs・iqsAC、Rr・iqsAC)と同じくq軸電圧交流成分vqACを降下させる働きがあることを示している。なお、図7において、負性抵抗Rnに「−」をつけて「−Rn」と記載した。すなわち、正の値を示すように、「−Rn」と記載した。負性抵抗Rnの特徴及びその値の選択方法を説明する。
本願明細書の筆者(発明者)は負性抵抗Rnを考慮し、この値を適切に選択して式(10)に従ってq軸磁束交流成分ΦqsACを演算すると、ループ状磁束データdata1(図5参照)が図8のように曲線状に変化し、非ループ状磁束データdata2が得られること、すなわちq軸電流交流成分iqsACに対してループ形状にならないq軸磁束交流成分ΦqsACが得られることを見出した。図8において、横軸はq軸電流交流成分iqsACの電流[A]であり、縦軸はq軸磁束交流成分ΦqsACの磁束[Wb]である。図8の特性57aは、q軸電流とq軸磁束の交流成分の振幅とが小さい場合であり、図8の特性57bは、同交流成分の振幅が大きい場合である。
また、図8のように、q軸電流交流成分iqsACの振幅を変化させてもモータインダクタンス情報InfLである非ループ状磁束データdata2の特性57aが特性57bに重なることを見出した。また、負性抵抗Rnについても、q軸電流交流成分iqsACの振幅を変化させても同じ値となることを見出した(現象2)。
この現象2を用いると、実施の形態1のモータインダクタンス情報InfLとなるループ状磁束データdata1(図5参照)を、図8の非ループ状磁束データdata2と抵抗電圧(Rn・iqsAC)を生じさせる負性抵抗Rnとの組み合わせとすることができる。すなわち、非ループ状磁束データdata2と負性抵抗Rnとの組み合わせを、モータインダクタンス情報InfLとすることができる。したがって、非ループ状磁束データdata2と負性抵抗Rnとを、実施の形態2のモータインダクタンス情報InfLとする。この場合、データ記録部33に記録する実施の形態2のモータインダクタンス情報InfLは、q軸電流交流成分iqsACの振幅が変化しても、1つの曲線特性(特性57b)と負性抵抗Rnとにできるため、データ記録部33に保持すべき情報を大幅に圧縮して記録容量削減できる効果がある。したがって、実施の形態2のモータインダクタンス測定装置50は、モータインダクタンス情報InfLの記録容量を実施の形態1のモータインダクタンス測定装置50に比べて少なくすることができる。実施の形態2のモータインダクタンス測定装置50は、複数のモータインダクタンス情報InfLを含むモータインダクタンス情報セットの記録容量を実施の形態1のモータインダクタンス測定装置50に比べて少なくすることができる。
式(10)は、印加した交流電圧であるq軸電圧交流成分vqACから、交流電流であるq軸電流交流成分iqsACによる抵抗電圧すなわち(Rs+Rr−Rn)・iqsACを差し引いた残存電圧を積分することで交流磁束が演算できることを示している。ここで、残存電圧はvqAC−(Rs+Rr−Rn)・iqsACである。図8に示す特性57a、57bは、交流電流の瞬時値に対する交流磁束の瞬時値を表した特性である。特性57a、57bは、非ループ状になっており、それぞれ非ループ状磁束データdata2である。非ループ状磁束データdata2は負性抵抗Rnを適切に選択して得られた特性なので、非ループ状磁束データdata2と負性抵抗Rnとの組み合わせがモータインダクタンス情報InfLである。モータインダクタンス情報InfLは、交流電流の瞬時値に対する交流磁束の瞬時値を表した特性ということもできる。負性抵抗Rnは、ループ状磁束データdata1を非ループ状磁束データdata2に変換する抵抗型パラメータということもできる。
情報変換部35の動作を説明する。情報変換部35は、磁束演算部32が生成したループ状磁束データdata1から、以下のように非ループ状磁束データdata2及び負性抵抗Rnに変換する。磁束演算部32が生成したループ状磁束データdata1する手順は磁束データ生成手順である。情報変換部35は、負性抵抗Rnの初期値を式(10)に代入してq軸磁束交流成分ΦqsACを演算する(磁束交流成分演算手順)。その後、情報変換部35は、演算したq軸磁束交流成分ΦqsACが非ループ状になっているかを判定する(非ループ判定手順)。非ループ判定手順にて、q軸磁束交流成分ΦqsACが非ループ状になっていると判定した場合は、選択した負性抵抗Rnと非ループ状磁束データdata2とをモータインダクタンス情報InfLとして生成する(情報生成手順)。非ループ判定手順にて、q軸磁束交流成分ΦqsACが非ループ状になっていないと判定した場合は、負性抵抗Rnの値を変更して、磁束交流成分演算手順を実行する。情報変換部35は、磁束交流成分演算手順及び非ループ判定手順により、磁束データ生成手順で生成されたループ状磁束データdata1を、抵抗型パラメータである負性抵抗Rnを用いて非ループ形状の非ループ状磁束データdata2に変換する(磁束データ変換手順)。
上述した非ループ状磁束データdata2及び負性抵抗Rnを生成する方法は、式(10)で演算したq軸磁束交流成分ΦqsACの形状が非ループ状になるように負性抵抗Rnの値を適宜変えて式(10)の演算を行い、非ループ状に最も近くなる負性抵抗Rnの値を選択する方法である。
また、非ループ状磁束データdata2は図8から明らかなように、q軸電流交流成分iqsACに対して緩やかな変化となっている。このため、情報変換部35は、数点の電流に対するデータを保持しておき、補完等の処理を用いて特性57bが再現できるようにデータ点を削減して生成した非ループ状磁束データdata2をデータ記録部33に出力しても良い。これにより、実施の形態2のモータインダクタンス測定装置50は、モータインダクタンス情報InfLの記録容量をさらに削減することができる。
実施の形態2のモータインダクタンス測定装置50は、磁束演算部32で生成されたループ状磁束データdata1から情報変換部35が非ループ状磁束データdata2及び負性抵抗Rnに変換して、これらをモータインダクタンス情報InfLとしてデータ記録部33に記録する。非ループ状磁束データdata2はq軸電流交流成分iqsACが最大の振幅となる場合の1つの曲線特性でよいので、実施の形態2のモータインダクタンス測定装置50は、最大の振幅となるq軸電流交流成分iqsACに対してのみモータインダクタンス情報InfLの測定を実施すれば、その他の振幅のq軸電流交流成分iqsACに対する測定は省略できる。すなわち、実施の形態2のモータインダクタンス測定装置50は、モータインダクタンス情報InfLの測定シーケンスにおいて、q軸電流指令ids*の交流信号振幅値Iac1はその最大値のみとし、その他の通電条件を操作すればよくなる。このため、実施の形態2のモータインダクタンス測定装置50は、実施の形態1のモータインダクタンス測定装置50よりも操作する通電条件を削減でき、複数のモータインダクタンス情報InfLの測定に要する時間、すなわち複数のモータインダクタンス情報InfLを含むモータインダクタンス情報セットを取得する時間を大幅に短縮することが可能となる。実施の形態2のモータインダクタンス測定装置50は、シーケンス設定部34にてこのような動作を反映してモータインダクタンス情報InfLの測定を行う。
図9に示したシーケンス設定部34のフロー及び実施の形態2のモータインダクタンス測定方法を説明する。ステップST11にて、シーケンス設定部34は、q軸電流指令iqs*に反映される交流信号振幅値Iac1の最大値すなわち交流信号振幅の最大値Iacmを設定する。ステップST12にて、シーケンス設定部34は、q軸電流指令iqs*に反映される直流信号値Idc1を設定する。ステップST13にて、シーケンス設定部34は、d軸電流指令ids*に反映される直流信号値Idc2を設定する。ステップST11、ST12、ST13は、電流指令設定手順である。また、ステップST11は交流電流指令設定手順であり、ST12、ST13は直流電流指令設定手順である。
ステップST14にて、シーケンス設定部34は、モータインダクタンス情報InfLを測定するシーケンスを実行する(モータインダクタンス情報測定手順)。具体的には、シーケンス設定部34は、直流信号値Idc1、交流信号振幅の最大値Iacm、直流信号値Idc2を含む測定実行信号sig1を電流指令出力部23に出力する。シーケンス設定部34は、交流電圧を印加するq軸に対してさらに直流電圧を印加して直流電流を重畳して流すように、交流電流の振幅指令値(交流信号振幅の最大値Iacm)及び直流電流の大きさの指令値(直流信号値Idc1)を含む測定実行信号sig1を通電制御部2の電流指令出力部23に出力する。磁束演算部32は、測定実行信号sig1をトリガとして生成された電圧指令交流成分96、及び測定実行信号sig1によって駆動しているモータ1から検出された検出電流94により生成されたdq軸電流交流成分97に基づいてループ状磁束データdata1を生成する。情報変換部35は、ループ状磁束データdata1に基づいて、モータインダクタンス情報InfLである非ループ状磁束データdata2及び負性抵抗Rnを生成する(測定実行手順)。測定実行手順により、モータインダクタンス測定装置50は、モータインダクタンス情報InfLである非ループ状磁束データdata2及び負性抵抗Rnを測定する。また、シーケンス設定部34は、磁束演算部32が生成したループ状磁束データdata1から情報変換部35が変換により生成した非ループ状磁束データdata2及び負性抵抗Rnを記録するように、記録実行信号sig2をデータ記録部33に出力する(データ記録実行手順)。
ステップST14が実行されると、1組のq軸電流指令iqs*、d軸電流指令ids*に対応するループ状磁束データdata1が磁束演算部32にて生成され、情報変換部35がループ状磁束データdata1から変換により生成した非ループ状磁束データdata2及び負性抵抗Rnがデータ記録部33に記録される。記録実行信号sig2を出力するタイミングは、例えば、測定実行信号sig1を出力してから磁束演算部32及び情報変換部35の処理が終わる想定時間後に出力する。また、シーケンス設定部34は、情報変換部35から非ループ状磁束データdata2の生成が終了したことを示す生成終了信号を受けて、データ記録部33に記録実行信号sig2を出力してもよい。
ステップST15にて、シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2を変更する(電流指令変更手順)。ステップST16にて、シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2の全ての条件で通電したかを判定する(測定終了判定手順)。シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2の全ての条件で通電したと判定した場合は、終了する。また、シーケンス設定部34は、直流信号値Idc1、直流信号値Idc2の全ての条件で通電していないと判定した場合は、ステップST12に戻る。例えば、シーケンス設定部34は、最後の直流信号値Idc1、直流信号値Idc2の設定値に終了を示す値を設定した場合に、ステップST16にて全ての条件で通電した判定する。終了を示す値は、例えば、ヌル(null)、マイナスの値等である。
ステップST11の実行後にステップST12〜ステップST16を繰り返し実行することで、複数の電流指令条件に対応した複数の非ループ状磁束データdata2及び負性抵抗Rnのセットを測定することができる。ステップST11の実行後にステップST12〜ステップST16をn回繰り返し実行することで、n個の電流指令条件に対応した非ループ状磁束データdata2及び負性抵抗Rnのセット、すなわちn個の電流指令条件に対応したモータインダクタンス情報InfLのセットを取得することができる。したがって、データ記録部33には、複数の非ループ状磁束データdata2及び負性抵抗Rnを含む磁束データ及び負性抵抗セット、すなわち複数のモータインダクタンス情報InfLを含むモータインダクタンス情報セットが記録される。なお、図9ではステップST15の電流指令変更手順がステップST16の測定終了判定手順の前に実行されている例を説明したが、ステップST15の電流指令変更手順はステップST16の測定終了判定手順においてNo判定の後に実行するようにしてもよい。この場合は、有効な直流信号値Idc1、直流信号値Idc2の設定値が終了した後に、直流信号値Idc1、直流信号値Idc2を変更することなく終了する。
実施の形態2のモータインダクタンス測定装置50は、磁束演算部32が生成したループ状磁束データdata1から、データ量が削減されたすなわち圧縮された非ループ状磁束データdata2及び負性抵抗Rnに変換する情報変換部35を備えている。情報変換部35は、交流電流の瞬時値に対応するq軸電流交流成分iqsACと交流磁束の瞬時値に対応するq軸磁束交流成分ΦqsACとの関係、すなわちループ状磁束データdata1を、交流電流の瞬時値による抵抗電圧が生じる抵抗型のパラメータである負性抵抗Rnと、交流電流の瞬時値を参照する非ループ状磁束データdata2とに変換し、非ループ状磁束データdata2及び負性抵抗Rnの組合せ情報をモータインダクタンス情報InfLとして生成する。
なお、モータインダクタンス情報InfLの一例として、ループ形状のデータすなわちループ状磁束データdata1から変換した非ループ形状のデータ、すなわち非ループ状磁束データdata2と負性抵抗Rnの組合せ情報を説明した。しかし、実施の形態1で説明したように、インダクタンス演算部3の磁束演算部32が生成する磁束データの形状は、モータの特性に依存するので、ループ形状に限定されない。したがって、磁束演算部32が生成する磁束データは第一形状のデータすなわち第一磁束データであってもよく、情報変換部35が生成する磁束データは第二形状のデータすなわち第二磁束データであってもよい。ループ状磁束データdata1は第一磁束データdata1ということもでき、非ループ状磁束データdata2は第二磁束データdata2ということもできる。
実施の形態2のモータインダクタンス測定装置50は、モータインダクタンス情報InfLとして、モータ電流と磁束とを結びつける係数ではなく、図8の特性57bのような非ループ状磁束データdata2及び負性抵抗Rnを生成して記録する。実施の形態2のモータインダクタンス測定装置50は、これによりモータ電流の瞬時的な値に応じた、精度の良いモータインダクタンス情報InfLを測定できる。言い換えると、実施の形態2のモータインダクタンス測定装置50は、モータ電流が高応答に変化する場合に適した、モータインダクタンス情報InfLを精度良く測定することが可能となる。
以上のように、実施の形態2のモータインダクタンス測定装置50は、モータ1に流れる交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性57bを含むインダクタンス情報(モータインダクタンス情報InfL)を測定するモータインダクタンス測定装置である。実施の形態2のモータインダクタンス測定装置50は、モータ1の2軸直交回転座標上の少なくとも1つの軸(q軸)に交流電圧(q軸電圧交流成分vqAC)を印加して交流電流(q軸電流交流成分iqsAC)を流すように、モータ1の通電制御を行う通電制御部2と、モータ1から検出された検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr、負性抵抗Rn)とによる抵抗電圧((Rs+Rr−Rn)・iqsAC)を交流電圧(q軸電圧交流成分vqAC)から差し引いた残存電圧を積分することで交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性57bをインダクタンス情報(モータインダクタンス情報InfL)として生成するインダクタンス演算部3と、を備えている。実施の形態2のモータインダクタンス測定装置50は、この構成により、検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr、負性抵抗Rn)とによる抵抗電圧((Rs+Rr−Rn)・iqsAC)及び交流電圧に基づいて交流磁束(q軸磁束交流成分ΦqsAC)を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性57bをインダクタンス情報(モータインダクタンス情報InfL)として生成するので、モータ1のインダクタンスに相当するモータインダクタンス情報InfLを高精度に測定することができる。
実施の形態2のモータインダクタンス測定方法は、モータ1に流れる交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性57bを含むインダクタンス情報(モータインダクタンス情報InfL)を測定するモータインダクタンス測定方法である。実施の形態2のモータインダクタンス測定方法は、モータ1の2軸直交回転座標上の少なくとも1つの軸(q軸)に交流電圧(q軸電圧交流成分vqAC)を印加して交流電流(q軸電流交流成分iqsAC)を流すように、モータ1の2軸直交回転座標上の2軸(d軸、q軸)に対して流す電流(dq軸電流95)を制御する電流指令90の電流値(直流信号値Idc2、直流信号値Idc1、交流信号振幅の最大値Iacm)を設定する電流指令設定手順と、電流指令設定手順で設定された電流指令90に基づいてモータ1から検出電流94を検出する電流検出手順と、を含んでいる。更に、実施の形態2のモータインダクタンス測定方法は、電流検出手順にて検出された検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr、負性抵抗Rn)とによる抵抗電圧((Rs+Rr−Rn)・iqsAC)を交流電圧(q軸電圧交流成分vqAC)から差し引いた残存電圧を積分することで交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性57bをインダクタンス情報(モータインダクタンス情報InfL)として生成するインダクタンス情報生成手順と、を含んでいる。実施の形態2のモータインダクタンス測定装置50は、この構成により、検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗(固定子抵抗Rs、回転子抵抗Rr、負性抵抗Rn)とによる抵抗電圧((Rs+Rr−Rn)・iqsAC)及び交流電圧に基づいて交流磁束(q軸磁束交流成分ΦqsAC)を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性57bをインダクタンス情報(モータインダクタンス情報InfL)として生成するので、モータ1のインダクタンスに相当するモータインダクタンス情報InfLを高精度に測定することができる。
実施の形態3.
図10は、実施の形態3に係るモータインダクタンス測定装置の構成を示す図である。実施の形態1及び実施の形態2で説明したモータインダクタンス測定装置50は、特定の機能を持った各構成要素が連携して動作し、課題の解決を図るものとして説明した。しかし、モータインダクタンス測定装置50は、プロセッサ上で実行されるプログラムの信号処理とプロセッサ上に設けられた論理回路における信号処理の結果とにより、機能が実現される構成としてもよい。図10はモータインダクタンス測定装置50の動作を、プロセッサ51とその上で走るプログラムの処理にて実施する場合の構成である。プロセッサ51はプログラムを記憶装置52から読みだして、プログラムを実行する。またプロセッサ51は、その処理の過程で一時的に記憶すべき情報の書き込み及び読み出しを行う。例えば実施の形態1及び実施の形態2のモータインダクタンス測定装置50において、プロセッサ51にからプログラムが実行されて実現される処理は、通電制御部2及びインダクタンス演算部3の処理である。なお、複数のプロセッサ51が連携して通電制御部2及びインダクタンス演算部3の機能を実現してもよい。
実施の形態1及び実施の形態2のモータインダクタンス測定装置50において各処理部の間に伝送される信号、すなわち電流指令90、電圧指令91、電圧指令92、dq軸電流95、電圧指令交流成分96、dq軸電流交流成分97、測定実行信号sig1、記録実行信号sig2等の信号は、記憶装置52に一時的に記憶される情報として実現される。プロセッサ51上で実行されるプログラムの信号処理とプロセッサ51上に設けられた論理回路における信号処理の結果とにより、機能が実現される構成としても、実施の形態1及び実施の形態2で説明した同じ効果が得られる。実施の形態3のモータインダクタンス測定装置50は、実施の形態1及び実施の形態2のモータインダクタンス測定装置50と同じ効果を奏する。
実施の形態4.
図11は、実施の形態4に係るモータインダクタンス測定装置の構成を示す図である。図12は図11のサーバに構築される回路ブロックの第一例を示す図であり、図13は図11のサーバに構築される回路ブロックの第二例を示す図である。図14は図11のサーバに構築される回路ブロックの第三例を示す図であり、図15は図11のサーバに構築される回路ブロックの第四例を示す図である。図16はモータインダクタンス情報を集積した集積データの第一例を示す図であり、図17はモータインダクタンス情報を集積した集積データの第二例を示す図である。モータインダクタンス測定装置50は、通電制御部2とインダクタンス演算部3とが同じ筐体に内蔵されてもよいが、通信ネットワーク7を介し、インダクタンス演算部3の全て又は一部を外部のサーバ8上に構築してもよい。
実施の形態4のモータインダクタンス測定装置50は、プロセッサ51、記憶装置52を備えたコンピュータ60と、プロセッサ58、記憶装置59を備えたサーバ8とを備えている。通信ネットワーク7を介し、インダクタンス演算部3の全て又は一部を外部のサーバ8上に構築した場合には、インダクタンス測定に要する処理を外部で行うことで、通電制御部2が搭載される装置に設けるべき処理リソースを削減することが可能となる。サーバ8上で実現するインダクタンス演算部3は、多数の構成が考えられる。図12には、インダクタンス演算部3の機能をサーバ8で実現する構成を備えた第一例のモータインダクタンス測定装置50を示した。図13には、インダクタンス演算部3におけるハイパスフィルタ31a、31bをサーバ8で実現する構成を備えた第二例のモータインダクタンス測定装置50を示した。図13の場合には、ハイパスフィルタ31a、31bは、それぞれ通信ネットワーク7を介してdq軸電流95、電圧指令91を受け取る。また、ハイパスフィルタ31a、31bは、処理結果であるdq軸電流交流成分97、電圧指令交流成分96の信号を、通信ネットワーク7を介してインダクタンス演算部3の磁束演算部32に出力する。
図14には、インダクタンス演算部3におけるハイパスフィルタ31a、31b、磁束演算部32をサーバ8で実現する構成を備えた第三例のモータインダクタンス測定装置50を示した。図14の場合には、ハイパスフィルタ31a、31bは、それぞれ通信ネットワーク7を介してdq軸電流95、電圧指令91を受け取る。また、ハイパスフィルタ31a、31bは、処理結果であるdq軸電流交流成分97、電圧指令交流成分96の信号を磁束演算部32に出力する。磁束演算部32は、処理結果であるモータインダクタンス情報InfLを、通信ネットワーク7を介してインダクタンス演算部3のデータ記録部33に出力する。なお、図12〜図14において、インダクタンス演算部3の構成例は実施の形態1のインダクタンス演算部3を記載したが、実施の形態2のインダクタンス演算部3においてもインダクタンス演算部3の全て又は一部をサーバ8で実現することができる。
図15には、インダクタンス演算部3におけるハイパスフィルタ31a、31b、磁束演算部32、情報変換部35をサーバ8で実現する構成を備えた第四例のモータインダクタンス測定装置50を示した。図15の場合には、ハイパスフィルタ31a、31bは、それぞれ通信ネットワーク7を介してdq軸電流95、電圧指令91を受け取る。また、ハイパスフィルタ31a、31bは、処理結果であるdq軸電流交流成分97、電圧指令交流成分96の信号を磁束演算部32に出力する。磁束演算部32は処理結果であるループ状磁束データdata1を情報変換部35に出力する。情報変換部35は、処理結果であるモータインダクタンス情報InfLを、通信ネットワーク7を介してインダクタンス演算部3のデータ記録部33に出力する。
実施の形態4のモータインダクタンス測定装置50は、通信ネットワーク7の通信速度及び容量、通電制御部2が搭載される装置のリソースを適宜考慮して設定できる。このため、実施の形態4のモータインダクタンス測定装置50は、実施の形態1又は実施の形態2で説明したモータインダクタンス測定方法を、より多くの構成で実施できる効果が得られる。
また、実施の形態4のモータインダクタンス測定装置50は、サーバ8とコンピュータ60等の通電制御部2が搭載される装置とを備えているので、サーバ8上にモータ型名またはモータ仕様と、これに対応するモータインダクタンス情報InfLのセットすなわちモータインダクタンス情報セットInfLsとを集積する構成としてもよい。ここで添字sは、あるモータに対し複数の通電条件で測定したモータインダクタンス情報InfLを通電条件分複数集めたセットであることを示している。図16、図17には、それぞれモータインダクタンス情報InfLのセットを集積した集積データdata3の第一例、第二例を示した。図16に示した集積データdata3は、モータインダクタンス情報InfLのセットが実施の形態1で説明したループ状磁束データdata1のセットすなわちループ状磁束データセットdata1sであり、モータ情報InfMと関連付けられて集積されている。図16ではn個のモータのデータが集積されており、n番目のモータのモータ情報、モータインダクタンス情報セットの符号はそれぞれInfMn、InfLsnと記載した。n番目のモータに対するループ状磁束データセットdata1sの符号は、data1s−nと記載した。1〜3番目のモータに対しては、nを1、2、3に変えて表記している。
図17に示した集積データdata3は、モータインダクタンス情報InfLのセットが実施の形態2で説明した非ループ状磁束データdata2及び負性抵抗Rnのセットすなわち磁束データ及び負性抵抗セットdata2&Rnsであり、モータ情報InfMと関連付けられて集積されている。図17ではn個のモータのデータが集積されており、n番目のモータのモータ情報、モータインダクタンス情報セットの符号はそれぞれInfMn、InfLsnと記載した。n番目のモータに対する磁束データ及び負性抵抗セットdata2&Rnsの符号は、data2&Rns−nと記載した。1〜3番目のモータに対しては、nを1、2、3に変えて表記している。
集積データdata3のようにモータインダクタンス情報InfLのセットすなわちモータインダクタンス情報セットInfLsの集積を進めると、モータ仕様あるいはモータ形名をサーバ8に送信することで、その該当するモータのモータインダクタンス情報InfLをサーバ8より受信できる。該当するモータがなくても類似した仕様のモータのモータインダクタンス情報セットInfLsを受信することもできる。この結果、類似仕様のモータのモータインダクタンス情報InfLを利用することで、通電等の測定動作に要する時間をゼロとする事も可能となる。
実施の形態5.
図18は、実施の形態5に係るモータ駆動システムの構成を示す図である。図19は図18の電流制御部の構成を示す図であり、図20は図19の電圧指令補償部の構成を示す図である。実施の形態5のモータ駆動システム70は、モータ1に所望の電流が流れるよる通電制御処理を行う通電制御装置71から構成されている。実施の形態5のモータ駆動システム70は、実施の形態1で説明したモータインダクタンス情報InfLをモータ制御に利用している。ここでは、特にモータの電流制御の高応答化に利用する場合の構成を説明する。
通電制御装置71は、モータ制御部73、電流制御部9、座標変換部21、座標変換部24を備えている。モータ制御部73は、モータ制御の為の電流指令90を出力する。モータ制御部73は、実施の形態1の電流指令出力部23に相当する。電流制御部9は、電流指令90及びdq軸電流95を入力して、PI制御、非干渉制御等の処理を行い、電圧指令91を出力する。電流制御部9は、実施の形態1の電流制御部22に相当する。
電流制御部9を説明する。電流制御部9は、電圧指令生成部10、電圧指令補償部11、減算器64a、64b、加算器63aを備えている。電流制御部9は、電圧指令生成部10が出力する初期のdq軸電圧指令(2軸電圧指令)を電圧指令補償部11が出力する補償電圧指令vqcmp*に基づいて補正してdq軸電圧指令である電圧指令91を生成する。減算器64aは、d軸電流指令ids*からd軸電流idsを減算してd軸電流制御偏差65を出力する。減算器64bは、q軸電流指令iqs*からq軸電流iqsを減算してq軸電流制御偏差66を出力する。電圧指令生成部10は、PI制御器61a、61b、非干渉制御部62、加算器63b、63cを備えている。電圧指令生成部10は、dq軸電流の制御偏差すなわちd軸電流制御偏差65及びq軸電流制御偏差66とd軸電流ids及びq軸電流iqsとを入力してPI制御処理及び非干渉化制御を行い、dq軸の電圧指令91におけるd軸電圧指令vd*とq軸電圧指令vq*の補償処理前の信号69とを出力する。なお、信号69は、q軸電圧指令vq*の初期指令ということもできる。非干渉化制御は、dq軸間の電磁干渉項を抑制する処理である。
加算器63bは、PI制御器61aが出力する信号67aと非干渉制御部62が出力する信号68aとを加算して、電圧指令91のd軸電圧指令vd*を出力する。加算器63cは、PI制御器61bからの信号67bと非干渉制御部62からの信号68bとを加算して、信号69を出力する。信号68aはd軸側の信号であり、信号68bはq軸側の信号である。電圧指令補償部11は、モータ1のインダクタンスの複雑な動きを模擬して電圧指令を補償する回路である。電圧指令補償部11は、d軸電流指令ids*及びq軸電流指令iqs*を入力して、補償電圧指令vqcmp*を出力する。加算器63aは、信号69と補償電圧指令vqcmp*とを加算して、電圧指令91のq軸電圧指令vq*を出力する。
この電圧指令生成部10は公知の技術であり、文献Aに詳細が記載されているため、説明を省略する。電圧指令生成部10では、その電流制御応答はPI制御器61a、61bのフィードバックゲインにて設定される。図5に示したように、モータ1のq軸磁束交流成分ΦqsACはq軸電流交流成分iqsACに応じて複雑な変化をする。つまり、モータ1の磁束はその電流に応じて複雑な変化を見せ、インダクタンスも複雑な変化をすると言える。図2に示したq軸電圧指令交流成分vqAC*を含むq軸電圧指令vq*はモータインダクタンス情報InfLを測定するための通電指令である。このため、図1の電流制御部22の構成は、電圧指令補償処理が不要であり、電圧指令生成部10と減算器64a、64bとからなる構成となる。
モータインダクタンス情報InfLを測定する際には正弦波電流指令を与えて測定を行う。しかし、図5のようにモータ1の磁束は複雑に変化し、磁束の変化に伴いインダクタンスの複雑な変化で応答(処理速度)が低下する。このため、モータインダクタンス情報InfLを測定する際でも、図3のようにq軸電流交流成分iqsACは歪んだ電流波形となっている。また、図2のように、q軸電圧指令交流成分vqAC*も正弦波とは言い難い形状になっている。このとき、電流制御部22内のPI制御器61a、61bにおけるフィードバックゲインで設計しただけでは、モータ1の電流制御に必要な高応答性能が実現できているとは言い難い。
実施の形態5の電流制御部9は、実施の形態1の電流制御部22の構成と共に、モータ1のインダクタンスの複雑な動きを模擬して電圧指令を補償する電圧指令補償部11を備えている。電圧指令補償部11は、実施の形態1のモータインダクタンス情報InfLを利用している。電圧指令補償部11は、q軸電流交流成分iqsACの変化に応じたインダクタンスの影響を含むq軸磁束交流成分ΦqsACを出力し、そのq軸磁束交流成分ΦqsACを時間微分した信号を補償電圧指令vqcmp*として出力する。実施の形態5の電流制御部9は、電圧指令生成部10のq軸側の信号69に補償電圧指令vqcmp*の信号を加算することによりモータ1のインダクタンスの複雑な変化に伴う電圧分が補償されたq軸電圧指令vq*を出力する。実施の形態5のモータ駆動システム70は、モータ1のインダクタンスの複雑な変化に伴う電圧分が補償されたq軸電圧指令vq*を用いてモータ1を制御することで、複雑なノイズのない正味のPI制御及び非干渉化制御による電圧指令が出力できる。この電圧指令に対応して電流がリニアに反応して流れるので、実施の形態5のモータ駆動システム70は、電流制御応答が改善する、すなわち高応答性能を実現できる。また、実施の形態5のモータ駆動システム70は、電流制御応答の改善に伴って、電流の制御精度も改善できる。
電圧指令補償部11の構成の一例が図20となる。電圧指令補償部11は、ハイパスフィルタ12、データ判定部13、選択部14a、14b、情報記憶装置72、微分器15を備えている。情報記憶装置72には、q軸電流指令iqs*の直流成分の大きさ、交流成分の振幅、d軸電流指令ids*の直流成分の大きさに応じて測定された、すなわち通電条件毎に測定されたモータインダクタンス情報InfLとなるループ状磁束データdata1が記憶されている。通電条件毎に測定されたループ状磁束データdata1は、インダクタンス情報マップになっている。情報記憶装置72には、複数のインダクタンス情報マップが記憶されている。インダクタンス情報マップは、例えば図5における1つの特性が記載されたグラフである。図20では、通電条件が異なる3つのインダクタンス情報マップLM1、LM2、LM3を記載した。電圧指令補償部11は、通電条件に応じて情報記憶装置72に記録されたマップを1つ選択し、q軸電流指令iqs*の交流成分すなわち軸電流指令交流成分iqsAC*を選択されたマップに入力してq軸磁束交流成分ΦqsACを生成する。なお、図20ではdq軸の電流指令に応じてインダクタンス情報マップを選択するものとしているが、dq軸電流を参照しても、もちろんよい。
電圧指令補償部11の動作を詳しく説明する。データ判定部13は、d軸電流指令ids*、q軸電流指令iqs*から通電条件を判定し、インダクタンス情報マップLM1、LM2、LM3を選択する選択信号sig3を出力する。ハイパスフィルタ12はq軸電流指令iqs*から交流成分となるq軸電流指令交流成分iqsAC*を出力する。選択部14a及び選択部14bは、データ判定部13が選択したインダクタンス情報マップLM1、LM2、LM3のデータが読み出せるように、信号の経路を切り替える。電圧指令補償部11は、選択されたインダクタンス情報マップを参照して生成されたq軸磁束交流成分ΦqsACを更に微分器15で微分し、q軸電圧指令vq*の初期指令である信号69を補償する補償電圧指令vqcmp*に変換して出力する。
実施の形態5のモータ駆動システム70は、電圧指令補償部11を用いることにより、電流制御応答が改善する、すなわち高応答性能を実現できる。特にコンプレッサなど周期的に負荷トルクが変動するモータ1では、q軸電流指令iqs*も周期的に変化するので、実施の形態5のモータ駆動システム70は、電圧指令補償部11を用いることにより、電流制御応答を改善でき、結果として負荷トルクの脈動に起因する速度脈動又はコンプレッサ筐体の振動を抑制することが可能となる。
実施の形態5の電流制御部9は、電圧指令補償部11に実施の形態1のモータインダクタンス情報InfLを利用することで、電流制御部9の電流制御応答を向上することが可能となる。実施の形態5のモータ駆動システム70は、実施の形態1のモータインダクタンス情報InfLを利用した電流制御部9を備えているので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
情報記憶装置72は、通電条件毎に測定されたモータインダクタンス情報InfLとなるループ状磁束データdata1が記憶されている。すなわち、複数のモータインダクタンス情報InfLである複数のループ状磁束データdata1が記憶されている。モータインダクタンス情報InfLは、2軸直交回転座標上の少なくとも1つの軸(例えばq軸)に印加された交流電圧及びこの交流電圧によって流れる交流電流(例えばq軸電流iqs)に基づいて演算された、交流電流の瞬時値に対応するq軸電流交流成分iqsACと交流磁束の瞬時値に対応するq軸磁束交流成分ΦqsACとの関係を含んでいる。すなわち、モータインダクタンス情報InfLは、交流電流の瞬時値に対応するq軸電流交流成分iqsACに応じた、交流磁束の瞬時値に対応するq軸磁束交流成分ΦqsACを含んでいる。
したがって、情報記憶装置72は、モータ1における2軸直交回転座標上のdq軸電流の瞬時値に対応するq軸電流交流成分iqsACとモータ1の磁束の瞬時値に対応するq軸磁束交流成分ΦqsACとの関係、すなわちループ状磁束データdata1をモータインダクタンス情報InfLとして保持すると共に、モータインダクタンス情報InfLを出力するインダクタンス出力部ということもできる。実施の形態5のモータ駆動システム70は、インダクタンス出力部から出力されたモータインダクタンス情報InfLを用いてモータを制御するということもできる。
実施の形態5の通電制御装置71は、実施の形態3と同様に、プロセッサ51上で実行されるプログラムの信号処理とプロセッサ上に設けられた論理回路における信号処理の結果とにより、機能が実現される構成としてもよい。この場合にも、実施の形態5のモータ駆動システム70は、実施の形態1のモータインダクタンス情報InfLを利用した電流制御部9を備えているので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
以上のように、実施の形態5のモータ駆動システム70は、モータ1を制御するモータ駆動システムである。実施の形態5のモータ駆動システム70は、実施の形態1、3、4のいずれかのモータインダクタンス測定装置50にて生成されたインダクタンス情報(モータインダクタンス情報InfL)を記憶する情報記憶装置72を備え、インダクタンス情報(モータインダクタンス情報InfL)に基づいて、モータ1を制御する。実施の形態5のモータ駆動システム70は、この構成により、インダクタンス情報(モータインダクタンス情報InfL)に基づいてモータ1を制御するので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
実施の形態6.
図21は、実施の形態6に係る電圧指令補償部の構成を示す図である。図21に示した実施の形態6の電圧指令補償部11は、実施の形態2で説明したモータインダクタンス情報InfLをモータ制御に利用している。実施の形態6の電圧指令補償部11を備えた電流制御部9は図19と同じ構成であり、実施の形態6の電圧指令補償部11を備えたモータ駆動システム70は図18と同じ構成になる。実施の形態2のモータインダクタンス情報InfLは、非ループ状磁束データdata2及び負性抵抗Rnを含んでおり、実施の形態6の電圧指令補償部11は、モータ電流の交流成分に対する非ループ状磁束データdata2及び負性抵抗Rnの組み合わせを内部に記憶している。
実施の形態6の電圧指令補償部11は、通電条件毎に測定された非ループ状磁束データdata2を記憶する情報記憶装置72aと通電条件毎に測定された負性抵抗Rnを記憶する情報記憶装置72bとを備え、負性抵抗Rnを切り替える選択部14c、14dと非ループ状磁束データdata2側の信号と負性抵抗Rn側の信号とを加算する加算器43を備えている点で、実施の形態5の電圧指令補償部11と異なる。
実施の形態5の電圧指令補償部11では、図20に示したように、補償電圧指令vqcmp*はq軸磁束交流成分ΦqsACを時間微分して生成していた。実施の形態6の電圧指令補償部11では、実施の形態2で示した式(10)を時間微分して補償電圧指令vqcmp*を生成する。ここでは、式(10)中の固定子抵抗Rs、回転子抵抗Rrでの抵抗電圧は、電圧指令生成部10で対応がなされるとして省略すると、式(10)を変形した式(11)で補償電圧指令vqcmp*が演算される。なお、式(11)では、補償電圧指令vqcmp*における「*」をv
qの後に上付きで記載している。
なお、図21の電圧指令補償部11では、電流制御応答を高めるために、式(11)の第2項のq軸電流交流成分iqsACに代えて、q軸電流指令交流成分iqsAC*を入力する構成としている。図21の電圧指令補償部11において、q軸電流指令交流成分iqsAC*をq軸電流交流成分iqsACに代えて入力しても補償電圧指令vqcmp*は生成できる。実施の形態6の電圧指令補償部11の動作について、実施の形態5と異なる部分を主に説明する。
情報記憶装置72aには、q軸電流指令iqs*の直流成分の大きさ、交流成分の振幅、d軸電流指令ids*の直流成分の大きさに応じて測定された、すなわち通電条件毎に測定されたモータインダクタンス情報InfLにおける非ループ状磁束データdata2が記憶されている。すなわち、複数のモータインダクタンス情報InfLにおける複数の非ループ状磁束データdata2が記憶されている。通電条件毎に測定された非ループ状磁束データdata2は、インダクタンス情報マップになっている。情報記憶装置72aには、複数のインダクタンス情報マップが記憶されている。インダクタンス情報マップは、例えば図8における1つの特性57bが記載されたグラフである。図21では、通電条件が異なる2つのインダクタンス情報マップLM4、LM5を記載した。また、情報記憶装置72bには、非ループ状磁束データdata2を測定した通電条件毎の負性抵抗Rnすなわち複数の負性抵抗Rnが記憶されている。ここでは負性抵抗Rnは、q軸電流指令交流成分iqsAC*に対するゲインgain1、ゲインgain2で表現される。電圧指令補償部11は、通電条件に応じて情報記憶装置72aに記録されたマップと情報記憶装置72bに記録された負性抵抗Rnに対応するゲインとをそれぞれ1つ選択する。電圧指令補償部11は、q軸電流指令iqs*の交流成分すなわち軸電流指令交流成分iqsAC*を選択されたマップに入力してq軸磁束交流成分ΦqsACを生成し、かつ軸電流指令交流成分iqsAC*を選択されたゲインで演算したRn・iqsACを生成する。
選択部14a及び選択部14bは、データ判定部13が選択したインダクタンス情報マップLM4、LM5のデータが読み出せるように、信号の経路を切り替える。選択部14c及び選択部14dは、選択部14a、14bと同様に、データ判定部13が選択したゲインのデータが読み出せるように、選択信号sig3に応じて適切な信号経路を切り替える。選択されたインダクタンス情報マップを参照して生成されたq軸磁束交流成分ΦqsACは更に微分器15で微分され第一の信号となり、q軸電流指令交流成分iqsAC*は選択された負性抵抗Rnに対応するゲインを乗算して電圧に演算されて第二の信号になる。電圧指令補償部11は、第一信号と第二信号とを加算してq軸電圧指令vq*の初期指令である信号69を補償する補償電圧指令vqcmp*を生成する。
電圧指令補償部11を図21の構成とすることで、実施の形態6のモータ駆動システム70は、電流制御部9において実施の形態2で説明したようにモータインダクタンス情報InfLを圧縮して保持することができ、データの記録容量を削減できる。また実施の形態6の電流制御部9は、q軸電流指令交流成分iqsAC*の振幅の大きさを判定することが不要となり、q軸電流指令交流成分iqsAC*の瞬時値を参照して即座にq軸磁束交流成分ΦqsACを生成できる。すなわち、実施の形態6の電流制御部9は、実施の形態5の電流制御部9よりも処理が簡略化でき、高速に補償電圧指令vqcmp*を生成することができる。実施の形態6の電流制御部9は、q軸電流指令交流成分iqsAC*の振幅算出が不要となるため、非周期的なq軸電流指令交流成分iqsAC*に応じて即座に補償電圧指令vqcmp*を生成できる。すなわち、実施の形態6の電流制御部9は、q軸電流指令iqs*が周期的な電流波形を含まなくても、電流制御応答を向上することができる。例えば、実施の形態6の電圧指令補償部11を利用した位置決め用のモータすなわちサーボモータを駆動する場合では、位置決め精度の向上、整定時間の短縮の効果が得られる。
実施の形態6の電流制御部9は、電圧指令補償部11に実施の形態2のモータインダクタンス情報InfLを利用することで、電流制御部9の電流制御応答を向上することが可能となる。実施の形態6のモータ駆動システム70は、実施の形態2のモータインダクタンス情報InfLを利用した電流制御部9を備えているので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
情報記憶装置72a、72bは、通電条件毎に測定されたモータインダクタンス情報InfLとなる非ループ状磁束データdata2及び負性抵抗Rn、すなわち複数のモータインダクタンス情報InfLとなる複数の非ループ状磁束データdata2及び負性抵抗Rnがそれぞれ記憶されている。非ループ状磁束データdata2は、2軸直交回転座標上の少なくとも1つの軸(例えばq軸)に印加された交流電圧及びこの交流電圧によって流れる交流電流(例えばq軸電流iqs)に基づいて演算された、交流電流の瞬時値に対応するq軸電流交流成分iqsACと交流磁束の瞬時値に対応するq軸磁束交流成分ΦqsACとの関係を含んでいる。すなわち、非ループ状磁束データdata2は、交流電流の瞬時値に対応するq軸電流交流成分iqsACに応じた、交流磁束の瞬時値に対応するq軸磁束交流成分ΦqsACを含んでいる。
したがって、情報記憶装置72a、72bは、モータ1における2軸直交回転座標上のdq軸電流の瞬時値に対応するq軸電流交流成分iqsACとモータ1の磁束の瞬時値に対応するq軸磁束交流成分ΦqsACとの関係、すなわち非ループ状磁束データdata2及び負性抵抗Rnをモータインダクタンス情報InfLとして保持すると共に、モータインダクタンス情報InfLを出力するインダクタンス出力部ということもできる。実施の形態6のモータ駆動システム70は、インダクタンス出力部から出力されたモータインダクタンス情報InfLを用いてモータを制御するということもできる。
実施の形態6の通電制御装置71は、実施の形態3と同様に、プロセッサ51上で実行されるプログラムの信号処理とプロセッサ上に設けられた論理回路における信号処理の結果とにより、機能が実現される構成としてもよい。この場合にも、実施の形態6のモータ駆動システム70は、実施の形態2のモータインダクタンス情報InfLを利用した電流制御部9を備えているので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
以上のように、実施の形態6のモータ駆動システム70は、モータ1を制御するモータ駆動システムである。実施の形態6のモータ駆動システム70は、実施の形態2、3、4のいずれかのモータインダクタンス測定装置50にて生成されたインダクタンス情報(モータインダクタンス情報InfL)を記憶する情報記憶装置72a、72bを備え、インダクタンス情報(モータインダクタンス情報InfL)に基づいて、モータ1を制御する。実施の形態6のモータ駆動システム70は、この構成により、インダクタンス情報(モータインダクタンス情報InfL)に基づいてモータ1を制御するので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
実施の形態7.
実施の形態7では、実施の形態1又は実施の形態2で説明した、モータインダクタンス情報InfLをモータ制御に利用する場合、特にモータ1のオブザーバ(状態推定器)79に利用する場合の構成について説明する。図22は実施の形態7に係るオブザーバの一部の構成を示す図であり、図23は図22の第一演算部の構成を示す図である。図24は、実施の形態7に係るモータ駆動システムの構成を示す図である。なお、図24にオブザーバ79とオブザーバ79の一部の構成であるオブザーバ要部80を示している。図22に示したオブザーバ要部80は、q軸固定子側回路部の構成である。なおこの図22記載のオブザーバ要部80は、q軸に交流通電を行って得たq軸側のモータインダクタンス情報InfLを用いる場合の構成である。オブザーバはモータ1の電気回路動作を模擬するもので、モータ1に印加される電流情報、電圧情報を入力して、モータ1の状態(例えば、モータ電流等)を推定するように構成される。さらに、モータ電流を推定する場合には、モータ1の検出電流とオブザーバが推定した推定電流との差異を所定のゲインを介してフィードバックするように構成される。このゲインの構成を工夫することで、モータ1の磁極位置及び速度を検出することなくモータ制御を行うセンサレス制御系が構築される。
モータ1の磁極位置及び速度をセンサにて検出することなしにモータ制御を行うセンサレス制御方式では、電流制御系内部でモータ1の電気回路動作を模擬するオブザーバを用いて、観測対象の状態値の演算すなわち観測対象の推定値の演算を行う。このオブザーバはモータパラメータを用いており、そのモータパラメータにはインダクタンスが含まれる。
実施の形態1又は実施の形態2のモータインダクタンス情報InfLをオブザーバに適用することで、モータ電流を推定する場合においてモータ電流の推定精度が極めて向上する。オブザーバを用いたセンサレス制御では、検出電流と推定電流との差異である電流推定誤差は、オブザーバに内包されるモータの電気角速度推定値の誤差に起因するという考えに基づいて、電流推定誤差に対して適応同定処理を用いて電気角速度推定値を修正する処理を行う。電気角速度推定値はモータ回転速度の極対数倍の値であるため、電気角速度推定値を極対数で割ることでモータ回転速度が推定できる。また、センサレス制御の原理上、オブザーバに用いられる電気角速度推定値以外のモータパラメータ等も精度良く把握することが必要となる。実施の形態1又は実施の形態2のモータインダクタンス情報InfLを用いることで、実施の形態7のオブザーバ要部80及びオブザーバ79は、電流推定精度が向上し、さらに電気角速度推定値の推定精度を向上することができる。
図22に示したオブザーバ要部80は、第一演算部81、第二演算部82を備えている。オブザーバ要部80は、q軸電流推定値i^qsを演算するq軸固定子側回路部の例である。i^qsはq軸電流iqsの推定値を表す。第一演算部81は、d軸電流指令ids*、q軸電流指令iqs*、q軸電流iqs、第二演算部82が出力するq軸電流中間推定値i^qs2を入力して、q軸電流推定値i^qsと負性抵抗Rnによる電圧降下の項vnを出力する。第二演算部82は、d軸電流ids、q軸電流iqs、d軸電流推定値i^ds、d軸磁束推定値Φ^dr、q軸電圧vqと、第一演算部81が出力するq軸電流推定値i^qs及び負性抵抗Rnによる電圧降下の項vnとを入力して、q軸電流中間推定値i^qs2を演算する。i^qs2は、q軸電流iqsを推定するための(推定用の)中間変数すなわちq軸電流中間推定値を表す。i^ds、Φ^drは、それぞれd軸電流ids、d軸回転子磁束Φdrの推定値を表す。
例えば、モータ1をセンサレスで速度制御する場合、モータ1への速度指令に応じたdq軸電流指令(ids*,iqs*)による通電をモータ1に対して実施する。dq軸電流指令(ids*,iqs*)は、図18の電流指令90である。モータ1の磁束は、図5に示したq軸電流交流成分iqsACとq軸磁束交流成分ΦqsACとの関係から分かるように、q軸電流に応じて磁束の交流成分が複雑に変化する。同様にモータ磁束とモータ電流との間のインダクタンスも複雑に変化する。速度制御に応じて瞬間的に変化するq軸通電(q軸側への通電)を行うほど、モータ1のインダクタンス変化が発生し、これに伴い電流推定誤差が生じ、電気角速度推定値の推定精度が低下する。この誤差を含む電気角速度推定値に応じて、速度制御を実行するようにq軸通電がなされるため、電気角速度推定値の推定精度が低下する場合には、悪循環が生じる。このため、モータ1をセンサレスで速度制御する場合において、速度制御応答が低下する場合がある。また、電気角速度推定値の推定精度が低下する場合には、モータ1をセンサレスで速度制御すると、速度制御精度が低下する場合もある。
これに対して、モータ1をセンサレスで速度制御する場合に、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを用いることにより、推定精度低下に伴う悪循環が断ち切られ、センサレス速度制御の応答及び速度制御精度を改善することが可能となる。更なる応用としては、q軸電流指令(iqs*)を交流とし、モータ1にテスト用の交流トルクを発生させ、それに対する交流機械速度を推定し、両信号(交流トルク及び交流機械速度推定値)の振幅及び位相関係よりモータ1に接続された負荷装置の機械伝達特性を測定するサーボアナライザ機能の精度向上又は測定帯域の拡大が可能となる。実施の形態1又は実施の形態2のモータインダクタンス情報InfLをオブザーバに適用することにより、速度推定精度が改善するため、負荷装置の機械伝達特性の測定精度の向上の効果、測定可能な周波数帯域が拡大する等の効果が得られる。
モータ1のオブザーバの構成方法は様々な方法があるが一例として、文献Aに記載された誘導モータを対象とし、2軸直交回転座標上の電流及び磁束を状態変数に設定するオブザーバを例に取り説明する。ここで、オブザーバは式(12)〜式(15)で表される。
ここで、g11、g12、g21、g22、g31、g32、g41、g42は、オブザーバフィードバックゲインである。実施の形態1、実施の形態2で説明したように、q軸側への交流通電にて漏れインダクタンスσLsに相当する情報、すなわちモータインダクタンス情報InfLが得られているものとし、モータインダクタンス情報InfLをオブザーバに組み込む場合について説明する。この式(12)〜式(15)で表されるオブザーバ79よりq軸固定子側電流の記述を抜き出すと、式(16)となる。式(1)と同じく、この式(12)〜式(15)で表されるオブザーバ79の演算においても、推定するq軸磁束の値すなわちq軸推定磁束値Φ^qrがゼロになるように滑り周波数が調整される。式(16)にはこれが反映され、q軸推定磁束値Φ^qrがゼロとなる。
ここで、g21、g22はオブザーバフィードバックゲインである。ω^reは、電気角周波数ωreの推定値すなわち電気角周波数推定値である。vqはq軸電圧である。このq軸電圧vqはq軸電圧指令vq*で代用する場合が多い。式(16)中の漏れインダクタンスσLsは実施の形態1又は実施の形態2のモータインダクタンス情報InfLとは異なり、既存の手法で測定あるいは設計された値となる。このため、漏れインダクタンスσLsは、固定した一定値、あるいはq軸電流iqsの直流成分の大きさ又はd軸電流idsに応じて変化する値となる。
この式(16)に実施の形態1又は実施の形態2のモータインダクタンス情報InfLを組み込む。ここでは、モータインダクタンス情報InfLとして、実施の形態2で説明したモータインダクタンス情報InfLを利用する例で説明する。実施の形態2のモータインダクタンス情報InfLは、q軸電流交流成分iqsACに対するq軸磁束交流成分ΦqsACの関係である非ループ状磁束データdata2と、負性抵抗Rnとの組み合わせである。図22のオブザーバ要部80は式(16)の演算を基に、モータインダクタンス情報InfLを利用する場合の構成を記載している。オブザーバ要部80は大きく第一演算部81、第二演算部82で構成される。第二演算部82は、第一演算部81が演算した、q軸電流推定値i^qs及び負性抵抗Rnによる電圧降下の項である電圧vnを組み込み、式(17)の演算を行い、q軸電流中間推定値i^qs2を出力する。なお電圧vnを適宜、負性抵抗Rnによる電圧降下vnと表記する。
図23に記載の第一演算部81は、比例演算器16、ハイパスフィルタ12a、12b、データ判定部13、選択部14a、14b、14c、14d、情報記憶装置72a、72b、ローパスフィルタ17、加算器18を備えている。比例演算器16は、q軸電流中間推定値i^qs2をσLs倍した信号をハイパスフィルタ12aに出力する。ハイパスフィルタ12aは、比例演算器16から出力された信号の高周波成分すなわち交流成分の信号86を選択部14aに出力する。信号86は、q軸電流中間推定値i^qs2をσLs倍した信号の交流成分であり、σLs・i^qs2Hと表記する。信号86は、磁束相当の信号である磁束相当信号交流成分ということもできる。なお、図23では、選択部14bが出力する信号88であるq軸電流推定値交流成分i^qsHを簡潔に表記するためにσLs・i^qs2Hを磁束推定値Φ^aを用いて表記した。なお、関数fΦ及び関数fΦの逆関数fΦ−1は後述する。ローパスフィルタ17は、q軸電流中間推定値i^qs2の直流成分あるいはそれに近い低周波成分すなわちq軸電流中間推定値低周波成分i^qs2Lである信号89を加算器18に出力する。ハイパスフィルタ12aとローパスフィルタ17は相補的な伝達特性を備えている。データ判定部13、選択部14a、14b、14c、14dの動作は図21と同一であるので説明を省略する。加算器18は、ハイパスフィルタ12aが出力した信号86からインダクタンス情報マップLM4、LM5を使用して演算され、選択部14bから出力された信号88と、ローパスフィルタ17かた出力された信号89とを加算してq軸電流推定値i^qsを出力する。
ハイパスフィルタ12bは、q軸電流iqsの高周波成分すなわち交流成分であるq軸電流交流成分iqsHを選択部14cに出力する。図23の信号87は、q軸電流交流成分iqsHである。負性抵抗Rnを示すゲインgain1、gain2を使用して演算される信号84は、負性抵抗Rnによる電圧降下vnとなる。
通常、q軸電流推定値i^qsは、q軸電流iqsの推定値低周波成分i^qsLとq軸電流iqsの推定値高周波成分(交流成分)i^qsHとを加算する。しかし、ここでは図23の構成を用いてq軸電流推定値i^qsを得ている。ローパスフィルタ17を経たq軸電流中間推定値i^qs2の直流成分あるいはそれに近い低周波成分すなわちq軸電流中間推定値低周波成分i^qs2Lは、そのままq軸電流推定値の直流成分あるいはそれに近い低周波成分i^qsLとして用いることを意味している。
一方で、q軸電流iqsの推定値の高周波成分(交流成分)すなわち選択部14bが出力する信号88であるq軸電流推定値交流成分i^qsHは、q軸磁束相当の信号から関数fΦの逆関数fΦ−1を参照して得ている。なお、関数fΦは電流iから磁束Φに変換する関数であり、逆関数fΦ−1は磁束Φから電流iに変換する関数である。q軸電流推定値交流成分i^qsHの演算をより具体的に説明する。まず、q軸電流中間推定値i^qs2に漏れインダクタンスσLsをかけて、ハイパスフィルタ12bで処理して、q軸磁束相当の信号86を演算する。さらにq軸磁束相当の信号86から関数fΦの逆関数fΦ−1を参照してq軸電流推定値交流成分i^qsHを得ている。q軸電流推定値交流成分i^qsHを得る構成は、q軸電流推定値i^qsの交流成分を、実施の形態2のモータインダクタンス情報InfLを反映させて得ることを意味している。
実施の形態7のオブザーバ要部80は、モータのq軸電流iqsが高速に変化し、これに応じてインダクタンスが変化する場合に、モータインダクタンスの変化に応じて、オブザーバにおけるq軸固定子回路側のインダクタンスも変化させることができ、オブザーバでのq軸電流推定精度を向上できる。実施の形態7のオブザーバ要部80は、さらに速度センサレス制御においては、モータ速度の推定精度を向上できる。また、実施の形態7のオブザーバ要部80は、q軸電流iqsが高速に変化しない場合は、式(16)に記載する既存のオブザーバにおけるq軸固定子回路側と同じ動きとなる。このため既存のオブザーバゲイン設計などのノウハウをそのまま継続利用できるメリットがある。
実施の形態6の図21においてインダクタンス情報マップLM4、LM5は電流を入力して磁束を生成するように参照したが、実施の形態7では実施の形態6の図21とは逆に磁束相当の信号である磁束相当信号交流成分σLs・i^qs2Hを入力して、電流相当の信号である信号88を生成する構成を用いる。なお、図23において、情報記憶装置72aに記憶されているインダクタンス情報マップLM4、LM5を用いて磁束から電流を逆参照することを示すために、符号func1、func2を付した枠線でそれぞれインダクタンス情報マップLM4、LM5を覆い、さらにインダクタンス情報マップLM4、LM5のイメージ図において図21の縦軸横軸が互いに逆にされたイメージを記載した。符号func1、func2を付した枠線は、電流から磁束に変換する関数fΦに対する、磁束から電流に変換する逆関数fΦ−1を示している。逆関数func1はインダクタンス情報マップLM4を逆参照する関数であり、逆関数func2はインダクタンス情報マップLM5を逆参照する関数である。第一演算部81の選択部14bから出力される信号88は、磁束相当信号交流成分σLs・i^qs2Hを引数として逆関数fΦ−1にて演算された信号となる。すなわち、信号88は、fΦ−1(σLs・i^qs2H)である。第一演算部81の選択部14dから出力される信号84は、負性抵抗Rnとq軸電流交流成分iqsHとが乗算された信号となる。すなわち、信号84は、負性抵抗Rnによる電圧降下vnであり、Rn・iqsHである。なお、図23では、前述したように、磁束相当信号交流成分σLs・i^qs2Hは磁束推定値Φ^aを用いて表記している。
図23で説明した、負性抵抗Rnによる電圧降下vn、軸電流推定値i^qs、q軸電流推定値交流成分i^qsHは、それぞれ式(18)、式(19)、式(20)で表される。なお式(18)のRnの値は正であり、式(17)において加算で付加されることで、負性抵抗であることを表現している。
なお、本実施の形態7においては、オブザーバ要部80に実施の形態2のモータインダクタンス情報InfLを適用する例を説明したが、実施の形態1のモータインダクタンス情報InfLを適用してもよい。この場合は、式(16)〜式(20)は変わるが、実施の形態1のモータインダクタンス情報InfLを適用したオブザーバ要部80も、実施の形態2のモータインダクタンス情報InfLを適用したオブザーバ要部80と同様に、オブザーバ79の電流推定精度が向上し、さらに電気角速度推定値の推定精度を向上することができる。またq軸交流通電で得たモータインダクタンス情報InfLのみではなく、d軸側交流通電で得たモータインダクタンス情報InfLも同様に適用でき、オブザーバ79での電流推定精度を改善することができる。
以上に説明したオブザーバ要部80を備えたオブザーバ79を用いた、モータ1のセンサレス制御系構成の一例を図25に示す。図24に示したモータ制御部73は、センサレス制御を実行する具体的な構成例である。実施の形態7のモータ駆動システム70は、センサレス制御を実行するモータ制御部73、電流制御部9、座標変換部21、座標変換部24を備えている。モータ制御部73は、オブザーバ79、滑り周波数演算部26、適応同定部27、速度制御部28、減算器44a、44b、加算器45、積分器46、指令生成部78を備えている。前述したオブザーバ79の式(12)に、オブザーバ要部80の式(17)、式(18)を組み込み、さらにセンサレス制御に適した形に変形すると式(21)が得られる。
図24に示したセンサレス制御用のオブザーバ79では、この式(21)の演算を行う。式(21)及び後述する式(22)では、相互インダクタンスMと回転子抵抗Rrとの積を、MRrと表記している。MRrは式(12)のM・Rrと同じである。この式(21)のd軸側の固定子電流推定値であるd軸電流推定値i^dsと回転子のd軸磁束推定値Φ^drの演算は、式(12)とほぼ同じになっている。固定子のq軸電流推定値i^qsの演算は、前述の通り、一旦オブザーバ要部80の式(17)及び式(18)に従って、q軸電流中間推定値i^qs2の演算を行い、オブザーバ要部80の第一演算部81にて実行される式(19)及び式(20)を用いて行われる。オブザーバ79は、2軸電流推定値83を出力する。2軸電流推定値83は、2つの成分すなわちd軸電流推定値i^ds、q軸電流推定値i^qsを有している。2軸電流推定値83のベクトル表記は、(i^ds,i^qs)である。
図24のようなdq軸回転座標上で制御器を構成する場合、d軸がモータ1の2次磁束ベクトルに一致するように制御がなされるため、回転子のq軸磁束推定値Φ^qrはゼロとするような制御がなされる。従ってq軸磁束推定値Φ^qrがゼロになるように、式(22)により滑り周波数の推定値すなわち滑り周波数推定値ω^sが演算される。滑り周波数推定値ω^sの演算は、滑り周波数演算部26が実行する。
式(22)における、i^qs−iqs、i^ds−idsは、それぞれq軸電流推定誤差47a、d軸電流推定誤差47bである。q軸電流推定誤差47aはq軸電流推定値i^qsとq軸電流iqsの値と誤差であり、d軸電流推定誤差47bはd軸電流推定値i^dsとd軸電流idsの値と誤差である。減算器44aは、q軸電流推定値i^qsとq軸電流iqsの値と誤差を演算してq軸電流推定誤差47aを出力し、d軸電流推定誤差47bはd軸電流推定値i^dsとd軸電流idsの値と誤差を演算してd軸電流推定誤差47bを出力する。
また、式(23)に示す適応同定処理により、推定速度ω^rが演算される。適応同定部27は、式(23)の演算を行い、推定速度ω^rを出力する。減算器44bは、指令生成部78により生成された速度指令ωr*から適応同定部27が出力した推定速度ω^rを減算して補正速度指令48を出力する。速度制御部28は、補正速度指令48に基づいてq軸電流指令iqs*を演算する。速度制御部28により演算されたq軸電流指令iqs*は、指令生成部78を介して電流制御部9に出力される。指令生成部78は、d軸電流指令ids*を生成して電流制御部9に出力する。このように実施の形態7のモータ制御部73は、センサレスで速度制御処理がなされq軸電流指令iqs*が演算される。なお、指令生成部78は、センサレス制御を実行しない場合は、予め定められた制御のd軸電流指令ids*、q軸電流指令iqs*を生成する。指令生成部78は、センサレス制御による速度制御を実行する場合に、速度指令ωr*を生成し、速度制御部28により出力されたq軸電流指令iqs*を電流制御部9に出力する。
適応同定処理は様々な方式が検討されているが、多くは式(23)のようにq軸電流推定誤差47aに対するPI制御処理を行う。
Kp、Kiは比例係数である。
d軸電流指令ids*は様々な生成法がある。前述したように、誘導モータにおいては、d軸電流指令ids*は、固定した一定値とする場合、又はd軸電流指令ids*を急激に変化させない場合がほとんどである。d軸電流指令ids*は急激に変化させないので、d軸電流指令ids*の説明は省略する。加算器45は、適応同定部27にて演算された推定速度ω^rと、滑り周波数演算部26にて演算された周波数推定値ω^sとを加算し電源周波数ωを出力する。電源周波数ωは積分器46にて積分され、座標変換位相θが出力される。この座標変換位相θにて回転座標変換を実施することで、前述したd軸とモータ1の2次磁束ベクトルとを一致させることができる。
以上のように、実施の形態7のオブザーバ要部80は、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを組み込むことで電流推定精度が向上し、センサレス制御の際において速度推定精度が改善する。さらに、実施の形態7のオブザーバ要部80を搭載したモータ駆動システム70は、モータ1の速度制御を高速にでき、すなわち速度制御応答が改善でき、かつモータ1の速度制御精度も改善できる。図24はオブザーバ要部80を組み込んだオブザーバ79を用いたセンサレス制御系の一例、すなわちモータ制御部73の一例である。以上に説明したオブザーバ要部80の処理は、モータ1の電気回路におけるインダクタンスの本質的な処理の例であり、適用範囲は図24に示したモータ制御部73に限定されない。オブザーバ要部80の処理は、他の構成のオブザーバ、適応同定処理を用いるセンサレス制御系でも十分適用でき、電流推定精度が向上し、センサレス制御の際において速度推定精度が改善する効果をもたらす。
実施の形態1又は実施の形態2のモータインダクタンス情報InfLをオブザーバ要部80に組み込む場合の効果は、式(16)〜式(20)に記載の構成に限定されず他の構成でも得られる。例えば、オブザーバフィードバックゲインg11、g12、g21、g22、g31、g32、g41、g42の変更、オブザーバの状態変数の変更、モータ1の種類の変更等を行った状態方程式にも、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを組み込むことができる。この場合にも、オブザーバ電流推定精度が向上でき、それによる前述した効果を奏する。
実施の形態7のオブザーバ要部80は、実施の形態3と同様に、プロセッサ51上で実行されるプログラムの信号処理とプロセッサ上に設けられた論理回路における信号処理の結果とにより、機能が実現される構成としてもよい。この場合にも、実施の形態7のオブザーバ要部80は、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを用いることでオブザーバの電流推定精度が向上し、さらに電気角速度推定値の推定精度を向上することができる。なお、オブザーバ79がモータ制御部73に含まれる例を示したが、この例に限定されることなく、オブザーバ79がモータ制御部73の外部でモータ駆動システム70に含まれていてもよい。
以上のように、実施の形態7のモータ駆動システム70は、モータ1を制御するモータ駆動システムである。実施の形態7のモータ駆動システム70は、実施の形態1〜4のいずれかのモータインダクタンス測定装置50にて生成されたインダクタンス情報(モータインダクタンス情報InfL)を記憶する情報記憶装置72、72a、72bと、モータ1の2軸直交回転座標上に構成された数学モデルを用いたモータ1の状態を推定する状態推定器(オブザーバ79)と、を備え、インダクタンス情報(モータインダクタンス情報InfL)に基づいて、モータ1を制御する。状態推定器(オブザーバ79)は、2軸電流指令(電流指令90)または2軸電流(dq軸電流95)に対応したインダクタンス情報(モータインダクタンス情報InfL)を用いて状態推定演算を行う。実施の形態7のモータ駆動システム70は、この構成により、インダクタンス情報(モータインダクタンス情報InfL)を用いて演算した2軸電流推定値(2軸電流推定値83)に基づいてモータ1を制御するので、電流推定精度及び速度推定精度が改善し、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
実施の形態8.
図25は、実施の形態8に係るモータ駆動システムの構成を示す図である。実施の形態8のモータ駆動システム70は、モータインダクタンス測定装置50を備えたモータ駆動システムである。実施の形態5では通電制御装置71からなるモータ駆動システム70を示した。実施の形態5の通電制御装置71は、実施の形態1又は実施の形態2のモータインダクタンス測定装置50と共通の回路ブロックもある。このため、実施の形態8のモータ駆動システム70は、共通の回路ブロックは重複しないようにモータ駆動システムを構成する。実施の形態8のモータ駆動システム70は、モータ1のモータインダクタンス情報InfLを測定するモータインダクタンス測定モードと、モータ1を制御して通常の運転を行うモータ制御モードを備えている。実施の形態8のモータ駆動システム70は、モータインダクタンス測定モードで測定したモータインダクタンス情報InfLを記録し、モータ制御モードでこのモータインダクタンス情報InfLを利用してモータ1の制御を行う。実施の形態8のモータ駆動システム70は、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを利用してモータ1を制御するので、実施の形態5又は実施の形態6のモータ駆動システム70と同じ効果を奏する。すなわち、実施の形態8のモータ駆動システム70は、モータ1の制御の応答速度及び精度を向上することができる。
図25に、実施の形態8のモータ駆動システム70の一例を示した。図25では、実施の形態2で説明したモータインダクタンス測定装置50の構成と、実施の形態6で説明した電流制御部9及びモータ制御部73とを組み合わせた場合の例を示した。実施の形態8のモータ駆動システム70は、通電制御部2、インダクタンス演算部3、モータ制御部73、モード切替部75を備えている。通電制御部2、インダクタンス演算部3は、モータインダクタンス測定装置50を構成している。通電制御部2、モータ制御部73、モード切替部75は、図18で説明した通電制御装置71を構成している。図25に示した実施の形態8の通電制御部2は、図7に示した実施の形態2の通電制御部2とは、選択部25が追加され、電流制御部22が電流制御部9に変更され、インダクタンス演算部3のデータ記録部33からモータインダクタンス情報InfLが電流制御部9に転送される点で異なっている。図25に示した実施の形態8のインダクタンス演算部3は、データ記録部33からモータインダクタンス情報InfLが電流制御部9に転送される経路が追加された以外は、図7に示した実施の形態2のインダクタンス演算部3と同じである。実施の形態8のモータ駆動システム70について、実施の形態2のモータインダクタンス測定装置50、実施の形態6のモータ駆動システム70と異なる部分を主に説明する。
モード切替部75は、モータインダクタンス測定モードとモータ制御モードとの切替を指示するモード切替信号sig4を出力する。モード切替部75は、モータインダクタンス測定モードとモータ制御モードとのいずれかを設定するモード切替信号sig4を出力するとも言える。なお、モータ制御モードは、非測定モードと言うこともできる。実施の形態8のモータ駆動システム70は、モータ1の実運転に先立ち、モータインダクタンス情報InfLを測定するように構成される。具体的には、モード切替部75が作業者の指示に基づくモード変更指令(図示せず)により、モータインダクタンス測定モードを示すモード切替信号sig4を出力する。例えば、モード切替信号sig4が高レベルの電位の場合はモータインダクタンス測定モードを示し、モード切替信号sig4が低レベルの電位の場合はモータ制御モードを示す。モード切替部75からモータ制御モードを示すモード切替信号sig4が出力されると、インダクタンス演算部3は動作しない。
モード切替部75からモータインダクタンス測定モードを示すモード切替信号sig4が出力されると、インダクタンス演算部3はモータインダクタンス情報InfLを測定する動作を行う。インダクタンス演算部3は、モータインダクタンス測定モードの場合には、測定実行信号sig1を電流指令出力部23に出力して電流指令出力部23を動作させ、モータインダクタンス情報InfLを測定すると共にモータインダクタンス情報InfLをデータ記録部33に記録する。モード切替部75からモータ制御モードを示すモード切替信号sig4がインダクタンス演算部3に出力されると、インダクタンス演算部3は動作を停止し、モータインダクタンス情報InfLがデータ記録部33から電流制御部9の情報記憶装置72a、72bに転送される。なお、情報記憶装置72、72a、72bにデータが記憶されていないモータインダクタンス測定モードおいて、電流制御部9は補償電圧指令vqcmp*の値がゼロとなったq軸電圧指令vq*を生成するので、実施の形態1又は実施の形態2の電流制御部22と同じ電圧指令91を生成できる。より具体的には、情報記憶装置72、72a、72bにデータが記憶されていないモータインダクタンス測定モードおいて、図20、図21の選択部14b、14dから出力される信号値がゼロになるので、補償電圧指令vqcmp*の値がゼロになる。加算器63aにより、信号69の値とゼロである補償電圧指令vqcmp*の値が加算されて、q軸電圧指令vq*が生成される。したがって、電流制御部9は補償電圧指令vqcmp*の値がゼロとなったq軸電圧指令vq*を生成する。モータインダクタンス測定モードの電流制御部9は、実施の形態1又は実施の形態2の電流制御部22の動作を実現できる。
通電制御部2は、モータインダクタンス測定モード、モータ制御モードのどちらの場合も動作する。選択部25は、モード切替信号sig4がモータインダクタンス測定モードを示す場合に、電流指令出力部23が出力する電流指令98を電流指令90として電流制御部9に出力する。また、選択部25は、モード切替信号sig4がモータ制御モードを示す場合に、モータ制御部73が出力する電流指令99を電流指令90として電流制御部9に出力する。なお、電流指令98のベクトル表記は(ids1*,iqs1*)であり、電流指令99のベクトル表記は(ids2*,iqs2*)である。ここでは、モータ1のトルクを制御するように構成されたモータ制御部73からの電流指令を用いる。
なお、電流制御部9に情報記憶装置72a、72bが搭載されている例で説明したが、電流制御部9に情報記憶装置72a、72bが搭載されずに、電流制御部9が動作する際に、データ記録部33からモータインダクタンス情報InfLを読み出すようにしてもよい。この場合には、情報記憶装置72a、72bを削除でき、予めモータインダクタンス情報InfLをデータ記録部33から電流制御部9の情報記憶装置72a、72bに転送する作業を不要にできる。
実施の形態8のモータ駆動システム70は、モータインダクタンス測定装置50を実施の形態4で説明したサーバ8と分担して動作する構成としてもよい。また、実施の形態4で説明したように、サーバ8に集積された集積データdata3のモータインダクタンス情報InfLのセットすなわちモータインダクタンス情報セットInfLsを利用してもよい。実施の形態8のモータ駆動システム70は、インダクタンス演算部3の一部の構成又は全ての構成をサーバ8上に構成することで、インダクタンス演算に要する処理を外部で行うことができ、通電制御部2が搭載される装置すなわち通電制御装置71に設けるべき処理リソースを削減することが可能となる。また、実施の形態8のモータ駆動システム70は、インダクタンス演算部3の全ての構成をサーバ8上に構成し、かつ予め集積された集積データdata3のモータインダクタンス情報セットInfLsを、通信ネットワーク7を介して利用する構成にしてもよい。この構成の場合には、モータ制御モードを実行する前にモータインダクタンス測定モードを実行することなく、モータ制御モードにてモータ1を制御することができる。すなわち、実施の形態8のモータ駆動システム70は、インダクタンス演算部3の全ての構成をサーバ8上に構成し、かつ予め集積された集積データdata3のモータインダクタンス情報セットInfLsを、通信ネットワーク7を介して利用することで、迅速にモータ制御モードにてモータ1を制御することができる。
実施の形態1又は実施の形態2で説明したモータインダクタンス情報InfLの測定は、dq軸回転座標上での交流通電を実施する。dq軸回転座標上での交流通電を実施すると交流トルクが発生するため、モータ1にて動作させる負荷装置によっては、電流の大きさに制限がある又は交流通電できない場合も想定される。この場合には、実施の形態8のモータ駆動システム70は、予めサーバ8に集積された集積データdata3のモータインダクタンス情報セットInfLsを利用する構成とする。さらに、実施の形態8のモータ駆動システム70は、サーバ8にモータ仕様あるいは形名を送信して、類似した仕様のモータのモータインダクタンス情報セットInfLsをサーバ8の集積データdata3から取得して電流制御部9の情報記憶装置72a、72bに転送するデータ転送部を備える構成する。この構成にすることで、実施の形態8のモータ駆動システム70は、電流の大きさに制限がある又は交流通電できない負荷装置を動作させる場合にも、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを利用することができる。
以上のように、実施の形態8のモータ駆動システム70は、実施の形態1又は実施の形態2のモータインダクタンス情報InfLを利用してモータ1を制御するので、実施の形態5又は実施の形態6のモータ駆動システム70と同じ効果を奏する。
実施の形態8のモータ駆動システム70は、モータ1を制御するモータ駆動システムである。実施の形態8のモータ駆動システム70は、モータ1を制御するモータ制御モードと、モータ1に流れる交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性56a、56b(又は57b)を含むインダクタンス情報(モータインダクタンス情報InfL)を測定するモータインダクタンス測定モードとのいずれかを設定するモード切替部75と、モータインダクタンス測定モードにおいて、モータ1の2軸直交回転座標上の少なくとも1つの軸(q軸)に交流電圧(q軸電圧交流成分vqAC)を印加して交流電流(q軸電流交流成分iqsAC)を流すように、モータ1の通電制御を行い、かつモータ制御モードにおいて、モータ1の2軸直交回転座標上の2軸(d軸、q軸)に対して電流(dq軸電流95)を流すように、モータ1の通電制御を行う通電制御部2と、モータインダクタンス測定モードにおいて、モータ1から検出された検出電流94に基づいたモータ1の交流電流(q軸電流交流成分iqsAC)とモータ1の抵抗((固定子抵抗Rs、回転子抵抗Rr)又は(固定子抵抗Rs、回転子抵抗Rr、負性抵抗Rn))とによる抵抗電圧((Rs+Rr)・iqsAC又は(Rs+Rr−Rn)・iqsAC)を交流電圧(q軸電圧交流成分vqAC)から差し引いた残存電圧を積分することで交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値を演算して、交流電流(q軸電流交流成分iqsAC)の瞬時値に対する交流磁束(q軸磁束交流成分ΦqsAC)の瞬時値の特性をインダクタンス情報(モータインダクタンス情報InfL)として生成するインダクタンス演算部3と、を備えている。実施の形態8のモータ駆動システム70は、通電制御部2が、モータ制御モードにおいて、モータ1の2軸直交回転座標上の2軸(d軸、q軸)に対して流す電流(dq軸電流95)を制御する2軸電流指令(電流指令90)とインダクタンス情報(モータインダクタンス情報InfL)とに基づいて、モータ1を制御する。実施の形態8のモータ駆動システム70は、この構成により、2軸電流指令(電流指令90)とインダクタンス情報(モータインダクタンス情報InfL)とに基づいて、モータ1を制御するので、モータ1の電流制御応答を向上することができ、モータ1の制御の応答速度及び精度を向上することができる。
なお、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。