JP6788842B2 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
JP6788842B2
JP6788842B2 JP2017065798A JP2017065798A JP6788842B2 JP 6788842 B2 JP6788842 B2 JP 6788842B2 JP 2017065798 A JP2017065798 A JP 2017065798A JP 2017065798 A JP2017065798 A JP 2017065798A JP 6788842 B2 JP6788842 B2 JP 6788842B2
Authority
JP
Japan
Prior art keywords
light
tube
pipe
water treatment
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065798A
Other languages
English (en)
Other versions
JP2018167167A (ja
Inventor
忠和 河村
忠和 河村
晶二 狩野
晶二 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2017065798A priority Critical patent/JP6788842B2/ja
Publication of JP2018167167A publication Critical patent/JP2018167167A/ja
Application granted granted Critical
Publication of JP6788842B2 publication Critical patent/JP6788842B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、水処理装置に関し、特に紫外光を水に照射して処理を行う装置に関する。
半導体装置の製造工程における洗浄処理では、高濃度の薬液や洗剤と共に、それを濯ぐための大量の純水(超純水)が用いられる。近年、半導体デバイスにおける回路パターンの微細化、高密度化、高集積化に伴い、純水の水質に対する要求が高まっている。洗浄工程等において使用される純水は、水質管理項目の一つである全有機炭素(TOC:Total Organic Carbon)濃度を極めて低いレベルとすることが求められる。なぜなら、仮に、純水に有機物が多く含まれていると、その後の熱処理工程において当該有機物が炭化し、絶縁不良を引き起こすおそれがあるためである。
純水の水質に対する要求が高まっていることを背景に、近年、純水中に含まれる微量の有機物を分解し除去する様々な方法が検討されてきている。そのような方法の代表的なものとして、紫外光酸化処理装置を利用した有機物の分解除去方法が存在する。
紫外光酸化処理装置においては、逆浸透膜分離装置などによって処理された水に対し、低圧水銀ランプからの光(紫外光)を照射することによって処理が行われる。水は、紫外光の照射エネルギーによって励起され、下記式(1)に示すように、ラジカル、具体的には、水素ラジカル(・H)及びヒドロキシラジカル(・OH)を生成し、瞬時に水に戻る反応を繰り返す。
Figure 0006788842
また、紫外光酸化処理装置による処理においては、過酸化水素が生成される。具体的には、紫外光によって水が励起されることにより、下記の式(2)に示すように、過酸化水素(H22)が生成される。
Figure 0006788842
水に過酸化水素が含まれる場合、その水を例えば半導体装置の製造工程に用いると、過酸化水素が半導体装置製造工程に影響を与える可能性があり、好ましくない。このため、純水は、TOCだけでなく過酸化水素の濃度を極めて低いレベルとすることが求められる。
このような過酸化水素に起因する問題を解決するために、紫外光酸化処理装置によって処理されて排出された処理済水を、樹脂や吸着剤などの過酸化水素除去用部材によって過酸化水素除去処理した後、イオン交換装置に供給することが提案されている(例えば下記特許文献1参照)。
具体的には、水処理システムにおいて、紫外光酸化処理装置とイオン交換装置との間に、アニオン交換樹脂(過酸化水素除去用樹脂)を充填したアニオン交換塔や、炭素系吸着剤(過酸化水素除去用吸着剤)を充填した吸着塔を設けることが提案されている。
特開2011−176733号公報
しかし、上記の方法で過酸化水素を除去する場合、装置が極めて大型化するという課題がある。また、使用後の触媒は廃棄処分されるため環境への負荷が大きいという課題がある。本発明は上記の課題に鑑み、触媒を用いることなく、処理対象である水に含まれる過酸化水素を分解することのできる水処理装置を提供することを目的とする。
本発明に係る水処理装置は、
通水用の第一管と、
前記第一管を取り囲むように設けられた、誘電体からなる第二管と、
前記第二管を取り囲むように設けられた、誘電体からなる第三管と、
前記第二管と前記第三管とに挟まれた空間内に充填された放電用ガスと、
前記第三管の外壁に設けられた第一電極と、
前記第二管の内壁、又は前記第一管の外壁に設けられた第二電極と、
少なくとも、前記第三管の内壁又は前記第二管の外壁に設けられた蛍光体層と、を備え、
前記放電用ガスは、前記第一電極と前記第二電極との間に所定の電圧が印加されると、第一光を発する材料で構成され、
前記蛍光体層は、前記第一光が入射されると、前記第一光よりも長波長の、主たる発光波長が189nm以上250nm以下の第二光を発する材料で構成され、
前記第一管は、波長が189nm未満の光を遮断する材料を含んで構成されることを特徴とする。
上記の水処理装置は、エキシマランプの原理を利用したものである。第一電極と第二電極との間に電圧が印加されると、それぞれ誘電体で構成された、第二管と第三管とに挟まれた空間内に充填された放電ガスに対して放電が生じ、エキシマ発光が生じる。このエキシマ発光による光が、第一光に対応する。
少なくとも、第三管の内壁又は前記第二管の外壁には、蛍光体層が設けられている。第一光は、この蛍光体層に入射されると、蛍光を励起する。これにより、蛍光体層からは、第一光よりも長波長である第二光が射出される。蛍光体層は、第一光が入射されると、第一光よりも長波長の、主たる発光波長が189nm以上250nm以下の第二光を発する材料で構成される。すなわち、第二光は、主たる発光波長が189nm以上250nm以下である。第二光は、より好ましくは、主たる発光波長が189nm以上210nm以下である。
第一光と第二光は、第二管の外壁に入射された後、第二管の壁部を透過して第一管の外壁に入射される。ここで、第一管は、189nm未満の光を遮断する材料を含んで構成されている。このため、第一光は第一管の壁部において遮断される一方、第二光は第一管の内側に透過される。
第一管の内側には、処理対象としての水(以下、「被処理液」と呼ぶ。)が通水される。より詳細には、被処理液としては、過酸化水素を含む水が用いられる。例えば、被処理液としては、TOCを除去する工程を経た水が用いられる。
すなわち、過酸化水素を含む被処理液に対し、189nm以上の光が照射される。第二光は、主たる発光波長が189nm以上250nm以下であるため、第二光のピーク波長近傍の光は、第一管の内側を流れる被処理液に照射される。
図1は、過酸化水素の吸収スペクトルを模式的に示す図面である。図1において、横軸は光の波長を示し、縦軸は吸収係数を示す。図1によれば、250nm以下の波長帯の光については、過酸化水素に吸収されることが示される。なお、図1によれば、210nm以下の波長帯の光については、高い吸収率が示されている。過酸化水素に光が吸収されると、下記(3)式に示されるような反応が生じる。すなわち、過酸化水素が水と酸素に分解される。
Figure 0006788842
図2は、水の透過スペクトルを模式的に示す図面である。図2によれば、水の透過率が大きく減少する波長(短波長側の吸収端)が189nmに存在することが示されている。すなわち、波長189nm以上の光が水に照射されても、水は光を全く又はほとんど吸収しない。すなわち、上記(2)式の反応が生じない。
つまり、上記水処理装置によれば、水には吸収されにくく、過酸化水素には吸収されやすい波長帯の光が、過酸化水素を含む被処理液に照射される。従って、過酸化水素の分解は進行するものの、水の分解は進行しない。この結果、被処理液に含有される過酸化水素の量を削減することができる。この構成によれば、光を照射することによって、被処理液に含有された過酸化水素の量を削減できるため、従来のように触媒を用いる必要がない。
なお、本明細書内において、「光を遮断する」とは、入射された光のうち、75%以上の光を透過しないことを意味するものとして構わない。第一管は、入射された波長が189nm未満の光のうち、75%以上の光を透過しないように構成されており、好ましくは85%以上の光を透過しないように構成されている。
前記放電用ガスは、フッ素を含まない材料で構成されるものとすることができる。一例として、前記放電用ガスは、Xe、Ar、Kr、ArCl、ArBrなどを利用することができる。
放電用ガスとしてArFを用いた場合、主たる発光波長が193nmのエキシマ発光が生じることは知られている。しかし、発光効率が低い上、フッ素は環境負荷が高いという問題がある。上記の構成によれば、環境負荷の低い材料を放電用ガスとして利用しながら、過酸化水素の分解に適した波長帯の光を被処理液に照射することができる。
前記放電用ガスは、Xeを含む材料で構成され、
前記第一光の主たる発光波長は、172nmであるものとすることができる。
Xeを用いたエキシマ発光は、高い発光効率で光を生成することが可能である。このエキシマ光の主たる発光波長は172nmである。図2に示したように、波長172nmの光は、水に対して高い吸収率を示す。このため、もしこの波長172nmのエキシマ光が直接被処理液に照射されてしまうと、上記(1)式及び(2)式に基づく反応が進行し、過酸化水素が生成されてしまう。図1によれば、たしかに172nmの光は、過酸化水素にも吸収されるため、上記(3)式に基づく反応も進行する。しかし、過酸化水素を分解する速度よりも、速い速度で水が分解されてしまい、実質的に被処理液内に含まれる過酸化水素を減少させることができない。
しかし、上記の構成によれば、主たる発光波長が172nmであるエキシマ光は、蛍光体層に照射されることで、それよりも長波長の、主たる発光波長が189nm以上250nm以下の光(第二光)に変換される。更に、被処理液が通水される第一管は、189nm未満の光を遮断する材料を含んで構成される。この結果、被処理液に対しては、主たる発光波長が189nm以上250nm以下の光(第二光)が照射される一方、主たる発光波長が172nmであるエキシマ光(第一光)は照射されない。従って、被処理液に含まれる水はほとんど分解されずに、過酸化水素が分解されるため、被処理液に含まれる過酸化水素の量を削減することができる。
前記水処理装置は、
前記第三管の内壁に設けられた、前記第一光及び前記第二光を反射可能な反射層を備え、
前記蛍光体層は、前記反射層の上面に形成されているものとしても構わない。
かかる構成によれば、放電空間内で発生したエキシマ光(第一光)、及びこの第一光が蛍光体層に入射されることで生成された蛍光(第二光)を、第二管側に高効率で導くことができる。第一光は、蛍光体層に入射されると、蛍光体層において第二光に変換されるものの、一部の第一光は蛍光体層を通過して第三管の内壁に達する。上記のように、第三管の内壁に反射層が設けられることで、反射層において第一光を反射させて再び蛍光体層内に入射させることができる。この結果、第二光の強度が高められる。
蛍光体層で生成された第二光には、第二管に向かって進行する光と、第三管の内壁に向かって進行する光が存在する。上記のように、第三管の内壁に反射層が設けられることで、第三管の内壁に達する第二光についても、第二管側に進行方向を変化させることができる。この結果、被処理液に照射される第二光の強度が高められる。
第三管の内壁に、上記の反射層を構成する材料を焼成した後、蛍光体層を構成する材料を焼成することで、第三管の内壁に反射層と蛍光体層とを設けることができる。
前記第一管は、前記第二管及び前記第三管よりもOH基の含有量が少ない石英ガラスで構成されているものとすることができる。
石英ガラスは、透過率の高い光の波長範囲が広い材料である。石英ガラスに混在されるOH基の含有量を低下させると、吸収端を長波長側にシフトさせることができる。すなわち、第一管を構成する材料のOH基の含有量を、第二管や第三管よりも少なくすることで、第一管に対して、短波長の光を遮断する機能を持たせることが可能である。第一管は、189nm未満の光を遮断する能力が発現する程度にまで、第二管や第三管と比較してOH基の含有量が少なく構成されるものとして構わない。
前記第一管は、当該第一管の外壁に、前記第一光を遮断する光遮断層を備えるものとしても構わない。
前記光遮断層は、前記蛍光体層と同一の材料からなるものとすることができる。かかる構成とすることで、第一管の外壁に入射された第一光は、第二光に変換され、この第二光が被処理液に照射される。
前記第一電極は、前記第一光及び前記第二光を反射可能な、金属材料からなるものとすることができる。
かかる構成とすることで、第一光又は第二光のうち、第三管の外壁を透過した光が存在した場合であっても、第一電極で反射して第二管側へ戻すことができる。これにより、被処理液に照射される第二光の強度が高められる。
本発明によれば、触媒を用いることなく、処理対象である水に含まれる過酸化水素を分解することのできる水処理装置が実現される。
過酸化水素の吸収スペクトルを模式的に示す図面である。 水の透過スペクトルを模式的に示す図面である。 水処理装置の模式的な平面図である。 水処理装置の模式的な断面図である。 Xeエキシマ光のスペクトルを模式的に示す図面である。 水処理装置に対して被処理液を循環させながら流したときの、経過時間と、被処理液内の過酸化水素含有濃度との関係を示すグラフである。 水処理装置の別実施形態の模式的な断面図である。 水処理装置の別実施形態の模式的な断面図である。 水処理装置の別実施形態の模式的な断面図である。 水処理装置の別実施形態の模式的な断面図である。 水処理装置の別実施形態の模式的な断面図である。
本発明に係る水処理装置の実施形態につき、図面を参照して説明する。なお、以下の各図面は、水処理装置の一実施形態を示すものであり、本発明を図示された構成に限定する趣旨ではない。また、各図において、図面の寸法比と実際の寸法比は必ずしも一致しない。
図3は、本実施形態の水処理装置の模式的な平面図である。図4は、図3のA1−A1線断面図である。図3は、水処理装置1をY軸方向に見たときの平面図に対応する。図4は、水処理装置1をX軸方向に見たときの平面図に対応する。X軸方向は、被処理液2が流れる方向に対応する。
水処理装置1は、通水用の第一管11と、第一管11を取り囲むように設けられた第二管12と、第二管12を取り囲むように設けられた第三管13とを備える。本実施形態では、第一管11、第二管12、及び第三管13は、いずれも石英ガラスで構成される。
第二管12と第三管13との間の放電空間10内には、所定の放電用ガスが充填されている。本実施形態では、放電空間10内にXeガスが充填されているものとして説明する。
第三管13の外壁には、第一電極21が形成されている。第一管11の外壁には、第二電極22が形成されている。本実施形態では、第一電極21及び第二電極22は、共に網目形状を有している。なお、図3及び図4では、第一管11と第二管12の間には、第二管12と第三管13との間に設けられた放電空間10と同程度の空間が存在しているかのように図示されているが、これは模式的に示されたものである。すなわち、第一管11と第二管12の間は、実際は十分に狭いものとしても構わない。
第一電極21と第二電極22との間に電圧が印加されると、放電空間10内に電圧が印加され、放電プラズマが発生する。このプラズマにより放電空間10内のXe原子が励起され、エキシマ励起分子Xe2 *が生成される。この励起分子Xe2 *が基底状態に戻るときにエキシマ発光を発生する。図5に、Xeエキシマ光のスペクトルを模式的に示す。図5に示すように、Xeエキシマ光は、172nmにピークを有するスペクトルを示す。本実施形態では、Xeエキシマ光が「第一光」に対応する。
本実施形態において、水処理装置1は、第三管13の内壁に、反射層31と蛍光体層33とを備える。蛍光体層33は、反射層31の上面に形成されている。
蛍光体層33は、主たる波長が172nmのXeエキシマ光が入射されると、それよりも長波長であって、主たる発光波長が189nm以上250nm以下の蛍光を発する材料で構成されている。一例として、蛍光体層33は、例えば、YPO4:Prを用いることができる。蛍光体層33によって生成される蛍光が「第二光」に対応する。
反射層31は、エキシマ光(第一光)及び蛍光(第二光)を反射可能な材料で構成される。反射層31は、例えば、SiO2からなる粒状体を用いることができる。第三管13の内壁に、上記の反射層31を構成する材料を焼成した後、蛍光体層33を構成する材料を焼成することで、第三管13の内壁に反射層31と蛍光体層33とを設けることができる。
通水用の第一管11は、189nm未満の光を遮断する材料を含んで構成される。第一管11は、189nm未満の光を75%以上遮断するように構成されるのが好ましく、85%以上遮断するように構成されるのが更に好ましい。
第一管11が石英ガラスで構成される場合、OH基の含有量を調整することで、吸収端を調整することができる。石英ガラスに含まれるOH基の含有量を少なくすると、吸収端を長波長側にシフトさせることできる。よって、第一管11、第二管12、及び第三管13がいずれも石英ガラスで構成される場合、第一管11に含有されるOH基の量を、第二管12及び第三管13に含有されるOH基の量よりも低下させることで、第一管11は189nm未満の光を遮断させることが可能である。
なお、第一管11の吸収端を調整する他の方法としては、例えばTi、Fe、Cr、Vなどの重金属イオンのドープ量を調整することでも実現が可能である。重金属のドープ量を高めることで、吸収端を長波長側にシフトさせることができる。
第一管11内を通水する被処理液2は、処理対象としての水であり、より詳細には、過酸化水素を含む水である。
上記の構成によれば、放電空間10内で発生したエキシマ光(第一光)は、一部が蛍光体層33によって、エキシマ光よりも長波長の蛍光(第二光)に変換される。これらの第一光と第二光は、第二管12を透過して、第一管11に入射される。第一管11は、上記のように、189nm未満の光を遮断するように構成されているため、第一管11の内側には、主として第二光が入射される。つまり、第一管11の内側を通水する被処理液2に対し、主たる発光波長が189nm以上250nm以下の第二光が照射される。
図1に示すように、波長が189nm以上250nm以下の光については、過酸化水素によって吸収されるため、上記(3)式の反応が生じて過酸化水素が分解される。一方、上記波長範囲の光は、図2に示すように水にはほとんど吸収されないため、上記(2)式の反応が全く又はほとんど生じない。この結果、被処理液2内に含有されている過酸化水素の量を低下させることができる。
図6は、本実施形態の水処理装置1に対して、被処理液2を循環させながら流したときの、経過時間と、被処理液2内の過酸化水素含有濃度との関係を示すグラフである。水処理装置1は、以下の条件のものを採用した。
第一管11: 内径17mm、外径19mm、X軸方向の長さ500mm
第二管12: 内径20mm、外径22mm、X軸方向の長さ480mm
第三管13: 内径37mm、外径40mm、X軸方向の長さ480mm
放電空間10: 径方向の幅7.5mm
放電用ガス: ガス圧39.9kPa(300Torr)
点灯電力: 150W
被処理液2: 流量10L/分
また、被処理液2に含まれる過酸化水素の濃度は、フローインジェクション分析法(FIA法)を用いて測定した。フローインジェクション分析法は、例えば、日本工業規格のJIS K 0126に規定されている。
図6によれば、処理時間の経過と共に、被処理液2に含まれる過酸化水素の濃度が低下されていることが確認できる。
なお、図6で示した実施例で用いられた水処理装置1の寸法及び条件は、あくまで一例である。例えば、以下の寸法及び条件の下で被処理液2内の過酸化水素含有濃度を測定した場合であっても、同様の傾向を示す結果が得られる。
第一管11: 内径14〜26mm、外径16〜30mm、X軸方向の長さ450〜1500mm
第二管12: 内径17〜35mm、外径19〜40mm、X軸方向の長さ430〜1500mm
第三管13: 内径34〜70mm、外径37〜75mm、X軸方向の長さ430〜1500mm
放電空間10: 径方向の幅7.5〜15mm
放電用ガス: ガス圧39.9〜53.2kPa(300〜400Torr)
点灯電力: 100〜900W
被処理液2: 流量5〜40L/分
[別実施形態]
以下、別実施形態につき説明する。なお、以下の各別実施形態は、相互に組み合わせることが可能である。
〈1〉図7に示すように、第三管13の外壁に設けられる第一電極21は、第三管13の外壁を覆うように形成されていても構わない。本実施形態では、第一光や第二光を、第三管13の外側に放射させる必要がないため、必ずしも、第一電極21を、図4に示したような網目形状に構成しなくてもよい。
なお、この場合において、第一電極21は、第一光や第二光に対して反射率の高い金属材料で構成されるのが好ましい。一例として、第一電極21は、高反射性アルミニウム(例えば光輝用アルミニウム合金等)を用いることができる。
また、第一電極21の外側に、第一光や第二光に対して反射率の高い材料からなる反射層を設けても構わない。この場合、第一電極21は、必ずしも第一光や第二光に対して反射率の高い材料である必要はない。なお、図4に示したような、網目形状の第一電極21の外側に、反射層を設けても構わない。この反射層としては、例えば、アルミナ、ステアタイト等の粒状体を用いることができる。
〈2〉図8に示すように、水処理装置1は、第二管12の外壁に蛍光体層34を設ける構成としても構わない。この蛍光体層34は、蛍光体層33と同じ材料で構成されることができる。かかる構成とすることで、放電空間10内で発生したエキシマ光(第一光)を、高効率に第二光に変換することができる。
〈3〉図9に示すように、水処理装置1は、第三管13の内壁には反射層31を備えない構成としても構わない。この場合、蛍光体層33の厚みを厚くするのが好ましい。一例として、図4に示す水処理装置1において、反射層31の厚みは10〜1000μmであり、蛍光体層33の厚みは10〜1000μmである。図9に示す水処理装置1において、蛍光体層33の厚みは50〜2000μmである。
蛍光体層33の厚みを厚くすることで、蛍光体層33に入射された光を、第二管12側に戻す機能を高めることができる。
〈4〉図10に示すように、第二電極22は、第二管12の内壁に設けられるものとしても構わない。
〈5〉図11に示すように、水処理装置1は、第一管11の外壁に、光遮断層36を備えるものとしても構わない。この光遮断層36は、189nm未満の光を遮断する材料によって構成される。この構成においても、第一光が実質的に第一管11内に入射されないため、被処理液2に対しては主として第二光が照射される。光遮断層36は、一例として、誘電体多層膜で構成することができる。
別の例として、光遮断層36は、蛍光体層33と同一の材料で構成することができる。かかる構成によれば、第二光に変換されずに残存していた第一光は、第一管11の外壁に入射されると、この光遮断層36によって第二光に変換される。この結果、実質的に第一管11内に第一光を透過させない機能を持たせることができる。
〈6〉第一管11、第二管12、及び第三管13は、いずれも石英ガラスで構成されるものとして説明したが、他の材料で構成されていても構わない。第二管12及び第三管13は、誘電体で構成され、第二管12と第三管13の間で誘電体バリア放電によるエキシマ発光が実現できる構成であればよい。
〈7〉放電空間10内に充填されるガスは、キセノン(Xe)ガスには限定されない。少なくとも、主たる発光波長が189nm未満のエキシマ光を生成することができる材料であればよい。例えば、Arエキシマであれば、主たる発光波長が126nmである。Krエキシマであれば、主たる発光波長が146nmである。ArBrエキシマであれば、主たる発光波長が165nmである。ArClエキシマであれば、主たる発光波長が175nmである。
〈8〉蛍光体層33は、複数種類の蛍光物質を混在させて構成されていても構わない。一例として、蛍光体層33は、第一光が入射されると、上述した第二光に加えて、主たる発光波長が250nm以上270nm以下程度の第三光を生成するものとすることができる。かかる構成によれば、この第三光についても、第一管11を透過して被処理液2に照射される。DNAやRNAは、260nm近傍に吸収スペクトルのピークを有するため、被処理液2内に含有される過酸化水素量の低下と共に、被処理液2の殺菌処理を行うことができる。
1 : 水処理装置
2 : 被処理液
10 : 放電空間
11 : 第一管
12 : 第二管
13 : 第三管
21 : 第一電極
22 : 第二電極
31 : 反射層
33 : 蛍光体層
34 : 蛍光体層
36 : 光遮断層

Claims (8)

  1. 通水用の第一管と、
    前記第一管を取り囲むように設けられた、誘電体からなる第二管と、
    前記第二管を取り囲むように設けられた、誘電体からなる第三管と、
    前記第二管と前記第三管とに挟まれた空間内に充填された放電用ガスと、
    前記第三管の外壁に設けられた第一電極と、
    前記第二管の内壁、又は前記第一管の外壁に設けられた第二電極と、
    少なくとも、前記第三管の内壁又は前記第二管の外壁に設けられた蛍光体層と、を備え、
    前記放電用ガスは、前記第一電極と前記第二電極との間に所定の電圧が印加されると、第一光を発する材料で構成され、
    前記蛍光体層は、前記第一光が入射されると、前記第一光よりも長波長の、主たる発光波長が189nm以上250nm以下の第二光を発する材料で構成され、
    前記第一管は、波長が189nm未満の光を遮断する材料を含んで構成されることを特徴とする水処理装置。
  2. 前記放電用ガスは、フッ素を含まない材料で構成されることを特徴とする請求項1に記載の水処理装置。
  3. 前記放電用ガスは、Xeを含む材料で構成され、
    前記第一光の主たる発光波長は、172nmであることを特徴とする請求項1又は2に記載の水処理装置。
  4. 前記第三管の内壁に設けられた、前記第一光及び前記第二光を反射可能な反射層を備え、
    前記蛍光体層は、前記反射層の上面に形成されていることを特徴とする請求項1〜3のいずれか1項に記載の水処理装置。
  5. 前記第一管は、前記第二管及び前記第三管よりもOH基の含有量が少ない石英ガラスで構成されていることを特徴とする請求項1〜4のいずれか1項に記載の水処理装置。
  6. 前記第一管は、当該第一管の外壁に、前記第一光を遮断する光遮断層を備えたことを特徴とする請求項1〜5のいずれか1項に記載の水処理装置。
  7. 前記光遮断層は、前記蛍光体層と同一の材料からなることを特徴とする請求項6に記載の水処理装置。
  8. 前記第一電極は、前記第一光及び前記第二光を反射可能な、金属材料からなることを特徴とする請求項1〜7のいずれか1項に記載の水処理装置。

JP2017065798A 2017-03-29 2017-03-29 水処理装置 Active JP6788842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065798A JP6788842B2 (ja) 2017-03-29 2017-03-29 水処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065798A JP6788842B2 (ja) 2017-03-29 2017-03-29 水処理装置

Publications (2)

Publication Number Publication Date
JP2018167167A JP2018167167A (ja) 2018-11-01
JP6788842B2 true JP6788842B2 (ja) 2020-11-25

Family

ID=64017778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065798A Active JP6788842B2 (ja) 2017-03-29 2017-03-29 水処理装置

Country Status (1)

Country Link
JP (1) JP6788842B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220401598A1 (en) * 2021-06-22 2022-12-22 Langsim Optoelectronic Technologies (Guangdong) Limited Novel ultraviolet lamp tube

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784674B1 (fr) * 1998-10-20 2001-07-20 Stephane Marty Dispositif d'epuration de fluide par impulsions photoniques
WO2006006129A2 (en) * 2004-07-09 2006-01-19 Philips Intellectual Property & Standards Gmbh Uvc/vuv dielectric barrier discharge lamp with reflector
JP4998832B2 (ja) * 2008-03-19 2012-08-15 ウシオ電機株式会社 エキシマランプ
JP2012048831A (ja) * 2010-08-24 2012-03-08 Ushio Inc 蛍光ランプ
JP6365096B2 (ja) * 2014-08-07 2018-08-01 ウシオ電機株式会社 紫外線照射式オゾン生成装置
JP6736027B2 (ja) * 2016-04-04 2020-08-05 ウシオ電機株式会社 液体処理用エキシマランプ
JP6831268B2 (ja) * 2017-02-28 2021-02-17 株式会社オーク製作所 放電ランプ

Also Published As

Publication number Publication date
JP2018167167A (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6564663B2 (ja) エキシマランプ装置
US10343939B2 (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
KR100797027B1 (ko) 유전체장벽 방전관에서 발생되는 자외선 및 산화성 물질을이용한 폐수처리 장치 및 이를 이용한 폐수처리 방법
WO2003075314A1 (en) Device for generating uv radiation
KR102106293B1 (ko) 엑시머 광원
JP2009542437A (ja) 放射線源及び冷却手段を含む流体処理システム
JP2016215183A (ja) 紫外光照射装置
KR20100053485A (ko) 기판 세정 장치 및 기판 세정 방법
JP2016036772A (ja) 紫外線照射式浄水器
JP6788842B2 (ja) 水処理装置
KR100973121B1 (ko) 엑시머 램프
JP4691004B2 (ja) 紫外線光による不活化処理方法
JP2014213244A (ja) 紫外線水処理装置
TW570816B (en) Ultraviolet ray irradiation device and operation method thereof
CN101599413B (zh) 准分子灯
Alnaizy et al. MTBE removal from contaminated water by the UV/H2O2 process
JP6736027B2 (ja) 液体処理用エキシマランプ
CN204582056U (zh) 一种空气净化装置
CN208077935U (zh) 一种真空紫外光管、夹壁套管及夹壁套管应用系统
JP4865965B2 (ja) 紫外線による液体処理装置及び方法
WO2004107478A2 (en) Non-oxidizing electrode arrangement for excimer lamps
US7733027B2 (en) High-pressure mercury vapor lamp incorporating a predetermined germanium to oxygen molar ratio within its discharge fill
WO2023243288A1 (ja) オゾン含有ガス発生方法、オゾン含有ガス発生システム
WO2002024587A1 (fr) Verre de silice pour rayons ultraviolets a courte longueur d'ondes, lampe a decharge comprenant ce verre, receptacle pour cette lampe et dispositif a rayonnement ultraviolet
JPH11277053A (ja) 紫外線照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R151 Written notification of patent or utility model registration

Ref document number: 6788842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250