JP2007333598A - Substrate inspecting means - Google Patents

Substrate inspecting means Download PDF

Info

Publication number
JP2007333598A
JP2007333598A JP2006166583A JP2006166583A JP2007333598A JP 2007333598 A JP2007333598 A JP 2007333598A JP 2006166583 A JP2006166583 A JP 2006166583A JP 2006166583 A JP2006166583 A JP 2006166583A JP 2007333598 A JP2007333598 A JP 2007333598A
Authority
JP
Japan
Prior art keywords
voltage
current supply
terminal
voltage measurement
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006166583A
Other languages
Japanese (ja)
Inventor
Munehiro Yamashita
宗寛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advance Technology Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2006166583A priority Critical patent/JP2007333598A/en
Priority to PCT/JP2007/061697 priority patent/WO2007145156A1/en
Priority to TW96121394A priority patent/TW200815777A/en
Publication of JP2007333598A publication Critical patent/JP2007333598A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • G01R31/2808Holding, conveying or contacting devices, e.g. test adapters, edge connectors, extender boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate inspecting means capable of shortening an inspection time, and having high efficiency of a circuit for inspection. <P>SOLUTION: This substrate inspecting device 21 includes a first and second current supply terminals 22, 23, a first and second voltage measuring terminals 24, 25, a current supply section 26, a voltage measurement section 27, and a voltage stabilizing means 28, and inspects a substrate provided with a plurality of wiring patterns 29. The stabilizing means 28 is electrically connected to the second voltage measuring terminal 25, and stabilizes the voltages of the second voltage measuring terminal 25 and the contact part of the wiring pattern 29 with the measuring pattern 25. More concretely, the stabilizing means 28 is provided with an operational amplifier 41. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の配線パターンを有する基板の電気的特性を検査する基板検査装置に関する。   The present invention relates to a substrate inspection apparatus that inspects electrical characteristics of a substrate having a plurality of wiring patterns.

尚、この発明は、プリント配線基板に限らず、例えば、フレキシブル基板、多層配線基板、液晶ディスプレイやプラズマディスプレイ用の電極板、及び半導体パッケージ用のパッケージ基板やフィルムキャリアなど種々の基板における電気的配線の検査に適用でき、この明細書では、それら種々の配線基板を総称して「基板」と称する。   The present invention is not limited to a printed wiring board, but includes, for example, electrical wiring on various substrates such as flexible substrates, multilayer wiring substrates, electrode plates for liquid crystal displays and plasma displays, and package substrates and film carriers for semiconductor packages. In this specification, these various wiring boards are collectively referred to as “substrates”.

従来の基板検査装置として、電流供給端子と電圧計測端子の2本の端子を設ける、いわゆる4端子法を用いて配線パターンの検査を行うものがある(例えば、特許文献1)。この種の基板検査装置では、図3に示すように、電流供給部1の正負の出力部1a,1bが正側及び負側の電流供給用導電路2,3を介して第1及び第2の電流供給端子4,5と電気的に接続されている。電流供給部1は、第1の電流供給端子4側から第2の電流供給端子5側に流れるように、配線パターン7に電流を供給する。また、電圧計測部7の正負の電圧導入部7a,7bが正側及び負側の電圧計測用導電路8,9を介して第1及び第2の電圧計測端子11,12に電気的に接続されている。電圧計測部5は、電流供給部1により配線パターン6に電流が供給されている状態で、第1及び第2の電圧計測端子11,12を介して配線パターン4上の2点間の電圧を計測する。そして、電流供給部1が供給している電流の電流値と、電圧計測部7が計測した電圧値とに基づいて配線パターン6の導電特性の良否(短絡や断線の有無、抵抗値の適否等)が判定されるようになっている。   As a conventional board inspection apparatus, there is an apparatus for inspecting a wiring pattern using a so-called four-terminal method in which two terminals, a current supply terminal and a voltage measurement terminal, are provided (for example, Patent Document 1). In this type of substrate inspection apparatus, as shown in FIG. 3, the positive and negative output portions 1 a and 1 b of the current supply portion 1 are connected to the first and second via the current supply conductive paths 2 and 3 on the positive and negative sides. Current supply terminals 4 and 5 are electrically connected. The current supply unit 1 supplies current to the wiring pattern 7 so as to flow from the first current supply terminal 4 side to the second current supply terminal 5 side. Further, the positive and negative voltage introducing sections 7a and 7b of the voltage measuring section 7 are electrically connected to the first and second voltage measuring terminals 11 and 12 via the positive and negative voltage measuring conductive paths 8 and 9, respectively. Has been. The voltage measuring unit 5 calculates the voltage between two points on the wiring pattern 4 via the first and second voltage measuring terminals 11 and 12 in a state where current is supplied to the wiring pattern 6 by the current supply unit 1. measure. Based on the current value of the current supplied by the current supply unit 1 and the voltage value measured by the voltage measurement unit 7, the conductive characteristics of the wiring pattern 6 are good (whether there is a short circuit or a disconnection, whether the resistance value is appropriate, etc.) ) Is determined.

このような4端子法では、電圧計測部7のインピーダンスが実質的に無限大であるため、電圧計測端子11,12を電流供給端子4,5と分離したことで、電圧計測端子11,12と配線パターン6との接触部を介して流れる電流が実質的に無視できる程度に抑えられる。これによって、電圧計測端子11,12と配線パターン6との接触抵抗の影響を実質的に除外して、電圧計測端子11,12が接触する配線パターン6上の2点間の電圧が正確に計測できるようになっている。   In such a four-terminal method, since the impedance of the voltage measuring unit 7 is substantially infinite, the voltage measuring terminals 11 and 12 are separated from the current supply terminals 4 and 5. The current flowing through the contact portion with the wiring pattern 6 is suppressed to a level that can be substantially ignored. As a result, the influence of the contact resistance between the voltage measuring terminals 11 and 12 and the wiring pattern 6 is substantially excluded, and the voltage between two points on the wiring pattern 6 where the voltage measuring terminals 11 and 12 are in contact is accurately measured. It can be done.

なお、図3中において、導電経路3に介挿される電流計13は、配線パターン6の抵抗値等の計測に直接寄与するものではなく、配線パターン6から電流供給部1に戻る電流の電流値を確認するため等に用いられるものである。   In FIG. 3, the ammeter 13 inserted in the conductive path 3 does not directly contribute to the measurement of the resistance value or the like of the wiring pattern 6, but the current value of the current returning from the wiring pattern 6 to the current supply unit 1. This is used to confirm the above.

また、各導電路2,3,8,9に介挿されているスイッチング素子14〜17は、電流供給部1及び電圧計測部7側の回路要素と、端子4,5,11,12側の回路要素とを予め設定される順番に応じてつなぎ替えるためのものであり、マルチプレクサ等により構成される。端子4,5,11,12側の回路要素の数の方が電流供給部1及び電圧計測部7側の回路要素の数よりも多くなっておりスイッチング素子14〜17によって、電流供給部1及び電圧計測部7側の回路要素が、いずれかの端子4,5,11,12側の回路要素に選択的に接続されるようになっている。
特開2004−184374号公報
Further, the switching elements 14 to 17 inserted in the respective conductive paths 2, 3, 8, and 9 include circuit elements on the current supply unit 1 and voltage measurement unit 7 side and terminals 4, 5, 11, and 12 side. The circuit elements are connected in accordance with a preset order, and are configured by a multiplexer or the like. The number of circuit elements on the terminals 4, 5, 11, and 12 side is larger than the number of circuit elements on the current supply unit 1 and voltage measurement unit 7 side, and the current supply unit 1 and the switching elements 14 to 17 The circuit element on the voltage measuring unit 7 side is selectively connected to the circuit element on any of the terminals 4, 5, 11, 12 side.
JP 2004-184374 A

しかしながら、上述の従来の基板検査装置では、第2の電流供給端子5と電流供給部1の負側の出力部1bとを導電路3により単純に接続する構成であるため、導電路3及びそれに接続される電流供給部1内の導電経路の抵抗成分、容量成分等の影響により、配線パターン6への電流供給が開始されてから、配線パターン6に流れる電流及び配線パターン6上の2点間の電圧が安定し、正確な電圧計測が行えるようになるまで時間がかかり、検査に時間がかかるという問題がある。   However, in the above-described conventional substrate inspection apparatus, since the second current supply terminal 5 and the negative output portion 1b of the current supply unit 1 are simply connected by the conductive path 3, the conductive path 3 and the current path The current flowing to the wiring pattern 6 and the two points on the wiring pattern 6 after the current supply to the wiring pattern 6 is started due to the influence of the resistance component, the capacitance component, etc. of the conductive path in the connected current supply unit 1 It takes time until the voltage becomes stable and accurate voltage measurement can be performed, and there is a problem that inspection takes time.

また、第2の電流供給端子5と配線パターン6との接触部の接触抵抗の変動幅が大きいため、配線パターン6に流れる電流の電流値が安定するまでの時間も大きく変動するようになっている。このため、電流供給開始から電圧計測までに要する時間を余裕を持って長く設定する必要があるという問題もある。   Further, since the fluctuation range of the contact resistance at the contact portion between the second current supply terminal 5 and the wiring pattern 6 is large, the time until the current value of the current flowing through the wiring pattern 6 is stabilized also varies greatly. Yes. For this reason, there is also a problem that it is necessary to set a long time from the start of current supply to voltage measurement with a margin.

また、配線パターン6の抵抗値に比して導電路3及びそれに接続される電流供給部1内の導電経路の抵抗成分の方が格段に大きい場合がある。このような場合、実際に電圧計測部7により計測される計測電圧値と、電流供給のために電流供給部1が出力する出力電圧値との比が大きくなり、検査のための回路の効率が悪いという問題もある。   In addition, the resistance component of the conductive path 3 and the conductive path in the current supply unit 1 connected thereto may be significantly larger than the resistance value of the wiring pattern 6. In such a case, the ratio between the measured voltage value actually measured by the voltage measuring unit 7 and the output voltage value output from the current supply unit 1 for current supply is increased, and the efficiency of the circuit for inspection is increased. There is also the problem of being bad.

そこで、本発明の解決すべき第1の課題は、検査時間の短縮が図れる基板検査装置を提供することである。   Accordingly, a first problem to be solved by the present invention is to provide a substrate inspection apparatus capable of shortening the inspection time.

また、本発明の解決すべき第2の課題は、検査のための回路の効率がよい基板検査装置を提供することである。   A second problem to be solved by the present invention is to provide a substrate inspection apparatus having a high efficiency circuit for inspection.

上記の課題を解決するため、請求項1の発明では、複数の配線パターンを有する基板の電気的特性を検査する基板検査装置であって、前記複数の配線パターンのうちのいずれかの配線パターンにおける互いに離間した位置で、その配線パターンに接触される第1及び第2の電流供給端子と、前記いずれか配線パターンにおける前記第1の電流供給端子及び前記第2の電流供給端子により挟まれた区間内において、互いに離間した位置で前記配線パターンに接触される第1及び第2の電圧計測端子と、前記第1の電流供給及び前記第2の電流供給端子を介して前記いずれかの配線パターンに、前記第1の電流供給端子側から前記第2の電流供給端子側に電流を流す電流供給部と、前記第1の電圧計測端子及び前記第2の電圧計測端子を介し、前記第1の電圧計測端子及び前記第2の電圧計測端子が接触される前記いずれかの配線パターンの2点間の電圧を計測する電圧計測部と、電圧安定手段とを備え、前記第1の電圧計測端子及び前記第2の電圧計測端子のうち、前記第2の電圧計測端子の方が、前記電流の下流側で前記いずれかの配線パターンに接触され、前記電圧安定手段は、前記第2の電圧計測端子に電気的に接続され、その第2の電圧計測端子及び前記いずれかの配線パターンの前記第2の電圧計測素子との接触部の電圧を安定させる。   In order to solve the above-mentioned problem, in the invention of claim 1, there is provided a board inspection apparatus for inspecting electrical characteristics of a board having a plurality of wiring patterns, wherein the wiring pattern is one of the plurality of wiring patterns. First and second current supply terminals that are in contact with the wiring pattern at positions separated from each other, and a section sandwiched between the first current supply terminal and the second current supply terminal in any one of the wiring patterns The first and second voltage measurement terminals that are in contact with the wiring pattern at positions spaced apart from each other, and any one of the wiring patterns via the first current supply and the second current supply terminal. A current supply unit for passing current from the first current supply terminal side to the second current supply terminal side, the first voltage measurement terminal and the second voltage measurement terminal, A voltage measuring unit that measures a voltage between two points of any one of the wiring patterns with which the first voltage measuring terminal and the second voltage measuring terminal are in contact; and a voltage stabilizing unit; Of the measurement terminal and the second voltage measurement terminal, the second voltage measurement terminal is in contact with any one of the wiring patterns on the downstream side of the current, and the voltage stabilizing means is configured to It is electrically connected to the voltage measurement terminal, and stabilizes the voltage of the contact portion between the second voltage measurement terminal and any one of the wiring patterns with the second voltage measurement element.

また、請求項2の発明では、請求項1の発明に係る基板検査装置において、前記電圧安定手段はオペアンプを備えている。   According to a second aspect of the present invention, in the substrate inspection apparatus according to the first aspect of the present invention, the voltage stabilizing means includes an operational amplifier.

また、請求項3の発明では、請求項2の発明に係る基板検査装置において、前記電流供給部の電流供給のための正側及び負側の出力部は、正側及び負側の電流供給用導電路を介して前記第1の電流供給端子及び前記第2の電流供給端子とそれぞれ電気的に接続され、前記電圧計測部の電圧計測のための正側及び負側の電圧導入部は、正側及び負側の電圧計測用導電路を介して前記第1の電圧計測端子及び前記第2の電圧計測端子とそれぞれ電気的に接続され、前記オペアンプは、その出力端子が前記第2の電流供給端子側に接続され、その非反転入力端子が前記電流供給部の前記負側の出力部側に接続されるように前記負側の電流供給用導電路に介挿されるとともに、その反転入力端子が前記第2の電圧計測端子と電気的に接続されている。   According to a third aspect of the present invention, in the substrate inspection apparatus according to the second aspect of the present invention, the positive and negative output sections for supplying current from the current supply section are for supplying positive and negative currents. The first current supply terminal and the second current supply terminal are electrically connected to each other through a conductive path, and the positive and negative voltage introduction sections for voltage measurement of the voltage measurement section are positive A first voltage measurement terminal and a second voltage measurement terminal are electrically connected to the first voltage measurement terminal and the second voltage measurement terminal through a voltage measurement conductive path on the side and the negative side, respectively, and the output terminal of the operational amplifier is the second current supply. It is connected to the terminal side, and the non-inverting input terminal is inserted into the negative-side current supply conductive path so as to be connected to the negative-side output unit side of the current supply unit, and the inverting input terminal is The second voltage measurement terminal is electrically connected.

請求項1に記載の発明によれば、電圧安定手段が、第2の電圧計測端子及び配線パターンの第2の電圧計測素子との接触部の電圧を安定させるようになっている。それ故、第1及び第2の電流供給端子、及び第1及び第2の電流計測端子が配線パターンに接触され、電流供給部による電流供給が開始された直後に第1及び第2の電圧計測端子が接触される配線パターン上の2点間の電圧が安定し、またその電圧が安定するまでに要する時間のバラツキが生じることもない。よって、電流供給開始直後に配線パターン上の2点間の電圧を正確に計測することができ、電流供給開始から電圧計測までの時間、及び検査に要する時間を大幅に短縮できる。   According to the first aspect of the present invention, the voltage stabilizing means stabilizes the voltage at the contact portion between the second voltage measuring terminal and the second voltage measuring element of the wiring pattern. Therefore, the first and second current supply terminals and the first and second current measurement terminals are brought into contact with the wiring pattern, and the first and second voltage measurements are performed immediately after the current supply by the current supply unit is started. The voltage between two points on the wiring pattern with which the terminal contacts is stabilized, and there is no variation in the time required for the voltage to stabilize. Therefore, the voltage between two points on the wiring pattern can be accurately measured immediately after the start of current supply, and the time from the start of current supply to voltage measurement and the time required for inspection can be greatly reduced.

また、第2の電圧計測端子及び配線パターンの第2の電圧計測素子との接触部の電圧変動が抑制されるため、第1及び第2の電圧計測端子が接触される配線パターン上の2点間の電圧レベルと、電流供給部の出力電圧との間の差を縮小することができる。その結果、検査のための回路の効率化が図れる。   Further, since voltage fluctuations at the contact portion between the second voltage measurement terminal and the second voltage measurement element of the wiring pattern are suppressed, two points on the wiring pattern where the first and second voltage measurement terminals are in contact with each other. The difference between the voltage level between and the output voltage of the current supply unit can be reduced. As a result, the efficiency of the circuit for inspection can be improved.

請求項2に記載の発明によれば、電圧安定手段にオペアンプが備えられているため、第2の電圧計測端子及び配線パターンの第2の電圧計測素子との接触部の電圧を確実に安定させることができ、検査時間の短縮が図れる。   According to the second aspect of the present invention, since the operational amplifier is provided in the voltage stabilization means, the voltage at the contact portion between the second voltage measurement terminal and the second voltage measurement element of the wiring pattern is reliably stabilized. The inspection time can be shortened.

請求項3に記載の発明によれば、第2の電圧計測端子及び配線パターンの第2の電圧計測素子との接触部の電圧が負側の電流供給用導電路の電圧レベルである所定の定電位(例えば、グランド電位)に実質的に保持されるようになっている。例えば、電流供給部による電圧供給開始時に、仮に第2の電圧計測端子及び配線パターンの第2の電圧計測素子との接触部の電圧が変動しても、オペアンプの出力端子の出力電圧によりその電圧の変動が瞬時に打ち消されて、第2の電圧計測端子等の電圧が定電位に保持されるようになっている。それ故、第1及び第2の電流供給端子、及び第1及び第2の電圧計測端子が配線パターンに接触され、電流供給部による電流供給が開始された直後に、第1及び第2の電圧計測端子が接触される配線パターン上の2点間の電圧が安定し、またその電圧が安定するまでに要する時間のバラツキが生じることもない。よって、電流供給開始直後に配線パターン上の2点間の電圧を電圧計測部により正確に計測することができ、電流供給開始から電圧計測までの時間、及び検査に要する時間を大幅に短縮できる。   According to the third aspect of the present invention, the voltage at the contact portion between the second voltage measurement terminal and the second voltage measurement element of the wiring pattern is a predetermined constant that is the voltage level of the negative-side current supply conductive path. It is substantially held at a potential (for example, a ground potential). For example, even when the voltage of the contact portion between the second voltage measurement terminal and the second voltage measurement element of the wiring pattern fluctuates at the start of voltage supply by the current supply unit, the voltage varies depending on the output voltage of the output terminal of the operational amplifier. Is instantaneously canceled, and the voltage at the second voltage measuring terminal or the like is held at a constant potential. Therefore, the first and second current supply terminals and the first and second voltage measurement terminals are brought into contact with the wiring pattern, and immediately after the current supply by the current supply unit is started, the first and second voltages are supplied. The voltage between two points on the wiring pattern with which the measurement terminal is brought into contact is stabilized, and there is no variation in the time required for the voltage to stabilize. Therefore, the voltage between two points on the wiring pattern can be accurately measured immediately after the current supply is started, and the time from the start of the current supply to the voltage measurement and the time required for the inspection can be greatly reduced.

また、第2の電圧計測端子及び配線パターンの第2の電圧計測素子との接触部の電圧が実質的に所定の定電位に保持されているため、第1及び第2の電圧計測端子が接触される配線パターン上の2点間には、電流供給部の出力電圧と実質的に等しい電圧差が生じることとなる。その結果、検査のための回路の効率化が図れる。   Further, since the voltage at the contact portion between the second voltage measurement terminal and the second voltage measurement element of the wiring pattern is substantially maintained at a predetermined constant potential, the first and second voltage measurement terminals are in contact with each other. A voltage difference substantially equal to the output voltage of the current supply unit is generated between the two points on the wiring pattern. As a result, the efficiency of the circuit for inspection can be improved.

図1は、本発明の一実施形態に係る基板検査装置の構成を示す図である。この基板検査装置21は、図1に示すように、第1及び第2の電流供給端子22,23と、第1及び第2の電圧計測端子24,25と、電流供給部26と、電圧計測部27と、電圧安定手段28とを備えており、複数の配線パターン29が設けられた基板(図示せず)の検査を行う。   FIG. 1 is a diagram showing a configuration of a substrate inspection apparatus according to an embodiment of the present invention. As shown in FIG. 1, the substrate inspection apparatus 21 includes first and second current supply terminals 22 and 23, first and second voltage measurement terminals 24 and 25, a current supply unit 26, and voltage measurement. The unit 27 and the voltage stabilizing means 28 are provided, and a substrate (not shown) provided with a plurality of wiring patterns 29 is inspected.

電流供給端子22,23と、電圧計測端子24,25とは、電流供給端子と電圧計測端子の2つで一組(端子対)となっており、この電流供給端子と電圧計測端子の組を2組用いることによって、所望する配線パターン29の電気的特性を測定する。より具体的には、2つの端子対が、基板に設けられた複数の配線パターン29のうちの検査対象となる配線パターン29上の2つの検査点に夫々接触されて、検査点間の電気的特性が検出されることによって、検査対象の配線パターン29の導電特性の良否(短絡や断線の有無、抵抗値の適否等)が判定される。その導電性の良否判定については、例えば、電流供給部26が配線パターン29に流す電流の電流値と、その電流が供給されている状態で電圧計測部27が計測した配線パターン29上の2点間の電圧とに基づいて、配線パターン29上の2点間(検査点間)の抵抗値を求め、その抵抗値に基づいて配線パターン29の導電特性の良否判定が行われるようになっている。   The current supply terminals 22 and 23 and the voltage measurement terminals 24 and 25 are a pair (terminal pair) of the current supply terminal and the voltage measurement terminal. By using two sets, the electrical characteristics of the desired wiring pattern 29 are measured. More specifically, two terminal pairs are brought into contact with two inspection points on the wiring pattern 29 to be inspected out of the plurality of wiring patterns 29 provided on the substrate, respectively, and the electrical connection between the inspection points is performed. By detecting the characteristics, it is determined whether or not the conductive characteristics of the wiring pattern 29 to be inspected are good (whether there is a short circuit or a disconnection, whether the resistance value is appropriate). For determining whether the electrical conductivity is good or bad, for example, the current value of the current supplied to the wiring pattern 29 by the current supply unit 26 and two points on the wiring pattern 29 measured by the voltage measuring unit 27 while the current is supplied. The resistance value between two points on the wiring pattern 29 (between inspection points) is obtained based on the voltage between them, and the quality of the conductive characteristics of the wiring pattern 29 is determined based on the resistance value. .

このとき、第1及び第2の電流供給端子22,23は、検査対象の配線パターン29の配設経路上における互いに離間した位置で、配線パターン29に接触されるようになっている。また、第1及び第2の電圧計測端子24,25は、検査対象の配線パターン29上における第1及び第2の電流供給端子22,23により挟まれた区間内において、互いに離間した位置で配線パターン29に接触されるようになっている。さらに詳細には、第2の電圧計測端子24の方が第1の電圧計測端子25よりも電流の下流側で配線パターン29に接触されるようになっている。   At this time, the first and second current supply terminals 22 and 23 are in contact with the wiring pattern 29 at positions separated from each other on the arrangement path of the wiring pattern 29 to be inspected. The first and second voltage measurement terminals 24 and 25 are wired at positions separated from each other in a section sandwiched between the first and second current supply terminals 22 and 23 on the wiring pattern 29 to be inspected. The pattern 29 is touched. More specifically, the second voltage measurement terminal 24 is in contact with the wiring pattern 29 on the downstream side of the current from the first voltage measurement terminal 25.

電流供給部26の電流供給のための正側及び負側の電流出力部26a,26bは、正側及び負側の電流供給用導電路31,32を介して第1及び第2の電流供給端子22,23とそれぞれ電気的に接続される。なお、負側の電流供給用導電路32には所定の定電位に保持された基準電位線(例えば、ゼロ電位に保持されたグランド線)が含まれている。   The positive and negative current output units 26a and 26b for supplying current from the current supply unit 26 have first and second current supply terminals via positive and negative current supply conductive paths 31 and 32, respectively. 22 and 23, respectively. Note that the negative-side current supply conductive path 32 includes a reference potential line held at a predetermined constant potential (for example, a ground line held at zero potential).

電圧計測部27の電圧計測のための正側及び負側の電圧導入部27a,27bは、正側及び負側の電圧計測用導電路33,34を介して第1及び第2の電圧計測端子24,25とそれぞれ電気的に接続される。   Positive and negative voltage introduction units 27a and 27b for voltage measurement of the voltage measurement unit 27 are first and second voltage measurement terminals via positive and negative voltage measurement conductive paths 33 and 34, respectively. 24 and 25, respectively.

各導電路31〜34には、スイッチング素子(例えば、半導体スイッチング素子)35〜38がそれぞれ介挿されている。このスイッチング素子35〜38は、電流供給部26及び電圧計測部27側の回路要素と、端子22〜25側の回路要素とを予め設定される順番に応じてつなぎ替えるためのものであり、マルチプレクサ等により構成される。端子22〜25側の回路要素の数の方が電流供給部26及び電圧計測部27側の回路要素の数よりも多くなっておりスイッチング素子35〜38によって、電流供給部26及び電圧計測部27側の回路要素が、いずれかの端子22〜25側の回路要素に選択的に接続されるようになっている。   Switching elements (for example, semiconductor switching elements) 35 to 38 are inserted in the conductive paths 31 to 34, respectively. The switching elements 35 to 38 are for switching the circuit elements on the current supply unit 26 and voltage measurement unit 27 side and the circuit elements on the terminals 22 to 25 side in accordance with a preset order. Etc. The number of circuit elements on the terminals 22 to 25 side is larger than the number of circuit elements on the current supply unit 26 and voltage measurement unit 27 side, and the current supply unit 26 and voltage measurement unit 27 are switched by the switching elements 35 to 38. The circuit element on the side is selectively connected to the circuit element on the side of any one of the terminals 22-25.

電流供給部26は、例えば電源回路(例えば、出力電圧の調節が可能な電源回路)と、その出力部26a,26bから出力される電流の電流値を制御する電流制御回路とを備えて構成されている。例えば、電流供給部26は、電流制御回路の働きにより、出力部26a,26bを介して予め定められた一定値の電流を出力するようになっている。   The current supply unit 26 includes, for example, a power supply circuit (for example, a power supply circuit capable of adjusting the output voltage) and a current control circuit that controls the current value of the current output from the output units 26a and 26b. ing. For example, the current supply unit 26 outputs a current having a predetermined value via the output units 26a and 26b by the action of the current control circuit.

これによって、第1及び第2の電流供給端子22,23が配線パターン29に接触されると、電流供給部26により、第1及び第2の電流供給端子22,23を介して電流が、例えば予め設定された電流値で配線パターン29に供給される。このときに配線パターン29に流れる電流の向きは、第1の電流供給端子22側から第2の電流供給端子23側に流れる向きとなる。   As a result, when the first and second current supply terminals 22 and 23 are brought into contact with the wiring pattern 29, the current supply unit 26 causes a current to pass through the first and second current supply terminals 22 and 23, for example. The wiring pattern 29 is supplied with a preset current value. At this time, the direction of the current flowing through the wiring pattern 29 is the direction of flowing from the first current supply terminal 22 side to the second current supply terminal 23 side.

電圧計測部27は、第1及び第2の電圧計測端子が接触される配線パターン29上の2点間の電圧を正側及び負側の電圧導入部27a,27bを介して計測する。   The voltage measuring unit 27 measures the voltage between two points on the wiring pattern 29 with which the first and second voltage measuring terminals are in contact via the positive and negative voltage introducing units 27a and 27b.

電圧安定手段28は、第2の電圧計測端子25に電気的に接続され、その第2の電圧計測端子25の電圧を安定させるようになっている。より具体的には、電圧安定手段28は、オペアンプ41を備えて構成されている。なお、第2の電圧計測端子25の電圧を安定させることができるものであれば、オペアンプ41以外のものを用いてもよい。   The voltage stabilization means 28 is electrically connected to the second voltage measurement terminal 25 and stabilizes the voltage of the second voltage measurement terminal 25. More specifically, the voltage stabilizing unit 28 includes an operational amplifier 41. Any device other than the operational amplifier 41 may be used as long as the voltage at the second voltage measurement terminal 25 can be stabilized.

また、この電圧安定手段28は、第2の電流供給端子23と第2の電圧計測端子25の電位を同電位に安定させるようになっている。この電圧安定手段28が、第2の電流供給端子23と第2の電圧計測端子25の電位を同電位に安定させることにより、基板検査を行う場合の第2の電流供給端子23と第2の電圧計測端子25の電位差を無視することができる。   The voltage stabilizing means 28 stabilizes the potentials of the second current supply terminal 23 and the second voltage measurement terminal 25 at the same potential. This voltage stabilization means 28 stabilizes the potentials of the second current supply terminal 23 and the second voltage measurement terminal 25 at the same potential, so that the second current supply terminal 23 and the second current supply terminal 23 when performing substrate inspection The potential difference at the voltage measurement terminal 25 can be ignored.

さらに、好ましくは、この電圧安定手段28が、第2の電流供給端子23と第2の電圧計測端子25の電位をグランド電位に安定させる。このように、電圧安定手段28が第2の電流供給端子23と第2の電圧計測端子25をグランド電位に安定させることにより、基板検査を行う際のこれらの端子に係る測定用の充電時間を削減できるようになっている。   Further, preferably, the voltage stabilization means 28 stabilizes the potentials of the second current supply terminal 23 and the second voltage measurement terminal 25 to the ground potential. In this way, the voltage stabilization means 28 stabilizes the second current supply terminal 23 and the second voltage measurement terminal 25 to the ground potential, so that the charging time for measurement related to these terminals when performing substrate inspection can be reduced. It can be reduced.

オペアンプ41は、反転入力端子41a、非反転入力端子41b及び出力端子41cを有し、出力端子41cが第2の電流供給端子23側に向き、非反転入力端子41bが電流供給部26の負側の出力部26b側に向くように、負側の電流供給用導電路32に介挿されている。オペアンプ41の反転入力端子41aは、第2の電圧計測端子25と電気的に接続されている。より詳細には、オペアンプ41は、スイッチング素子36よりも電流供給部26側に位置するように、導電路32に介挿されている。また、オペアンプ41の反転入力端子41aは、スイッチング素子38よりも電圧計測部27側の位置で導電路34と電気的に接続され、導電路34を介して第2の電圧計測端子25と電気的に接続されている。すなわち、オペアンプ41の非反転入力端子41bは導電路32の電流供給部26側の部分(グランド線)と電気的に接続されており、また、反転入力端子41aと出力端子41cとは、端子23,25が配線パターン29に接触されるのに伴って、導電路32,34、端子23,25及び配線パターン29を介して互いに電気的に接続されるようになっている。   The operational amplifier 41 has an inverting input terminal 41 a, a non-inverting input terminal 41 b, and an output terminal 41 c, the output terminal 41 c faces the second current supply terminal 23, and the non-inverting input terminal 41 b is the negative side of the current supply unit 26. Is inserted into the negative-side current supply conductive path 32 so as to face the output portion 26b side. The inverting input terminal 41 a of the operational amplifier 41 is electrically connected to the second voltage measurement terminal 25. More specifically, the operational amplifier 41 is inserted in the conductive path 32 so as to be positioned closer to the current supply unit 26 than the switching element 36. The inverting input terminal 41 a of the operational amplifier 41 is electrically connected to the conductive path 34 at a position closer to the voltage measurement unit 27 than the switching element 38, and is electrically connected to the second voltage measurement terminal 25 through the conductive path 34. It is connected to the. That is, the non-inverting input terminal 41b of the operational amplifier 41 is electrically connected to a portion (ground line) on the current supply unit 26 side of the conductive path 32, and the inverting input terminal 41a and the output terminal 41c are connected to the terminal 23. , 25 are electrically connected to each other through the conductive paths 32, 34, the terminals 23, 25 and the wiring pattern 29.

このため、オペアンプ41は、端子23,25が配線パターン29に接触された際、第2の電圧計測端子25及び配線パターン29の第2の電圧計測素子25との接触部の電圧をグランド電位(ゼロ電位)に保持するようなっている。よって、電流供給部26による配線パターン29への電流供給開始時に、仮に第2の電圧計測端子25及び配線パターン29の第2の電圧計測素子25との接触部の電圧が変動しても、オペアンプ41の出力端子41cの出力電圧によりその電圧の変動が瞬時に打ち消されて、第2の電圧計測端子25等の電位がグランド電位に保持されるようになっている。   For this reason, when the terminals 23 and 25 are brought into contact with the wiring pattern 29, the operational amplifier 41 sets the voltage at the contact portion between the second voltage measuring terminal 25 and the second voltage measuring element 25 of the wiring pattern 29 to the ground potential ( (Zero potential). Therefore, even if the voltage at the contact portion between the second voltage measuring terminal 25 and the second voltage measuring element 25 of the wiring pattern 29 fluctuates when the current supply unit 26 starts to supply current to the wiring pattern 29, the operational amplifier The fluctuation of the voltage is instantaneously canceled by the output voltage of the output terminal 41c of 41, and the potential of the second voltage measuring terminal 25 and the like is held at the ground potential.

その結果、第1及び第2の電流供給端子22,23、及び第1及び第2の電圧計測端子24,25が配線パターン29に接触され、電流供給部26による電流供給が開始された直後に、第1及び第2の電圧計測端子24,25が接触される配線パターン29上の2点間の電圧が安定し、またその電圧が安定するまでに要する時間のバラツキが生じることもない。よって、電流供給開始直後に配線パターン29上の2点間の電圧を電圧計測部27により正確に計測することができ、電流供給開始から電圧計測までの時間、及び検査に要する時間を大幅に短縮できるようになっている。   As a result, the first and second current supply terminals 22 and 23 and the first and second voltage measurement terminals 24 and 25 are brought into contact with the wiring pattern 29 and immediately after the current supply by the current supply unit 26 is started. The voltage between the two points on the wiring pattern 29 with which the first and second voltage measuring terminals 24 and 25 are in contact with each other is stabilized, and there is no variation in time required for the voltage to stabilize. Therefore, the voltage between the two points on the wiring pattern 29 can be accurately measured immediately after the current supply is started, and the time from the start of the current supply to the voltage measurement and the time required for the inspection are greatly reduced. It can be done.

また、第2の電圧計測端子25及び配線パターン29の第2の電圧計測素子25との接触部の電圧が実質的にグランド電位に保持されているため、第1及び第2の電圧計測端子24,25が接触される配線パターン29上の2点間には、電流供給部26の出力電圧と実質的に等しい電圧差が生じることとなる。その結果、検査のための回路の効率化が図れるようになっている。   In addition, since the voltage at the contact portion between the second voltage measurement terminal 25 and the wiring pattern 29 with the second voltage measurement element 25 is substantially held at the ground potential, the first and second voltage measurement terminals 24 are provided. 25, a voltage difference substantially equal to the output voltage of the current supply unit 26 is generated between the two points on the wiring pattern 29 with which they are in contact. As a result, the efficiency of the circuit for inspection can be improved.

図2は、本実施形態に係る図1の基板検査装置21及び図3の従来の基板検査装置を用いて配線パターン6,29上の2点間の電圧を計測するときの、第1及び第2の電圧計測端子11,12,24,25の電圧推移を示すグラフである。図2中のラインL1,L2は、図1の基板検査装置21を用いて電圧計測を行うときの、配線パターン29の第1及び第2の電圧計測端子24,25との接触部の電圧推移を示している。また、ラインL3,L4は、図3の基板検査装置を用いて電圧計測を行うときの、配線パターン6の第1及び第2の電圧計測端子11,12との接触部の電圧推移を示している。   2 shows the first and second when the voltage between two points on the wiring patterns 6 and 29 is measured using the substrate inspection apparatus 21 of FIG. 1 and the conventional substrate inspection apparatus of FIG. 3 according to the present embodiment. 2 is a graph showing voltage transition of two voltage measurement terminals 11, 12, 24, 25. Lines L1 and L2 in FIG. 2 indicate voltage transitions in contact portions with the first and second voltage measurement terminals 24 and 25 of the wiring pattern 29 when voltage measurement is performed using the substrate inspection apparatus 21 in FIG. Is shown. Lines L3 and L4 indicate voltage transitions at the contact portions of the wiring pattern 6 with the first and second voltage measurement terminals 11 and 12 when voltage measurement is performed using the substrate inspection apparatus of FIG. Yes.

図2のラインL3,L4より、図3の基板検査装置では、時刻Taで配線パターン6への電流供給が開始されてから、配線パターン6の第1及び第2の電圧計測端子11,12との接触部の電圧が安定するまでに、相当の時間を要していることが分かる。また、第1及び第2の電圧計測端子11,12が接触する配線パターン6の2点間の電圧差に比して、第2の電流供給端子5と配線パターン6との接触部以降の電流経路にかかる電圧の方が格段に大きく、回路の効率が悪くなっていることが分かる。   From the lines L3 and L4 in FIG. 2, in the substrate inspection apparatus in FIG. 3, the first and second voltage measurement terminals 11 and 12 of the wiring pattern 6 are started after the current supply to the wiring pattern 6 is started at time Ta. It can be seen that it takes a considerable amount of time for the voltage at the contact portion to stabilize. Further, the current after the contact portion between the second current supply terminal 5 and the wiring pattern 6 is compared with the voltage difference between the two points of the wiring pattern 6 with which the first and second voltage measurement terminals 11 and 12 are in contact. It can be seen that the voltage applied to the path is much larger, and the efficiency of the circuit is worsening.

これに対し、図2のラインL1,L2より、図1の基板検査装置1では、時刻Taで配線パターン6への電流供給が開始されると、配線パターン6の第1及び第2の電圧計測端子11,12との接触部の電圧が瞬時に安定し、電流供給開始直後に第1及び第2の電圧計測端子24,25が接触する配線パターン29の2点間の電圧差が計測可能となっていることが分かる。また、第2の電圧計測端子25及び配線パターン29の第2の電圧計測端子25との接触部の電圧がグランド電位に保持されているため、第1及び第2の電圧計測端子24,25が接触する配線パターン29の2点間の電圧差が、電流供給部26の出力電圧と実質的に等しくなり、回路の効率が良好であることが分かる。   On the other hand, when the current supply to the wiring pattern 6 is started at time Ta in the substrate inspection apparatus 1 of FIG. 1 from the lines L1 and L2 of FIG. 2, the first and second voltage measurements of the wiring pattern 6 are started. The voltage at the contact portion with the terminals 11 and 12 is instantaneously stabilized, and the voltage difference between two points of the wiring pattern 29 where the first and second voltage measurement terminals 24 and 25 are in contact immediately after the start of current supply can be measured. You can see that Further, since the voltage of the contact portion between the second voltage measurement terminal 25 and the second voltage measurement terminal 25 of the wiring pattern 29 is held at the ground potential, the first and second voltage measurement terminals 24 and 25 are It can be seen that the voltage difference between the two points of the wiring pattern 29 in contact is substantially equal to the output voltage of the current supply unit 26, and the efficiency of the circuit is good.

尚、前述の実施形態に係る構成の変形例として、端子23と端子25とを同電位、かつ、一定の電位レベルに安定させることができれば、これらの端子23,25の電位をグランド電位以外の所定の基準電位に保持するようにしてもよい。例えば、配線パターン29及び導電路32にバイアス電圧を印加するようにしてもよい。   As a modification of the configuration according to the above-described embodiment, if the terminal 23 and the terminal 25 can be stabilized at the same potential and a constant potential level, the potentials of these terminals 23 and 25 are set to other than the ground potential. It may be held at a predetermined reference potential. For example, a bias voltage may be applied to the wiring pattern 29 and the conductive path 32.

本発明の一実施形態に係る基板検査装置の構成を示す図である。It is a figure showing composition of a substrate inspection device concerning one embodiment of the present invention. 図1の基板検査装置及び従来の基板検査装置を用いて配線パターン上の2点間の電圧を計測するときの、第1及び第2の電圧計測端子の電圧推移を示すグラフである。It is a graph which shows the voltage transition of the 1st and 2nd voltage measurement terminal when measuring the voltage between two points on a wiring pattern using the board | substrate inspection apparatus of FIG. 1, and the conventional board | substrate inspection apparatus. 従来の基板検査装置の構成を示す図である。It is a figure which shows the structure of the conventional board | substrate inspection apparatus.

符号の説明Explanation of symbols

21 基板検査装置、22 第1の電流供給端子、23 第2の電流供給端子、24 第1の電圧計測端子、25 第2の電圧計測端子、26 電流供給部、26a,26b 出力部、27 電圧計測部、27a,27b 電圧導入部、28 電圧安定手段、29 配線パターン、31,32 電流供給用導電路、33,34 電圧計測用導電路、35〜38 スイッチング素子、41 オペアンプ、42 電流計。   21 Board inspection device, 22 1st current supply terminal, 23 2nd current supply terminal, 24 1st voltage measurement terminal, 25 2nd voltage measurement terminal, 26 Current supply part, 26a, 26b Output part, 27 voltage Measurement unit, 27a, 27b Voltage introduction unit, 28 Voltage stabilization means, 29 Wiring pattern, 31, 32 Current supply conductive path, 33, 34 Voltage measurement conductive path, 35-38 Switching element, 41 Operational amplifier, 42 Ammeter.

Claims (3)

複数の配線パターンを有する基板の電気的特性を検査する基板検査装置であって、
前記複数の配線パターンのうちのいずれかの配線パターンにおける互いに離間した位置で、その配線パターンに接触される第1及び第2の電流供給端子と、
前記いずれか配線パターンにおける前記第1の電流供給端子及び前記第2の電流供給端子により挟まれた区間内において、互いに離間した位置で前記配線パターンに接触される第1及び第2の電圧計測端子と、
前記第1の電流供給及び前記第2の電流供給端子を介して前記いずれかの配線パターンに、前記第1の電流供給端子側から前記第2の電流供給端子側に電流を流す電流供給部と、
前記第1の電圧計測端子及び前記第2の電圧計測端子を介し、前記第1の電圧計測端子及び前記第2の電圧計測端子が接触される前記いずれかの配線パターンの2点間の電圧を計測する電圧計測部と、
電圧安定手段と、
を備え、
前記第1の電圧計測端子及び前記第2の電圧計測端子のうち、前記第2の電圧計測端子の方が、前記電流の下流側で前記いずれかの配線パターンに接触され、
前記電圧安定手段は、前記第2の電圧計測端子に電気的に接続され、その第2の電圧計測端子及び前記いずれかの配線パターンの前記第2の電圧計測素子との接触部の電圧を安定させることを特徴とする基板検査装置。
A board inspection apparatus for inspecting electrical characteristics of a board having a plurality of wiring patterns,
First and second current supply terminals that are in contact with the wiring patterns at positions separated from each other in any of the plurality of wiring patterns;
First and second voltage measurement terminals that are in contact with the wiring pattern at positions separated from each other in a section sandwiched between the first current supply terminal and the second current supply terminal in any one of the wiring patterns. When,
A current supply unit configured to flow a current from the first current supply terminal side to the second current supply terminal side to the one of the wiring patterns via the first current supply and the second current supply terminal; ,
A voltage between two points of any one of the wiring patterns with which the first voltage measurement terminal and the second voltage measurement terminal are brought into contact with each other via the first voltage measurement terminal and the second voltage measurement terminal. A voltage measurement unit to measure,
Voltage stabilization means;
With
Of the first voltage measurement terminal and the second voltage measurement terminal, the second voltage measurement terminal is in contact with any one of the wiring patterns on the downstream side of the current,
The voltage stabilization means is electrically connected to the second voltage measurement terminal, and stabilizes the voltage at the contact portion between the second voltage measurement terminal and the second voltage measurement element of any one of the wiring patterns. A substrate inspection apparatus characterized by being made to perform.
請求項1に記載の基板検査装置において、
前記電圧安定手段はオペアンプを備えていることを特徴とする基板検査装置。
The board inspection apparatus according to claim 1,
A substrate inspection apparatus, wherein the voltage stabilizing means includes an operational amplifier.
請求項2に記載の基板検査装置において、
前記電流供給部の電流供給のための正側及び負側の出力部は、正側及び負側の電流供給用導電路を介して前記第1の電流供給端子及び前記第2の電流供給端子とそれぞれ電気的に接続され、
前記電圧計測部の電圧計測のための正側及び負側の電圧導入部は、正側及び負側の電圧計測用導電路を介して前記第1の電圧計測端子及び前記第2の電圧計測端子とそれぞれ電気的に接続され、
前記オペアンプは、その出力端子が前記第2の電流供給端子側に接続され、その非反転入力端子が前記電流供給部の前記負側の出力部側に接続されるように前記負側の電流供給用導電路に介挿されるとともに、その反転入力端子が前記第2の電圧計測端子と電気的に接続されていることを特徴とする基板検査装置。
The substrate inspection apparatus according to claim 2,
The positive-side and negative-side output units for supplying current from the current supply unit are connected to the first current supply terminal and the second current supply terminal via positive and negative current supply conductive paths. Each electrically connected,
The positive and negative voltage introduction sections for voltage measurement of the voltage measurement section are the first voltage measurement terminal and the second voltage measurement terminal via positive and negative voltage measurement conductive paths. And each is electrically connected,
The operational amplifier has an output terminal connected to the second current supply terminal side and a non-inverting input terminal connected to the negative output section side of the current supply section. A board inspection apparatus characterized by being inserted in a conductive path and having an inverting input terminal electrically connected to the second voltage measurement terminal.
JP2006166583A 2006-06-15 2006-06-15 Substrate inspecting means Pending JP2007333598A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006166583A JP2007333598A (en) 2006-06-15 2006-06-15 Substrate inspecting means
PCT/JP2007/061697 WO2007145156A1 (en) 2006-06-15 2007-06-11 Substrate inspecting device
TW96121394A TW200815777A (en) 2006-06-15 2007-06-13 Substrate inspecting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166583A JP2007333598A (en) 2006-06-15 2006-06-15 Substrate inspecting means

Publications (1)

Publication Number Publication Date
JP2007333598A true JP2007333598A (en) 2007-12-27

Family

ID=38831670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166583A Pending JP2007333598A (en) 2006-06-15 2006-06-15 Substrate inspecting means

Country Status (3)

Country Link
JP (1) JP2007333598A (en)
TW (1) TW200815777A (en)
WO (1) WO2007145156A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272579A (en) * 2009-05-19 2010-12-02 Nf Corp Method and device for inspecting separation state of electrode and manufacturing method of electronic device
JP2015230179A (en) * 2014-06-03 2015-12-21 日本電産リード株式会社 Board inspection device
KR20160076754A (en) * 2014-12-23 2016-07-01 한미반도체 주식회사 Semiconductor Package Inspecting Device
KR20190036472A (en) 2017-09-27 2019-04-04 니혼덴산리드가부시키가이샤 Resistance measurement apparatus, substrate inspection apparatus, and resistance measurement method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145155A1 (en) 2016-02-22 2017-08-31 Real View Imaging Ltd. A method and system for displaying holographic images within a real object
US11663937B2 (en) 2016-02-22 2023-05-30 Real View Imaging Ltd. Pupil tracking in an image display system
WO2017145154A1 (en) 2016-02-22 2017-08-31 Real View Imaging Ltd. Wide field of view hybrid holographic display
WO2017145158A1 (en) 2016-02-22 2017-08-31 Real View Imaging Ltd. Zero order blocking and diverging for holographic imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159459A (en) * 1993-12-10 1995-06-23 N F Kairo Sekkei Block:Kk Impedance measuring instrument
JPH1138053A (en) * 1997-07-18 1999-02-12 Matsushita Electric Ind Co Ltd Impedance measuring device
JP2001050995A (en) * 1999-08-05 2001-02-23 Murata Mfg Co Ltd Impedance measuring device for electronic component
JP2006030131A (en) * 2004-07-21 2006-02-02 Hioki Ee Corp Resistance measuring method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208560B2 (en) * 2002-12-06 2009-01-14 日置電機株式会社 Impedance measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159459A (en) * 1993-12-10 1995-06-23 N F Kairo Sekkei Block:Kk Impedance measuring instrument
JPH1138053A (en) * 1997-07-18 1999-02-12 Matsushita Electric Ind Co Ltd Impedance measuring device
JP2001050995A (en) * 1999-08-05 2001-02-23 Murata Mfg Co Ltd Impedance measuring device for electronic component
JP2006030131A (en) * 2004-07-21 2006-02-02 Hioki Ee Corp Resistance measuring method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272579A (en) * 2009-05-19 2010-12-02 Nf Corp Method and device for inspecting separation state of electrode and manufacturing method of electronic device
JP2015230179A (en) * 2014-06-03 2015-12-21 日本電産リード株式会社 Board inspection device
KR20160076754A (en) * 2014-12-23 2016-07-01 한미반도체 주식회사 Semiconductor Package Inspecting Device
KR101667687B1 (en) 2014-12-23 2016-10-20 한미반도체 주식회사 Semiconductor Package Inspecting Device
KR20190036472A (en) 2017-09-27 2019-04-04 니혼덴산리드가부시키가이샤 Resistance measurement apparatus, substrate inspection apparatus, and resistance measurement method

Also Published As

Publication number Publication date
TW200815777A (en) 2008-04-01
WO2007145156A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
JP2007333598A (en) Substrate inspecting means
US10175284B2 (en) Circuit board testing apparatus and circuit board testing method
JP5910262B2 (en) Inspection method of component built-in board
TWI510794B (en) Substrate inspecting apparatus and substrate inspecting method
KR102416051B1 (en) Resistance measuring devices and methods of measuring resistance
CN110023768B (en) Resistance measuring device and resistance measuring method
KR101354031B1 (en) Impedance measurement apparatus
JP4467373B2 (en) Resistance measuring method and apparatus
JP6221281B2 (en) Insulation inspection method and insulation inspection apparatus
CN115825567A (en) Device and method for testing resistance value change of welding spot
JP2010127820A (en) Direct-current testing device and semiconductor testing apparatus
JP5019097B2 (en) Electronic component characteristic measuring apparatus and electronic component characteristic value measuring method
JP5849923B2 (en) Impedance measuring device
JP6255833B2 (en) Substrate inspection method and substrate inspection apparatus
JP2012237622A (en) Measuring apparatus and measuring method
JP2009008548A (en) Printed circuit board and electronic apparatus
JP6418376B2 (en) Board inspection equipment
JPWO2009081522A1 (en) Test equipment and measuring equipment
JP5202401B2 (en) Test apparatus and calibration method
JPH08105935A (en) Semiconductor integrated circuit inspection device
JP2009264817A (en) Diagnostic board of semiconductor testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904