JP6772040B2 - 薄片状カーボンの製造方法 - Google Patents

薄片状カーボンの製造方法 Download PDF

Info

Publication number
JP6772040B2
JP6772040B2 JP2016226076A JP2016226076A JP6772040B2 JP 6772040 B2 JP6772040 B2 JP 6772040B2 JP 2016226076 A JP2016226076 A JP 2016226076A JP 2016226076 A JP2016226076 A JP 2016226076A JP 6772040 B2 JP6772040 B2 JP 6772040B2
Authority
JP
Japan
Prior art keywords
group
carbon
water
production method
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016226076A
Other languages
English (en)
Other versions
JP2018083724A (ja
Inventor
阪本 浩規
浩規 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016226076A priority Critical patent/JP6772040B2/ja
Publication of JP2018083724A publication Critical patent/JP2018083724A/ja
Application granted granted Critical
Publication of JP6772040B2 publication Critical patent/JP6772040B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、薄片状カーボンの製造方法に関する。特に、導電材料、伝熱材料、トランジスタ、キャパシタ等の蓄電デバイス、センサー、圧電材料、抗菌材料、ろ過材料、樹脂添加剤、光学材料等に使用するための薄片状カーボン、薄片状カーボン組成物、又は薄片状カーボン分散体の製造方法に関する。
グラフェンシートは、炭素原子がハニカム格子状に並んだ2次元単層シートで、グラファイト、フラーレン、カーボンナノチューブ等の構成単位でもある。このグラフェンシートが厚み10nm以下程度に積層された薄片状カーボン(本発明において、グラフェンシートも含む概念である)は、その特異な諸物性(例えば、単層グラフェンシートの場合にはヤング率1.0TPa、キャリア移動度200000cm2V-1s-1、電気伝導性30Ω□-1、熱伝導率5000Wm-1K-1等)を有していることから、導電材料、伝熱材料、トランジスタ、キャパシタ等の蓄電デバイス、センサー、圧電材料、抗菌材料、ろ過材料、樹脂添加剤、光学材料等に使用される新たな材料として注目を浴びている。
薄片状カーボンの製造方法としては、
(1)テープ等を用いた機械的剥離法
(2)金属箔上へのCVDによる形成
(3)SiC基板の加熱
(4)黒鉛の酸化による層間剥離及び得られる酸化グラフェンの還元
等が知られている。
これらのうち、(1)〜(3)の方法は量産性に問題があるとともに、基板上又はテープに付着した状態で薄片状カーボンが得られるために単離が困難である。特に、厚みの小さい薄片状カーボンの場合には、これらの基板又はテープから剥離して薄片状カーボンを単離することはほぼ不可能である。また、仮に単離することができたとしても、これらの方法により得られる薄片状カーボンは極めて凝集しやすく、分散した状態で単離することは非常に困難である。また、凝集した薄片状カーボンを剥離することも非常に困難である。
一方、(4)の方法は、黒鉛を酸化して生成した酸化黒鉛を超音波処理等により層間剥離して酸化グラフェンを得た後に、これを還元してグラフェンに戻す処理である。この方法を採用した場合、酸化グラフェンを液中で還元すると凝集を起こして成膜できなくなってしまう。また、凝集したグラフェンを1枚単位で剥離することは困難である。還元後の凝集を防ぐために、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤を共存させることも検討されている(非特許文献1)。しかしながら、強烈な酸化及び還元を行うため、グラフェン構造を維持したまま薄片状カーボンを得ることは非常に困難であるとともに、安全性にも問題が生ずる。さらに、この方法を採用したとしても、薄片状カーボンは沈殿しており、液中での分散安定化は達成されていない。
このように、薄片状カーボンは、優れた物性を有しているにもかかわらず、分散状態で単離することが非常に困難であり、その方法が求められている。
Adv. Funct. Mater. 2010, 20, 2893-2902
本発明は、安価な材料及び簡易なプロセスを用いて、薄片状カーボンを安定分散させることが可能な状態で得ることができる方法を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含む組成物中の層状構造を有する炭素質材料に対して所定の方法でせん断を加えることにより、安価な材料及び簡易なプロセスを用いているにもかかわらず、薄片状カーボンを安定分散させることが可能な状態で得ることができることを見出した。本発明者らは、当該知見に基づきさらに研究を重ね、本発明を完成するに至った。即ち、本発明は以下の構成を包含する。
項1.薄片状カーボンの製造方法であって、
回転する回転盤と、前記回転盤と略平行に設置された盤との間に、
層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含む組成物を設置し、
前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加える工程
を備える、製造方法。
項2.前記せん断を加える工程が、前記回転盤を回転させる工程である、項1に記載の製造方法。
項3.前記組成物が、さらに、溶媒を含有する、項1又は2に記載の製造方法。
項4.前記溶媒が水を含有し、且つ、該水の含有量が、前記溶媒中の70重量%以上である、項3に記載の製造方法。
項5.前記疎水基が、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種である、項1〜4のいずれかに記載の製造方法。
項6.前記親水基が、一般式(1)〜(4):
[式中、−OHはアルコール性水酸基又はフェノール性水酸基を示す。Rは2価の有機基を示す。X 1 は水素原子、アルカリ金属、NH4又は有機アンモニウムを示す。X 2 は水素原子、アルカリ金属、NH4、有機アンモニウム又はアルキル基を示す。一般式(2)の酸素原子はエーテル結合である。]
で表される少なくとも1種である、項1〜5のいずれかに記載の製造方法。
項7.前記一般式(2)で表される親水基がポリオキシエチレン基及び/又はポリグリセリル基である、項6に記載の製造方法。
項8.前記親水基以外の構成部分の炭素数が10以上である、項1〜7のいずれかに記載の製造方法。
項9.前記親水基以外の構成成分が、重合度が4以上のポリオキシプロピレン基及び/又は重合度が3以上のポリオキシブチレン基である、項1〜8のいずれかに記載の製造方法。
項10.前記炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物のHLB値が12以上である、項1〜9のいずれかに記載の製造方法。
項11.前記層状構造を有する炭素質材料が、天然黒鉛、人造黒鉛、膨張黒鉛、酸化黒鉛及び土状黒鉛よりなる群から選ばれる少なくとも1種である、項1〜10のいずれかに記載の製造方法。
項12.前記せん断を加える工程が、前記回転盤と前記盤との最短距離が50μm以下となるように調整しながら行う、項1〜11のいずれかに記載の製造方法。
項13.前記回転盤に垂直な軸と、前記盤に垂直な軸が平行である、項1〜12のいずれかに記載の製造方法。
項14.前記組成物中の層状構造を有する炭素質材料の含有量が20重量%以下である、項1〜13のいずれかに記載の製造方法。
項15.前記せん断を加える工程の後に、溶媒を乾燥させる工程を備える、項3〜14のいずれかに記載の製造方法。
項16.項1〜15のいずれかに記載の製造方法により得られた薄片状カーボンを水又は有機溶媒で洗浄して前記炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去する工程を備える、薄片状カーボンの製造方法。
本発明によれば、安価な材料及び簡易なプロセスを用いて、薄片状カーボンを安定分散させることが可能な状態で得ることができる。
また、本発明によれば、薄片状カーボンは、薄片状カーボン単体、薄片状カーボン組成物、及び薄片状カーボン分散体のいずれの態様の薄片状カーボン含有材料であっても、凝集を抑制しつつ得ることができる。つまり、用途に応じて、使用する形態を適宜設定することができるため、汎用性が高い。特に、薄片状カーボンの単離が容易であり、他材料に薄片状カーボンを均一混合することも可能であるため、薄片状カーボンを含むナノコンポジット等への応用も期待される。
実施例3で得られた薄片状カーボンの走査型電子顕微鏡(SEM)写真である。 実施例4で得られた薄片状カーボンの透過型電子顕微鏡(TEM)写真である。
1.薄片状カーボン分散体の製造方法
本発明の薄片状カーボンの製造方法においては、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含む組成物を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の層状構造を有する炭素質材料に対してせん断を加える。
このせん断方法によれば、力のかかる方向が層状構造を有する炭素質材料の面方向と平行であり、且つ、狭い空間で処理するため、従来の高速攪拌、超音波処理、高圧処理等による製造方法と比較して、破壊が少なく、大きめのサイズの薄片状カーボン(例えば、大きさが1μm以上の薄片状カーボン)を得ることができ、剥離の効率がよく短時間(少ないパス回数)で処理を行うことができるとともに、剥離し損ねた厚みのある塊が残りにくい。
層状構造を有する炭素質材料
層状構造を有する炭素質材料としては、特に制限はなく、天然黒鉛、人造黒鉛、膨張黒鉛、土状黒鉛、酸化黒鉛等が挙げられる。酸化黒鉛とは、例えば、硫酸、硝酸、過マンガン酸カリウム、過酸化水素等の1種又は2種以上の酸化剤により酸化された黒鉛が使用され得る。例えば、ハマーズ法により酸化黒鉛を得る場合には、黒鉛を濃硫酸中に浸し、過マンガン酸カリウムを加えて黒鉛を酸化させた後、反応物を希硫酸及び/又は過酸化水素でクエンチし、その後、蒸留水で洗浄すること等により、炭素原子に酸素原子が結合し、層間に酸素原子が導入されて酸化黒鉛を得ることができる。
なかでも、酸素等の異種原子を含まない純度の高い薄片状カーボンを得ようとする場合には、黒鉛を原料として用いることが好ましく、天然黒鉛及び膨張黒鉛がより好ましい。なお、膨張黒鉛を使用する場合は、グラフェン構造の酸化が少ない膨張黒鉛を採用することが好ましい。また、膨張黒鉛を使用する場合は、300〜1000℃程度で10秒〜5時間程度加熱処理を加えてから用いることもできる。これにより、適度に膨張させた膨張黒鉛を使用することも可能である。
また、製造の容易さを重視する場合には、酸化黒鉛を使用することもできる。酸化黒鉛を使用することにより、層間に溶媒分子が挿入されやすく、層方向にのみ剥離させることが容易であり、薄片化効率及び分散性が向上するため、処理時間をより短くすることが可能である。ただし、酸化黒鉛を使用する場合には、後に還元処理が必要となり、グラフェン構造、導電性及び強度をより維持する観点からは、他の材料(天然黒鉛、人造黒鉛、膨張黒鉛、土状黒鉛)が好ましい。
一方、分散性をより向上させるために、土状黒鉛を採用することも可能である。ただし、結晶性、純度及び構造維持の観点からは、他の材料(天然黒鉛、人造黒鉛、膨張黒鉛、酸化黒鉛)が好ましい。
また、得られる薄片状カーボンの結晶性、強度、構造維持等を重視する場合には、人造黒鉛を使用することもできる。
本発明において、前記組成物中の層状構造を有する炭素質材料の含有量は、特に制限されず、20重量%以下が好ましく、0.0001〜15重量%がより好ましく、0.001〜10重量%がさらに好ましい。なお、層状構造を有する炭素質材料の含有量は、薄いほうが薄片化(層間剥離)がより起こりやすいために薄片状カーボンをより効率的に得られ、処理回数をより少なくできる傾向があるとともに、粘度を適切に維持してせん断によって薄片状カーボンをさらに効率よく得ることができる。一方、層状構造を有する炭素質材料の含有量が濃いほうがより生産性に優れている。このため、薄片化の効率、粘度、生産性等のバランスの観点から、層状構造を有する炭素質材料の含有量を適宜設定することが好ましい。なお、本発明の製造方法において、炭素質材料分散体を使用する場合は、当該分散体中の層状構造を有する炭素質材料の含有量を上記範囲内とすることが好ましい。
炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物
従来は、湿式法にて薄片状カーボンを作製する場合、薄片状カーボンの酸化物及び水性溶媒を含む水分散体に還元処理を施していたが、この方法ではグラフェン構造を維持することが困難であるとともに、得られる薄片状カーボンが激しく凝集してしまうため、薄片状カーボン水分散体を得ることは困難であった。また、安全性の観点でも問題があった。高圧処理を行う際には薄片状カーボン水分散体を得ることはできるものの、得られる薄片状カーボンが破壊されやすく、製造に時間がかかる傾向があるうえに、剥離し損ねた塊が残存することもあった。一方、本発明においては、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を使用することにより、グラフェン構造を維持した薄片状カーボンが凝集することなく、均一分散した状態(薄片状カーボン分散体等)で薄片状カーボンを得ることができ、得られる薄片状カーボンも破壊されにくく、短時間で薄片状カーボンを得ることもできるうえに剥離し損ねた塊も残存しにくい。この際、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物は、薄片状カーボンを均一分散させるための分散剤としても機能し得る。
このような炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物としては、特に制限されるわけではなく、層状構造を有する炭素質材料及び薄片状カーボンの分散剤として機能し得る種々多様な水溶性化合物を使用し得る。
なかでも、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が有する疎水基としては、特に制限はないが、アルキル基、アルケニル基、シクロアルキル基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種が好ましい。
アルキル基としては、鎖状アルキル基でも分岐鎖状アルキル基でもよいが、炭素との親和性の観点から、鎖状アルキル基が好ましい。また、アルキル基の炭素数は、炭素との親和性の観点から、6以上が好ましく、8〜28がより好ましく、10〜22がさらに好ましい。このようなアルキル基としては、ヘキシル基、オクチル基、デシル基、ウンデシル基、ドデシル基(又はラウリル基)、トリデシル基、テトラデシル基(又はミリスチル基)、ペンタデシル基、ヘキサデシル基(又はセチル基)、オクタデシル基、イコシル基等が挙げられる。
このアルキル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、シクロアルキル基、アリール基、アラルキル基等が挙げられる。なお、シクロアルキル基としては、後述のものが例示される。
アルキル基の置換基としてのアリール基としては、炭素数6〜10のアリール基が好ましく、具体的には、フェニル基、アルキルフェニル基(アルキル:炭素数1〜6のアルキル基;トリル基、2-メチルフェニル基、3-メチルフェニル基等のメチルフェニル基等)、キシリル基等のジメチルフェニル基等)、ナフチル基等が好ましい。
アルキル基の置換基としてのアラルキル基としては、前述したアリール基と炭素数1〜6のアルキル基を有する炭素数7〜14のアラルキル基が好ましく、具体的には、ベンジル基、フェネチル基等が好ましい。
なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、層状構造を有する炭素質材料及び薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
アルケニル基としては、炭素との親和性と水溶性の観点から、炭素数が4以上が好ましく、6〜100がより好ましく、8〜30がさらに好ましい。このようなアルケニル基としては、例えば、オレイル基、リノレイル基等が挙げられる。
このアルケニル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基等が挙げられる。なお、アリール基、アラルキル基としては前記したものが例示され、シクロアルキル基としては、後述のものが例示される。
アルケニル基の置換基としてのアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、tert−ブチル基等が好ましい。
アルケニル基の置換基としてのシクロアルキル基としては、後述のものが例示され、アルケニル基の置換基としてのアリール基及びアラルキル基としては、前記例示したものが挙げられる。
なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、層状構造を有する炭素質材料及び薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
シクロアルキル基としては、炭素数5〜10(好ましくは5〜8、特に5〜6)のシクロアルキル基が好ましく、具体的には、シクロペンチル基、シクロへキシル基等が好ましい。
このシクロアルキル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、アリール基、アラルキル基等が挙げられる。
シクロアルキル基の置換基としてのアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、tert−ブチル基等が好ましい。
シクロアルキル基の置換基としてのアリール基及びアラルキル基としては、前記例示したものが挙げられる。
なお、ポリオキシエチレン基等のポリオキシアルキレン基は通常親水性であるが、ポリオキシプロピレン基、ポリオキシブチレン基等、炭素数3以上のポリオキシアルキレン基は重合度が上がるほど疎水性が増し、疎水基として使用することができる。特に重合度4以上のポリオキシプロピレン基、重合度3以上のポリオキシブチレン基が好ましく、ポリオキシエチレンとの共重合体がより好ましい。例えば、ポリオキシエチレン−ポリオキシプロピレンやポリオキシエチレン−ポリオキシブチレンを水溶性化合物として使用した場合には、ポリオキシプロピレン基及びポリオキシブチレン基も疎水基として機能し得る。
なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、層状構造を有する炭素質材料及び薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。
このような疎水基としては、ヘキシル基、オクチル基、デシル基、ウンデシル基、ドデシル基(又はラウリル基)、ラウリルフェニル基、トリデシル基、テトラデシル基(又はミリスチル基)、ペンタデシル基、ヘキサデシル基(又はセチル基)、オクタデシル基、イコシル基、シクロペンチル基、シクロへキシル基、重合度4以上のポリオキシプロピレン基、重合度3以上のポリオキシブチレン基等が好ましい。
また、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が有する親水基としては、前記水溶性化合物の水に対する溶解度を上昇させることができるものであれば特に制限はないが、前記水溶性化合物の水溶性、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの分散性等の観点から、一般式(1)〜(4):
[式中、−OHはアルコール性水酸基又はフェノール性水酸基を示す。Rは2価の有機基を示す。X 1 は水素原子、アルカリ金属、NH4又は有機アンモニウムを示す。X 2 は水素原子、アルカリ金属、NH4、有機アンモニウム又はアルキル基を示す。一般式(2)の酸素原子はエーテル結合である。]
で表される少なくとも1種が好ましい。
一般式(1)において、−OHはアルコール性水酸基及びフェノール性水酸基のいずれも採用し得る。ただし、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の水溶性、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの分散性等の観点から、アルコール性水酸基が好ましい。なお、−OHがフェノール性水酸基の場合は、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の水溶性、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの分散性等の観点から、一般式(2)〜(4)のいずれかで表される親水基で置換されることが好ましい。
一般式(2)において、Rで示される2価の有機基としては、特に制限されず、2価の炭化水素基が好ましい。2価の炭化水素基としては、脂肪族炭化水素基(アルキレン基(又はアルキリデン基)、シクロアルキレン基、アルキレン(又はアルキリデン)−シクロアルキレン基、ビ又はトリシクロアルキレン基等)、芳香族炭化水素基(アリーレン基、アルキレン(又はアルキリデン)−アリーレン基等)等が挙げられる。
一般式(2)において、基Rで示されるアルキレン基(又はアルキリデン基)としては、アルキレン基が好ましく、C1-8アルキレン基がより好ましく、C1-4アルキレン基がさらに好ましく、C2-4アルキレン基が特に好ましく、C2-3アルキレン基が最も好ましい。具体的には、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピレン基、プロピリデン基、テトラメチレン基、エチルエチレン基、ブタン-2-イリデン基、1,2-ジメチルエチレン基、ペンタメチレン基、ペンタン-2,3-ジイル基等が例示できる。
一般式(2)において、基Rで示されるシクロアルキレン基としては、C5-10シクロアルキレン基が好ましく、C5-8シクロアルキレン基がより好ましい。具体的には、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、シクロへプチレン基等が例示できる。
一般式(2)において、基Rで示されるアルキレン(又はアルキリデン)−シクロアルキレン基としては、アルキレン−シクロアルキレン基が好ましく、C1-6アルキレン−C5-10シクロアルキレン基がより好ましく、C1-4アルキレン−C5-8シクロアルキレン基がさらに好ましい。具体的には、メチレン−シクロへキシレン基、エチレン−シクロへキシレン基、エチレン−メチルシクロへキシレン基、エチリデン−シクロへキシレン基等が例示できる。
一般式(2)において、基Rで示されるビ又はトリシクロアルキレン基としては、具体的には、ノルボルナン−ジイル基等が例示できる。
一般式(2)において、基Rで示されるアリーレン基としては、C6-10アリーレン基が好ましい。具体的には、フェニレン基、ナフタレンジイル基等が例示できる。
一般式(2)において、基Rで示されるアルキレン(又はアルキリデン)−アリーレン基としては、アルキレン−アリーレン基が好ましく、C1-6アルキレン−C6-20アリーレン基がより好ましく、C1-4アルキレン−C6-10アリーレン基がさらに好ましく、C1-2アルキレン−フェニレン基が特に好ましい。具体的には、メチレン−フェニレン基、エチレン−フェニレン基、エチレン−メチルフェニレン基、エチリデンフェニレン基等が例示できる。
これらのうち、2価の脂肪族炭化水素基、特に、アルキレン基(例えば、メチレン基、エチレン基等のC1-4アルキレン基等)が好ましい。
なお、アルキレン(若しくはアルキリデン)−シクロアルキレン基並びにアルキレン(アルキリデン)−アリーレン基とは、−Ra−Rb−(式中、Ra及びRbは、一般式(2)において、それぞれ別個の酸素原子に結合したアルキレン基又はアルキリデン基、Rbはシクロアルキレン基又はアリーレン基を示す)で表される基を示す。
このような一般式(2)で表される親水基としては、特に制限されず、例えば、−OC2H4O−、−OC3H6O−、−OCH2O−等が使用され得る。特に一般式(2)で表される親水基が3つ以上重合した構造を有する場合は、Rの炭素が多いほど(例えば炭素数3以上)親水性が下がり疎水性を増すため、重合度が増しても親水性を保持できる−OC2H4O−、−OCH2O−が好ましい。
一般式(3)において、X1で示されるアルカリ金属としては、特に制限されず、ナトリウム、カリウム、リチウム等が挙げられる。
一般式(3)において、X1で示される有機アンモニウムとしては、第四級アンモニウムが好適であり、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等が好適に使用され得る。
このような一般式(3)で表される親水基としては、特に制限されないが、例えば、−SO3 -H+、−SO3 -Na+、−SO3 -K+、−SO3 -Li+、−SO3 -NH4 +、−SO3 -N(CH3)4 +、−SO3 -N(C2H5)4 +、−SO3 -N(C3H7)4 +、−SO3 -N(C4H9)4 +等が挙げられる。
一般式(4)において、X2で示されるアルカリ金属及び有機アンモニウムとしては、上記例示したものが挙げられる。
一般式(4)において、X2で示されるアルキル基としては、鎖状アルキル基でも分岐鎖状アルキル基でもよいが、炭素との親和性の観点から、鎖状アルキル基が好ましい。また、アルキル基の炭素数は、炭素との親和性の観点から、1〜2が好ましい。
このような一般式(4)で表される親水基としては、特に制限されないが、例えば、−COOH、−COONa、−COOK、−COOLi、−COONH4、−COON(CH3)4、−COON(C2H5)4、−COON(C3H7)4 +、−COON(C4H9)4 +等が挙げられる。
これら親水基のなかでも、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の水溶性、pHによらない安定性、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの分散性等の観点から、一般式(2)及び/又は(4)で表される親水基が好ましい。これらの親水基は、単独で用いてもよいし、複数の親水基を用いてもよい。また、複数の親水基を使用する場合には、同じ親水基を複数用いてもよいし、同じ一般式で表される親水基を複数種用いてもよいし、異なる一般式で表される親水基を複数種用いてもよい。
ただし、一般式(2)で表される同じ親水基を複数有する、つまり重合した構造を有する場合、炭素数2以下は重合度が増すほど水溶性化合物の親水性は高くなるが、炭素数3以上の場合は重合度が増すほど疎水性が増す可能性がある。
本発明において使用する炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物において、親水基以外の構成部分(疏水基等)の炭素数は、水溶性化合物の水溶性、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの分散性等の観点から、10以上が好ましく、12〜18がより好ましい。
また、本発明において、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物として、非イオン系材料(ノニオン界面活性剤等)を使用する場合には、そのHLB値は、前記水溶性化合物の水溶性、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの分散性等の観点から、12以上が好ましく、13〜19がより好ましい。なお、疎水基を同じとした場合(層状構造を有する炭素質材料との親和性が同程度の場合)には、HLB値は高いほど好ましい。
上記のような条件を満たす炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物としては、特に制限はないが、芳香族水溶性化合物を使用してもよいし、非芳香族水溶性化合物を使用してもよいが、非芳香族水溶性化合物が好ましい。炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシプロピレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシプロピレンラウリルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシプロピレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシプロピレンセチルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシプロピレンオクチルフェニルエーテル、ポリオキシエチレンウンデシルフェニルエーテル、ポリオキシプロピレンウンデシルフェニルエーテル、ポリオキシエチレントリデシルフェニルエーテル、ポリオキシプロピレントリデシルフェニルエーテル、ポリオキシエチレンペンタデシルフェニルエーテル、ポリオキシプロピレンペンタデシルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシプロピレンポリグリセリルエーテル、コール酸ナトリウム、コール酸カリウム、ドデシルスルホン酸ナトリウム、ドデシルスルホン酸カリウム、ジラウロイルグルタミン酸リシンナトリウム、ジラウロイルグルタミン酸リシンカリウム、デカグリセリンラウリン酸エステル、n−デシルアルコール等が挙げられる。なお、これらの水溶性化合物が液体である場合は、溶媒として使用することもできる。
このような炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物としては、例えば、エマルゲン103、エマルゲン104P、エマルゲン105、エマルゲン106、エマルゲン108、エマルゲン109P、エマルゲン120、エマルゲン123P、エマルゲン130K、エマルゲン147、エマルゲン150、エマルゲン210P、エマルゲン220(以上、花王(株)製ポリオキシエチレンアルキルエーテル類)、トリトンX-100、トリトンX-114、トリトンX-305、トリトンX-405(ダウケミカル社製ポリオキシエチレンオクチルフェニルエーテル類)等を使用できる。
本発明において、前記組成物中における炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量は、特に制限されないが、0.00001〜99.9重量%が好ましく、0.0001〜50重量%がより好ましく、0.001〜30重量%がさらに好ましく、0.01〜20重量%が特に好ましい。一方、本発明において、処理前に投入する炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量は、層状構造を有する炭素質材料100重量部に対して、10〜100000重量部が好ましく、20〜10000重量部がより好ましい。なお、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量は、薄いほうが相対的に層状構造を有する炭素質材料の含有量が大きくなり導電性が向上しやすいとともに、安価に処理しやすい。一方、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量が濃いほうが薄片化(層間剥離)がより起こりやすいために薄片状カーボンをより効率的に得られる傾向があるが、粘度が高くなると逆に薄片化効率が下がる可能性もある。このため、導電性、コスト、薄片化の効率等のバランスの観点から、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量を適宜設定することが好ましい。なお、本発明の製造方法において、炭素質材料分散体を使用する場合は、当該分散体中の炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量を上記範囲内とすることが好ましい。
溶媒
本発明においては、上記のとおり、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含む組成物に対して特定のせん断処理を行うが、層状構造を有する炭素質材料の薄片化効率、得られる薄片状カーボンの汎用性等の観点から、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を含む炭素質材料分散体を使用することが好ましい。
この炭素質材料分散体としては、分散液として形成してもよいし、基板上に塗膜として形成してもよい。
この際、分散体(分散液又は塗膜)を作製するために使用される溶媒としては、層状構造を有する炭素質材料の薄片化効率等の観点から、水を主溶媒として用いることが好ましい。
使用する溶媒中の水の含有量は、特に制限されず、層状構造を有する炭素質材料の薄片化効率、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の溶解度等の観点から、70重量%以上(70〜100重量%)が好ましく、80重量%以上(80〜100重量%)がより好ましく、90重量%以上(90〜100重量%)がさらに好ましい。
なお、本発明において、溶媒としては、水のみを使用してもよく、有機溶媒は必ずしも使用しなくてもよいが、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の水への溶解性をより向上させるために、メタノール、エタノール、2-プロパノール、tert-ブチルアルコール等のアルコール;エチレングリコール等のグリコール;グリセリン;2-メトキシエタノール等の有機溶媒を使用してもよい。
使用する溶媒中の有機溶媒の含有量は、層状構造を有する炭素質材料の薄片化効率、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の溶解度等の観点から、30重量%以下(0〜30重量%)が好ましく、20重量%以下(0〜20重量%)がより好ましく、10重量%以下(0〜10重量%)がさらに好ましい。
本発明において、溶媒を使用した炭素質材料分散体を用いて特定のせん断処理を行う場合、炭素質材料分散体中の溶媒の総量は、特に制限されず、層状構造を有する炭素質材料の薄片化効率、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の溶解度等の観点から、40〜99.9998重量%が好ましく、63〜99.998重量%がより好ましく、85〜99.98重量%がさらに好ましい。
本発明において、溶媒を使用した炭素質材料分散体を用いて特定のせん断処理を行う場合、炭素質材料分散体は、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の分散体に層状構造を有する炭素質材料を投入してもよいし、層状構造を有する炭素質材料の分散体に炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を投入してもよい。また、溶媒中に、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを同時に投入してもよい。
他の成分
本発明において、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含む組成物(例えば、炭素質材料分散体等)には、他の成分を含ませてもよい。これにより、最終的に得られる薄片状カーボン分散体や薄片状カーボン組成物中にも、これら他の成分を含ませることができる。このような他の成分としては、カーボンファイバー(特に繊維径500nm以下のカーボンナノファイバー)、活性炭、カーボンブラック(アセチレンブラック、オイルファーネスブラック等;特に導電性が高く、比表面積が大きいケッチェンブラック)、ガラス状カーボン、カーボンマイクロコイル、フラーレン、バイオマス系炭素材料(バガス、ソルガム、木くず、おがくず、竹、木皮、稲ワラ、籾殻、コーヒーかす、茶殻、おからかす、米糠、パルプくず等を原料としたもの;リグニンから製造したカーボンファイバー等)を、本発明の効果を損なわない範囲で使用してもよい。
せん断処理
本発明では、上記のとおり、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含む組成物(前記炭素材料分散体等)を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の層状構造を有する炭素質材料に対してせん断を加える。
せん断処理を施すことにより、層状構造を有する炭素質材料の微粒化が起こるために、条件によってはグラフェン構造を維持できない可能性もあるが、層状構造を有する炭素質材料の薄片化を効率よく行うことができ、処理時間を低減することができる。このようなせん断処理を施す際の前記回転盤と前記盤とは略平行に設置されているが、厳密に平行でなくてもよい。具体的には、前記回転盤に垂直な軸と、前記盤に垂直な軸とのなす角が10°以下が好ましく、5°以下がより好ましい。なお、前記回転盤に垂直な軸と、前記盤に垂直な軸とが厳密に平行であることが最も好ましい。このようなせん断処理を施す際の前記回転盤と前記盤との最短距離は、層状構造を有する炭素質材料の薄片化を十分に行うことができるものであれば特に制限はなく、200μm以下、好ましくは1〜50μm、より好ましくは2〜30μmである。なお、前記回転盤と前記盤とは略平行に設置されているが、前記回転盤と前記盤との距離は場所によって異なることもある。この場合、前記回転盤と前記盤との最短距離は、前記回転盤と前記盤との間の距離のうち、最も短い箇所の距離を意味する。また、必ずしもあらかじめ前記回転盤と前記盤とを空ける必要はなく、前記回転盤と前記盤との間に処理する材料を挟んでもよく、また、前記回転盤と前記盤とを接触させておき、層状構造を有する炭素質材料が挟まることにより前記回転盤と前記盤との間が広がる状態になってもよい。このようなせん断処理は、盤状のものを回転させる機構があればよく、石臼、振動式ミキサー、スピンコーター、グラインダー等を用いて行い得る。
この際使用できる前記回転盤と前記盤の大きさは特に制限はなく、5〜500mmが好ましく、10〜200mmがより好ましい。また、せん断処理を行う際の回転盤の回転数は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる範囲とすることが好ましく、例えば、1000〜10000ppmが好ましく、2000〜5000ppmがより好ましい。
このようなせん断処理をすることにより、盤と層状構造を有する炭素質材料、層状構造を有する炭素質材料と層状構造を有する炭素質材料を接触させて層状構造を有する炭素質材料に対して層状構造を有する炭素質材料のグラフェン層と平行方向にせん断をかけることができる。
せん断処理における前記回転盤と前記盤との間の最短距離を小さくし、回転盤の回転速度を早くすることにより、条件をより強くすることが可能であり、層状構造を有する炭素質材料の薄片化をより効率よく行うことができ、処理時間をより低減することができる。このせん断操作は、1回以上、好ましくは3回以上行い得る。
せん断処理を行う温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、0℃以上、さらに0〜100℃、特に20〜95℃とし得る。なお、せん断処理を行う温度は、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の溶解度が高い条件がよく、温度が高いほうが溶解度が増す場合は高温のほうが好ましく、曇点を有する水溶性化合物を使用する場合は曇点以下の温度に保持することが好ましい。
上記のせん断処理を行う前に、層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とをよく接触させるため、撹拌装置、超音波分散装置等を用いて組成物を作製する前にあらかじめ撹拌し、層状構造を有する炭素質材料表面に、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物をなじませておいてもよい。
なお、本発明において、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、上記せん断処理を施した分散体中には、薄片状カーボンの酸化物として存在している。このため、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、後処理として還元処理を施すことが好ましい。還元処理としては、化学還元、電気化学還元等、種々の方法が採用できるが、化学還元が好ましい。なかでも、ヒドラジン、水素化ホウ素ナトリウム等のような還元剤による化学還元が好ましい。還元剤量は、薄片状カーボンの酸化物100重量部に対して、1〜1000重量部が好ましく、10〜500重量部がより好ましく、50〜300重量部がさらに好ましい。また、還元時に加熱を行うとより還元しやすくなる。加熱温度は、40〜200℃が好ましく、50〜150℃がより好ましく、60〜120℃がさらに好ましい。還元時間は10分〜64時間が好ましく、30分〜48時間がより好ましく、1〜24時間がさらに好ましい。ただし、グラフェン構造が過度に破壊されない程度とすることが好ましい。
2.薄片状カーボン分散体
上記した本発明の製造方法によれば、所望の薄片状カーボンが得られる。特に、本発明の製造方法によれば、所望の薄片状カーボンが分散した状態で存在する薄片状カーボン分散体が得られる。
このようにして得られる薄片状カーボンは、薄いほうが諸物性に優れるが、厚みが10nm以下、特に0.3〜5nmの薄片状カーボンが得られ得る。厚みが非常に大きい薄片状カーボンが得られることもあるが、多数の薄片状カーボンの厚みは上記範囲内である。
このようにして得られる薄片状カーボンは、薄いほうが諸物性に優れるが、10層以下(つまり1〜10層)のグラフェンが積層した層状構造を有する薄片状カーボンが得られ得る。積層数が非常に大きい薄片状カーボンが得られることもあるが、多数の薄片状カーボンの積層数は上記範囲内である。このような薄片状カーボンは、多くの凸角と凹角をもつ平面形状をしているため、その大きさは一概には規定できない。本明細書では、一枚の薄片状カーボンにおいて最も離れている凸角間の距離をその薄片状カーボンの大きさとする。
このような薄片状カーボンとしては、大きさが20nm以上、好ましくは100nm以上、より好ましくは200nm以上のものが得られ得る。このような大きさの薄片状カーボンは、十分な導電性が得られ得る。なお、薄片状カーボンの大きさは、大きい方が電気的物性等の諸物性が優れていることが知られており好ましいため、大きさの上限は限定されない。また、薄片状カーボンの大きさは、顕微鏡(レーザー顕微鏡等)観察により測定するものとする。
本発明の製造方法によれば、薄片状カーボンは、薄片状カーボン分散体として得られ得る。本発明の製造方法では、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を含んでいるため、薄片状カーボン分散体においても、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が含まれている。この水溶性化合物は、薄片状カーボン表面に吸着して溶媒中で薄片状カーボンを高濃度に孤立分散させることも可能であるため、薄片状カーボン分散体においては分散剤としても機能する。また、前記水溶性化合物は市販品を用いることができ、コスト及び分散性の両方で従来品より優位性がある。さらに、この水溶性化合物は、薄片状カーボン表面に残存しても十分な導電性を維持することができ、また、この水溶性化合物を薄片状カーボンから容易に除去することができるという優位性もある。
また、従来の酸化処理及び還元処理を行う方法においては、還元処理の際にプラスチック基板が加水分解されること、還元処理を施すと薄片状カーボンが凝集するため分散体として存在し得ないこと等から、プラスチック基板上に薄片状カーボン分散体を形成することは不可能であったが、本発明においては、上記水溶性化合物を含ませつつ特定のせん断処理を行うことで、ポリエチレンテレフタレート(PET)等のプラスチック基板が加水分解を受けることなく、薄片状カーボン分散体を基板上に形成することも可能である。また、上記のとおり、この薄片状カーボン分散体から薄片状カーボンの分離及び精製が容易であり、他材料に薄片状カーボンを均一混合することも可能であるため、薄片状カーボンを含むナノコンポジット等へ適用できる。さらに、薄片状カーボン分散体の乾燥物である薄片状カーボン組成物は、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を含んでいても、導電性等の優れた諸物性を有するうえに、残存する炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を容易に除去できるため、導電材料、伝熱材料、トランジスタ、キャパシタ等の蓄電デバイス、センサー、圧電材料、抗菌材料、ろ過材料、樹脂添加剤、光学材料等のさまざまな用途に適用することができる。
3.薄片状カーボン組成物及び薄片状カーボン
本発明において、薄片状カーボン組成物は、上記薄片状カーボン分散体の乾燥物であり、薄片状カーボンと、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物とを含んでいる。このような薄片状カーボン組成物の形状としては、特に制限はなく、塗膜、シート、塊状体等を挙げることができる。
乾燥物を得るためには、薄片状カーボン分散体の乾燥の他、基板上に薄片状カーボン分散体をスピンコートや塗布後に乾燥する方法、通常の固液分離により薄片状カーボン組成物を回収する方法等により実施することができる。この分離を行う方法としては、例えば、通常の固液分離に使用されている方法、例えば、濾紙、ガラスフィルター等を用いて濾過する方法;遠心分離後に濾過する方法;減圧濾過器を使用する方法を例示できる。次に、乾燥方法としては、特に限定されず、例えば、温風乾燥機等を用いて50〜200℃程度で1〜24時間程度乾燥させる方法を例示できる。
このようにして得られる薄片状カーボン組成物は、十分な導電性を有するだけではなく、優れたガスバリア性も有する。得られる薄片状カーボン組成物の組成は特に制限はないが、例えば、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物の含有量を、薄片状カーボン100重量部に対して1重量部以上、好ましくは10〜10000重量部、より好ましくは100〜1000重量部とし得る。
本発明において、薄片状カーボン組成物は、薄片状カーボン表面に炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が残存していても十分な電気伝導性等の諸物性を有し得るが、必要に応じて、当該水溶性化合物を除去することができる。具体的には、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物は、薄片状カーボン組成物を水、有機溶媒等で洗浄することにより除去することができる。洗浄処理は水及び有機溶媒以外にも、希酸又は希アルカリで洗浄することによっても除去できる。なお、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が有機アンモニウム塩の場合は、150〜400℃、好ましくは200〜350℃の熱処理により有機アンモニウム塩が分解されるため、熱処理によっても炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去することができる。
従来の分散剤は、分散剤分子と薄片状カーボンとの疎水性相互作用を利用して吸着していると考えられ、また分子量が比較的大きいため、その吸着力も大きいと考えられる。他方、本発明で用いる炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物は薄片状カーボンと化学結合はしておらず、また分子量が小さいため従来品と比べて吸着力も弱い。よって、本発明で用いる水溶性化合物は従来品よりも薄片状カーボン組成物から除去し易いという利点がある。
炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去するための洗浄は、薄片状カーボン組成物と洗浄液とを接触させることにより行うことができる。洗浄液としては、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を溶解できるものであれば、水、各種の有機溶媒等が使用できる。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)等のアルコール(特に炭素数1〜6の低級アルコール)、アセトン、N-メチルピロリドン、ジメチルホルムアミド等が使用できる。これらは単独で用いてもよいし、2種以上を組合せて用いてもよい。
これらの中でも、洗浄後に薄片状カーボン組成物から短時間で蒸発する有機溶媒が好ましい。有機溶媒としては、常圧における沸点が50〜250℃程度、特に60〜200℃程度のもの、例えば、メタノール、エタノール、アセトン、N-メチルピロリドン、ジメチルホルムアミド等が例示できる。
また、上記のように、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去するための洗浄を、薄片状カーボン組成物と希酸又は希アルカリとを接触させ、次いで水洗することにより行ってもよい。希酸は、0.1〜5%塩酸が好ましく、希アルカリは0.1〜3%アンモニア水が好ましい。
洗浄操作は、洗浄液と薄片状カーボン組成物とを接触させればよい。例えば、薄片状カーボン分散体から回収された薄片状カーボン組成物を、洗浄液中に室温で静かに浸漬させるのが好ましい。浸漬時間は、薄片状カーボン組成物の形状を維持するために、30分以内が好ましく、20分以内がより好ましい。
洗浄液の使用量は、洗浄を行うに有効な量であれば特に限定されず、広い範囲から適宜選択できるが、一般には、薄片状カーボン組成物100重量部に対して、洗浄液を100〜100000重量部程度、特に1000〜5000重量部程度使用すると良好な結果が得られる。
このようにして、薄片状カーボンを単離することができるが、この際得られる薄片状カーボンは、上記したような特徴を有するものである。
以下、実施例を示して本発明を具体的に説明する。但し本発明は実施例に限定されない。
実施例1
水100gにポリオキシエチレンラウリルエーテル(関東化学(株)製;推定HLB値16.9;ブリジ35相当品)を10g添加し、1gの天然黒鉛(日本黒鉛工業(株)製)を加え、600Wの超音波分散装置を用いて、氷冷しながら5分間分散処理を加えた。
この液を、半径75 mmのシリコンウェハー2枚の間に挟み、約3kgの荷重をかけながら振動式ミキサー上で2600 rpmで5分間処理したところ、炭素質材料の分散液が得られた。なお、シリコンウェハー2枚の最短距離は、天然黒鉛の液の厚さそのものであり空隙はない。
この分散液にエタノールを100g加え、超音波分散を2分行った後、減圧濾過を行った。この湿潤した炭素質材料にアセトンを加え、超音波分散を行った後、その分散液を導電ガラスに塗布し、走査型電子顕微鏡(SEM)、及び原子間力顕微鏡(AFM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、大部分の積層数が1〜10層であり、大部分の厚みが5nm以下、フレークサイズ(大きさ)は1〜20μmであった。また同時に,エタノール洗浄により炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が除去できていることも確認できた。
実施例2
水100gにポリオキシエチレンポリオキシプロピレングリコール(和光純薬工業(株)製;160EO-30PO)を10g添加し、1gの天然黒鉛(日本黒鉛工業(株)製)を加え、600Wの超音波分散装置を用いて、氷冷しながら5分間分散処理を加えた。
この液を、半径75mmのシリコンウェハー2枚の間に挟み、約3kgの荷重をかけながら振動式ミキサー上で2600rpmで5分間処理したところ、炭素質材料の分散液が得られた。なお、シリコンウェハー2枚の最短距離は、天然黒鉛の液の厚さそのものであり空隙はない。
この分散液にエタノールを100g加え、超音波分散を2分行った後、減圧濾過を行った。この湿潤した炭素質材料にアセトンを加え、超音波分散を行った後、その分散液を導電ガラスに塗布し、走査型電子顕微鏡(SEM)、及び原子間力顕微鏡(AFM)で観察したところ、薄片状カーボンが得られていた。この薄片状カーボンは、大部分の積層数が1〜10層であり、大部分の厚みが5nm以下、フレークサイズ(大きさ)は1〜20μmであった。また同時に、エタノール洗浄により炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が除去できていることも確認できた。
実施例3
水100gにポリオキシエチレンポリオキシプロピレングリコール(和光純薬工業(株)製;160EO-30PO)を10g添加し、1gの人造黒鉛(昭和電工(株)製)を加え、600Wの超音波分散装置を用いて、氷冷しながら5分間分散処理を加えた。
この液を、半径75mmのシリコンウェハー2枚の間に挟み、約3kgの荷重をかけながら振動式ミキサー上で2600rpmで5分間処理したところ、炭素質材料の分散液が得られた。なお、シリコンウェハー2枚の最短距離は、天然黒鉛の液の厚さそのものであり空隙はない。
この分散液にエタノールを100g加え、超音波分散を2分行った後、減圧濾過を行った。この湿潤した炭素質材料にアセトンを加え、超音波分散を行った後、その分散液を導電ガラスに塗布し、走査型電子顕微鏡(SEM)、及び原子間力顕微鏡(AFM)で観察したところ、薄片状カーボンが得られていた。得られた薄片状カーボンの走査型電子顕微鏡(SEM)写真を図1に示す。この薄片状カーボンは、大部分の積層数が1〜10層であり、大部分の厚みが5nm以下、フレークサイズ(大きさ)は1〜10μmであった。また同時に、エタノール洗浄により炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が除去できていることも確認できた。
実施例4
水1000gに対して、50gの天然黒鉛(日本黒鉛工業(株)製)とポリオキシエチレンポリオキシプロピレングリコール(和光純薬工業(株)製;160EO-30PO)25gを加え、マグネティックスターラーで5分間撹拌した。
この液を、2000rpmで回転する電動臼(最短距離50μm)で7回処理したところ、炭素質材料の分散液が得られた。
この分散液10gにエタノールを100g加え、超音波分散を2分行った後、減圧濾過を行った。この湿潤した炭素質材料にアセトンを加え、超音波分散を行った後、その分散液を導電ガラスに塗布し、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)及び原子間力顕微鏡(AFM)で観察したところ、薄片状カーボンが得られていた。得られた薄片状カーボンの透過型電子顕微鏡(TEM)写真を図2に示す。この薄片状カーボンは、大部分の積層数が1〜10層であり、大部分の厚みが5nm以下、フレークサイズは1〜10μmであった。また同時に、エタノール洗浄により炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物が除去できていることも確認できた。
この分散液を150℃で24時間乾燥することにより、炭素分を約67重量%含む黒色の固体が得られた。この固体をポリ乳酸に15重量%加えて180℃で混練したところ、炭素が良好に分散した黒色のペレットが得られた。
このように、テープによる剥離や、高コストのCVD等を使用することなく、また強い酸化剤を用いて炭素系材料の芳香環構造を崩したり、その還元工程を行ったりすることなく、極めて高度に薄片化した高純度な炭素を、簡易かつ量産化が可能な方法で作製することができた。この方法は力のかかる方向が黒鉛の面方向と平行であり、かつ狭い空間で処理されるため、従来の高速撹拌、超音波処理、高圧処理等による黒鉛を剥離する方法と比較して、大きめのサイズ(横幅方向)の薄片化カーボンを、効率よく、短時間で得ることができた。
その薄片化した炭素は、分散液の状態でも得ることができ、また、それを基板やテープから剥離する等の面倒な工程を経ずに単離することもできた。

Claims (14)

  1. 薄片状カーボンの製造方法であって、
    回転する回転盤と、前記回転盤と略平行に設置された盤との間に、
    層状構造を有する炭素質材料と、炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物と、溶媒とを含む組成物を設置し、
    前記回転盤と前記盤との最短距離が50μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加える工程
    を備え、前記溶媒が水を含有し、且つ、該水の含有量が、前記溶媒中の70重量%以上である、製造方法。
  2. 前記せん断を加える工程が、前記回転盤を回転させる工程である、請求項1に記載の製造方法。
  3. 前記溶媒が水のみからなる、請求項1又は2に記載の製造方法。
  4. 前記疎水基が、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種である、請求項1〜のいずれかに記載の製造方法。
  5. 前記親水基が、一般式(1)〜(4):
    [式中、−OHはアルコール性水酸基又はフェノール性水酸基を示す。Rは2価の有機基を示す。X 1 は水素原子、アルカリ金属、NH4又は有機アンモニウムを示す。X 2 は水素原子、アルカリ金属、NH4、有機アンモニウム又はアルキル基を示す。一般式(2)の酸素原子はエーテル結合である。]
    で表される少なくとも1種である、請求項1〜のいずれかに記載の製造方法。
  6. 前記一般式(2)で表される親水基がポリオキシエチレン基及び/又はポリグリセリル基である、請求項に記載の製造方法。
  7. 前記親水基以外の構成部分の炭素数が10以上である、請求項1〜のいずれかに記載の製造方法。
  8. 前記親水基以外の構成成分が、重合度が4以上のポリオキシプロピレン基及び/又は重合度が3以上のポリオキシブチレン基である、請求項1〜のいずれかに記載の製造方法。
  9. 前記炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物のHLB値が12以上である、請求項1〜のいずれかに記載の製造方法。
  10. 前記層状構造を有する炭素質材料が、天然黒鉛、人造黒鉛、膨張黒鉛、酸化黒鉛及び土状黒鉛よりなる群から選ばれる少なくとも1種である、請求項1〜のいずれかに記載の製造方法。
  11. 前記回転盤に垂直な軸と、前記盤に垂直な軸が平行である、請求項1〜10のいずれかに記載の製造方法。
  12. 前記組成物中の層状構造を有する炭素質材料の含有量が20重量%以下である、請求項1〜11のいずれかに記載の製造方法。
  13. 前記せん断を加える工程の後に、溶媒を乾燥させる工程を備える、請求項12のいずれかに記載の製造方法。
  14. 請求項1〜13のいずれかに記載の製造方法により得られた薄片状カーボンを水又は有機溶媒で洗浄して前記炭素と親和性の高い疎水基と、親水基とを有する水溶性化合物を除去する工程を備える、薄片状カーボンの製造方法。
JP2016226076A 2016-11-21 2016-11-21 薄片状カーボンの製造方法 Active JP6772040B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016226076A JP6772040B2 (ja) 2016-11-21 2016-11-21 薄片状カーボンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016226076A JP6772040B2 (ja) 2016-11-21 2016-11-21 薄片状カーボンの製造方法

Publications (2)

Publication Number Publication Date
JP2018083724A JP2018083724A (ja) 2018-05-31
JP6772040B2 true JP6772040B2 (ja) 2020-10-21

Family

ID=62238072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016226076A Active JP6772040B2 (ja) 2016-11-21 2016-11-21 薄片状カーボンの製造方法

Country Status (1)

Country Link
JP (1) JP6772040B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451088B2 (ja) * 2019-03-29 2024-03-18 大阪瓦斯株式会社 熱伝導材料
JP7471779B2 (ja) * 2019-03-29 2024-04-22 大阪瓦斯株式会社 電磁波吸収材料
JP7438671B2 (ja) 2019-03-29 2024-02-27 大阪瓦斯株式会社 ゴム又は樹脂用添加剤
JPWO2022210972A1 (ja) * 2021-03-31 2022-10-06

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089326A1 (en) * 2009-02-03 2010-08-12 Timcal S.A. New graphite material
GB201304770D0 (en) * 2013-03-15 2013-05-01 Provost Fellows Foundation Scholars And The Other Members Of Board Of A scalable process for producing exfoliated defect-free, non-oxidised 2-dimens ional materials in large quantities
WO2015099457A1 (ko) * 2013-12-26 2015-07-02 주식회사 엘지화학 그래핀의 제조 방법
JP6563226B2 (ja) * 2014-03-31 2019-08-21 大阪瓦斯株式会社 薄片状カーボンの製造方法

Also Published As

Publication number Publication date
JP2018083724A (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6772040B2 (ja) 薄片状カーボンの製造方法
JP5995523B2 (ja) グラフェンシート水分散体及びその製造方法並びにグラフェン含有構造体
JP6208364B2 (ja) グラフェンの製造方法と、グラフェンの分散組成物
US9290665B2 (en) Coated fullerenes, compositions and dielectrics made therefrom
JP6304988B2 (ja) グラフェンシート有機分散体の製造方法、並びにそれにより得られるグラフェンシート有機分散体及び放熱性グラフェンシート構造体
EP3070053A1 (en) Method for obtaining graphene oxide
US20170225951A1 (en) Process for Exfoliation and Dispersion of Boron Nitride
Lakshmi et al. Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone
JP2011219318A (ja) グラファイト分散液及びその製造方法並びにグラファイト粉末
JP6803874B2 (ja) カーボン修飾窒化ホウ素、その製造方法および高熱伝導性樹脂組成物
KR20100136576A (ko) 그래핀 필름 제조방법, 이에 의하여 제조된 그래핀 필름, 이를 포함하는 전극재료
JP6563226B2 (ja) 薄片状カーボンの製造方法
Wang et al. Green production of covalently functionalized boron nitride nanosheets via saccharide-assisted mechanochemical exfoliation
JP2009235650A (ja) 繊維状炭素系材料絶縁物、それを含む樹脂複合材、および繊維状炭素系材料絶縁物の製造方法
CN105778571B (zh) 一种石墨烯复合浆料及其制备方法
JP2012153590A (ja) 凝集物及び当該凝集物を溶媒に分散してなる分散液
Paszkiewicz et al. Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly (trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite
Huang et al. Ball-milling exfoliation of hexagonal boron nitride in viscous hydroxyethyl cellulose for producing nanosheet films as thermal interface materials
Wang et al. Scalable exfoliation and high‐efficiency separation membrane of boron nitride nanosheets
Choudhury Preparation and characterization of nanocomposites of poly-p-phenylene benzobisthiazole with graphene nanosheets
WO2018230638A1 (ja) カーボン修飾窒化ホウ素、その製造方法および高熱伝導性樹脂組成物
JP6495065B2 (ja) 薄片状カーボンの製造方法
JP6833473B2 (ja) 薄片状カーボンの製造方法
Chen et al. Enhanced mechanical properties and thermal stability of PSMA by functionalized graphene nanosheets
JP7451088B2 (ja) 熱伝導材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6772040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150