JP6784118B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP6784118B2
JP6784118B2 JP2016188033A JP2016188033A JP6784118B2 JP 6784118 B2 JP6784118 B2 JP 6784118B2 JP 2016188033 A JP2016188033 A JP 2016188033A JP 2016188033 A JP2016188033 A JP 2016188033A JP 6784118 B2 JP6784118 B2 JP 6784118B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016188033A
Other languages
English (en)
Other versions
JP2018054171A (ja
Inventor
東 近藤
東 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016188033A priority Critical patent/JP6784118B2/ja
Publication of JP2018054171A publication Critical patent/JP2018054171A/ja
Application granted granted Critical
Publication of JP6784118B2 publication Critical patent/JP6784118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷凍装置に関する。
従来、複数の圧縮機を有し、冷媒の圧縮を複数段階に分けて行う冷凍装置がある。例えば、特許文献1(特許3918865号公報)に開示される冷凍装置では、通常運転時の冷凍サイクルにおいては、利用側熱交換器において蒸発したガス冷媒を低段側圧縮機で圧縮し、低段側圧縮機から吐出される冷媒を高段側圧縮機でさらに圧縮することで、二段階の圧縮が行われるように構成されている。このような冷凍装置では、運転状況に応じて、低段側圧縮機が停止(休止)され、高段側圧縮機及び利用側熱交換器間で冷媒がバイパスされる。特許文献1の冷凍装置では、利用側熱交換器が冷媒の凝縮器として機能するデフロスト運転時には、低段側圧縮機が停止され、高段側圧縮機から吐出される冷媒が利用側熱交換器へバイパスされている。
上述のように従来の冷凍装置においては、運転状況に応じて低段側圧縮機が停止されるが、この際に低段側圧縮機内に冷媒が残存している場合、残存する冷媒が時間の経過とともに冷却され凝縮して低段側圧縮機内に液冷媒が溜まる寝込み現象が生じることが想定される。係る寝込み現象が生じると、低段側圧縮機の運転再開時に、液冷媒が圧縮される液圧縮現象が生じて低段側圧縮機が損傷することが想定され、信頼性が低下しうる。また、寝込み現象に伴い低段側圧縮機内において液冷媒が所定量に達すると、電力供給ラインの端子部分が液冷媒に接触して短絡されることで漏電が生じることが想定される。
そこで、本発明の課題は、圧縮機の信頼性低下及び漏電を抑制する冷凍装置を提供することである。
本発明の第1観点に係る冷凍装置は、冷媒の利用側熱交換器と、冷媒の熱源側熱交換器と、ガス側冷媒配管と、第1圧縮機と、第2圧縮機と、切換弁と、バイパス流路と、コントローラと、を備える。ガス側冷媒配管は、利用側熱交換器のガス側の出入口と接続される。第1圧縮機は、通常運転時に、利用側熱交換器において蒸発した冷媒を、吸入配管から吸入して圧縮し、吐出配管へ吐出する。通常運転時には、利用側熱交換器が冷媒の蒸発器として機能する。第2圧縮機は、通常運転時に、第1圧縮機において圧縮された冷媒をさらに圧縮する。切換弁は、通常運転時には、第2圧縮機から吐出された冷媒を利用側熱交換器に導き、利用側熱交換器が冷媒の凝縮器として機能する逆サイクル運転時には、第2圧縮機から吐出された冷媒を熱源側熱交換器に導く。バイパス流路は、一端が第1圧縮機に接続され、他端が液側冷媒流路に接続されている。液側冷媒流路は、液冷媒又は気液二相状態の冷媒が流れる。バイパス流路は、第1流量調整弁を有している。第1流量調整弁は、開度に応じた流量の冷媒を通過させる。コントローラは、第1流量調整弁を含む各アクチュエータの動作を制御する。ガス側冷媒配管は、第1分岐管と、第2分岐管と、を含む。第1分岐管は、第1圧縮機の吸入配管と連通する。第2分岐管は、切換弁へ延びる。コントローラは、逆サイクル運転時に、寝込み抑制制御を実行する寝込み抑制制御では、第1圧縮機を停止させつつ、第1流量調整弁の開度を第1開度に制御する。第1開度は、第1圧縮機内の冷媒がバイパス流路を経て液側冷媒流路へバイパスされる際の、第1流量調整弁を通過する冷媒流量に応じた開度である。
本発明の第1観点に係る冷凍装置では、コントローラは逆サイクル運転時に寝込み抑制制御を実行する。これにより、寝込み抑制制御では、第1流量調整弁が第1開度(第1圧縮機内の冷媒がバイパス流路を経て液側冷媒流路へバイパスされる際の第1流量調整弁を通過する冷媒流量に応じた開度)に制御される。その結果、逆サイクル運転が行われる際に第1圧縮機内に冷媒が残存している場合であっても、残存する冷媒がバイパス流路を介して液側冷媒流路へバイパスされる。このため、逆サイクル運転が行われる際に、第1圧縮機内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることが抑制される。よって、第1圧縮機の運転再開時に、液冷媒が圧縮される液圧縮現象が生じて第1圧縮機が損傷することが抑制される。すなわち、第1圧縮機の信頼性低下が抑制される。また、寝込み現象に伴い第1圧縮機内において電力供給ラインの端子部分が液冷媒に接触して短絡されることで漏電が生じることが抑制される。
本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって第2流量調整弁さらに備える第2流量調整弁は、第1流量調整弁とバイパス流路の他端との間に配置される。第2流量調整弁は、開度に応じた流量の冷媒を通過させる。コントローラは、寝込み抑制制御において、第2流量調整弁の開度を第2開度に制御する。第2開度は、第1圧縮機内の冷媒がバイパス流路を経て液側冷媒流路へバイパスされることを助長する開度である。
これにより、逆サイクル運転時に、第1圧縮機内の冷媒がバイパス流路を経て液側冷媒流路へバイパスされることが助長される。その結果、逆サイクル運転が行われる際に、第1圧縮機内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることがさらに抑制される。よって、第1圧縮機の信頼性低下及び漏電がさらに抑制される。
本発明の第3観点に係る冷凍装置は、第1観点又は第2観点に係る冷凍装置であって、温度センサをさらに備える。温度センサは、第1圧縮機内の冷媒の温度を検出する。コントローラは、温度センサの検出値に基づき第1圧縮機内における冷媒の寝込み現象が想定される場合に、寝込み抑制制御を実行する。
これにより、必要な場合に限って、寝込み抑制制御が実行される。その結果、不要な場合における冷媒のバイパスが抑制され、逆サイクル運転時のCOP低下が抑制される。
本発明の第4観点に係る冷凍装置は、第1観点から第3観点のいずれかに係る冷凍装置であって、第1センサと、第2センサと、をさらに備える。第1センサは、第2分岐管内の冷媒の圧力を検出するためのセンサである。第2センサは、第1圧縮機内の冷媒の圧力を検出するためのセンサである。コントローラは、第1センサ及び第2センサの検出値に基づき第1圧縮機内の冷媒の圧力が第2分岐管内の冷媒の圧力以下と想定される時に、寝込み抑制制御を実行する。
これにより、冷媒のバイパスが効果的に行われる場合(例えば、バイパス流路内のバイパス流路との接続箇所の冷媒の圧力と第1圧縮機内の冷媒の圧力との差圧によって、第1圧縮機内の冷媒のバイパスが誘引される場合)に限って、寝込み抑制制御が実行される。その結果、不要な場合における冷媒のバイパスが抑制され、逆サイクル運転時のCOP低下が精度よく抑制される。
本発明の第5観点に係る冷凍装置は、第1観点から第4観点のいずれかに係る冷凍装置であって、液側冷媒流路は、利用側熱交換器の液側の出入口に一端が接続されるコントローラは、寝込み抑制制御において、第1開度を、液側冷媒流路内のバイパス流路との接続箇所の冷媒の圧力と第1圧縮機内の冷媒の圧力との差圧によって第1圧縮機内の冷媒がバイパス流路を経て液側冷媒流路へバイパスされることを促進する開度、に決定する。
これにより、寝込み抑制制御において第1圧縮機内から液側冷媒流路への冷媒のバイパスが促進される。その結果、逆サイクル運転が行われる際に、第1圧縮機内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることがさらに抑制される。よって、第1圧縮機の信頼性低下及び漏電がさらに抑制される。
本発明の第6観点に係る冷凍装置は、第5観点に係る冷凍装置であって、膨張弁をさらに備える。膨張弁は、利用側熱交換器の液側の出入口側に配置されるコントローラは、寝込み抑制制御において、膨張弁の開度を第3開度に制御する。第3開度は、第1圧縮機内の冷媒がバイパス流路を介して液側冷媒流路へバイパスすることが促進される程度に、利用側熱交換器内で冷媒の圧力損失を生じさせる開度である。
これにより、寝込み抑制制御において第1圧縮機内から液側冷媒流路への冷媒のバイパスが特に促進される。その結果、逆サイクル運転が行われる際に、第1圧縮機内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることがさらに抑制される。よって、第1圧縮機の信頼性低下及び漏電がさらに抑制される。
本発明の第7観点に係る冷凍装置は、第1観点から第6観点のいずれかに係る冷凍装置であって、バイパス流路は、通常運転時に、インジェクション管として機能する。インジェクション管は、第1圧縮機において吸入される冷媒よりも圧力が大きく吐出される冷媒よりも圧力が小さい冷媒を、第1圧縮機に流入させる配管である。
これにより、通常運転時には、第1圧縮機の吐出冷媒温度を最適値に制御すべく、バイパス流路を介して中間圧冷媒を流入させることが可能となる。その結果、第1圧縮機において冷媒が過度に過熱状態となる過熱運転状態や過度に湿り状態となる湿り運転状態となることが抑制される。よって、圧縮機の信頼性低下がさらに抑制される。また、バイパス流路をインジェクション管と兼用することが可能となるため、コスト増大が抑制される。
本発明の第8観点に係る冷凍装置は、第1観点から第5観点のいずれかに係る冷凍装置であって、膨張弁をさらに備えている。膨張弁は、利用側熱交換器の液側の出入口と熱源側熱交換器の液側の出入口との間に設けられている。バイパス流路の他端は、熱源側熱交換器の液側の出入口と膨張弁との間の部分に接続されている。
本発明の第1観点に係る冷凍装置では、逆サイクル運転時には、第1流量調整弁が第1開度(第1圧縮機内の冷媒がバイパス流路を経て液側冷媒流路へバイパスされる際の第1流量調整弁を通過する冷媒流量に応じた開度)に制御される。その結果、逆サイクル運転が行われる際に第1圧縮機内に冷媒が残存している場合であっても、残存する冷媒がバイパス流路を介して液側冷媒流路へバイパスされる。このため、逆サイクル運転が行われる際に、第1圧縮機内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることが抑制される。よって、第1圧縮機の運転再開時に、液冷媒が圧縮される液圧縮現象が生じて第1圧縮機が損傷することが抑制される。すなわち、第1圧縮機の信頼性低下が抑制される。また、寝込み現象に伴い第1圧縮機内において電力供給ラインの端子部分が液冷媒に接触して短絡されることで漏電が生じることが抑制される。
本発明の第2観点に係る冷凍装置では、逆サイクル運転が行われる際に、寝込み現象が生じることがさらに抑制される。よって、第1圧縮機の信頼性低下及び漏電がさらに抑制される。
本発明の第3観点又は第4観点に係る冷凍装置では、逆サイクル運転時のCOP低下が抑制される。
本発明の第5観点又は第6観点に係る冷凍装置では、第1圧縮機の信頼性低下及び漏電がさらに抑制される。
本発明の第7観点に係る冷凍装置では、第1圧縮機において冷媒が過度に過熱状態となる過熱運転状態や過度に湿り状態となる湿り運転状態となることが抑制される。よって、圧縮機の信頼性低下がさらに抑制される。また、バイパス流路をインジェクション管と兼用することが可能となるため、コスト増大が抑制される。
本発明の一実施形態に係る冷凍装置の概略構成図。 コントローラの概略構成と、コントローラに接続される各部と、を模式的に示したブロック図。 コントローラによる運転時の処理の流れの一例について示したフローチャート。
以下、図面を参照しながら、本発明の一実施形態に係る冷凍装置100について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。
(1)冷凍装置100
図1は、本発明の一実施形態に係る冷凍装置100の概略構成図である。冷凍装置100は、蒸気圧縮式の冷凍サイクルによって、例えば冷蔵倉庫や店舗のショーケースの庫内等の利用側空間の冷却を行う装置である。冷凍装置100は、主として、熱源ユニット10と、中間ユニット20と、の利用ユニット40と、冷凍装置100の動作を制御するコントローラ50と、を有している。
冷凍装置100では、熱源ユニット10、中間ユニット20、及び利用ユニット40が、冷媒連絡配管を介して接続されることで、冷媒回路RCが構成されている。具体的に、熱源ユニット10と、中間ユニット20と、は第1ガス連絡配管G1及び第1液連絡配管L1を介して接続されている。また、中間ユニット20と、利用ユニット40と、は第2ガス連絡配管G2及び第2液連絡配管L2を介して接続されている。
冷媒回路RCには、例えば、R32やR410AのようなHFC冷媒が封入されている。なお、冷媒回路RCにおいては、HFC冷媒以外の冷媒が封入されていてもよい。
冷凍装置100では、利用ユニット40の設置空間における被冷却対象の冷却を行う冷却運転(通常運転)、及び利用ユニット40に含まれる利用側熱交換器43(後述)の除霜を行うデフロスト運転(逆サイクル運転)、を含む複数の運転が行われ、各運転に応じて冷凍サイクルが行われる。冷却運転時には、冷媒回路RC内の冷媒が、中間ユニット20に流入して圧縮され、熱源ユニット10に流入してさらに圧縮されてから凝縮(又は放熱)した後、利用ユニット40に流入して減圧されてから蒸発し(又は加熱され)、その後、再び中間ユニット20に流入する、という流れで冷凍サイクルが行われる。また、デフロスト運転時には、冷媒回路RC内の冷媒が、熱源ユニット10に流入して圧縮され、利用ユニット40に流入して凝縮(又は放熱)してから減圧され、その後、熱源ユニット10に流入して蒸発し(又は加熱され)てから再び圧縮される、という流れで冷凍サイクルが行われる。すなわち、デフロスト運転時には、冷却運転時とは異なり、中間ユニット20における冷媒の圧縮工程が省略される。
(1−1)熱源ユニット10
(1−1−1)熱源ユニット10に配置される回路要素
熱源ユニット10は、第1ガス連絡配管G1及び第1液連絡配管L1を介して中間ユニット20と接続されており、冷媒回路RCの一部を構成している。熱源ユニット10は、主として、冷媒回路RCを構成する回路要素として、互いに並列に配置される複数(ここでは3台)の高段側圧縮機11と、四路切換弁13と、熱源側熱交換器14と、レシーバ15と、を有している。
各高段側圧縮機11(特許請求の範囲記載の「第2圧縮機」に相当)は、駆動時に冷媒を吸入し圧縮して吐出する。具体的に、冷却運転時には、高段側圧縮機11は、中間ユニット20の低段側圧縮機21(後述)から吐出された中間圧のガス冷媒を吸入してさらに圧縮し、高圧のガス冷媒として吐出する。また、高段側圧縮機11は、デフロスト運転時には、熱源側熱交換器14において蒸発した低圧のガス冷媒を吸入して圧縮し、高圧のガス冷媒として吐出する。高段側圧縮機11は、例えばスクロール型式の圧縮機であり、ケーシング内において圧縮要素(図示省略)が圧縮機モータ(図示省略)によって回転駆動される密閉式構造を有している。本実施形態において、高段側圧縮機11は、運転時に圧縮機モータの回転数がインバータによって適宜制御される運転容量可変の「容量可変圧縮機」、又は運転時における圧縮機モータの回転数が一定であり運転容量が一定の「容量一定圧縮機」である。なお、冷媒回路RCにおいては、複数の高段側圧縮機11に関して、容量可変型圧縮機である高段側圧縮機11と、容量一定圧縮機である高段側圧縮機11と、が混合されて配置されてもよい。
四路切換弁13は、複数の冷媒の出入口(第1ポート、第2ポート、第3ポート、第4ポート)を有し、各出入口において、対応する冷媒配管に接続される。四路切換弁13は、駆動電圧を供給されることで、第1ポートと第2ポートとが連通するとともに第3ポートと第4ポートとが連通する第1状態(図1の四路切換弁13の実線で示す状態)と、第1ポートと第3ポートとが連通するとともに第2ポートと第4ポートとが連通する第2状態(図1の四路切換弁13の破線で示す状態)と、を切換可能に構成されている。
熱源側熱交換器14は、冷却運転時には冷媒の放熱器又は凝縮器として機能し、デフロスト運転時には冷媒の蒸発器として機能する熱交換器である。熱源側熱交換器14は、冷媒が流れる伝熱管(図示省略)を含んでおり、伝熱管内の冷媒と熱源側ファン17(後述)によって供給される空気流とが熱交換を行うように構成されている。
レシーバ15は、熱源側熱交換器14から流出した冷媒を一時的に溜める容器である。レシーバ15の内部には、冷媒回路RCに封入されている冷媒量に応じた容量の冷媒貯留空間が形成されている。
(1−1−2)熱源ユニット10に配置される冷媒配管
熱源ユニット10は、各回路要素を接続する複数の冷媒配管(具体的には、第1配管P1と、第2配管P2、第3配管P3及び第4配管P4、第5配管P5、及び第6配管P6)を有している。
第1配管P1は、第1ガス連絡配管G1の一端と、四路切換弁13の第1ポートと、を接続する。
第2配管P2は、四路切換弁13の第2ポートと、各高段側圧縮機11の吸入ポートと、を接続する。第2配管P2は、高段側圧縮機11の吸入配管として機能する。より詳細には、第2配管P2は、一端が四路切換弁13の第2ポートに接続されている。第2配管P2は、他端側が、高段側圧縮機11の台数に応じた数(ここでは3つ)に分岐しており、各高段側圧縮機11の吸入ポートに個別に接続されている。
第3配管P3は、各高段側圧縮機11の吐出ポートと、四路切換弁13の第3ポートと、を接続する。第3配管P3は、高段側圧縮機11の吐出配管として機能する。より詳細には、第3配管P3は、一端側が、高段側圧縮機11の台数に応じた数(ここでは3つ)に分岐しており、各高段側圧縮機11の吐出ポートに個別に接続されている。第3配管P3は、他端が四路切換弁13の第3ポートに接続されている。
第4配管P4は、四路切換弁13の第4ポートと、熱源側熱交換器14のガス側出入口と、を接続する。
第5配管P5は、熱源側熱交換器14の液側出入口と、レシーバ15の高段側出入口と、を接続する。
第6配管P6は、レシーバ15の低段側出入口と、第1液連絡配管L1の一端と、を接続する。
(1−1−3)熱源ユニット10に配置される他の機器
熱源ユニット10は、熱源ユニット10外から熱源ユニット10内に流入して熱源側熱交換器14を通過した後に熱源ユニット10外へ流出する空気流を生成する熱源側ファン17を有している。熱源側ファン17は、熱源側熱交換器14を流れる冷媒の冷却源又は加熱源としての空気を熱源側熱交換器14に供給するための送風機である。熱源側ファン17は、例えばプロペラファンやシロッコファンであり、熱源側ファンモータ(図示省略)によって回転駆動される。
また、熱源ユニット10は、高圧側圧力センサ18を有している。高圧側圧力センサ18は、第3配管P3(高段側圧縮機11の吐出配管)に配置される。高圧側圧力センサ18は、第3配管P3を通過する冷媒(すなわち、各高段側圧縮機11の吐出側における高圧冷媒)の圧力である高圧側圧力HPを検出する。
また、熱源ユニット10は、高段側圧縮機11から吐出される冷媒の温度を検出するための温度センサや外気温を検出する外気温センサ等、図示しない各種センサを有している。
また、熱源ユニット10は、熱源ユニット10内に含まれる各種アクチュエータの動作を直接的に制御する熱源ユニット制御部10aを有している。熱源ユニット制御部10aは、CPUやメモリ等を含むマイクロコンピュータを含む。熱源ユニット制御部10aは、熱源ユニット10に含まれる各種アクチュエータ(11、13、17等)、及び高圧側圧力センサ18を含む各種センサと電気的に接続されている。熱源ユニット制御部10aは、後述の中間ユニット制御部20a及び利用ユニット制御部40aと通信可能に接続されており、互いに信号の送受信を行う。熱源ユニット制御部10aは、中間ユニット制御部20a及び利用ユニット制御部40aとともに、コントローラ50を構成する。
(1−2)中間ユニット20
(1−2−1)中間ユニット20に配置される回路要素
中間ユニット20は、第1ガス連絡配管G1及び第1液連絡配管L1を介して熱源ユニット10と接続されるとともに、第2ガス連絡配管G2及び第2液連絡配管L2を介して利用ユニット40と接続されており、冷媒回路RCの一部を構成している。中間ユニット20は、主として、冷媒回路RCを構成する回路要素として、互いに並列に配置される複数(ここでは3台)の低段側圧縮機21と、過冷却熱交換器22と、低段側圧縮機21と同数(ここでは3つ)の逆止弁23及び第1調整弁24と、第2調整弁25と、第3調整弁26と、第4調整弁27と、を有している。
各低段側圧縮機21(特許請求の範囲記載の「第1圧縮機」に相当)は、駆動時に冷媒を吸入し圧縮して吐出する。具体的に、低段側圧縮機21は、冷却運転時に駆動され、低圧のガス冷媒を吸入して中間圧のガス冷媒として吐出する。低段側圧縮機21は、例えばスクロール型式の圧縮機であり、ケーシング内において圧縮要素(図示省略)が圧縮機モータ(図示省略)によって回転駆動される密閉式構造を有している。本実施形態において、低段側圧縮機21は、運転時に圧縮機モータの回転数がインバータによって適宜制御される運転容量可変の「容量可変圧縮機」、又は運転時における圧縮機モータの回転数が一定であり運転容量が一定の「容量一定圧縮機」である。なお、冷媒回路RCにおいては、複数の低段側圧縮機21に関して、容量可変型圧縮機である低段側圧縮機21と、容量一定圧縮機である低段側圧縮機21と、が混合されて配置されてもよい。
過冷却熱交換器22は、例えば二重管熱交換器である。過冷却熱交換器22は、2つの冷媒流路(第1流路221及び第2流路222)を形成されている。過冷却熱交換器22は、第1流路221内の冷媒と、第2流路222内の冷媒と、が熱交換を行うように構成されている。
各逆止弁23は、一端からの冷媒の流入を許容し他端からの冷媒の流入を遮断する弁である。各逆止弁23は、いずれかの低段側圧縮機21に1対1に対応し、対応する低段側圧縮機21の吐出配管(後述の第10配管P10)に一端が接続されており、他端が他の冷媒配管(後述の第12配管P12)に接続されている。逆止弁23は、一端から流入する冷媒を他端から流出させる。
各第1調整弁24、第2調整弁25、第3調整弁26及び第4調整弁27は、開度制御が可能な電動膨張弁であり、開度に応じて通過する冷媒を減圧する、若しくは通過する冷媒の流量を増減させる。
各第1調整弁24(特許請求の範囲記載の「第1流量調整弁」に相当)は、いずれかの低段側圧縮機21と1対1に対応し、一端が、対応する低段側圧縮機21のインジェクション管若しくはバイパス管として機能する第11配管P11(後述)の他端に接続されている。すなわち、各第1調整弁24は、第11配管P11の他端側に配置されている。各第1調整弁24は、他端が、他の冷媒配管(後述の第18配管P18)と接続されている。
第2調整弁25は、第1液連絡配管L1と連通する第13配管P13(後述)に一端が接続され、過冷却熱交換器22の第1流路221に連通する第14配管P14(後述)に他端が接続されている。
第3調整弁26(特許請求の範囲記載の「第2流量調整弁」に相当)は、第18配管P18(後述)の他端側に配置されている。より具体的には、第3調整弁26は、第1液連絡配管L1と連通する第13配管P13(後述)に接続される第16配管P16(後述)に一端が接続され、第2流路222に連通する第17配管P17(後述)に他端が接続されている。
第4調整弁27は、第1ガス連絡配管G1と連通する第7配管P7(後述)に一端が接続され、第2ガス連絡配管G2と連通する第8配管P8(後述)に他端が接続されている。
(1−2−2)中間ユニット20に配置される冷媒配管
中間ユニット20は、各回路要素を接続する複数の冷媒配管を有している。具体的には、中間ユニット20は、第7配管P7と、第8配管P8と、低段側圧縮機21の台数と同数の第9配管P9、第10配管P10及び第11配管P11と、第12配管P12と、第13配管P13と、第14配管P14と、第15配管P15と、第16配管P16と、第17配管P17と、及び第18配管P18と、を有している。
第7配管P7は、第1ガス連絡配管G1の他端と、第4調整弁27の一端と、を接続する。
第8配管P8は、一端が第4調整弁27の他端に接続されている。第8配管P8は、他端側が二手に分岐しており、二手に分岐した一方において第2ガス連絡配管G2の一端と接続され、他方において各第9配管P9に接続されている。
各第9配管P9は、いずれかの低段側圧縮機21と1対1に対応しており、対応する低段側圧縮機21の吸入配管として機能する。第9配管P9は、一端が第8配管P8に接続され、他端が対応する低段側圧縮機21の吸入ポートに接続され、両者を連通させる。
各第10配管P10は、いずれかの低段側圧縮機21と1対1に対応しており、対応する低段側圧縮機21の吐出ポートに接続されて吐出配管として機能する。また、第10配管P10は、いずれかの逆止弁23と1対1に対応しており、対応する逆止弁23の一端に接続される。
各第11配管P11は、いずれかの低段側圧縮機21と1対1に対応しており、対応する低段側圧縮機21のインジェクションポートに一端が接続されている。第11配管P11は、冷却運転時には、対応する低段側圧縮機21に所定圧力(インジェクション圧力)の冷媒を流入させるインジェクション管として機能する。また、第11配管P11は、デフロスト運転時には、対応する低段側圧縮機21に残存する冷媒を流出させて他の部分へバイパスさせるバイパス管として機能する。各第11配管P11は、いずれかの第1調整弁24と1対1に対応しており、第1調整弁24の一端に接続されている。第11配管P11を通過する冷媒流量は、第1調整弁24の開度等に応じて調整される。
第12配管P12は、各低段側圧縮機21の吐出側と、第7配管P7と、を接続する。より詳細には、第12配管P12は、一端側が、低段側圧縮機21の台数に応じた数(ここでは3つ)に分岐しており、各逆止弁23の他端に個別に接続されている。また、第12配管P12は、第7配管P7において、第4調整弁27と第7配管P7との接続部分よりも熱源ユニット10側(すなわち、第1ガス連絡配管G1側)の部分に、他端が接続されている。
第13配管P13は、第1液連絡配管L1の他端と、第2調整弁25の一端と、を接続する。
第14配管P14は、第2調整弁25の他端と、過冷却熱交換器22の第1流路221の一端と、を接続する。
第15配管P15は、過冷却熱交換器22の第1流路221の他端と、第2液連絡配管L2の一端と、を接続する。
第16配管P16は、第13配管P13の両端間と、第3調整弁26の一端と、を接続する。
第17配管P17は、第3調整弁26の他端と、過冷却熱交換器22の第2流路222の一端と、を接続する。
第18配管P1は、過冷却熱交換器22の第2流路222の他端と、各第1調整弁24の他端(すなわち、第11配管P11に接続される端部とは反対側の端部)と、を個別に接続する。より詳細には、第18配管P18は、一端側が、低段側圧縮機21の台数に応じた数(ここでは3つ)に分岐しており、各第1調整弁24の他端に個別に接続されている。第18配管P18は、他端が、過冷却熱交換器22の第2流路222に接続されている。第18配管P18は、各第1調整弁24の他端に接続され、各低段側圧縮機21に流入する冷媒又は各低段側圧縮機21から流出した冷媒が集合して流れる「集合管」として機能する。
(1−2−3)中間ユニット20に配置される他の機器
中間ユニット20は、低段側圧縮機21の台数に応じた数(ここでは3つ)の低段側圧縮機温度センサ28や、中間圧力センサ29及び低圧側圧力センサ30等の各種センサを有している。
低段側圧縮機温度センサ28(特許請求の範囲記載の「温度センサ」に相当)は、いずれかの低段側圧縮機21と1対1に対応しており、対応する低段側圧縮機21内の冷媒の温度(低段側圧縮機冷媒温度MT)を検出する。低段側圧縮機温度センサ28は、対応する低段側圧縮機21に配置されて熱的に接続されている。
中間圧力センサ29(特許請求の範囲記載の「第1センサ」に相当)は、第7配管P7(低段側圧縮機21の吐出側の冷媒配管)に配置される。中間圧力センサ29は、第7配管P7を通過する冷媒(すなわち、後述する第2ガス側冷媒流路GL2内の冷媒)の圧力である中間圧力MPを検出する。
低圧側圧力センサ30は、第8配管P8(すなわち、低段側圧縮機21の吸入配管である各第9配管P9の冷媒流れ上流側に位置する冷媒配管)に配置される。低圧側圧力センサ30は、第8配管P8を通過する冷媒(すなわち、各低段側圧縮機21の吸入側における低圧冷媒)の圧力である低圧側圧力LPを検出する。
また、中間ユニット20は、中間ユニット20内に含まれる各種アクチュエータの動作を直接的に制御する中間ユニット制御部20aを有している。中間ユニット20は、CPUやメモリ等を含むマイクロコンピュータを含む。中間ユニット制御部20aは、中間ユニット20に含まれる各種アクチュエータ(21、24―27等)及び各種センサと電気的に接続されている。中間ユニット制御部20aは、熱源ユニット制御部10a及び後述の利用ユニット制御部40aと通信可能に接続されており、互いに信号の送受信を行う。中間ユニット制御部20aは、熱源ユニット制御部10a及び利用ユニット制御部40aとともに、コントローラ50を構成する。
(1−3)利用ユニット40
利用ユニット40は、第2ガス連絡配管G2及び第2液連絡配管L2を介して中間ユニット20と接続されており、冷媒回路RCの一部を構成している。利用ユニット40は、冷媒回路RCを構成する回路要素として、利用側膨張弁41と、利用側熱交換器43と、を有している。
利用側膨張弁41は、開度に応じて通過する冷媒を減圧する、若しくは通過する冷媒の流量を増減させる。利用側熱交換器43は、一端が第19配管P19に接続され、他端が第20配管P20に接続されている。すなわち、利用側膨張弁41は、利用側熱交換器43の液側の出入口側(第20配管P20の他端側)に配置される。
利用側熱交換器43は、冷却運転時には冷媒の蒸発器又は加熱器として機能し、デフロスト運転時には冷媒の凝縮器又は放熱器として機能する熱交換器である。利用側熱交換器43は、冷媒が流れる伝熱管(図示省略)を含んでおり、伝熱管内の冷媒と利用側ファン45(後述)によって供給される空気流とが熱交換を行うように構成されている。
また、利用ユニット40は、各回路要素を接続する複数の冷媒配管(第19配管P19、第20配管P20及び第21配管P21)を有している。第19配管P19は、第2液連絡配管L2の他端と、利用側膨張弁41の一端と、を接続する。第20配管P20は、利用側熱交換器43の液側出入口と、利用側膨張弁41の他端と、を接続する。第21配管P21は、利用側熱交換器43のガス側出入口と、第2ガス連絡配管G2の他端と、を接続する。
また、利用ユニット40は、利用ユニット40外から利用ユニット40内に流入して利用側熱交換器43を通過した後に利用ユニット40外(利用側空間)へ流出する空気流を生成する利用側ファン45を有している。利用側ファン45は、例えば遠心ファンやシロッコファンであり、利用側ファンモータ(図示省略)によって回転駆動される。
また、利用ユニット40は、熱源ユニット10内に含まれる各種アクチュエータ(41、45等)の動作を直接的に制御する利用ユニット制御部40aを有している。利用ユニット制御部40aは、CPUやメモリ等を含むマイクロコンピュータを含む。利用ユニット制御部40aは、利用ユニット40に含まれる各種アクチュエータ及び各種センサと電気的に接続されている。利用ユニット制御部40aは、熱源ユニット制御部10a及び中間ユニット制御部20aと通信可能に接続されており、信号の送受信を行う。利用ユニット制御部40aは、熱源ユニット制御部10a及び中間ユニット制御部20aとともに、コントローラ50を構成する。
(1−4)コントローラ50
コントローラ50は、冷凍装置100に含まれる各アクチュエータの動作を制御することで、冷凍装置100の運転状態を制御するコンピュータである。コントローラ50は、熱源ユニット制御部10a、中間ユニット制御部20a、及び利用ユニット制御部40aが、通信可能に接続されることで構成される。コントローラ50の詳細については後述する。
(2)冷媒回路RCにおいて構成される冷媒流路
冷媒回路RCにおいては、各要素が接続されることで複数の冷媒流路が構成されている。例えば、冷媒回路RCにおいては、第2ガス連絡配管G2、第8配管P8、第4調整弁27、第7配管P7、第1ガス連絡配管G1、第1配管P1、四路切換弁13、第2配管P2、によって、ガス冷媒が流れるガス側冷媒流路GLが構成されている。ここで、ガス側冷媒流路GLを、一端が利用側熱交換器43のガス側出入口に接続される一の冷媒流路(冷媒配管)と解釈した場合、ガス側冷媒流路GLは特許請求の範囲記載の「ガス側冷媒配管」に対応する。
係るガス側冷媒流路GLは、第1ガス側冷媒流路GL1と、第2ガス側冷媒流路GL2と、を含んでいる。第1ガス側冷媒流路GL1及び第2ガス側冷媒流路GL2は、第8配管P8において分岐している。
第1ガス側冷媒流路GL1は、低段側圧縮機21側へ延びる流路である。具体的には、第1ガス側冷媒流路GL1は、第8配管P8で構成される流路であり、低段側圧縮機21の吸入配管である第9配管P9と連通する流路である。ここで、第1ガス側冷媒流路GL1を低段側圧縮機21側へ延びる一の冷媒流路(冷媒配管)と解釈した場合、第1ガス側冷媒流路GL1は特許請求の範囲記載の「第1分岐管」に対応する。
第2ガス側冷媒流路GL2は、高段側圧縮機11側へ延びる流路である。具体的には、第2ガス側冷媒流路GL2は、第8配管P8、第4調整弁27、第7配管P7、第1ガス連絡配管G1、第1配管P1、四路切換弁13及び第2配管P2で構成される流路であり、高段側圧縮機11の吸入配管である第2配管P2と連通する流路である。ここで、第2ガス側冷媒流路GL2を高段側圧縮機11側へ延びる一の冷媒流路(冷媒配管)と解釈した場合、第2ガス側冷媒流路GL2は特許請求の範囲記載の「第2分岐管」に対応する。
また、冷媒回路RCにおいては、第16配管P16、第3調整弁26、第17配管P17、過冷却熱交換器22の第2流路222、第18配管P18、各第1調整弁24、及び各第11配管P11によって、バイパス流路BLが構成されている。バイパス流路BLは、冷却運転時には第13配管P13を流れる冷媒の一部を分岐して各低段側圧縮機21に流入させる(インジェクションさせる)ための冷媒流路として機能する。また、バイパス流路BLは、デフロスト運転時には低段側圧縮機21内の冷媒を流出させて第13配管P13に送る(バイパスさせる)ための冷媒流路(すなわち、低段側圧縮機21からバイパスされる冷媒が流れる冷媒流路)として機能する。
また、冷媒回路RCにおいては、第1液連絡配管L1、第13配管P13、第14配管P14、過冷却熱交換器22の第1流路221、第15配管P15、第2液連絡配管L2、第19配管P19、利用側膨張弁41、第20配管P20によって、液冷媒又は気液二相冷媒が流れる液側冷媒流路LLが構成されている。液側冷媒流路LLは、第13配管P13においてバイパス流路BLと連通している
(3)冷媒回路RCにおける冷媒の流れ
(3−1)冷却運転時
冷却運転時には、四路切換弁13が第1状態(図1の実線で示される状態)に制御されるとともに、利用ユニット40において要求される冷却負荷に応じて所定の高段側圧縮機11及び低段側圧縮機21が運転(定格運転/部分負荷運転)される。具体的には、低圧側圧力LP、高圧側圧力HP、及び/又は中間圧力MPに関し、それぞれの目標値が利用ユニット40で要求される冷却負荷に応じて設定され、設定された各目標値が実現されるように、高段側圧縮機11及び低段側圧縮機21の駆動台数及び/又は運転容量がリアルタイムに制御されるとともに、第1調整弁24、第2調整弁25、第3調整弁26、第4調整弁27、及び利用側膨張弁41の開度がリアルタイムに個別に制御される。
これにより、冷媒回路RCに充填された冷媒が、主として、駆動中の低段側圧縮機21、四路切換弁13、駆動中の高段側圧縮機11、熱源側熱交換器14、レシーバ15、第2調整弁25、過冷却熱交換器22(第1流路221)、利用側膨張弁41、利用側熱交換器43の順で循環する冷凍サイクル(正サイクル)が行われる。
冷却運転中、冷媒が、第9配管P9(吸入配管)を介して、駆動中の低段側圧縮機21に吸入されて圧縮された後、所定圧力(中間圧)のガス冷媒として吐出される。各低段側圧縮機21から吐出された中間圧のガス冷媒は、対応する吐出配管(第10配管P10)及び逆止弁23を経て、第12配管P12において他の低段側圧縮機21から吐出された冷媒と合流して第7配管P7を流れて中間ユニット20から流出する。中間ユニット20から流出した冷媒は、第1ガス連絡配管G1を流れて熱源ユニット10に流入する。
なお、冷却運転中、駆動中の低段側圧縮機21においては、第11配管P11(インジェクション管)を介して圧縮室内に所定のインジェクション圧力(高圧冷媒よりも圧力が小さく低圧冷媒よりも圧力が大きい所定の圧力であって、第1調整弁24や第3調整弁26の開度等に応じて調整された圧力)の冷媒がインジェクションされ、吐出される中間圧の冷媒の温度が目標値となるように制御される。
熱源ユニット10に流入した冷媒は、第1配管P1、四路切換弁13、及び第2配管P2を経て、駆動中の高段側圧縮機11の吸入ポートに流入する。高段側圧縮機11に流入した冷媒は、圧縮されて高圧のガス冷媒となった後、吐出ポートから吐出される。各高段側圧縮機11から吐出された冷媒は、第3配管P3(吐出配管)を流れ、他の高段側圧縮機11から吐出された冷媒と合流し、四路切換弁13及び第4配管P4を経て、熱源側熱交換器14のガス側出入口に流入する。熱源側熱交換器14に流入した冷媒は、熱源側ファン17によって供給される空気と熱交換を行い凝縮(又は放熱)して高圧の液冷媒となった後、熱源側熱交換器14の液側出入口から流出する。
熱源側熱交換器14から流出した冷媒は、第5配管P5を経てレシーバ15の高段側出入口に流入する。レシーバ15に流入した冷媒は、レシーバ15において飽和状態の液冷媒として一時的に溜められた後に、レシーバ15の低段側出入口から流出する。レシーバ15から流出した液冷媒は、第6配管P6を経て熱源ユニット10から流出する。熱源ユニット10から流出した冷媒は、第1液連絡配管L1を経て中間ユニット20に流入する。
中間ユニット20に流入した冷媒は、第13配管P13を流れる際に、二手に分岐する。第13配管P13において二手に分岐した冷媒のうち、一方はバイパス流路BLに流入する。バイパス流路BLに流入した冷媒は、第16配管P16を経て第3調整弁26に流入する。第3調整弁26に流入した冷媒は、第3調整弁26の開度に応じて減圧され所定圧の液冷媒/気液二相冷媒となる。第3調整弁26を通過した冷媒は、第17配管P17を経て過冷却熱交換器22の第2流路222に流入する。なお、バイパス流路BLを流れる冷媒流量は、主として、第3調整弁26の開度や各第1調整弁24の開度、又は駆動中の低段側圧縮機21の周波数等に基づき変動する。
過冷却熱交換器22の第2流路222に流入した液冷媒は、過冷却熱交換器22において、第1流路221を流れる冷媒と熱交換を行って加熱され、気液二相冷媒/ガス冷媒となって過冷却熱交換器22から流出する。過冷却熱交換器22の第2流路222から流出した気液二相冷媒/ガス冷媒は、第18配管P18を流れる。第18配管P18を流れる冷媒は、3つに分岐して各第1調整弁24に流入する。各第1調整弁24に流入した冷媒は、第1調整弁24の開度に応じて減圧/流量調整され、第11配管P11(インジェクション管)を経てインジェクション圧力の冷媒として低段側圧縮機21の圧縮室内にインジェクションされる。係るインジェクションによって、低段側圧縮機21において吸入される冷媒よりも圧力が大きく吐出される冷媒よりも圧力が小さいインジェクション圧力の冷媒が圧縮室内にバイパスされ、低段側圧縮機21から吐出される冷媒の温度が目標値に制御される。
一方、第13配管P13において二手に分岐した冷媒のうち、他方は第2調整弁25に流入する。第2調整弁25に流入した冷媒は、第2調整弁25の開度に応じて減圧/流量調整された後、第14配管P14を経て、過冷却熱交換器22の第1流路221に流入する。第1流路221に流入した液冷媒は、第2流路222を流れる冷媒と熱交換を行ってさらに冷却され、過冷却状態の液冷媒となって過冷却熱交換器22から流出する。過冷却熱交換器22の第1流路221から流出した過冷却状態の液冷媒は、第15配管P15を経て中間ユニット20から流出する。中間ユニット20から流出した冷媒は、第2液連絡配管L2を経て、利用ユニット40に流入する。
利用ユニット40に流入した冷媒は、第19配管P19を流れて利用側膨張弁41に流入する。利用側膨張弁41に流入した冷媒は、利用側膨張弁41の開度に応じて減圧/流量調整され、第20配管P20を経て利用側熱交換器43の液側出入口に流入する。利用側熱交換器43の液側出入口に流入した冷媒は、利用側熱交換器43において、利用側ファン45によって供給される空気と熱交換を行って蒸発し、低圧のガス冷媒となって利用側熱交換器43のガス側出入口から流出する。これにより、利用ユニット40の設置空間に冷却された空気が送られ、冷却対象が冷却がされる。
利用側熱交換器43のガス側出入口から流出したガス冷媒は、第21配管P21を経て利用ユニット40から流出する。利用ユニット40から流出した冷媒は、第2ガス連絡配管G2を流れて中間ユニット20に流入する。中間ユニット20に流入した冷媒は、第8配管P8及び第9配管P9を経て、駆動中の低段側圧縮機21に流入する。
(3−2)デフロスト運転時
デフロスト運転時には、四路切換弁13が第2状態(図1の破線で示される状態)に制御されるとともに、所定の高段側圧縮機11が状況に応じて運転(定格運転/部分負荷運転)される。デフロスト運転時には、低段側圧縮機21及び利用側ファン45は停止される。また、第1調整弁24、第2調整弁25、第3調整弁26、第4調整弁27、及び利用側膨張弁41の開度が、リアルタイムに個別に制御される。
これにより、冷媒回路RCに充填された冷媒が、主として、駆動中の高段側圧縮機11、四路切換弁13、第4調整弁27、利用側熱交換器43、利用側膨張弁41、過冷却熱交換器22(第1流路221)、第2調整弁25、レシーバ15、熱源側熱交換器14、四路切換弁13の順に循環する冷凍サイクル(逆サイクル)が行われる。
デフロスト運転中、冷媒が、第2配管P2(吸入配管)を介して、駆動中の高段側圧縮機11に吸入されて圧縮された後、高圧のガス冷媒として吐出される。各高段側圧縮機11から吐出された高圧のガス冷媒は、第3配管P3(吐出配管)、四路切換弁13、第1配管P1を経て熱源ユニット10から流出する。熱源ユニット10から流出した冷媒は、第1ガス連絡配管G1を流れて中間ユニット20に流入する。
中間ユニット20に流入した冷媒は、第7配管P7、第4調整弁27、及び第8配管P8を経て、中間ユニット20から流出する。中間ユニット20から流出した冷媒は、第2ガス連絡配管G2を流れて利用ユニット40に流入する。
利用ユニット40に流入した冷媒は、第21配管P21を経て、利用側熱交換器43のガス側出入口に流入する。利用側熱交換器43のガス側出入口に流入した冷媒は、利用側熱交換器43に付着した霜と熱交換を行って凝縮(又は放熱)し、高圧の液冷媒/気液二相冷媒となって利用側熱交換器43の液側出入口から流出する。この際、利用側熱交換器43に付着した霜が融解する。
利用側熱交換器43の液側出入口から流出した冷媒は、第20配管P20を流れて利用側膨張弁41に流入し、利用側膨張弁41の開度に応じて減圧/流量調整される。すなわち、利用側膨張弁41は、デフロスト運転時に、第20配管P20から流出する冷媒を開度に応じて減圧する。利用側膨張弁41を通過した冷媒は、第19配管P19を経て利用ユニット40から流出する。
利用ユニット40から流出した冷媒は、第2液連絡配管L2を流れて中間ユニット20に流入する。中間ユニット20に流入した冷媒は、第15配管P15、過冷却熱交換器22の第1流路221、及び第14配管P14を経て、第2調整弁25に流入する。第2調整弁25に流入した冷媒は、第2調整弁25の開度に応じて減圧/流量調整され、第13配管P13を経て中間ユニット20から流出する。
中間ユニット20から流出した冷媒は、第1液連絡配管L1を流れて熱源ユニット10に流入する。熱源ユニット10に流入した冷媒は、第6配管P6を流れてレシーバ15の低段側出入口に流入する。レシーバ15に流入した冷媒は、高段側出入口から流出し、第5配管P5を経て熱源側熱交換器14の液側出入口に流入する。熱源側熱交換器14に流入した冷媒は、熱源側ファン17によって供給される空気と熱交換を行い蒸発して(又は加熱されて)低圧のガス冷媒となった後、熱源側熱交換器14のガス側出入口から流出する。熱源側熱交換器14のガス側出入口から流出した冷媒は、第4配管P4、四路切換弁13、第2配管P2を経て、駆動中の高段側圧縮機11に流入する。
ここで、デフロスト運転時においては、後述の寝込み抑制制御によって、所定条件を満たす場合に、第1調整弁24が寝込み抑制開度(全閉状態よりも大きい所定開度)に制御される。これにより、係る第1調整弁24に対応する低段側圧縮機21内に残存する冷媒が、第11配管P11(バイパス管)を介して流出し、バイパス流路BLを流れて第13配管P13(液側冷媒流路LL)へバイパスされる。
(4)コントローラ50の詳細
図2は、コントローラ50の概略構成と、コントローラ50に接続される各部と、を模式的に示したブロック図である。
上述のように、冷凍装置100では、熱源ユニット制御部10aと、中間ユニット制御部20aと、利用ユニット制御部40aと、が通信可能に接続されることでコントローラ50が構成されている。コントローラ50は、熱源ユニット10に含まれる各アクチュエータ(各高段側圧縮機11、四路切換弁13、及び熱源側ファン17等)と、高圧側圧力センサ18を含む各種センサと、電気的に接続されている。また、コントローラ50は、中間ユニット20に含まれるアクチュエータ(各低段側圧縮機21、各第1調整弁24、第2調整弁25、第3調整弁26、及び第4調整弁27等)と、各低段側圧縮機温度センサ28、中間圧力センサ29及び低圧側圧力センサ30を含む各種センサと、電気的に接続されている。また、コントローラ50は、利用ユニット40に含まれるアクチュエータ(利用側ファン45及び利用側膨張弁41等)と、各種センサと、電気的に接続されている。
コントローラ50は、主として、記憶部51と、入力制御部52と、駆動信号出力部53と、運転切替制御部54と、アクチュエータ制御部55と、を有している。なお、コントローラ50内におけるこれらの各部は、コントローラ50を構成する各要素(CPU、各種メモリ、通信モジュール、各種インターフェース、及び各種電気部品等)が有機的に機能することによって実現されている。
(4−1)記憶部51
記憶部51は、例えば、ROM、RAM、及び/又はフラッシュメモリ等の各種メモリで構成されており、複数の記憶領域を含む。例えば、記憶部51には、コントローラ50の各部における処理を定義した制御プログラムを記憶するためのプログラム記憶領域511が含まれている。
また、記憶部51には、特性情報記憶領域512が含まれている。特性情報記憶領域512は、冷凍装置100に含まれる各弁(具体的には、各第1調整弁24、第2調整弁25、第3調整弁26、第4調整弁27、及び利用側膨張弁41等)のそれぞれの特性情報を個別に記憶するための記憶領域である。ここで、特性情報は、弁開度と、通過する冷媒の流量と、の相関関係を定義した情報であり、予め導出されている。
また、記憶部51には、センサ値記憶領域513が含まれている。センサ値記憶領域513は、冷凍装置100に含まれる各センサ(具体的には、高圧側圧力センサ18、中間圧力センサ29、低圧側圧力センサ30、及び各低段側圧縮機温度センサ28等)のそれぞれの検出値(すなわち、高圧側圧力HP、中間圧力MP、低圧側圧力LP、及び各低段側圧縮機冷媒温度MT等)を個別に記憶するための記憶領域である。
また、記憶部51には、冷凍装置100に含まれる各弁(具体的には、各第1調整弁24、第2調整弁25、第3調整弁26、第4調整弁27及び利用側膨張弁41等)の開度の状態を判別するための複数のフラグが設けられている。例えば、記憶部51には、第1フラグFL1、第2フラグFL2、第3フラグFL3、第4フラグFL4及び第5フラグFL5が設けられている。各フラグは、所定数のビットを含み、対応する弁の開度の状態(例えばパルス数)に応じて立てられる。すなわち、各フラグの状態を参照することで、各弁の開度状態(現在開度)についてリアルタイムに判別可能となっている。本実施形態において、第1フラグFL1は各第1調整弁24に対応し、第2フラグFL2は第2調整弁25に対応し、第3フラグFL3は第3調整弁26に対応し、第4フラグFL4は第4調整弁27に対応し、第5フラグFL5は利用側膨張弁41に対応している。
また、記憶部51には、デフロスト運転を実行することを示すフラグである第6フラグFL6が設けられている。コントローラ50に含まれる各機能部は、第6フラグFL6が立てられることで、デフロスト運転が実行されるタイミングであることを把握可能である。
また、記憶部51には、ユーザによって入力される各種コマンド(例えば利用ユニット40の設定温度等)を判別可能なコマンド判別フラグ(図示省略)等が設けられている。
(4−2)入力制御部52
入力制御部52は、コントローラ50に対して他の各部から出力された信号を取得して記憶部51に当該信号を格納する。例えば、入力制御部52は、各種センサ(18、28−30等)から出力された検出結果に相当する信号を受け、所定の識別データを付加してセンサ値記憶領域513に個別に格納する。
(4−3)駆動信号出力部53
駆動信号出力部53は、アクチュエータ制御部55の決定内容に応じて、各アクチュエータ(11、13、17、18、21、24−28、41、45等)に対して所定の駆動信号(駆動電圧)を出力する。なお、駆動信号出力部53は、複数のインバータ(図示省略)を含み、所定の高段側圧縮機11及び低段側圧縮機21、熱源側ファン17、及び利用側ファン45に対しては、対応するインバータを介して駆動信号を出力する。
(4−4)運転切替制御部54
運転切替制御部54は、運転中、所定条件を満たすことを契機として、運転(ここでは冷却運転及びデフロスト運転を含む各種運転)の種別を切り換える機能部である。
本実施形態において、運転切替制御部54は、冷却運転中、冷却運転が開始されてから所定時間t1が経過したことを契機として、運転種別をデフロスト運転に切り換える。具体的に、運転切替制御部54は、第6フラグFL6を立てることで所定の機能部(アクチュエータ制御部55)においてデフロスト運転に対応する各種制御を行わせる。なお、所定時間t1は、冷却運転が行われることで利用側熱交換器43において着霜が進み除霜が必要となることが想定される時間であり、制御プログラムにおいて設定温度や冷却負荷に応じた値が定義されている。
運転切替制御部54は、デフロスト運転中、デフロスト運転が開始されてから所定時間t2が経過したことを契機として、運転種別を冷却運転に切り換える。具体的に、運転切替制御部54は、第6フラグFL6をクリアすることで所定の機能部(アクチュエータ制御部55)において冷却運転に対応する各種制御を行わせる。なお、所定時間t2は、デフロスト運転が行われることで利用側熱交換器43において除霜が完了したことが想定される時間であり、制御プログラムにおいて設定温度や冷却負荷に応じた値が定義されている。
運転切替制御部54は、時間(t1及びt2)を計測可能なカウンタを有している。
(4−5)アクチュエータ制御部55
アクチュエータ制御部55は、制御プログラムに沿って、状況に応じて、各アクチュエータの動作を制御する。例えば、アクチュエータ制御部55は、設定温度や各種センサの検出値等に応じて、所定の高段側圧縮機11及び低段側圧縮機21の回転数、熱源側ファン17及び利用側ファン45の回転数、各弁(第1調整弁24、第2調整弁25、第3調整弁26、第4調整弁27及び利用側膨張弁41)の開度を、冷却運転及びデフロスト運転の種別、冷却負荷の大きさ、及び各センサ(18、28−30)の検出値等に応じて決定し、決定内容に応じて駆動信号出力部53に所定の駆動信号を出力させる。
アクチュエータ制御部55には、冷却運転実行部56、デフロスト運転実行部57、及び寝込み抑制制御実行部58が含まれている。
(4−5−1)冷却運転実行部56
冷却運転実行部56は、冷却運転時(すなわち、第6フラグFL6が立てられていない時)に、各アクチュエータの動作を制御する機能部である。冷却運転実行部56は、デフロスト運転中、四路切換弁13を第1状態に制御するとともに、状況に応じて(例えば冷却負荷及び設定温度等に応じて)、各アクチュエータの動作をリアルタイムに制御する。
(4−5−2)デフロスト運転実行部57
デフロスト運転実行部57は、デフロスト運転時(すなわち、第6フラグFL6が立てられている時)に、各アクチュエータの動作を制御する機能部である。デフロスト運転実行部57は、デフロスト運転中、四路切換弁13を第2状態に制御するとともに、各低段側圧縮機21及び利用側ファン45の動作を停止(休止)させる。デフロスト運転実行部57は、デフロスト運転中、状況に応じて(例えば設定温度等に応じて)、各アクチュエータの動作(例えば高段側圧縮機11及び熱源側ファン17の回転数等)をリアルタイムに制御する。
(4−5−3)寝込み抑制制御実行部58
寝込み抑制制御実行部58は、デフロスト運転中に寝込み抑制制御を実行する機能部である。寝込み抑制制御は、デフロスト運転時に駆動停止する低段側圧縮機21内において冷媒が寝込む寝込み現象が生じることを抑制するための制御である。
ここで、冷凍装置100では、デフロスト運転時に各低段側圧縮機21が停止されるが、この際に低段側圧縮機21内に冷媒が残存している場合、残存する冷媒が時間の経過とともに冷却され凝縮して低段側圧縮機21内に液冷媒が溜まる寝込み現象が生じることが想定される。係る寝込み現象が生じると、冷却運転の再開時(すなわち低段側圧縮機21の復帰運転時)に、液冷媒が圧縮される液圧縮現象が生じて低段側圧縮機21が損傷することが想定され、信頼性が低下しうる。また、寝込み現象に伴い低段側圧縮機21内において液冷媒が所定量に達すると、電力供給ラインの端子部分が液冷媒に接触して短絡されることで漏電が生じることが想定される。係る事態が生じることを抑制すべく、冷凍装置100では、各低段側圧縮機21が停止するデフロスト運転時に寝込み抑制制御を実行する寝込み抑制制御実行部58が設けられている。
具体的に、寝込み抑制制御実行部58は、所定条件を満たす場合に寝込み抑制制御を実行する。本実施形態では、寝込み抑制制御実行部58は、第6フラグFL6が立てられている際(すなわち、デフロスト運転中)において、低段側圧縮機冷媒温度MTが所定値以上又は所定値以下であることに基づき冷媒が残存すると推定される低段側圧縮機21(冷媒残存低段側圧縮機21)が存在する場合であって、冷媒残存低段側圧縮機21の低段側圧縮機冷媒温度MTの相当飽和圧力が中間圧力MP以下である時に、寝込み抑制制御を実行する。すなわち、寝込み抑制制御実行部58は、デフロスト運転中、低段側圧縮機温度センサ28の検出値(MT)に基づき所定の低段側圧縮機21内における冷媒の寝込み現象が想定される場合であって、当該低段側圧縮機21内の冷媒のバイパスを効果的に行える状況にある時(具体的には、当該低段側圧縮機21内の冷媒の圧力が、低段側圧縮機温度センサ28及び中間圧力センサ29の検出値に基づき、第2ガス側冷媒流路GL2内の冷媒の圧力(MP)以下と想定される時)に、寝込み抑制制御を実行する。
寝込み抑制制御実行部58は、寝込み抑制制御において、冷媒残存低段側圧縮機21に対応する第1調整弁24を寝込み抑制開度(特許請求の範囲記載の「第1開度」に相当)に制御する。寝込み抑制開度は、全閉状態よりも大きい開度(すなわち所定量の冷媒が通過可能な開度)であり、低段側圧縮機21内の冷媒が対応する第11配管P11及び第1調整弁24を経て他の部分(第13配管P13を含む液側冷媒流路LL)へバイパスされる際の、第1調整弁24を通過する冷媒流量に応じた開度である。寝込み抑制制御実行部58は、各種センサの検出値(例えば、低段側圧縮機冷媒温度MT、中間圧力MPや低圧側圧力LP等)や第1調整弁24の特性情報に基づき、寝込み抑制開度を、ガス側冷媒流路GL及び/又は液側冷媒流路LL内の冷媒の圧力と低段側圧縮機21内の冷媒の圧力との差圧によって低段側圧縮機21内の冷媒がバイパス流路BL(すなわち、第11配管P11、第1調整弁24及び第18配管P18等を含む冷媒流路)を経て他の部分へバイパスすることが可能な開度、に決定する。すなわち、寝込み抑制開度は、低段側圧縮機21内の冷媒が、差圧によって、低段側圧縮機21から液側冷媒流路LL(第13配管P13)へバイパスされるように、バイパス流路BLを流れる冷媒の圧力が液側冷媒流路LLを流れる冷媒の圧力よりも大きくなる開度、及び/又は、バイパス流路BLを流れる冷媒の圧力がガス側冷媒流路GLを流れる冷媒の圧力よりも小さくなる開度に設定される。
なお、寝込み抑制開度については、各種センサの検出値及び第1調整弁24の特性情報等に基づく算出式が制御プログラムにおいて定義されており、寝込み抑制制御実行部58は、係る算出式や、記憶部51内に格納されている所定のテーブル(図示省略)に基づき、寝込み抑制開度を決定する。
また、寝込み抑制制御実行部58は、寝込み抑制制御において、第3調整弁26をバイパス助長開度(特許請求の範囲記載の「第2開度」に相当)に制御する。バイパス助長開度は、全閉状態よりも大きい開度(すなわち所定量の冷媒が通過可能な開度)であり、低段側圧縮機21内の冷媒がバイパス流路BLを経て他の部分(第13配管P13を含む液側冷媒流路LL)へバイパスされることを助長する開度である。第3調整弁26がバイパス助長開度に制御されることで、液側冷媒流路LLにおける冷媒の圧力が、バイパス流路BLを流れる冷媒の圧力以下となることが助長され、差圧によって、冷媒残存低段側圧縮機21内の冷媒がバイパス流路BLを経て液側冷媒流路LLへバイパスされることが助長される。なお、バイパス助長開度については、各種センサの検出値及び第3調整弁26の特性情報等に基づく算出式が制御プログラムにおいて定義されており、寝込み抑制制御実行部58は、係る算出式や、記憶部51内に格納されている所定のテーブル(図示省略)に基づき、バイパス助長開度を決定する。
また、寝込み抑制制御実行部58は、寝込み抑制制御において、利用側膨張弁41をバイパス促進開度(特許請求の範囲記載の「第3開度」に相当)に制御する。バイパス促進開度は、全閉状態よりも大きい開度(すなわち所定量の冷媒が通過可能な開度)であり、低段側圧縮機21内の冷媒がバイパス流路BLを経て他の部分(第13配管P13を含む液側冷媒流路LL)へバイパスされることが促進される程度に、利用側熱交換器43及び液側冷媒流路LL内で冷媒の圧力損失を生じさせる開度である。利用側膨張弁41がバイパス促進開度に制御されることで、液側冷媒流路LLにおける冷媒の圧力が、バイパス流路BLを流れる冷媒の圧力以下となることが促進され、差圧によって、冷媒残存低段側圧縮機21内の冷媒がバイパス流路BLを経て液側冷媒流路LLへバイパスされることが促進される。なお、バイパス助長開度については、各種センサの検出値及び利用側膨張弁41の特性情報等に基づく算出式が制御プログラムにおいて定義されており、寝込み抑制制御実行部58は、係る算出式や、記憶部51内に格納されている所定のテーブル(図示省略)に基づき、バイパス促進開度を決定する。
(5)コントローラ50の処理の流れ
以下、コントローラ50による制御の流れの一例について、図3を参照しながら説明する。図3は、コントローラ50による運転時の処理の流れの一例について示したフローチャートである。図3では、特にステップS101−S104において冷却運転に係る処理が示されている。また、ステップS105−S112においてデフロスト運転に係る処理が示されており、特にステップS109−S111において寝込み抑制制御に係る処理が示されている。なお、図3に示される処理の流れは、一例であり、適宜変更可能である。例えば、矛盾のない範囲でステップの順序が変更されてもよいし、一部のステップが他のステップと並列に実行されてもよい。
コントローラ50は、運転中、図3に示すステップS101からS112に示すような流れで処理を実行する。
ステップS101において、コントローラ50は、冷却運転の開始を指示するコマンドが入力されたことに応じて、運転種別を冷却運転に切り換える。その後、ステップS102へ進む。
ステップS102において、コントローラ50は、四路切換弁13を第1状態(図1の四路切換弁13の実線で示す状態)に制御する。その後、ステップS103へ進む。
ステップS103において、コントローラ50は、冷却負荷や設定温度等に応じて、各アクチュエータ(11、17、21、24−27、41、45等)の動作をリアルタイムに制御する。これにより、冷媒回路RC内において正サイクルで冷媒が循環し、利用ユニット40の設置空間において冷却対象の冷却が行われる。その後、ステップS104へ進む。
ステップS104において、コントローラ50は、冷却運転を開始してから所定時間t1が経過しない場合(すなわち、NOの場合)には、ステップS103に戻る。一方、冷却運転を開始してから所定時間t1が経過した場合(すなわち、YESの場合)には、ステップS105へ進む。
ステップS105において、コントローラ50は、冷却運転を開始してから所定時間t1が経過したことに応じて、運転種別をデフロスト運転に切り換える。その後、ステップS106へ進む。
ステップS106において、コントローラ50は、低段側圧縮機21及び利用側ファン45の動作を停止(休止)させる。その後、ステップS107へ進む。
ステップS107において、コントローラ50は、四路切換弁13を第2状態(図1の四路切換弁13の破線で示す状態)に制御する。その後、ステップS108へ進む。
ステップS108において、コントローラ50は、着霜状態や設定温度等に応じて、各アクチュエータ(11、17、27、45等)の動作をリアルタイムに制御する。これにより、冷媒回路RC内において逆サイクルで冷媒が循環し、利用側熱交換器43の除霜が行われる。その後、ステップS109へ進む。
ステップS109において、コントローラ50は、冷媒残存低段側圧縮機21(低段側圧縮機冷媒温度MTが所定値以上又は所定値以下であることに基づき冷媒が残存すると推定される低段側圧縮機21)が存在しない場合(すなわちNOの場合)には、ステップS112へ進む。一方、冷媒残存低段側圧縮機21が存在する場合(すなわちYESの場合)には、ステップS110へ進む。
ステップS110において、コントローラ50は、冷媒残存低段側圧縮機21の低段側圧縮機冷媒温度MTの相当飽和圧力が中間圧力MP以下でない場合(すなわちNOの場合)には、ステップS112へ進む。一方、冷媒残存低段側圧縮機21の低段側圧縮機冷媒温度MTの相当飽和圧力が中間圧力MP以下である場合(すなわちYESの場合)には、ステップS111へ進む。
ステップS111において、コントローラ50は、冷媒残存低段側圧縮機21に対応する第1調整弁24を寝込み抑制開度に制御する。これにより、冷媒残存低段側圧縮機21内の冷媒が、差圧によって、低段側圧縮機21から液側冷媒流路LL(第13配管P13)へバイパスされる。また、コントローラ50は、第3調整弁26をバイパス助長開度に制御する。これにより、低段側圧縮機21内の冷媒がバイパス流路BLを経て他の部分(第13配管P13を含む液側冷媒流路LL)へバイパスされることが助長される。さらに、コントローラ50は、利用側膨張弁41をバイパス促進開度に制御する。これにより、低段側圧縮機21内の冷媒がバイパス流路BLを経て他の部分(液側冷媒流路LL)へバイパスされることが促進される。その後、ステップS112へ進む。
ステップS112において、コントローラ50は、デフロスト運転を開始してから所定時間t2が経過しない場合(すなわち、NOの場合)には、ステップS108に戻る。一方、デフロスト運転を開始してから所定時間t2が経過した場合(すなわち、YESの場合)には、ステップS101に戻る。
(6)冷凍装置100の特徴
(6−1)
上記実施形態に係る冷凍装置100では、低段側圧縮機21の信頼性低下及び漏電が抑制されている。
すなわち、運転状況に応じて低段側圧縮機の運転が停止(休止)され高段側圧縮機及び利用側熱交換器間で冷媒がバイパスされるような従来の冷凍装置では、低段側圧縮機の停止時に低段側圧縮機内に冷媒が残存している場合、残存する冷媒が時間の経過とともに冷却され凝縮して低段側圧縮機内に液冷媒が溜まる寝込み現象が生じることが想定される。係る寝込み現象が生じると、低段側圧縮機の運転再開時に、液冷媒が圧縮される液圧縮現象が生じて低段側圧縮機が損傷することが想定され、信頼性が低下しうる。また、寝込み現象に伴い低段側圧縮機内において液冷媒が所定量に達すると、電力供給ラインの端子部分が液冷媒に接触して短絡されることで漏電が生じることが想定される。
この点、上記実施形態の冷凍装置100では、コントローラ50は、低段側圧縮機21が停止する逆サイクル運転時に寝込み抑制制御を実行している。これにより、逆サイクル運転時には、第1調整弁24が寝込み抑制開度(冷媒残存低段側圧縮機21内の冷媒が第11配管P11及び第1調整弁24を経て他の部分へバイパスされる際の第1調整弁24を通過する冷媒流量に応じた開度)に制御されるようになっている。その結果、逆サイクル運転が行われる際に低段側圧縮機21内に冷媒が残存している場合であっても、残存する冷媒が第11配管P11を介して他の部分(第13配管P13を含む液側冷媒流路LL)へバイパスされるようになっている。このため、逆サイクル運転が行われる際に、低段側圧縮機21内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることが抑制されるようになっている。よって、低段側圧縮機21の運転再開時に、液冷媒が圧縮される液圧縮現象が生じて低段側圧縮機21が損傷することが抑制されている。すなわち、低段側圧縮機21の信頼性低下が抑制されている。また、寝込み現象に伴い低段側圧縮機21内において電力供給ラインの端子部分が液冷媒に接触して短絡されることで漏電が生じることが抑制されている。
(6−2)
上記実施形態に係る冷凍装置100では、コントローラ50は、寝込み抑制制御において、第3調整弁26の開度をバイパス助長開度(低段側圧縮機21内の冷媒が第11配管P11及び第1調整弁24を経て他の部分へバイパスされることを助長する開度)に制御している。これにより、逆サイクル運転時に、低段側圧縮機21内の冷媒が第11配管P11及び第1調整弁24を経て他の部分へバイパスされることが助長されるようになっている。その結果、逆サイクル運転が行われる際に、低段側圧縮機21内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることが特に抑制されている。
(6−3)
上記実施形態に係る冷凍装置100では、コントローラ50は、低段側圧縮機21内の冷媒の温度を検出する低段側圧縮機温度センサ28の検出値に基づき、低段側圧縮機21内における冷媒の寝込み現象が想定される場合に、寝込み抑制制御を実行している。これにより、必要な場合に限って、寝込み抑制制御が実行されるようになっている。その結果、不要な場合における冷媒のバイパスが抑制され、逆サイクル運転時のCOP低下が抑制されている。
(6−4)
上記実施形態に係る冷凍装置100では、コントローラ50は、第2ガス側冷媒流路GL2(第2分岐管)内の冷媒の圧力を検出するための中間圧力センサ29及び低段側圧縮機21内の冷媒の圧力を検出するための低段側圧縮機温度センサ28の検出値に基づき低段側圧縮機21内の冷媒の圧力(相当飽和圧力)が第2ガス側冷媒流路GL2(第2分岐管)内の冷媒の圧力以下と想定される時に、寝込み抑制制御を実行している。これにより、冷媒のバイパスが効果的に行われる場合(第2ガス側冷媒流路GL2内の冷媒の圧力と冷媒残存低段側圧縮機21内の冷媒の圧力との差圧によって、冷媒残存低段側圧縮機21内の冷媒のバイパスが誘引される場合)に限って、寝込み抑制制御が実行されるようになっている。その結果、不要な場合における冷媒のバイパスが抑制され、逆サイクル運転時のCOP低下が精度よく抑制されている。
(6−5)
上記実施形態に係る冷凍装置100では、コントローラ50は、寝込み抑制制御において、寝込み抑制開度を、液側冷媒流路LL内の冷媒の圧力と低段側圧縮機21内の冷媒の圧力との差圧によって低段側圧縮機21内の冷媒がバイパス流路BL(第11配管P11及び第1調整弁24等)を経て他の部分(第13配管P13を含む液側冷媒流路LL)へバイパスされることを促進する開度、に決定している。これにより、寝込み抑制制御において低段側圧縮機21内から液側冷媒流路LLへの冷媒のバイパスが促進されるようになっている。その結果、逆サイクル運転が行われる際に、低段側圧縮機21内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることが特に抑制されている。
(6−6)
上記実施形態に係る冷凍装置100では、コントローラ50は、寝込み抑制制御において、利用側膨張弁41の開度をバイパス促進開度(低段側圧縮機21内の冷媒が第11配管P11及び第1調整弁24を介して他の部分へバイパスすることが促進される程度に、利用側熱交換器43内で冷媒の圧力損失を生じさせる開度)に制御している。これにより、寝込み抑制制御において低段側圧縮機21内から液側冷媒流路LLへの冷媒のバイパスが特に促進される。その結果、逆サイクル運転が行われる際に、低段側圧縮機21内で残存する冷媒が凝縮して液冷媒が溜まる寝込み現象が生じることが特に抑制されている。
(6−7)
上記実施形態に係る冷凍装置100では、第11配管P11は、通常運転時に、低段側圧縮機21において吸入される冷媒よりも圧力が大きく吐出される冷媒よりも圧力が小さいインジェクション圧力の冷媒を、低段側圧縮機21に流入させるインジェクション管として機能している。
これにより、通常運転時には、低段側圧縮機21の吐出冷媒温度を最適値に制御すべく、第11配管P11を介して中間圧冷媒を流入させることが可能となっている。その結果、低段側圧縮機21において冷媒が過度に過熱状態となる過熱運転状態や過度に湿り状態となる湿り運転状態となることが抑制されている。よって、圧縮機の信頼性低下が特に抑制されている。また、第11配管P11をインジェクション管と兼用することが可能となるため、コスト増大についても抑制されている。
(7)変形例
上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
(7−1)変形例A
上記実施形態では、バイパス流路BLは、第16配管P16、第3調整弁26、第17配管P17、過冷却熱交換器22の第2流路222、第18配管P18、各第1調整弁24、及び各第11配管P11によって構成されていた。しかし、バイパス流路BLの構成態様については必ずしもこれに限定されず、適宜変更が可能である。例えば、バイパス流路BLを構成する一部の要素や機器(例えば過冷却熱交換器22や一部の冷媒配管等)については適宜省略してバイパス流路BLを構成してもよい。また、他の要素や機器を追加してバイパス流路BLを構成してもよい。
(7−2)変形例B
上記実施形態では、第11配管P11は、通常運転時に、インジェクション圧力の冷媒を低段側圧縮機21に流入させるインジェクション管として機能していた。しかし、第11配管P11において、係る機能は必ずしも必要ではなく、適宜省略が可能である。すなわち、第11配管P11は、低段側圧縮機21から冷媒を流出させてバイパスさせるバイパス管としての機能を有していればよい。
なお、第11配管P11に関してインジェクション管としての機能を省略する場合、バイパス流路BLは、必ずしも液側冷媒流路LLを構成する第13配管P13に接続される必要はなく、他の部分に接続されてもよい。すなわち、バイパス流路BLは、寝込み抑制制御において、冷媒残存低段側圧縮機21内の冷媒が、第13配管P13以外の部分にバイパスされるように構成されてもよい。例えば、バイパス流路BLは、第14配管P14若しくは第15配管P15に接続されてもよい。また、バイパス流路BLは、寝込み抑制制御において、冷媒残存低段側圧縮機21内の冷媒が、液側冷媒流路LL以外の部分にバイパスされるように構成されてもよい。例えば、バイパス流路BLは、レシーバ15に接続されてもよい。
(7−3)変形例C
上記実施形態では、コントローラ50は、低段側圧縮機温度センサ28の検出値(MT)に基づく相当飽和圧力の値が、第2ガス側冷媒流路GL2内の冷媒の圧力(MP)以下であることに応じて、寝込み抑制制御を実行していた。しかし、これに限定されず、各低段側圧縮機21に、機器内の冷媒の圧力を直接的に検出する圧力センサを配置し、当該圧力センサの検出値が第2ガス側冷媒流路GL2内の冷媒の圧力(MP)以下であることに応じて、コントローラ50が寝込み抑制制御を実行するように構成してもよい。係る場合、当該圧力センサは、特許請求の範囲記載の「第2センサ」に相当する。
(7−4)変形例D
上記実施形態では、コントローラ50(寝込み抑制制御実行部58)は、以下の(a)―(c)の全てを満たすことを、寝込み抑制制御の実行条件としていた。
(a)デフロスト運転中であること
(b)低段側圧縮機冷媒温度MTが所定値以上又は所定値以下であることに基づき冷媒が残存すると推定される冷媒残存低段側圧縮機21が存在すること
(c)冷媒残存低段側圧縮機21の低段側圧縮機冷媒温度MTの相当飽和圧力が中間圧力MP以下であること
しかし、上記(b)及び/又は(c)の条件については必ずしも必要ではなく、適宜省略若しくは変更が可能である。例えば、上記(a)の条件を満たす場合(すなわち、デフロスト運転中)には、コントローラ50が無条件に寝込み抑制制御を実行するように構成してもよい。
また、上記(a)の条件に関しては、デフロスト運転以外の運転時における寝込み抑制制御の実行を妨げるものではない。例えば、上記(a)の「デフロスト運転」を、低段側圧縮機21が停止され逆サイクルで冷媒が循環する他の運転に置き換え、係る運転時に寝込み抑制制御が実行されるように構成してもよい。すなわち、特許請求の範囲記載の「逆サイクル運転」は必ずしもデフロスト運転には限定されず、低段側圧縮機21が停止され逆サイクルで冷媒が循環する他の運転を含む。また、これと同様に、特許請求の範囲記載の「通常運転」は必ずしも冷却運転には限定されず、正サイクルで冷媒が循環する他の運転を含む。
(7−5)変形例E
上記実施形態では、コントローラ50(寝込み抑制制御実行部58)は、寝込み抑制制御において以下の(i)―(iii)の制御を行っていた。
(i)冷媒残存低段側圧縮機21に対応する第1調整弁24を寝込み抑制開度に制御
(ii)第3調整弁26をバイパス助長開度に制御
(iii)利用側膨張弁41をバイパス促進開度に制御
冷媒残存低段側圧縮機21内の冷媒を液側冷媒流路LLへより確実にバイパスさせる、という観点によれば、寝込み抑制制御において上記(i)―(iii)の全てが実行されることが望ましい。しかし、上記(ii)及び/又は(iii)の制御については必ずしも必要ではなく、適宜省略が可能である。すなわち、上記(i)のみによっても、冷媒残存低段側圧縮機21に対応する第1調整弁24が寝込み抑制開度に制御されるため、冷媒残存低段側圧縮機21内の冷媒を、バイパス流路BLを経て液側冷媒流路LLへバイパスさせることが可能である。
(7−6)変形例F
上記実施形態では、コントローラ50(運転切替制御部54)は、冷却運転中には冷却運転が開始されてから所定時間t1が経過したことを契機として運転種別をデフロスト運転に切り替え、デフロスト運転中にはデフロスト運転が開始されてから所定時間t2が経過したことを契機として運転種別を冷却運転に切り替えていた。しかし、これに限定されず、コントローラ50が、他の条件に基づいて運転の種別を切り換えるように構成してもよい。例えば、利用側熱交換器43に温度センサを配置して、係る温度センサの検出値に基づき利用側熱交換器43の着霜状態を判定し、判定結果に基づき運転種別の切り替え(通常運転からデフロスト運転への切替え、及び/又はデフロスト運転から冷却運転への切替え)が行われるようにしてもよい。
(7−7)変形例G
上記実施形態では、各低段側圧縮機21は、中間ユニット20内に配置された。しかし、各低段側圧縮機21は、中間ユニット20に配置される必要はなく、他のユニットに配置されてもよい。例えば、各低段側圧縮機21は、熱源ユニット10内に配置されてもよいし、利用ユニット40内に配置されてもよい。係る場合、中間ユニット20に含まれる低段側圧縮機21以外の機器を他のユニットに配置させることで、中間ユニット20については省略可能となる。
(7−8)変形例H
上記実施形態では、中間圧力センサ29は、第7配管P7に配置されたが、他の部分に配置されてもよい。例えば、中間圧力センサ29は、第1ガス連絡配管G1や、第8配管P8の分岐部分の第4調整弁27側に配置されてもよい。
(7−9)変形例I
上記実施形態における冷媒回路RCの構成態様及び冷凍装置100に配置される機器については適宜変更が可能である。例えば、利用ユニット40内には、複数の利用側熱交換器43が並列/直列に配置されてもよい。また、例えば、高段側圧縮機11及び/又は低段側圧縮機21の台数については必ずしも3台に限定されず、3台未満(1台を含む)であってもよいし、4台以上であってもよい。
また、冷媒回路RCの一部の回路要素や機器については適宜省略が可能である。例えば、熱源ユニット10に配置されるレシーバ15については必ずしも必要ではなく、適宜省略が可能である。また、冷媒回路RCにおいては、各回路要素や各機器に代えて/とともに、他の回路要素や機器が含まれていてもよい。
(7−10)変形例J
上記実施形態では、熱源ユニット制御部10aは熱源ユニット10内に配置され、中間ユニット制御部20aは中間ユニット20内に配置され、利用ユニット制御部40aは利用ユニット40内に配置された。しかし、必ずしもこれに限定されず、熱源ユニット制御部10a、中間ユニット制御部20a、及び/又は利用ユニット制御部40aは、必ずしも対応するユニット内に配置される必要はなく、他のユニットや通信ネットワークで通信可能に接続された遠隔地に配置されてもよい。
(7−11)変形例K
上記実施形態では、コントローラ50は、熱源ユニット制御部10a、中間ユニット制御部20a、及び利用ユニット制御部40aが、通信可能に接続されることで構成されていた。しかし、コントローラ50の構成態様については、必ずしもこれに限定されず、適宜変更が可能である。
例えば、熱源ユニット制御部10a、中間ユニット制御部20a、及び利用ユニット制御部40aの一部を省略してコントローラ50を構成してもよい。また、熱源ユニット制御部10a、中間ユニット制御部20a、及び利用ユニット制御部40aの一部/全てに代えて新たな機能部(例えば管理サーバや集中リモコン等)を用いてコントローラ50を構成してもよい。係る場合、新たな機能部は、通信ネットワークで通信可能に接続された遠隔地に配置されてもよい。
(7−12)変形例L
上記実施形態では、1台の熱源ユニット10と、1台の利用ユニット40と、を有していた。しかし、冷凍装置100に配置される熱源ユニット10の台数については特に限定されず、2台以上であってもよい。また、冷凍装置100が有する利用ユニット40の台数については特に限定されず、2台であってもよい。
(7−13)変形例M
上記実施形態では、本発明が冷蔵倉庫や店舗のショーケースの庫内の冷却を行う冷凍装置100に適用されていた。しかし、これに限定されず、本発明は、他の冷凍装置にも適用可能である。例えば、本発明は、輸送コンテナ内の冷却を行う冷凍装置に適用されてもよい。また、例えば、本発明は、建物内の冷房等を行うことで空気調和を実現する空調システム(エアコン)や、給湯器やヒートポンプチラー等にも適用可能である。
本発明は、冷凍装置に利用可能である。
10 :熱源ユニット
10a :熱源ユニット制御部
11 :高段側圧縮機(第2圧縮機)
13 :四路切換弁
14 :熱源側熱交換器
15 :レシーバ
17 :熱源側ファン
18 :高圧側圧力センサ
20 :中間ユニット
20a :中間ユニット制御部
21 :低段側圧縮機(第1圧縮機)
22 :過冷却熱交換器
23 :逆止弁
24 :第1調整弁(第1流量調整弁)
25 :第2調整弁
26 :第3調整弁(第2流量調整弁)
27 :第4調整弁
28 :低段側圧縮機温度センサ(温度センサ、第2センサ)
29 :中間圧力センサ(第1センサ)
30 :低圧側圧力センサ
40 :利用ユニット
40a :利用ユニット制御部
41 :利用側膨張弁(膨張弁)
43 :利用側熱交換器
45 :利用側ファン
50 :コントローラ
51 :記憶部
52 :入力制御部
53 :駆動信号出力部
54 :運転切替制御部
55 :アクチュエータ制御部
56 :冷却運転実行部
57 :デフロスト運転実行部
58 :寝込み抑制制御実行部
100 :冷凍装置
221 :第1流路
222 :第2流路
BL :バイパス流路
FL1−FL6 :第1フラグ−第6フラグ
G1 :第1ガス連絡配管
G2 :第2ガス連絡配管
GL :ガス側冷媒流路(ガス側冷媒配管)
GL1 :第1ガス側冷媒流路(第1分岐管)
GL2 :第2ガス側冷媒流路(第2分岐管)
L1 :第1液連絡配管
L2 :第2液連絡配管
LL :液側冷媒流
MP :中間圧力
MT :低段側圧縮機冷媒温度
P1−P10 :第1配管−第10配管
P11 :第11配
P12−P17 :第12配管−第17配管
P18 :第18配
P19−P21 :第19配管−第21配管
RC :冷媒回路
特許3918865号公報

Claims (8)

  1. 冷媒の利用側熱交換器(43)と、
    冷媒の熱源側熱交換器(14)と、
    前記利用側熱交換器のガス側の出入口と接続されるガス側冷媒配管(GL)と、
    前記利用側熱交換器が冷媒の蒸発器として機能する通常運転時に、前記利用側熱交換器において蒸発した冷媒を吸入配管(P9)から吸入して圧縮し吐出配管(P10)へ吐出する第1圧縮機(21)と、
    前記通常運転時に、前記第1圧縮機において圧縮された冷媒をさらに圧縮する第2圧縮機(11)と、
    前記通常運転時には、前記第2圧縮機から吐出された冷媒を前記利用側熱交換器に導き、前記利用側熱交換器が冷媒の凝縮器として機能する逆サイクル運転時には、前記第2圧縮機から吐出された冷媒を前記熱源側熱交換器に導く切換弁(13)と、
    開度に応じた流量の冷媒を通過させる第1流量調整弁(24)を有しており、一端が前記第1圧縮機に接続され、他端が液冷媒又は気液二相状態の冷媒が流れる液側冷媒流路(LL)に接続されたバイパス流路(BL)と、
    前記第1流量調整弁を含む各アクチュエータの動作を制御するコントローラ(50)と、
    を備え、
    前記ガス側冷媒配管(GL)は、前記第1圧縮機の前記吸入配管と連通する第1分岐管(GL1)と、前記切換弁へ延びる第2分岐管(GL2)と、を含み、
    前記コントローラは、前記逆サイクル運転時に、前記第1圧縮機を停止させつつ、前記第1流量調整弁の開度を第1開度に制御する寝込み抑制制御を実行し、
    前記第1開度は、前記第1圧縮機内の冷媒が前記バイパス流路を経て前記液側冷媒流路へバイパスされる際の前記第1流量調整弁を通過する冷媒流量に応じた開度である、
    冷凍装置(100)。
  2. 前記第1流量調整弁と前記バイパス流路(BL)の他端との間に配置され、開度に応じた流量の冷媒を通過させる第2流量調整弁(26)をさらに備え、
    前記コントローラは、前記寝込み抑制制御において、前記第2流量調整弁の開度を第2開度に制御し、
    前記第2開度は、前記第1圧縮機内の冷媒が前記バイパス流路を経て前記液側冷媒流路へバイパスされることを助長する開度である、
    請求項1に記載の冷凍装置(100)。
  3. 前記第1圧縮機内の冷媒の温度を検出する温度センサ(28)をさらに備え、
    前記コントローラは、前記温度センサの検出値(MT)に基づき前記第1圧縮機内における冷媒の寝込み現象が想定される場合に、前記寝込み抑制制御を実行する、
    請求項1又は2に記載の冷凍装置(100)。
  4. 前記第2分岐管内の冷媒の圧力(MP)を検出するための第1センサ(29)と、
    前記第1圧縮機内の冷媒の圧力を検出するための第2センサ(28)と、
    をさらに備え、
    前記コントローラは、前記第1センサ及び前記第2センサの検出値に基づき前記第1圧縮機内の冷媒の圧力が前記第2分岐管内の冷媒の圧力以下と想定される時に、前記寝込み抑制制御を実行する、
    請求項1から3のいずれか1項に記載の冷凍装置(100)。
  5. 前記液側冷媒流路は、前記利用側熱交換器の液側の出入口に一端が接続されており
    前記コントローラは、前記寝込み抑制制御において、前記第1開度を、前記液側冷媒流路内の前記バイパス流路との接続箇所の冷媒の圧力と前記第1圧縮機内の冷媒の圧力との差圧によって前記第1圧縮機内の冷媒が前記バイパス流路を経て前記液側冷媒流路へバイパスされることを促進する開度に決定する、
    請求項1から4のいずれか1項に記載の冷凍装置(100)。
  6. 前記利用側熱交換器の液側の出入口側に配置され膨張弁(41)をさらに備え、
    前記コントローラは、前記寝込み抑制制御において、前記膨張弁の開度を第3開度に制御し、
    前記第3開度は、前記第1圧縮機内の冷媒が前記バイパス流路を介して前記液側冷媒流路へバイパスすることが促進される程度に、前記利用側熱交換器内で冷媒の圧力損失を生じさせる開度である、
    請求項5に記載の冷凍装置(100)。
  7. 前記バイパス流路は、前記通常運転時に、前記第1圧縮機において吸入される冷媒よりも圧力が大きく吐出される冷媒よりも圧力が小さい冷媒を、前記第1圧縮機に流入させるインジェクション管として機能する、
    請求項1から6のいずれか1項に記載の冷凍装置(100)。
  8. 前記利用側熱交換器(43)の液側の出入口と前記熱源側熱交換器の液側の出入口との間に設けられた膨張弁(41、25)をさらに備え、
    前記バイパス流路の他端は、前記熱源側熱交換器の液側の出入口と前記膨張弁との間の部分に接続されている、
    請求項1から5のいずれか1項に記載の冷凍装置(100)。
JP2016188033A 2016-09-27 2016-09-27 冷凍装置 Active JP6784118B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188033A JP6784118B2 (ja) 2016-09-27 2016-09-27 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188033A JP6784118B2 (ja) 2016-09-27 2016-09-27 冷凍装置

Publications (2)

Publication Number Publication Date
JP2018054171A JP2018054171A (ja) 2018-04-05
JP6784118B2 true JP6784118B2 (ja) 2020-11-11

Family

ID=61835612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188033A Active JP6784118B2 (ja) 2016-09-27 2016-09-27 冷凍装置

Country Status (1)

Country Link
JP (1) JP6784118B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971951B2 (ja) * 2018-10-18 2021-11-24 コベルコ・コンプレッサ株式会社 冷凍装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320844B2 (ja) * 1999-06-03 2009-08-26 ダイキン工業株式会社 冷凍装置
JP2001271753A (ja) * 2000-03-29 2001-10-05 Daikin Ind Ltd 開放形圧縮機および開放形圧縮機ユニット
JP3918865B1 (ja) * 2005-07-08 2007-05-23 ダイキン工業株式会社 冷凍装置
JP4899489B2 (ja) * 2006-01-19 2012-03-21 ダイキン工業株式会社 冷凍装置
JP4700025B2 (ja) * 2007-03-30 2011-06-15 ヤンマー株式会社 空調装置
JP2014214951A (ja) * 2013-04-25 2014-11-17 株式会社富士通ゼネラル 空気調和装置

Also Published As

Publication number Publication date
JP2018054171A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
CN109642761B (zh) 制冷装置
US8959951B2 (en) Refrigeration apparatus controlling opening degree of a second expansion mechanism based on air temperature at the evaporator or refergerant temperature at the outlet of a two stage compression element
JP5592508B2 (ja) カスケードヒートポンプ装置
WO2017141899A1 (ja) 冷凍装置
EP3546850B1 (en) Refrigeration device
KR102122499B1 (ko) 냉각 시스템 및 그 제어방법
JP2008096033A (ja) 冷凍装置
JP2013178046A (ja) 空気調和装置
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
WO2018097138A1 (ja) 冷凍装置
JP5872052B2 (ja) 空気調和装置
JP6515902B2 (ja) 冷凍装置の熱源ユニット
US20210063042A1 (en) Air conditioner and control method thereof
JP6784118B2 (ja) 冷凍装置
JP6780518B2 (ja) 冷凍装置
EP3228954A2 (en) Cooling apparatus
US11512876B2 (en) Refrigeration apparatus
JP5994763B2 (ja) 冷凍装置
JP6662753B2 (ja) 冷凍装置
CN111919073A (zh) 制冷装置
JP6819186B2 (ja) 冷凍装置
KR102017405B1 (ko) 히트 펌프
WO2018193498A1 (ja) 冷凍サイクル装置
JP6848395B2 (ja) 冷凍装置
JP6704513B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R151 Written notification of patent or utility model registration

Ref document number: 6784118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151