JP6765125B2 - Resistance measuring device, substrate inspection device, and resistance measuring method - Google Patents

Resistance measuring device, substrate inspection device, and resistance measuring method Download PDF

Info

Publication number
JP6765125B2
JP6765125B2 JP2017186641A JP2017186641A JP6765125B2 JP 6765125 B2 JP6765125 B2 JP 6765125B2 JP 2017186641 A JP2017186641 A JP 2017186641A JP 2017186641 A JP2017186641 A JP 2017186641A JP 6765125 B2 JP6765125 B2 JP 6765125B2
Authority
JP
Japan
Prior art keywords
current
probe
resistance
conductor
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017186641A
Other languages
Japanese (ja)
Other versions
JP2019060768A (en
Inventor
山下 宗寛
宗寛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Read Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2017186641A priority Critical patent/JP6765125B2/en
Priority to KR1020180107833A priority patent/KR20190036472A/en
Priority to TW107133772A priority patent/TWI793179B/en
Priority to CN201811122773.1A priority patent/CN109557376B/en
Publication of JP2019060768A publication Critical patent/JP2019060768A/en
Application granted granted Critical
Publication of JP6765125B2 publication Critical patent/JP6765125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • G01R31/2808Holding, conveying or contacting devices, e.g. test adapters, edge connectors, extender boards

Description

本発明は、抵抗測定を行う抵抗測定装置、これを用いた基板検査装置、及び抵抗測定方法に関する。 The present invention relates to a resistance measuring device for measuring resistance, a substrate inspection device using the resistance measuring device, and a resistance measuring method.

従来より、プリント配線基板等の基板に形成された配線パターンを検査するために、配線パターンの抵抗値を測定することが行われている。配線パターンの検査としては、断線の有無の検査はもちろんのこと、配線パターンの幅が細くなったり、厚みが薄くなったりしているような、断線に至らない不良も検出する必要がある。このような断線に至らない不良を検出するためには、高精度の抵抗測定を行う必要がある。このような高精度の抵抗測定方法として、四端子測定法を用いた抵抗測定装置が知られている(例えば、特許文献1参照。)。 Conventionally, in order to inspect a wiring pattern formed on a substrate such as a printed wiring board, the resistance value of the wiring pattern has been measured. As the inspection of the wiring pattern, it is necessary not only to inspect the presence or absence of disconnection, but also to detect defects that do not lead to disconnection, such as the width of the wiring pattern becoming narrower or the thickness becoming thinner. In order to detect such a defect that does not lead to disconnection, it is necessary to perform resistance measurement with high accuracy. As such a highly accurate resistance measuring method, a resistance measuring device using a four-terminal measuring method is known (see, for example, Patent Document 1).

特許文献1に記載の抵抗測定装置は、抵抗測定対象の配線パターンに抵抗測定用の電流を流すための一対のコンタクトプローブP1,P2と、抵抗測定箇所の電圧を測定するための一対のコンタクトプローブP3,P4とを備えている。 The resistance measuring device described in Patent Document 1 includes a pair of contact probes P1 and P2 for passing a current for resistance measurement through a wiring pattern to be measured for resistance, and a pair of contact probes for measuring a voltage at a resistance measuring point. It has P3 and P4.

特許文献1に記載の抵抗測定装置によれば、抵抗測定用の電流が電圧測定用のコンタクトプローブP3,P4に流れないので、コンタクトプローブP3,P4自体の抵抗による電圧降下が低減され、高精度の抵抗測定が可能となる。特許文献1に記載の抵抗測定装置では、電流出力用の、正極側のコンタクトプローブP1は定電流源に接続され、負極側のコンタクトプローブP2は回路グラウンドに接続されている(特許文献1の図1)。 According to the resistance measuring device described in Patent Document 1, since the current for resistance measurement does not flow through the contact probes P3 and P4 for voltage measurement, the voltage drop due to the resistance of the contact probes P3 and P4 themselves is reduced and the accuracy is high. Resistance measurement is possible. In the resistance measuring device described in Patent Document 1, the contact probe P1 on the positive electrode side for current output is connected to a constant current source, and the contact probe P2 on the negative electrode side is connected to the circuit ground (FIG. 1 of Patent Document 1). 1).

特開2004−184374号公報Japanese Unexamined Patent Publication No. 2004-184374 特開2007−333598号公報JP-A-2007-333598

しかしながら、特許文献1に記載の抵抗測定装置では、負極側のコンタクトプローブP2と測定対象体Mの接触抵抗を抵抗測定用の電流が流れて電圧が生じる。この電圧は、電圧測定用のコンタクトプローブP3,P4に対してコモンモード電圧(コモンモードノイズ)となる。コンタクトプローブP2の接触抵抗Roは100Ω程度になり得るので、抵抗測定用の電流iを20mAとすると、コモンモード電圧Vcは、Ro×i=100Ω×20mA=2000mVとなる(図7参照)。 However, in the resistance measuring device described in Patent Document 1, a current for resistance measurement flows through the contact resistance between the contact probe P2 on the negative electrode side and the measurement target body M to generate a voltage. This voltage becomes a common mode voltage (common mode noise) with respect to the contact probes P3 and P4 for voltage measurement. Since the contact resistance Ro of the contact probe P2 can be about 100Ω, if the current i for resistance measurement is 20mA, the common mode voltage Vc is Ro × i = 100Ω × 20mA = 2000mV (see FIG. 7).

一方、例えば測定対象が配線パターンの場合、その抵抗値Rxは1mΩ程度である。そうすると、抵抗測定用の電流iが20mAであれば、コンタクトプローブP3,P4で測定される測定電圧Vmは、Rx×i=1mΩ×20mA=20μV=0.02mVとなる(図7参照)。 On the other hand, for example, when the measurement target is a wiring pattern, the resistance value Rx is about 1 mΩ. Then, if the current i for resistance measurement is 20 mA, the measured voltage Vm measured by the contact probes P3 and P4 is Rx × i = 1 mAΩ × 20 mA = 20 μV = 0.02 mV (see FIG. 7).

そうすると、測定電圧はコモンモード電圧に対して、20log(測定電圧/コモンモード電圧)=20log(0.02/2000)=−100dBとなる。コンタクトプローブP2の接触により生じる接触抵抗は不安定であるため、コモンモード電圧も不安定に変動する。測定電圧がコモンモード電圧に対して−100dBほどの微小電圧となるため、測定電圧はコモンモード電圧の変動の影響を受けてその測定精度が低下する。その結果、測定電圧に基づき得られる抵抗測定値の精度も低下するという不都合がある。 Then, the measured voltage becomes 20 log (measured voltage / common mode voltage) = 20 log (0.02 / 2000) = −100 dB with respect to the common mode voltage. Since the contact resistance generated by the contact of the contact probe P2 is unstable, the common mode voltage also fluctuates unstable. Since the measured voltage is a minute voltage of about -100 dB with respect to the common mode voltage, the measured voltage is affected by the fluctuation of the common mode voltage and its measurement accuracy is lowered. As a result, there is a disadvantage that the accuracy of the resistance measurement value obtained based on the measured voltage is also lowered.

また、コモンモード電圧をゼロにする方法としては、特許文献2に記載されているように、コモンモード電圧をオペアンプの反転増幅回路にフィードバックすることによって、オペアンプの出力でコモンモード電圧をキャンセルする方法が考えられる。図8は、特許文献2の図1に記載された回路の等価回路図である。特許文献2の電流供給端子22,23及び電圧計測端子24,25の接触抵抗等をRo、寄生容量をCoで示している。 Further, as a method of setting the common mode voltage to zero, as described in Patent Document 2, a method of canceling the common mode voltage at the output of the operational amplifier by feeding back the common mode voltage to the inverting amplifier circuit of the operational amplifier. Can be considered. FIG. 8 is an equivalent circuit diagram of the circuit described in FIG. 1 of Patent Document 2. The contact resistance and the like of the current supply terminals 22 and 23 and the voltage measurement terminals 24 and 25 of Patent Document 2 are indicated by Ro, and the parasitic capacitance is indicated by Co.

しかしながら、このような方法では、フィードバック回路の抵抗成分となるRoや寄生容量Coによるフィードバックの時間遅延、オペアンプの応答遅れ等が発生するため、高速動作が難しく、不安定に変動するコモンモード電圧をキャンセルすることが容易でない。 However, in such a method, a feedback time delay due to Ro which is a resistance component of the feedback circuit and a parasitic capacitance Co, a response delay of the operational amplifier, etc. occur, so that high-speed operation is difficult and a common mode voltage which fluctuates unstable is generated. Not easy to cancel.

本発明の目的は、四端子測定法による抵抗測定精度を向上することが容易な抵抗測定装置、基板検査装置、及び抵抗測定方法を提供することである。 An object of the present invention is to provide a resistance measuring device, a substrate inspection device, and a resistance measuring method that can easily improve the resistance measurement accuracy by the four-terminal measuring method.

本発明に係る抵抗測定装置は、導体の抵抗を測定するための抵抗測定装置であって、前記導体に接触させて所定の測定用電流を流すための第一及び第二電流プローブと、前記導体に接触させて前記測定用電流により前記導体に生じた電圧を検出するための第一及び第二検出プローブと、前記第一及び第二検出プローブ間の電圧を検出する電圧検出部と、正極が前記第一電流プローブと接続され、負極がグラウンドと接続され、予め設定された第一電流値の電流を出力する第一定電流源と、正極が前記第一定電流源の負極及び前記グラウンドに接続されて前記第一定電流源と直列接続され、負極が前記第二電流プローブと接続され、前記第一電流値と実質的に同一である第二電流値の電流を出力する第二定電流源と、前記導体における所定部位を前記グラウンドと導通させる接地部と、前記電圧検出部によって検出された電圧に基づき前記抵抗を取得する抵抗取得部とを備える。 The resistance measuring device according to the present invention is a resistance measuring device for measuring the resistance of a conductor, and is a first and second current probe for contacting the conductor and passing a predetermined measuring current, and the conductor. The first and second detection probes for detecting the voltage generated in the conductor by the measurement current, the voltage detection unit for detecting the voltage between the first and second detection probes, and the positive electrode A first constant current source that is connected to the first current probe, the negative voltage is connected to the ground, and outputs a current of a preset first current value, and a positive voltage is connected to the negative voltage and the ground of the first constant current source. A second constant current that is connected and connected in series with the first constant current source, the negative voltage is connected to the second current probe, and outputs a current with a second current value that is substantially the same as the first current value. It includes a source, a grounding portion that conducts a predetermined portion of the conductor with the ground, and a resistance acquiring portion that acquires the resistance based on the voltage detected by the voltage detecting unit.

また、本発明に係る抵抗測定方法は、導体の抵抗を測定する抵抗測定方法であって、(a)前記導体に、第一電流プローブと第一検出プローブとを接触させる工程と、(b)前記導体の、前記第一電流プローブ及び前記第一検出プローブの接触位置とは離間した位置に、第二電流プローブと第二検出プローブとを接触させる工程と、(c)正極が前記第一電流プローブと接続され、負極がグラウンドと接続された第一定電流源によって予め設定された第一電流値の電流を出力させ、正極が前記第一定電流源の負極及び前記グラウンドに接続されて前記第一定電流源と直列接続され、負極が前記第二電流プローブと接続された第二定電流源によって前記第一電流値と実質的に同一である第二電流値の電流を出力させる工程と、(d)前記導体における所定部位を前記グラウンドと導通させる工程と、(e)前記第一及び第二検出プローブ間の電圧を検出する工程と、(f)前記(e)工程によって検出された電圧に基づき前記抵抗を取得する工程とを含む。 Further, the resistance measuring method according to the present invention is a resistance measuring method for measuring the resistance of a conductor, which includes (a) a step of bringing the first current probe and the first detection probe into contact with the conductor, and (b). A step of bringing the second current probe into contact with the second detection probe at a position of the conductor separated from the contact positions of the first current probe and the first detection probe, and (c) the positive electrode is the first current. A current of a first current value set in advance by a first constant current source connected to a probe and connected to the ground is output, and a positive electrode is connected to the negative electrode and the ground of the first constant current source. A step of outputting a current having a second current value substantially the same as the first current value by a second constant current source connected in series with the first constant current source and having the negative electrode connected to the second current probe. , (D) The step of conducting a predetermined portion of the conductor with the ground, (e) the step of detecting the voltage between the first and second detection probes, and (f) the step of (e). The step of acquiring the resistance based on the voltage is included.

これらの構成によれば、第一及び第二電流プローブと第一及び第二検出プローブとを用いた四端子測定法による抵抗測定を行うことが可能である。そして、直列に接続され、かつその接続点がグラウンド電位にされた第一定電流源と第二定電流源とが、それぞれ第一電流値、第二電流値の出力電流を維持しようとする結果、グラウンドと導通された導体の所定部位からグラウンドに流れる電流が略ゼロとなる。その結果、コモンモード電圧が略ゼロになる。そして、コモンモード電圧を略ゼロにした状態で測定された測定電圧に基づいて抵抗を取得することができるので、抵抗の測定精度を向上することが容易となる。従って、四端子測定法による抵抗測定精度を向上することが容易となる。 According to these configurations, it is possible to perform resistance measurement by a four-terminal measurement method using the first and second current probes and the first and second detection probes. Then, as a result, the first constant current source and the second constant current source, which are connected in series and whose connection point is set to the ground potential, try to maintain the output currents of the first current value and the second current value, respectively. , The current flowing from a predetermined part of the conductor conducted to the ground to the ground becomes almost zero. As a result, the common mode voltage becomes almost zero. Then, since the resistance can be acquired based on the measured voltage measured with the common mode voltage set to substantially zero, it becomes easy to improve the measurement accuracy of the resistance. Therefore, it becomes easy to improve the resistance measurement accuracy by the four-terminal measurement method.

また、前記接地部は、前記所定部位に接触するための接地プローブを含み、前記接地プローブは、前記グラウンドと接続されていることが好ましい。 Further, it is preferable that the grounding portion includes a grounding probe for contacting the predetermined portion, and the grounding probe is connected to the ground.

また、前記(d)工程は、前記グラウンドと接続された接地プローブを、前記所定部位に接触させる工程であることが好ましい。 Further, the step (d) is preferably a step of bringing the grounding probe connected to the ground into contact with the predetermined portion.

これらの構成によれば、接地プローブを導体の所定部位に接触させることによって、導体をグラウンドと導通させることができる。 According to these configurations, the conductor can be made conductive with the ground by bringing the grounding probe into contact with a predetermined portion of the conductor.

また、前記接地部は、前記第二検出プローブを前記グラウンドに接続する配線であってもよい。 Further, the grounding portion may be a wiring for connecting the second detection probe to the ground.

また、前記第二検出プローブは、前記グラウンドと接続されており、前記(b)工程は、前記(d)工程を兼ねていてもよい。 Further, the second detection probe is connected to the ground, and the step (b) may also serve as the step (d).

これらの構成によれば、第二検出プローブを接地プローブと兼用して用いることができるので、別途接地プローブを設けて導体に接触させる必要がない。 According to these configurations, the second detection probe can also be used as a grounding probe, so that it is not necessary to separately provide a grounding probe and bring it into contact with the conductor.

また、前記導体の一端部には第一電極が設けられ、前記導体の他端部には前記第一電極より面積の大きい第二電極が設けられ、前記(a)工程は、前記第一電極に前記第一電流プローブと前記第一検出プローブを接触させる工程であり、前記(b)工程は、前記第二電極に前記第二電流プローブと前記第二検出プローブを接触させる工程であり、前記(d)工程は、前記第二電極を前記所定部位として、前記第二電極に前記接地プローブを接触させる工程であることが好ましい。 Further, a first electrode is provided at one end of the conductor, a second electrode having a larger area than the first electrode is provided at the other end of the conductor, and the step (a) is performed on the first electrode. Is a step of bringing the first current probe into contact with the first detection probe, and the step (b) is a step of bringing the second current probe and the second detection probe into contact with the second electrode. The step (d) is preferably a step of bringing the grounding probe into contact with the second electrode with the second electrode as the predetermined portion.

この方法によれば、面積の小さい第一電極にプローブを二つ接触させ、面積の大きい第二電極にプローブを三つ接触させることになる。従って、第一及び第二電極に対して各プローブを接触させることが容易となる。 According to this method, two probes are brought into contact with the first electrode having a small area, and three probes are brought into contact with the second electrode having a large area. Therefore, it becomes easy to bring each probe into contact with the first and second electrodes.

また、本発明に係る基板検査装置は、上述の抵抗測定装置と、前記抵抗測定装置により測定された抵抗に基づき、基板に形成された、前記導体である配線の検査を行う基板検査部とを備える。 Further, the substrate inspection apparatus according to the present invention includes the above-mentioned resistance measuring apparatus and a substrate inspection unit for inspecting the wiring which is the conductor formed on the substrate based on the resistance measured by the resistance measuring apparatus. Be prepared.

この構成によれば、抵抗測定装置により測定された抵抗に基づき、基板に形成された配線の検査を行うことができる。 According to this configuration, it is possible to inspect the wiring formed on the substrate based on the resistance measured by the resistance measuring device.

このような構成の抵抗測定装置、基板検査装置、及び抵抗測定方法は、四端子測定法による抵抗測定精度を向上することが容易となる。 The resistance measuring device, the substrate inspection device, and the resistance measuring method having such a configuration make it easy to improve the resistance measuring accuracy by the four-terminal measuring method.

本発明の第一実施形態に係る抵抗測定装置を用いた基板検査装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the substrate inspection apparatus using the resistance measuring apparatus which concerns on 1st Embodiment of this invention. 図1に示す基板検査装置と基板の等価回路を示す説明図である。It is explanatory drawing which shows the board inspection apparatus shown in FIG. 1 and the equivalent circuit of a board. 本発明の一実施形態に係る抵抗測定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the resistance measurement method which concerns on one Embodiment of this invention. ICを検査する場合の基板検査装置の接続を示した説明図である。It is explanatory drawing which showed the connection of the substrate inspection apparatus at the time of inspecting an IC. 本発明の第二実施形態に係る抵抗測定装置を用いた基板検査装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the substrate inspection apparatus using the resistance measuring apparatus which concerns on 2nd Embodiment of this invention. 図5に示す基板検査装置と基板の等価回路を示す説明図である。It is explanatory drawing which shows the board inspection apparatus shown in FIG. 5 and the equivalent circuit of a board. 背景技術に係るコモンモード電圧を説明するための説明図である。It is explanatory drawing for demonstrating the common mode voltage which concerns on background art. 特許文献2の図1に記載された回路の等価回路図である。It is an equivalent circuit diagram of the circuit described in FIG. 1 of Patent Document 2.

以下、本発明に係る実施形態を図面に基づいて説明する。
(第一実施形態)
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
(First Embodiment)

図1は、本発明の第一実施形態に係る抵抗測定装置を用いた基板検査装置1の構成の一例を示すブロック図である。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 FIG. 1 is a block diagram showing an example of the configuration of a substrate inspection device 1 using the resistance measuring device according to the first embodiment of the present invention. It should be noted that the configurations with the same reference numerals in each figure indicate that they are the same configurations, and the description thereof will be omitted.

図1に示す基板検査装置1(抵抗測定装置)は、定電流源CS1(第一定電流源)、定電流源CS2(第二定電流源)、電圧検出部4、電流プローブPc1(第一電流プローブ)、電流プローブPc2(第二電流プローブ)、検出プローブPv1(第一検出プローブ)、検出プローブPv2(第二検出プローブ)、接地プローブPG(接地部)、スキャナ6、及び制御部5を備えている。 The substrate inspection device 1 (resistance measuring device) shown in FIG. 1 includes a constant current source CS1 (first constant current source), a constant current source CS2 (second constant current source), a voltage detection unit 4, and a current probe Pc1 (first). Current probe), current probe Pc2 (second current probe), detection probe Pv1 (first detection probe), detection probe Pv2 (second detection probe), grounding probe PG (grounding part), scanner 6, and control unit 5. I have.

図1は、検査対象となる基板Aに対して、基板検査装置1の各プローブが接触された状態を示している。基板検査装置1は、いわゆる四端子測定法により、抵抗測定を行うようになっている。基板検査装置1から後述する基板検査部52を除いた部分が抵抗測定装置の一例に相当している。 FIG. 1 shows a state in which each probe of the substrate inspection device 1 is in contact with the substrate A to be inspected. The substrate inspection device 1 is adapted to measure resistance by a so-called four-terminal measuring method. The portion excluding the substrate inspection unit 52, which will be described later, from the substrate inspection apparatus 1 corresponds to an example of the resistance measuring apparatus.

検査対象の基板は、例えば半導体パッケージ用のパッケージ基板、インターポーザ基板、フィルムキャリア、プリント配線基板、ガラスエポキシ基板、フレキシブル基板、セラミック多層配線基板等の基板であってもよく、液晶ディスプレイ、EL(Electro-Luminescence)ディスプレイ等のディスプレイ用の電極板や、タッチパネル用等の透明導電板であってもよく、半導体ウェハ、半導体チップ、CSP(Chip size package)等の半導体基板等々種々の基板であってもよい。 The substrate to be inspected may be, for example, a package substrate for a semiconductor package, an interposer substrate, a film carrier, a printed wiring board, a glass epoxy substrate, a flexible substrate, a ceramic multilayer wiring board, or the like, and a liquid crystal display or EL (Electro). -Luminescence) It may be an electrode plate for a display such as a display, a transparent conductive plate for a touch panel, or various substrates such as a semiconductor wafer, a semiconductor chip, or a semiconductor substrate such as a CSP (Chip size package). Good.

また、検査対象の基板は、半導体チップ等の電子部品が埋め込まれた部品内蔵基板(エンベデッド基板)であってもよい。また、検査対象は基板に限られず、半導体チップ等の電子部品であってもよい。検査対象の基板や電子部品には、配線パターン、パッド、ランド、半田バンプ、及び端子等の検査点が形成されている。 Further, the substrate to be inspected may be a component-embedded substrate (embedded substrate) in which electronic components such as semiconductor chips are embedded. Further, the inspection target is not limited to the substrate, and may be an electronic component such as a semiconductor chip. Inspection points such as wiring patterns, pads, lands, solder bumps, and terminals are formed on the substrate and electronic components to be inspected.

図1では、検査対象の基板Aとして半導体パッケージ用のインターポーザ基板の断面図を例示している。基板Aの一方の面には、半導体チップと接続されるチップ側電極A1(第一電極)が複数形成されている。複数のチップ側電極A1相互間の間隔は、半導体チップの微細な電極ピッチに合わせて狭ピッチとされ、チップ側電極A1のサイズも小さくされている。基板Aの他方の面には、半導体チップを外部と接続するための外向電極A2(第二電極)が複数形成されている。 FIG. 1 illustrates a cross-sectional view of an interposer substrate for a semiconductor package as the substrate A to be inspected. A plurality of chip-side electrodes A1 (first electrodes) connected to the semiconductor chip are formed on one surface of the substrate A. The distance between the plurality of chip-side electrodes A1 is set to a narrow pitch in accordance with the fine electrode pitch of the semiconductor chip, and the size of the chip-side electrodes A1 is also reduced. A plurality of outward electrodes A2 (second electrodes) for connecting the semiconductor chip to the outside are formed on the other surface of the substrate A.

複数の外向電極A2は、例えば格子状に配置され、はんだボールにより外部と接続されるボールグリッドとされている。複数の外向電極A2相互間の間隔は、外部との配線を容易にするためにチップ側電極A1相互間の間隔よりも広くされ、外向電極A2のサイズもチップ側電極A1より大きくされている。 The plurality of outward electrodes A2 are arranged in a grid pattern, for example, and form a ball grid connected to the outside by solder balls. The distance between the plurality of outward electrodes A2 is wider than the distance between the chip side electrodes A1 in order to facilitate wiring with the outside, and the size of the outward electrodes A2 is also larger than that of the chip side electrode A1.

各チップ側電極A1と各外向電極A2とは、基板Aの厚み方向を貫通するように形成された配線A3(導体)によってそれぞれ導通接続されている。基板検査装置1は、各配線A3の抵抗値Rxを測定し、検査する。配線A3は導体の一例に相当し、チップ側電極A1は配線A3の一端部に相当し、外向電極A2は配線A3の他端部に相当している。 Each chip-side electrode A1 and each outward electrode A2 are electrically connected by a wiring A3 (conductor) formed so as to penetrate the thickness direction of the substrate A. The board inspection device 1 measures and inspects the resistance value Rx of each wiring A3. The wiring A3 corresponds to an example of a conductor, the chip side electrode A1 corresponds to one end of the wiring A3, and the outward electrode A2 corresponds to the other end of the wiring A3.

電流プローブPc1,Pc2、検出プローブPv1,Pv2、及び接地プローブPGは、例えば基板検査装置1に対して脱着可能な検査用治具として構成されている。以下、電流プローブPc1,Pc2、検出プローブPv1,Pv2、及び接地プローブPGのことを、単にプローブPc1,Pc2,Pv1,Pv2,PGと記載することがある。 The current probes Pc1, Pc2, the detection probes Pv1, Pv2, and the grounding probe PG are configured as inspection jigs that can be attached to and detached from, for example, the substrate inspection device 1. Hereinafter, the current probes Pc1, Pc2, the detection probes Pv1, Pv2, and the grounding probe PG may be simply referred to as probes Pc1, Pc2, Pv1, Pv2, PG.

プローブPc1,Pc2,Pv1,Pv2,PGは、例えば直径が100μm〜200μm程度の弾性(可撓性)を有するワイヤ状の接触子である。電流プローブPc1,Pc2及び検出プローブPv1,Pv2は、例えばタングステン、ハイス鋼(SKH)、ベリリウム銅(Be−Cu)等の金属その他の導電体で形成されている。 The probes Pc1, Pc2, Pv1, Pv2, PG are wire-shaped contacts having elasticity (flexibility) having a diameter of, for example, about 100 μm to 200 μm. The current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are made of a metal or other conductor such as tungsten, high-speed steel (SKH), or beryllium copper (Be-Cu).

電流プローブPc1及び検出プローブPv1の先端は、基板Aのチップ側電極A1に接触される。電流プローブPc2、検出プローブPv2、及び接地プローブPGの先端は、チップ側電極A1から離間した位置で外向電極A2に接触される。チップ側電極A1及び外向電極A2に対して、このように各プローブを接触させるようにすれば、小さく、かつ狭ピッチのチップ側電極A1にプローブを二つ接触させ、チップ側電極A1よりも大きく、かつ広ピッチの外向電極A2にプローブを三つ接触させることになる。従って、チップ側電極A1及び外向電極A2に対して各プローブを接触させることが容易となる。 The tips of the current probe Pc1 and the detection probe Pv1 are brought into contact with the chip side electrode A1 of the substrate A. The tips of the current probe Pc2, the detection probe Pv2, and the grounding probe PG are brought into contact with the outward electrode A2 at a position separated from the chip side electrode A1. If each probe is brought into contact with the chip-side electrode A1 and the outward electrode A2 in this way, two probes are brought into contact with the small and narrow-pitch chip-side electrode A1 and are larger than the chip-side electrode A1. In addition, three probes are brought into contact with the wide-pitch outward electrode A2. Therefore, it becomes easy to bring each probe into contact with the chip side electrode A1 and the outward electrode A2.

図1では図示を簡略化してプローブPc1,Pc2,Pv1,Pv2,PGをそれぞれ一つずつ記載しているが、一枚の基板に対し、検査点が数百から数千設定されている場合があり、そのような多数の検査点に対応してプローブPc1,Pc2,Pv1,Pv2,PGがそれぞれ数百から数千設けられている場合がある。 In FIG. 1, the probes Pc1, Pc2, Pv1, Pv2, and PG are shown one by one for simplification of the illustration, but there are cases where hundreds to thousands of inspection points are set for one substrate. There are cases where hundreds to thousands of probes Pc1, Pc2, Pv1, Pv2, PG are provided corresponding to such a large number of inspection points.

スキャナ6は、これらの電流プローブPc1,Pc2と定電流源CS1,CS2との接続関係、これらの検出プローブPv1,Pv2と電圧検出部4との接続関係、及びこれらの接地プローブPGとグラウンドとの接続関係を切り替える切り替え回路である。スキャナ6は、例えばスイッチ61,62,63,64,65を含む複数のスイッチを備えている。スイッチ61,62,63,64,65等のスイッチは、例えばトランジスタ等の半導体スイッチや、リレースイッチ等、種々のスイッチング素子である。各スイッチは、例えば制御部5からの制御信号に応じてオン、オフする。 The scanner 6 has a connection relationship between these current probes Pc1 and Pc2 and constant current sources CS1 and CS2, a connection relationship between these detection probes Pv1 and Pv2 and a voltage detection unit 4, and a grounding probe PG and ground. It is a switching circuit that switches the connection relationship. The scanner 6 includes a plurality of switches including, for example, switches 61, 62, 63, 64, 65. Switches such as switches 61, 62, 63, 64, 65 are various switching elements such as semiconductor switches such as transistors and relay switches. Each switch is turned on and off according to, for example, a control signal from the control unit 5.

定電流源CS1,CS2は、一定の電流を流す定電流回路であり、配線A3に測定用の定電流を流す。定電流源CS1,CS2としては、例えばトランジスタやツェナーダイオードを用いるもの、カレントミラー回路を用いるもの等、定電流回路として知られている種々の回路を用いることができ、あるいはスイッチング電源回路等を用いて構成されていてもよい。 The constant current sources CS1 and CS2 are constant current circuits through which a constant current flows, and a constant current for measurement is passed through the wiring A3. As the constant current sources CS1 and CS2, various circuits known as constant current circuits such as those using transistors and Zener diodes and those using current mirror circuits can be used, or switching power supply circuits and the like are used. It may be configured.

定電流源CS1は、その正極(+)がスイッチ61を介して電流プローブPc1と接続され、負極(−)がグラウンドGNDと接続されている。定電流源CS1は、その正極(+)から電流プローブPc1へ、予め設定された第一電流値Iの電流を出力する。第一電流値Iは、例えば20mA程度とされている。 The positive electrode (+) of the constant current source CS1 is connected to the current probe Pc1 via the switch 61, and the negative electrode (−) is connected to the ground GND. The constant current source CS1 outputs a current having a preset first current value I 1 from its positive electrode (+) to the current probe Pc1. The first current value I 1 is, for example, about 20 mA.

定電流源CS2は、その正極(+)が定電流源CS1の負極(−)及びグラウンドGNDに接続されて定電流源CS1と直列接続され、その負極(−)がスイッチ62を介して電流プローブPc2と接続される。定電流源CS2は、その正極(+)から定電流源CS1へ、第一電流値Iと実質的に同一である第二電流値Iの電流を出力する。ここで、実質的に同一とは、定電流源CS1,CS2の製造ばらつきや、電流制御精度等によって生じる程度の差異があっても同一と見なす趣旨である。 The positive electrode (+) of the constant current source CS2 is connected to the negative electrode (-) and the ground GND of the constant current source CS1 and connected in series with the constant current source CS1, and the negative electrode (-) is connected to the current probe via the switch 62. It is connected to Pc2. The constant current source CS2 outputs a current having a second current value I 2 which is substantially the same as the first current value I 1 from its positive electrode (+) to the constant current source CS1. Here, substantially the same means that even if there is a difference in the degree of difference caused by manufacturing variations of the constant current sources CS1 and CS2, current control accuracy, etc., they are regarded as the same.

グラウンドGNDは、基板検査装置1の回路グラウンドである。なお、グラウンドGNDは、基板検査装置1のフレームグラウンド(大地接地)であってもよいが、回路グラウンドがより好ましい。 The ground GND is the circuit ground of the substrate inspection device 1. The ground GND may be the frame ground (ground ground) of the substrate inspection device 1, but the circuit ground is more preferable.

制御部5によってスイッチ61,62,63,64,65がオンされると、グラウンドGNDから、定電流源CS1、スイッチ61、電流プローブPc1、チップ側電極A1、配線A3、外向電極A2、電流プローブPc2、スイッチ62、及び定電流源CS2を介してグラウンドGNDに戻る測定用電流Iの電流ループが形成される。 When the switches 61, 62, 63, 64, 65 are turned on by the control unit 5, the constant current source CS1, the switch 61, the current probe Pc1, the chip side electrode A1, the wiring A3, the outward electrode A2, and the current probe are transmitted from the ground GND. A current loop of measurement current I returning to the ground GND is formed via the Pc2, the switch 62, and the constant current source CS2.

電圧検出部4は、検出プローブPv1,Pv2間の電圧を測定する。電圧検出部4は、例えばアナログデジタルコンバータや分圧抵抗等を用いて構成されている。電圧検出部4の正極側(+)端子はスイッチ63を介して検出プローブPv1と接続され、電圧検出部4の負極側(−)端子はスイッチ64を介して検出プローブPv2と接続されている。これにより、電圧検出部4は、スキャナ6によって選択された検出プローブPv1,Pv2間の電圧を測定電圧Vsとして測定し、測定電圧Vsを示すデータを制御部5へ出力する。 The voltage detection unit 4 measures the voltage between the detection probes Pv1 and Pv2. The voltage detection unit 4 is configured by using, for example, an analog digital converter, a voltage dividing resistor, or the like. The positive electrode side (+) terminal of the voltage detection unit 4 is connected to the detection probe Pv1 via the switch 63, and the negative electrode side (−) terminal of the voltage detection unit 4 is connected to the detection probe Pv2 via the switch 64. As a result, the voltage detection unit 4 measures the voltage between the detection probes Pv1 and Pv2 selected by the scanner 6 as the measurement voltage Vs, and outputs data indicating the measurement voltage Vs to the control unit 5.

制御部5は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、所定の制御プログラム等を記憶する不揮発性の記憶装置、及びこれらの周辺回路等を備えたいわゆるマイクロコンピュータである。制御部5は、所定の制御プログラムを実行することによって、抵抗取得部51、及び基板検査部52として機能する。 The control unit 5 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile storage device that stores a predetermined control program, and the like. It is a so-called microcomputer equipped with these peripheral circuits and the like. The control unit 5 functions as a resistance acquisition unit 51 and a substrate inspection unit 52 by executing a predetermined control program.

抵抗取得部51は、電圧検出部4によって検出された測定電圧Vsに基づき、測定対象の配線A3の抵抗値Rxを演算する。具体的には、測定用電流Iの電流値Is=第一電流値I≒第二電流値Iと、測定電圧Vsとに基づき、下記の式(1)を用いて抵抗値Rxを算出する。
抵抗値Rx=Vs/Is ・・・(1)
The resistance acquisition unit 51 calculates the resistance value Rx of the wiring A3 to be measured based on the measured voltage Vs detected by the voltage detection unit 4. Specifically, the resistance value Rx is calculated using the following equation (1) based on the current value Is of the measurement current I = the first current value I 1 ≒ the second current value I 2 and the measurement voltage Vs. To do.
Resistance value Rx = Vs / Is ... (1)

なお、基板検査装置1(抵抗測定装置)は、実際に配線A3に流れる電流の電流値Isを測定する電流測定部を備え、抵抗取得部51は、電流測定部によって測定された電流値Isと測定電圧Vsとを用いて抵抗値Rxを算出してもよい。また、電流値Isが固定値であれば、抵抗値Rxは測定電圧Vsに比例する。そこで、抵抗取得部51は、式(1)を用いて抵抗値Rxを算出することなく、測定電圧Vsを、そのまま抵抗値Rxを表す情報として取得してもよい。 The substrate inspection device 1 (resistance measuring device) includes a current measuring unit that measures the current value Is of the current actually flowing through the wiring A3, and the resistance acquiring unit 51 has the current value Is measured by the current measuring unit. The resistance value Rx may be calculated using the measured voltage Vs. If the current value Is is a fixed value, the resistance value Rx is proportional to the measured voltage Vs. Therefore, the resistance acquisition unit 51 may acquire the measured voltage Vs as information representing the resistance value Rx as it is, without calculating the resistance value Rx using the equation (1).

基板検査部52は、抵抗取得部51によって取得された抵抗値Rxに基づき、導体である配線A3の検査を行う。具体的には、基板検査部52は、予め記憶部に記憶された基準値Rrefと、抵抗値Rxとを比較し、抵抗値Rxが基準値Rrefより小さかった場合、その配線A3を良品と判定し、抵抗値Rxが基準値Rref以上であった場合、その配線A3を不良と判定する。 The substrate inspection unit 52 inspects the wiring A3, which is a conductor, based on the resistance value Rx acquired by the resistance acquisition unit 51. Specifically, the substrate inspection unit 52 compares the reference value Rref stored in the storage unit in advance with the resistance value Rx, and if the resistance value Rx is smaller than the reference value Rref, determines that the wiring A3 is a good product. If the resistance value Rx is equal to or greater than the reference value Rref, the wiring A3 is determined to be defective.

図2は、スイッチ61,62,63,64,65がオンされた状態での基板検査装置1と基板Aの等価回路を示す説明図である。図2において、抵抗Rc1は電流プローブPc1とチップ側電極A1との接触抵抗及びスイッチ61等の抵抗を示し、抵抗Rc2は電流プローブPc2と外向電極A2との接触抵抗及びスイッチ62等の抵抗を示し、抵抗Rv1は検出プローブPv1とチップ側電極A1との接触抵抗及びスイッチ63等の抵抗を示し、抵抗Rv2は検出プローブPv2と外向電極A2との接触抵抗及びスイッチ64等の抵抗を示し、抵抗RGは接地プローブPGと外向電極A2との接触抵抗及びスイッチ65等の抵抗を示している。また、図2に示す等価回路において生じる寄生容量を、キャパシタCpで示している。 FIG. 2 is an explanatory diagram showing an equivalent circuit of the substrate inspection device 1 and the substrate A in a state where the switches 61, 62, 63, 64, and 65 are turned on. In FIG. 2, the resistor Rc1 shows the contact resistance between the current probe Pc1 and the chip side electrode A1 and the resistance of the switch 61 and the like, and the resistor Rc2 shows the contact resistance between the current probe Pc2 and the outward electrode A2 and the resistance of the switch 62 and the like. The resistor Rv1 indicates the contact resistance between the detection probe Pv1 and the chip side electrode A1 and the resistance of the switch 63, etc., and the resistor Rv2 indicates the contact resistance between the detection probe Pv2 and the outward electrode A2 and the resistance of the switch 64, etc. Indicates the contact resistance between the ground probe PG and the outward electrode A2 and the resistance of the switch 65 or the like. Further, the parasitic capacitance generated in the equivalent circuit shown in FIG. 2 is shown by the capacitor Cp.

以下、図2に示す等価回路に基づいて、基板検査装置1の動作を説明する。まず、定電流源CS1が第一電流値Iの電流を出力し、定電流源CS2が第二電流値Iの電流を出力する結果、配線A3には電流値Isの測定用電流Iが流れる。このとき、配線A3で生じたノーマルモードの電圧が、測定用電流Iが流れる電流プローブPc1,Pc2とは別の検出プローブPv1,Pv2を介して電圧検出部4によって測定電圧Vsとして測定され、電圧検出部4から抵抗取得部51へ測定電圧Vsが送信される。 Hereinafter, the operation of the substrate inspection device 1 will be described based on the equivalent circuit shown in FIG. First, the constant current source CS1 outputs the current having the first current value I 1 , and the constant current source CS2 outputs the current having the second current value I 2. As a result, the wiring A3 has the current I for measuring the current value Is. It flows. At this time, the voltage in the normal mode generated in the wiring A3 is measured as the measured voltage Vs by the voltage detection unit 4 via the detection probes Pv1 and Pv2 different from the current probes Pc1 and Pc2 through which the measurement current I flows. The measurement voltage Vs is transmitted from the detection unit 4 to the resistance acquisition unit 51.

この場合、抵抗Rv1,Rv2には電流が流れないから、抵抗取得部51によって、抵抗Rv1,Rv2が排除された測定電圧Vsに基づいて抵抗値Rxが取得される結果、いわゆる二端子測定法と比べて高精度の抵抗測定を行うことができる。 In this case, since no current flows through the resistors Rv1 and Rv2, the resistance acquisition unit 51 acquires the resistance value Rx based on the measured voltage Vs from which the resistors Rv1 and Rv2 are excluded, resulting in a so-called two-terminal measurement method. Compared to this, resistance measurement can be performed with high accuracy.

次に、コモンモード電圧について説明する。定電流源CS2と抵抗Rc2とは直列接続されているから、まず最初に抵抗Rc2に第二電流値Iの電流が流れようとする。抵抗Rc2の抵抗値を抵抗値Rcとすると、抵抗Rc2でRc×Iの電圧が生じる。定電流回路は一般に内部抵抗がハイインピーダンスであり、定電流電源CS2の負極(−)電位はグラウンド電位とは一致しないから、抵抗Rc2で生じた電圧がそのまま抵抗RGに印加される訳ではない。しかしながら、抵抗Rc2で生じた電圧の少なくとも一部は抵抗RGに印加され、抵抗RGに電流値Iの電流が流れようとする。 Next, the common mode voltage will be described. Since the constant current source CS2 and the resistor Rc2 are connected in series, the current of the second current value I 2 tries to flow through the resistor Rc2 first. When the resistance value of the resistor Rc2 and the resistance value Rc 2, the voltage of Rc 2 × I 2 occurs in the resistor Rc2. In a constant current circuit, the internal resistance is generally high impedance, and the negative electrode (−) potential of the constant current power supply CS2 does not match the ground potential. Therefore, the voltage generated by the resistor Rc2 is not directly applied to the resistor RG. However, at least a portion of the voltage developed by resistor Rc2 is applied to the resistor RG, a current of a current value I 3 in the resistor RG is going to flow.

ここで、第一電流値I、第二電流値I、及び電流値Iの間には、下記の式(2)(3)で示す関係がある。 Here, the first current value I 1 , the second current value I 2 , and the current value I 3 have a relationship represented by the following equations (2) and (3).

=I+I ・・・(2) I 1 = I 2 + I 3 ... (2)

≒I ・・・(3) I 1 ≒ I 2 ... (3)

ここで、定電流源CS1は定電流源であるから第一電流値Iは一定の値であり、第一電流値I≒第二電流値Iであるから、測定用電流Iから抵抗RGに電流値Iの電流が分流すると、定電流源CS2の負極(−)に供給される電流が第二電流値Iに対して不足し、定電流源CS2は第二電流値Iの電流を流すことができなくなる。 Here, since the constant current source CS1 is a constant current source, the first current value I 1 is a constant value, and the first current value I 1 ≈ the second current value I 2 , so the resistance from the measurement current I When the current of the current value I 3 is diverted to the RG, the current supplied to the negative electrode (-) of the constant current source CS2 is insufficient with respect to the second current value I 2 , and the constant current source CS 2 has the second current value I 2 It becomes impossible to pass the current.

ここで、定電流源CS2もまた定電流源であるから第二電流値Iを強制的に流そうとする。このとき、定電流源CS2の正極(+)はグラウンドに接続されているから、定電流源CS2が第二電流値Iを強制的に流そうとする作用によって、定電流源CS2の負極(−)に対して第二電流値Iの電流が供給されるまで定電流源CS2の負極(−)電位が低下する。定電流源CS2の負極(−)に対して第二電流値I(≒第一電流値I)の電流が供給される状態とは、式(2)から、電流値I≒0となる状態である。 Here, since the constant current source CS2 is also a constant current source, the second current value I 2 is forced to flow. At this time, since the positive electrode (+) of the constant current source CS2 is connected to the ground, the negative electrode of the constant current source CS2 (due to the action of the constant current source CS2 forcibly flowing the second current value I 2 ). The negative electrode (−) potential of the constant current source CS2 decreases until a current having a second current value I 2 is supplied with respect to −). The state in which the current of the second current value I 2 (≈first current value I 1 ) is supplied to the negative electrode (-) of the constant current source CS2 is the current value I 3 ≈ 0 from the equation (2). It is in a state of becoming.

抵抗RGに流れる電流値I≒0になることは、抵抗RGの両端の電位が略等しくなることを意味する。抵抗RGの一端はグラウンドに接続されているから、抵抗RGの他端、すなわち図2に示す外向電極A2の電位が略グラウンド電位となる。外向電極A2には検出プローブPv2が接触しているから、外向電極A2の電位が略グラウンド電位となることは、電圧検出部4に対して印加されるコモンモード電圧が、略ゼロになることに他ならない。 The fact that the current value I 3 ≈ 0 flowing through the resistor RG means that the potentials at both ends of the resistor RG are substantially equal. Since one end of the resistor RG is connected to the ground, the other end of the resistor RG, that is, the potential of the outward electrode A2 shown in FIG. 2 becomes a substantially ground potential. Since the detection probe Pv2 is in contact with the outward electrode A2, the potential of the outward electrode A2 becomes substantially the ground potential, which means that the common mode voltage applied to the voltage detection unit 4 becomes substantially zero. It is nothing but.

以上のように、直列に接続され、かつその接続点がグラウンド電位にされた定電流源CS1と定電流源CS2とが、それぞれ第一電流値I、第二電流値Iの出力電流を維持しようとする結果、定電流源CS1,CS2の応答時間程度の一瞬の時間内に上述の動作が行われてコモンモード電圧が略ゼロになる。 As described above, the constant current source CS1 and the constant current source CS2, which are connected in series and whose connection points are set to the ground potential, generate output currents of the first current value I 1 and the second current value I 2 , respectively. As a result of trying to maintain, the above-mentioned operation is performed within a momentary time of about the response time of the constant current sources CS1 and CS2, and the common mode voltage becomes substantially zero.

上述したように、背景技術ではコモンモード電圧の変動の影響を受けて測定電圧の測定精度が低下してしまう。それに対し、基板検査装置1は、コモンモード電圧を略ゼロにすることができるので、背景技術と比べて測定対象となる抵抗値Rxの測定精度を向上することができる。従って、四端子測定法による抵抗測定精度を向上することが容易である。 As described above, in the background technology, the measurement accuracy of the measured voltage is lowered due to the influence of the fluctuation of the common mode voltage. On the other hand, since the substrate inspection device 1 can make the common mode voltage substantially zero, it is possible to improve the measurement accuracy of the resistance value Rx to be measured as compared with the background technology. Therefore, it is easy to improve the resistance measurement accuracy by the four-terminal measurement method.

図3は、本発明の一実施形態に係る抵抗測定方法の一例を示すフローチャートである。まず、抵抗取得部51は、図略の駆動機構によって電流プローブPc1及び検出プローブPv1を移動させて、チップ側電極A1に接触させる(ステップS1:工程(a))。次に、抵抗取得部51は、図略の駆動機構によって電流プローブPc2、検出プローブPv2、及び接地プローブPGを移動させて、外向電極A2に接触させる(ステップS2:工程(b),(d))。 FIG. 3 is a flowchart showing an example of a resistance measuring method according to an embodiment of the present invention. First, the resistance acquisition unit 51 moves the current probe Pc1 and the detection probe Pv1 by a drive mechanism (not shown) to bring them into contact with the chip-side electrode A1 (step S1: step (a)). Next, the resistance acquisition unit 51 moves the current probe Pc2, the detection probe Pv2, and the grounding probe PG by the drive mechanism (not shown) to bring them into contact with the outward electrode A2 (step S2: steps (b), (d)). ).

次に、抵抗取得部51は、スイッチ61,62,63,64,65をオンさせる(ステップS3)。ステップS2,S3が工程(d)の一例に相当している。次に、抵抗取得部51は、定電流源CS1によって第一電流値I(=Is)の電流を出力させ、定電流源CS2によって第二電流値I(≒I)の電流を出力させる(ステップS4:工程(c))。 Next, the resistance acquisition unit 51 turns on the switches 61, 62, 63, 64, 65 (step S3). Steps S2 and S3 correspond to an example of step (d). Next, the resistance acquisition unit 51 outputs the current of the first current value I 1 (= Is) by the constant current source CS1 and outputs the current of the second current value I 2 (≈I 1 ) by the constant current source CS2. (Step S4: Step (c)).

次に、電圧検出部4は、検出プローブPv1,Pv2間の電圧を測定電圧Vsとして測定する(ステップS5:工程(e))。次に、抵抗取得部51は、式(1)に基づき、測定対象の抵抗値Rxを算出し(ステップS6)、その抵抗値Rxを例えば図略の表示装置によって表示させる。 Next, the voltage detection unit 4 measures the voltage between the detection probes Pv1 and Pv2 as the measurement voltage Vs (step S5: step (e)). Next, the resistance acquisition unit 51 calculates the resistance value Rx to be measured based on the equation (1) (step S6), and displays the resistance value Rx by, for example, a display device (not shown).

以上、ステップS1〜S6の処理により、コモンモード電圧を略ゼロにした状態で測定された測定電圧Vsに基づいて抵抗値Rxを算出することができるので、抵抗値Rxの算出精度を向上することが容易となる。従って、四端子測定法による抵抗測定精度を向上することが容易である。 As described above, by the processing of steps S1 to S6, the resistance value Rx can be calculated based on the measured voltage Vs measured with the common mode voltage set to substantially zero, so that the calculation accuracy of the resistance value Rx can be improved. Becomes easier. Therefore, it is easy to improve the resistance measurement accuracy by the four-terminal measurement method.

次に、基板検査部52によって、抵抗値Rxと基準値Rrefとが比較される(ステップS7)。そして、抵抗値Rxが基準値Rrefに満たなければ(ステップS7でYES)、基板検査部52によって配線A3は良好であると判定される(ステップS8)。一方、抵抗値Rxが基準値Rref以上であれば(ステップS7でNO)、基板検査部52によって配線A3は不良であると判定され(ステップS9)、これらの判定結果が例えば図略の表示装置によって表示されて、処理を終了する。 Next, the substrate inspection unit 52 compares the resistance value Rx with the reference value Rref (step S7). Then, if the resistance value Rx does not meet the reference value Rref (YES in step S7), the board inspection unit 52 determines that the wiring A3 is good (step S8). On the other hand, if the resistance value Rx is equal to or higher than the reference value Rref (NO in step S7), the board inspection unit 52 determines that the wiring A3 is defective (step S9), and these determination results are, for example, a display device (not shown). Is displayed and the process ends.

他の配線A3についても、ステップS1〜S9と同様の処理を繰り返すことにより、基板Aにおける測定対象のすべての配線A3の抵抗値Rxを測定することができ、基板Aが良品か否かを検査することが可能となる。 By repeating the same process as in steps S1 to S9 for the other wirings A3, the resistance values Rx of all the wirings A3 to be measured on the substrate A can be measured, and it is inspected whether or not the substrate A is a good product. It becomes possible to do.

また、コモンモード電圧はノイズであるから、コモンモード電圧を略ゼロにすることは測定電圧VsのS/N比を向上させることに相当する。従って、上述の基板検査装置1及び抵抗測定方法によれば、S/N比を向上させて測定電圧Vsに基づく抵抗値Rxの測定精度を向上することができる。 Further, since the common mode voltage is noise, setting the common mode voltage to substantially zero corresponds to improving the S / N ratio of the measured voltage Vs. Therefore, according to the substrate inspection device 1 and the resistance measuring method described above, the S / N ratio can be improved and the measurement accuracy of the resistance value Rx based on the measured voltage Vs can be improved.

測定電圧VsのS/N比を向上させる方法としては、測定用電流の電流値を増大させて信号成分である測定電圧を増大させることが考えられる。しかしながら、特許文献1の図1に記載の回路で測定用電流の電流値を増大させると、負極側のコンタクトプローブP2と測定対象体Mの接触抵抗で生じる電圧が増大する結果、コモンモード電圧が増大してしまう。そのため、特許文献1の図1に記載の回路では、S/N比を向上させることが容易でない。 As a method of improving the S / N ratio of the measurement voltage Vs, it is conceivable to increase the current value of the measurement current to increase the measurement voltage which is a signal component. However, when the current value of the measurement current is increased in the circuit shown in FIG. 1 of Patent Document 1, the voltage generated by the contact resistance between the contact probe P2 on the negative electrode side and the measurement object M increases, and as a result, the common mode voltage increases. It will increase. Therefore, it is not easy to improve the S / N ratio in the circuit described in FIG. 1 of Patent Document 1.

一方、基板検査装置1によれば、コモンモード電圧を略ゼロにすることによって測定電圧VsのS/N比を向上させることができるので、S/N比を向上させて抵抗値Rxの測定精度を向上することが容易である。 On the other hand, according to the substrate inspection device 1, the S / N ratio of the measured voltage Vs can be improved by setting the common mode voltage to substantially zero, so that the S / N ratio can be improved and the measurement accuracy of the resistance value Rx can be improved. Is easy to improve.

また、特許文献1の図1に記載の回路では、部品内蔵基板や電子部品等の測定対象について抵抗測定を行う場合、測定時にコモンモード電圧が生じると、部品内蔵基板に組み込まれた半導体素子等の電子部品に対して測定対象の寄生容量の充電電荷との関係で測定対象と基板検査装置との間に電位差が生じることがある。このような場合、その電位差によって、電子部品に電圧又は電流ストレスが加わり、電子部品を損傷させてしまうおそれがあった。 Further, in the circuit described in FIG. 1 of Patent Document 1, when resistance measurement is performed on a measurement target such as a component-embedded substrate or an electronic component, if a common mode voltage is generated during the measurement, a semiconductor element incorporated in the component-embedded substrate or the like A potential difference may occur between the measurement target and the substrate inspection device in relation to the charge charge of the parasitic capacitance of the measurement target for the electronic component. In such a case, the potential difference may apply voltage or current stress to the electronic component, resulting in damage to the electronic component.

図4は、信号端子P1〜Pnと、電源端子Vccと、グラウンド端子GNDとを備えたIC(Integrated Circuit)100を検査する場合の基板検査装置1の接続を示した説明図である。上述したように、二つの定電流源CS1,CS2及び接地プローブPGを用いない従来の二端子法や四端子法による抵抗測定では、電流プローブPc1,Pc2や検出プローブPv1,Pv2を接触させたICの端子に、コモンモード電圧が印加される。IC100には、IC100自身や外部配線により生じた寄生容量Coがあるため、ICの端子に加わったコモンモード電圧が寄生容量Coに回り込み、IC100にストレスが加わったり、破損を生じさせたりしていた。 FIG. 4 is an explanatory diagram showing a connection of a substrate inspection device 1 when inspecting an IC (Integrated Circuit) 100 including signal terminals P1 to Pn, a power supply terminal Vcc, and a ground terminal GND. As described above, in the resistance measurement by the conventional two-terminal method or four-terminal method that does not use the two constant current sources CS1 and CS2 and the grounding probe PG, the IC in which the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are brought into contact with each other. A common mode voltage is applied to the terminals of. Since the IC 100 has a parasitic capacitance Co generated by the IC 100 itself or external wiring, the common mode voltage applied to the terminals of the IC wraps around the parasitic capacitance Co, causing stress or damage to the IC 100. ..

このような場合、測定用電流を徐々に増大させてコモンモード電圧を徐々に増大させることによって、寄生容量をコモンモード電圧で徐々に充電することで、寄生容量に流入する電流値を低減し、かつ測定対象と基板検査装置との間の電位差をなくすことが考えられる。これにより、電子部品の損傷を防止することができると考えられる。しかしながら、測定用電流を徐々に増大させて寄生容量を徐々に充電する方法では、測定対象の寄生容量がコモンモード電圧で充電されて電位差がなくなるまで電圧測定を待つ必要があり、測定に必要な時間が増大する。 In such a case, the current value flowing into the parasitic capacitance is reduced by gradually charging the parasitic capacitance with the common mode voltage by gradually increasing the measurement current and gradually increasing the common mode voltage. Moreover, it is conceivable to eliminate the potential difference between the measurement target and the substrate inspection device. It is considered that this can prevent damage to the electronic components. However, in the method of gradually increasing the measurement current to gradually charge the parasitic capacitance, it is necessary to wait for the voltage measurement until the parasitic capacitance to be measured is charged with the common mode voltage and the potential difference disappears, which is necessary for the measurement. Time increases.

しかしながら、基板検査装置1によれば、コモンモード電圧が略ゼロになるので、測定対象の寄生容量がコモンモード電圧で充電されて電位差がなくなるまで電圧測定を待つ必要がない。その結果、抵抗測定時間及び検査時間を短縮することが容易となる。 However, according to the substrate inspection device 1, since the common mode voltage becomes substantially zero, it is not necessary to wait for the voltage measurement until the parasitic capacitance to be measured is charged with the common mode voltage and the potential difference disappears. As a result, it becomes easy to shorten the resistance measurement time and the inspection time.

また、コモンモード電圧をゼロにする方法としては、特開2007−333598号公報(特許文献2)に記載されているように、コモンモード電圧をオペアンプの反転増幅回路にフィードバックすることによって、オペアンプの出力でコモンモード電圧をキャンセルする方法が考えられる。しかしながら、このような方法では、フィードバック回路の抵抗成分や寄生容量によるフィードバックの時間遅延、オペアンプの応答遅れ等が発生するため、不安定に変動するコモンモード電圧をキャンセルすることが容易でない。 Further, as a method of setting the common mode voltage to zero, as described in Japanese Patent Application Laid-Open No. 2007-333598 (Patent Document 2), the common mode voltage is fed back to the inverting amplifier circuit of the operational amplifier to make the operational amplifier. A method of canceling the common mode voltage at the output can be considered. However, in such a method, it is not easy to cancel the unstable common mode voltage because the feedback time delay due to the resistance component of the feedback circuit and the parasitic capacitance, the response delay of the operational amplifier, and the like occur.

一方、基板検査装置1によれば、直列に接続され、かつその接続点がグラウンド電位にされた定電流源CS1と定電流源CS2とが、それぞれ第一電流値I、第二電流値Iの出力電流を維持しようとする結果、コモンモード電圧が略ゼロになるので、コモンモード電圧を低減することが容易である。 On the other hand, according to the substrate inspection device 1, the constant current source CS1 and the constant current source CS2, which are connected in series and whose connection points are set to the ground potential, have a first current value I 1 and a second current value I, respectively. As a result of trying to maintain the output current of 2 , the common mode voltage becomes substantially zero, so that it is easy to reduce the common mode voltage.

なお、基板検査装置1は基板検査部52を備えない抵抗測定装置であってもよく、ステップS7〜S9を実行しなくてもよい。また、スキャナ6を備えていなくてもよい。また、接地プローブPGは、必ずしも外向電極A2、すなわち配線A3(導体)のマイナス側の一端に接触される例に限らない。接地プローブPGは、配線A3のマイナス側の一端に接触されることが好ましいが、配線A3のプラス側の一端であるチップ側電極A1に接触されてもよく、配線A3の中間部分に接触されてもよい。 The substrate inspection device 1 may be a resistance measuring device that does not include the substrate inspection unit 52, and steps S7 to S9 may not be executed. Further, the scanner 6 may not be provided. Further, the grounding probe PG is not necessarily limited to an example in which it is in contact with the outward electrode A2, that is, one end on the minus side of the wiring A3 (conductor). The ground probe PG is preferably in contact with one end on the minus side of the wiring A3, but may be in contact with the chip side electrode A1 which is one end on the plus side of the wiring A3, and is in contact with the intermediate portion of the wiring A3. May be good.

また、電流プローブPc1,Pc2及び検出プローブPv1,Pv2は、必ずしも測定対象の配線A3(導体)の両端部に接触される例に限らない。電流プローブPc1,Pc2及び検出プローブPv1,Pv2が、測定対象の中間部分に接触された場合であっても、電流プローブPc1及び検出プローブPv1の接触箇所と、電流プローブPc2及び検出プローブPv2の接触箇所との間の抵抗値を測定することができる。
(第二実施形態)
Further, the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are not necessarily limited to the cases where they are in contact with both ends of the wiring A3 (conductor) to be measured. Even when the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are in contact with the intermediate portion to be measured, the contact points between the current probe Pc1 and the detection probe Pv1 and the contact points between the current probe Pc2 and the detection probe Pv2. The resistance value between and can be measured.
(Second Embodiment)

次に、本発明の第二実施形態に係る抵抗測定装置を用いた基板検査装置1aについて説明する。図5は、本発明の第二実施形態に係る抵抗測定装置を用いた基板検査装置1aの構成の一例を示すブロック図である。図6は、図5に示す基板検査装置1aと基板Aの等価回路を示す説明図である。図5,図6に示す基板検査装置1aと図1に示す基板検査装置1とでは、下記の点で異なる。 Next, a substrate inspection device 1a using the resistance measuring device according to the second embodiment of the present invention will be described. FIG. 5 is a block diagram showing an example of the configuration of the substrate inspection device 1a using the resistance measuring device according to the second embodiment of the present invention. FIG. 6 is an explanatory diagram showing an equivalent circuit of the substrate inspection device 1a and the substrate A shown in FIG. The substrate inspection device 1a shown in FIGS. 5 and 6 and the substrate inspection device 1 shown in FIG. 1 differ in the following points.

すなわち、図5,図6に示す基板検査装置1aは、接地プローブPG及びスイッチ65を備えず、代わりに電圧検出部4の負極(−)端子がグラウンドに接続されている点で、基板検査装置1とはことなる。この場合、電圧検出部4の負極(−)端子をグラウンドに接続する配線が接地部の一例に相当する。また、ステップS2において接地プローブPGを外向電極A2に接触させることなく、ステップS3においてスイッチ65をオンさせることもない。 That is, the substrate inspection device 1a shown in FIGS. 5 and 6 does not include the grounding probe PG and the switch 65, and instead the negative electrode (-) terminal of the voltage detection unit 4 is connected to the ground. It is different from 1. In this case, the wiring connecting the negative electrode (−) terminal of the voltage detection unit 4 to the ground corresponds to an example of the grounding unit. Further, the grounding probe PG is not brought into contact with the outward electrode A2 in step S2, and the switch 65 is not turned on in step S3.

その他の構成は図1に示す基板検査装置1と同様であるのでその説明を省略する。基板検査装置1aによっても、基板検査装置1の場合と同様、直列に接続され、かつその接続点がグラウンド電位にされた定電流源CS1と定電流源CS2とが、それぞれ第一電流値I、第二電流値Iの出力電流を維持しようとする。その結果、抵抗Rv2に流れる電流値Iが略ゼロとなり、コモンモード電圧が略ゼロになるので、コモンモード電圧を低減することが容易である。 Since other configurations are the same as those of the substrate inspection device 1 shown in FIG. 1, the description thereof will be omitted. In the case of the board inspection device 1a, as in the case of the board inspection device 1, the constant current source CS1 and the constant current source CS2, which are connected in series and whose connection points are set to the ground potential, have their first current values I 1 respectively. , Attempts to maintain the output current of the second current value I 2 . As a result, the current value I 3 flowing through the resistor Rv2 becomes substantially zero, and the common mode voltage becomes substantially zero, so that it is easy to reduce the common mode voltage.

また、基板検査装置1aによれば、接地プローブPGを別途設ける必要がないので、基板検査装置1よりもコストを低減することが容易である。また、配線A3に接触させるプローブ数が二つでよいので、配線A3に三つプローブを接触させる必要がある基板検査装置1よりも、プローブを接触させることが容易である。 Further, according to the substrate inspection device 1a, since it is not necessary to separately provide the grounding probe PG, it is easy to reduce the cost as compared with the substrate inspection device 1. Further, since the number of probes to be brought into contact with the wiring A3 may be two, it is easier to bring the probes into contact with the wiring A3 than to the substrate inspection device 1 which needs to bring three probes into contact with the wiring A3.

ところで、定電流源CS1,CS2の第一電流値Iと第二電流値Iとは実質的に同一(I≒I)であるが、定電流源CS1,CS2の製造ばらつきや電流制御精度に起因して、多少の差が生じるおそれがある。第一電流値Iと第二電流値Iとの間に差が生じた場合、その差に相当する電流値Iの電流が、図6に示す抵抗Rv2を流れる。この場合、抵抗Rv2の抵抗値を抵抗値Rvとすると、抵抗Rv2でRv×Iの電圧が発生する。この電圧は、電圧検出部4によって測定される測定電圧Vsに含まれるから、測定電圧Vsの測定誤差を生じさせることになる。 By the way, the first current value I 1 and the second current value I 2 of the constant current sources CS1 and CS2 are substantially the same (I 1 ≈ I 2 ), but the manufacturing variations and currents of the constant current sources CS1 and CS2 There may be some differences due to the control accuracy. When a difference occurs between the first current value I 1 and the second current value I 2 , the current of the current value I 3 corresponding to the difference flows through the resistor Rv 2 shown in FIG. In this case, when the resistance value of the resistor Rv2 the resistance value Rv 2, the voltage of Rv 2 × I 3 is generated by the resistor Rv2. Since this voltage is included in the measured voltage Vs measured by the voltage detection unit 4, a measurement error of the measured voltage Vs will occur.

一方、図2に示す基板検査装置1では、第一電流値Iと第二電流値Iとの間に差が生じた場合、その差に相当する電流値Iの電流は、抵抗RGを流れる。抵抗RGを電流が流れることによって生じた電圧は、基板検査装置1では、測定電圧Vsには含まれない。従って、基板検査装置1は、基板検査装置1aよりも、第一電流値Iと第二電流値Iとの間の差に起因する測定精度誤差が生じにくい点で、より好ましい。 On the other hand, in the substrate inspection device 1 shown in FIG. 2, when a difference occurs between the first current value I 1 and the second current value I 2 , the current of the current value I 3 corresponding to the difference is the resistance RG. Flow. The voltage generated by the current flowing through the resistor RG is not included in the measured voltage Vs in the substrate inspection device 1. Therefore, the substrate inspection device 1 is more preferable than the substrate inspection device 1a in that a measurement accuracy error due to a difference between the first current value I 1 and the second current value I 2 is less likely to occur.

1 基板検査装置(抵抗測定装置)
4 電圧検出部
5 制御部
6 スキャナ
51 抵抗取得部
52 基板検査部
61,62,63,64,65 スイッチ
A 基板
A1 チップ側電極(第一電極)
A2 外向電極(第二電極)
A3 配線(導体)
Cp キャパシタ
CS1 定電流源(第一定電流源)
CS2 定電流源(第二定電流源)
GND グラウンド
I 測定用電流
第一電流値
第二電流値
Is,I 電流値
Pc1 電流プローブ(第一電流プローブ)
Pc2 電流プローブ(第二電流プローブ)
PG 接地プローブ(接地部)
Pv1 検出プローブ(第一検出プローブ)
Pv2 検出プローブ(第二検出プローブ)
Pc1,Pc2,Pv1,Pv2,PG プローブ
Rc1,Rc2,Rv1,Rv2,RG 抵抗
Rc,Rv,Rx 抵抗値
Rref 基準値
Vs 測定電圧
1 Board inspection device (resistance measuring device)
4 Voltage detection unit 5 Control unit 6 Scanner 51 Resistance acquisition unit 52 Board inspection unit 61, 62, 63, 64, 65 Switch A Board A1 Chip side electrode (first electrode)
A2 extrovert electrode (second electrode)
A3 wiring (conductor)
Cp capacitor CS1 constant current source (first constant current source)
CS2 constant current source (second constant current source)
GND Ground I Measurement current I 1 First current value I 2 Second current value Is, I 3 Current value Pc1 Current probe (first current probe)
Pc2 current probe (second current probe)
PG grounding probe (grounding part)
Pv1 detection probe (first detection probe)
Pv2 detection probe (second detection probe)
Pc1, Pc2, Pv1, Pv2, PG probe Rc1, Rc2, Rv1, Rv2, RG resistance Rc 2, Rv 2, Rx resistance Rref reference value Vs measured voltage

Claims (6)

導体の抵抗を測定するための抵抗測定装置であって、
前記導体に接触させて所定の測定用電流を流すための第一及び第二電流プローブと、
前記導体に接触させて前記測定用電流により前記導体に生じた電圧を検出するための第一及び第二検出プローブと、
前記第一及び第二検出プローブ間の電圧を検出する電圧検出部と、
正極が前記第一電流プローブと接続され、負極がグラウンドと接続され、予め設定された第一電流値の電流を出力する第一定電流源と、
正極が前記第一定電流源の負極及び前記グラウンドに接続されて前記第一定電流源と直列接続され、負極が前記第二電流プローブと接続され、前記第一電流値と実質的に同一である第二電流値の電流を出力する第二定電流源と、
前記導体における所定部位を前記グラウンドと導通させる接地部と、
前記電圧検出部によって検出された電圧に基づき前記抵抗を取得する抵抗取得部とを備え
前記接地部は、前記所定部位に接触するための接地プローブを含み、
前記接地プローブは、前記グラウンドと接続されている抵抗測定装置。
A resistance measuring device for measuring the resistance of a conductor.
The first and second current probes for contacting the conductor to pass a predetermined measurement current, and
The first and second detection probes for contacting the conductor and detecting the voltage generated in the conductor by the measuring current,
A voltage detection unit that detects the voltage between the first and second detection probes, and
A first constant current source in which the positive electrode is connected to the first current probe, the negative electrode is connected to the ground, and a current of a preset first current value is output.
The positive electrode is connected to the negative electrode of the first constant current source and the ground and is connected in series with the first constant current source, and the negative electrode is connected to the second current probe, which is substantially the same as the first current value. A second constant current source that outputs a current with a certain second current value,
A grounding portion that conducts a predetermined portion of the conductor with the ground,
A resistor acquisition unit that acquires the resistance based on the voltage detected by the voltage detection unit is provided .
The grounding portion includes a grounding probe for contacting the predetermined portion.
The ground probe is a resistance measuring device connected to the ground .
導体の抵抗を測定するための抵抗測定装置であって、
前記導体に接触させて所定の測定用電流を流すための第一及び第二電流プローブと、
前記導体に接触させて前記測定用電流により前記導体に生じた電圧を検出するための第一及び第二検出プローブと、
前記第一及び第二検出プローブ間の電圧を検出する電圧検出部と、
正極が前記第一電流プローブと接続され、負極がグラウンドと接続され、予め設定された第一電流値の電流を出力する第一定電流源と、
正極が前記第一定電流源の負極及び前記グラウンドに接続されて前記第一定電流源と直列接続され、負極が前記第二電流プローブと接続され、前記第一電流値と実質的に同一である第二電流値の電流を出力する第二定電流源と、
前記導体における所定部位を前記グラウンドと導通させる接地部と、
前記電圧検出部によって検出された電圧に基づき前記抵抗を取得する抵抗取得部とを備え、
前記接地部は、前記第二検出プローブを前記グラウンドに接続する配線である抵抗測定装置。
A resistance measuring device for measuring the resistance of a conductor.
The first and second current probes for contacting the conductor to pass a predetermined measurement current, and
The first and second detection probes for contacting the conductor and detecting the voltage generated in the conductor by the measuring current,
A voltage detection unit that detects the voltage between the first and second detection probes, and
A first constant current source in which the positive electrode is connected to the first current probe, the negative electrode is connected to the ground, and a current of a preset first current value is output.
The positive electrode is connected to the negative electrode of the first constant current source and the ground and is connected in series with the first constant current source, and the negative electrode is connected to the second current probe, which is substantially the same as the first current value. A second constant current source that outputs a current with a certain second current value,
A grounding portion that conducts a predetermined portion of the conductor with the ground,
E Bei a resistance acquisition unit for acquiring the resistance based on the voltage detected by the voltage detecting section,
The ground portion, the second detection probe is a wiring connected to the ground resistance measurement device.
請求項1又は2に記載の抵抗測定装置と、
前記抵抗測定装置により測定された抵抗に基づき、基板に形成された、前記導体である配線の検査を行う基板検査部とを備える基板検査装置。
The resistance measuring device according to claim 1 or 2 ,
A substrate inspection apparatus including a substrate inspection unit formed on a substrate based on the resistance measured by the resistance measuring apparatus and inspecting wiring which is a conductor.
導体の抵抗を測定する抵抗測定方法であって、
(a)前記導体に、第一電流プローブと第一検出プローブとを接触させる工程と、
(b)前記導体の、前記第一電流プローブ及び前記第一検出プローブの接触位置とは離間した位置に、第二電流プローブと第二検出プローブとを接触させる工程と、
(c)正極が前記第一電流プローブと接続され、負極がグラウンドと接続された第一定電流源によって予め設定された第一電流値の電流を出力させ、正極が前記第一定電流源の負極及び前記グラウンドに接続されて前記第一定電流源と直列接続され、負極が前記第二電流プローブと接続された第二定電流源によって前記第一電流値と実質的に同一である第二電流値の電流を出力させる工程と、
(d)前記導体における所定部位を前記グラウンドと導通させる工程と、
(e)前記第一及び第二検出プローブ間の電圧を検出する工程と、
(f)前記(e)工程によって検出された電圧に基づき前記抵抗を取得する工程とを含み、
前記(d)工程は、前記グラウンドと接続された接地プローブを、前記所定部位に接触させる工程である抵抗測定方法。
It is a resistance measurement method that measures the resistance of a conductor.
(A) A step of bringing the first current probe and the first detection probe into contact with the conductor.
(B) A step of bringing the second current probe and the second detection probe into contact with each other at a position of the conductor separated from the contact positions of the first current probe and the first detection probe.
(C) The positive electrode is connected to the first current probe, the negative electrode outputs a current of the first current value preset by the first constant current source connected to the ground, and the positive electrode is the first constant current source. A second that is connected to the negative electrode and the ground and is connected in series with the first constant current source, and the negative electrode is substantially the same as the first current value by the second constant current source connected to the second current probe. The process of outputting the current of the current value and
(D) A step of conducting a predetermined portion of the conductor with the ground,
(E) The step of detecting the voltage between the first and second detection probes and
(F) viewing including the step of acquiring the resistance based on the voltage detected by said step (e),
The step (d) is a resistance measuring method, which is a step of bringing a grounding probe connected to the ground into contact with the predetermined portion .
導体の抵抗を測定する抵抗測定方法であって、
(a)前記導体に、第一電流プローブと第一検出プローブとを接触させる工程と、
(b)前記導体の、前記第一電流プローブ及び前記第一検出プローブの接触位置とは離間した位置に、第二電流プローブと第二検出プローブとを接触させる工程と、
(c)正極が前記第一電流プローブと接続され、負極がグラウンドと接続された第一定電流源によって予め設定された第一電流値の電流を出力させ、正極が前記第一定電流源の負極及び前記グラウンドに接続されて前記第一定電流源と直列接続され、負極が前記第二電流プローブと接続された第二定電流源によって前記第一電流値と実質的に同一である第二電流値の電流を出力させる工程と、
(d)前記導体における所定部位を前記グラウンドと導通させる工程と、
(e)前記第一及び第二検出プローブ間の電圧を検出する工程と、
(f)前記(e)工程によって検出された電圧に基づき前記抵抗を取得する工程とを含み、
前記第二検出プローブは、前記グラウンドと接続されており、
前記(b)工程は、前記(d)工程を兼ねる抵抗測定方法。
It is a resistance measurement method that measures the resistance of a conductor.
(A) A step of bringing the first current probe and the first detection probe into contact with the conductor.
(B) A step of bringing the second current probe and the second detection probe into contact with each other at a position of the conductor separated from the contact positions of the first current probe and the first detection probe.
(C) The positive electrode is connected to the first current probe, the negative electrode outputs a current of the first current value preset by the first constant current source connected to the ground, and the positive electrode is the first constant current source. A second that is connected to the negative electrode and the ground and is connected in series with the first constant current source, and the negative electrode is substantially the same as the first current value by the second constant current source connected to the second current probe. The process of outputting the current of the current value and
(D) A step of conducting a predetermined portion of the conductor with the ground,
(E) The step of detecting the voltage between the first and second detection probes and
(F) viewing including the step of acquiring the resistance based on the voltage detected by said step (e),
The second detection probe is connected to the ground and
The step (b) is a resistance measuring method that also serves as the step (d).
前記導体の一端部には第一電極が設けられ、前記導体の他端部には前記第一電極より面積の大きい第二電極が設けられ、
前記(a)工程は、前記第一電極に前記第一電流プローブと前記第一検出プローブを接触させる工程であり、
前記(b)工程は、前記第二電極に前記第二電流プローブと前記第二検出プローブを接触させる工程であり、
前記(d)工程は、前記第二電極を前記所定部位として、前記第二電極に前記接地プローブを接触させる工程である請求項記載の抵抗測定方法。
A first electrode is provided at one end of the conductor, and a second electrode having a larger area than the first electrode is provided at the other end of the conductor.
The step (a) is a step of bringing the first current probe and the first detection probe into contact with the first electrode.
The step (b) is a step of bringing the second current probe and the second detection probe into contact with the second electrode.
The resistance measuring method according to claim 4 , wherein the step (d) is a step of bringing the grounding probe into contact with the second electrode using the second electrode as the predetermined portion.
JP2017186641A 2017-09-27 2017-09-27 Resistance measuring device, substrate inspection device, and resistance measuring method Active JP6765125B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017186641A JP6765125B2 (en) 2017-09-27 2017-09-27 Resistance measuring device, substrate inspection device, and resistance measuring method
KR1020180107833A KR20190036472A (en) 2017-09-27 2018-09-10 Resistance measurement apparatus, substrate inspection apparatus, and resistance measurement method
TW107133772A TWI793179B (en) 2017-09-27 2018-09-26 Resistance measuring device, substrate inspection device, and resistance measuring method
CN201811122773.1A CN109557376B (en) 2017-09-27 2018-09-26 Resistance measuring device, substrate inspection device, and resistance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186641A JP6765125B2 (en) 2017-09-27 2017-09-27 Resistance measuring device, substrate inspection device, and resistance measuring method

Publications (2)

Publication Number Publication Date
JP2019060768A JP2019060768A (en) 2019-04-18
JP6765125B2 true JP6765125B2 (en) 2020-10-07

Family

ID=65864627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186641A Active JP6765125B2 (en) 2017-09-27 2017-09-27 Resistance measuring device, substrate inspection device, and resistance measuring method

Country Status (4)

Country Link
JP (1) JP6765125B2 (en)
KR (1) KR20190036472A (en)
CN (1) CN109557376B (en)
TW (1) TWI793179B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211476A1 (en) * 2017-07-05 2019-01-10 Robert Bosch Gmbh Apparatus and method for checking a functionality of a system resistance of a battery system
TWI716106B (en) * 2019-09-16 2021-01-11 力成科技股份有限公司 Resistance measuring method of package substrate and package substrate thereof
US11346883B2 (en) * 2019-11-05 2022-05-31 Formfactor, Inc. Probe systems and methods for testing a device under test
TWI824686B (en) * 2022-08-31 2023-12-01 牧德科技股份有限公司 Detection circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638697B2 (en) * 1996-01-22 2005-04-13 株式会社アドバンテスト Driver IC output resistance measuring instrument
GB2341246A (en) * 1998-09-03 2000-03-08 Ericsson Telefon Ab L M Differential level shifting circuit
JP4208560B2 (en) 2002-12-06 2009-01-14 日置電機株式会社 Impedance measuring device
TW200638812A (en) * 2004-11-18 2006-11-01 Matsushita Electric Ind Co Ltd Wiring board, method for manufacturing same and semiconductor device
JP4798618B2 (en) * 2006-05-31 2011-10-19 ルネサスエレクトロニクス株式会社 Output circuit and semiconductor integrated circuit device
JP2007333598A (en) 2006-06-15 2007-12-27 Nidec-Read Corp Substrate inspecting means
CN101047383B (en) * 2007-03-20 2011-05-04 湖南大学 Current controlled full-balance differential current transmitter
SK288245B6 (en) * 2010-09-03 2015-03-03 Ivan Baĺ¤Ko Power supply with active suppression of voltage
CN103956982B (en) * 2014-05-05 2017-04-12 华侨大学 Common-mode feedback circuit for duration of two-stage differential amplifier
JP6545598B2 (en) * 2015-10-15 2019-07-17 日置電機株式会社 Resistance measuring device and inspection device
CN107104673A (en) * 2017-04-01 2017-08-29 唯捷创芯(天津)电子技术股份有限公司 A kind of low gain error current rudder-type digital-to-analog converter, chip and communication terminal

Also Published As

Publication number Publication date
CN109557376B (en) 2023-05-16
CN109557376A (en) 2019-04-02
TWI793179B (en) 2023-02-21
KR20190036472A (en) 2019-04-04
JP2019060768A (en) 2019-04-18
TW201915500A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
US7880485B2 (en) High-sensitive resistance measuring device and monitoring method of solder bump
JP6765125B2 (en) Resistance measuring device, substrate inspection device, and resistance measuring method
JP4774071B2 (en) Probe resistance measurement method and semiconductor device having probe resistance measurement pad
JP6972843B2 (en) Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor
US10955465B2 (en) Method and apparatus for bond wire testing in an integrated circuit
JP2007024659A (en) Integrated circuit and circuit board
JP2007315789A (en) Semiconductor integrated circuit and its mounting inspection method
JP2007322127A (en) Method for inspecting substrate and substrate inspection system
JP6446791B2 (en) Substrate inspection method, substrate inspection apparatus, inspection jig, and inspection jig set
WO2021220942A1 (en) Inspection device and inspection method
KR20140009027A (en) Apparatus and method for inspecting board
CN114295948B (en) Electronic component measuring apparatus, electronic component measuring method, and manufacturing method of light emitting diode
US8896320B2 (en) Measuring device and a method for measuring a chip-to-chip-carrier connection
JP2008135623A (en) Wiring board, and its manufacturing method
JP2007198930A (en) Semiconductor inspection system and semiconductor device
JP2005300240A (en) Circuit conductors inspection method and its system
JP2021152511A (en) Inspection device and inspection method
JP6733199B2 (en) Inspection device, inspection method, and inspection program
JP6255833B2 (en) Substrate inspection method and substrate inspection apparatus
JP2006250608A (en) Circuit board inspection method and device therefor
JP4982543B2 (en) Detection method for through-hole breakage in multilayer boards
JP2003172763A (en) Inspection device and inspection method of semiconductor device
TW201445155A (en) Board inspecting apparatus and method for inspecting of the board
JPH07287042A (en) In-circuit inspection method
JP2007085735A (en) Inspection method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6765125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250