JP6765085B2 - 水素生成装置および燃料電池システム - Google Patents

水素生成装置および燃料電池システム Download PDF

Info

Publication number
JP6765085B2
JP6765085B2 JP2016228658A JP2016228658A JP6765085B2 JP 6765085 B2 JP6765085 B2 JP 6765085B2 JP 2016228658 A JP2016228658 A JP 2016228658A JP 2016228658 A JP2016228658 A JP 2016228658A JP 6765085 B2 JP6765085 B2 JP 6765085B2
Authority
JP
Japan
Prior art keywords
circulating water
water
storage
path
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228658A
Other languages
English (en)
Other versions
JP2017109919A (ja
Inventor
吉田 潤
潤 吉田
章典 行正
章典 行正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2017109919A publication Critical patent/JP2017109919A/ja
Application granted granted Critical
Publication of JP6765085B2 publication Critical patent/JP6765085B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本開示は水素生成装置および燃料電池システムに関する。
水素生成装置および燃料電池システムは、改質水の供給、冷却水の供給、凝縮水の回収などが行われる水処理系を備えることがある。例えば、高分子電解質形燃料電池システムは、燃料電池を冷却する冷却水の処理系と、水蒸気を含むガスが冷却されて発生する凝縮水を、改質器の改質水として再利用する凝縮水の処理系と、を備えている。なお、燃料電池システムは、凝縮水を回収して改質水として再利用することで、外部からの水供給を受けずに水蒸気改質に必要な水蒸気を生成する水自立運転を行い得る。
例えば、特許文献1では、回収した凝縮水を処理する回収水処理部を備え、回収水処理部で処理された改質水を改質器で再利用する燃料電池システムが提案されている。
具体的には、回収水処理部は、CO濃度が高い回収水が流入する第一水タンク部と、CO濃度が低い回収水が流入する第二水タンク部と、第二水タンク部に回収された水を、銀イオンを含有する抗菌剤で殺菌処理する部分と、殺菌の処理が行われた水をイオン交換樹脂フィルタで脱イオン化する部分とを備える。そして、回収水処理部で処理された水が改質器へ供給されている。
特開2012−199019号公報
しかし、特許文献1では、燃料電池システムの水処理系の小型化および簡素化について十分検討されていない。また、特許文献1では、燃料電池システムの水処理系の低コスト化についても十分検討されていない。
本開示の一態様(aspect)は、このような事情を鑑みてなされたものであり、水処理系を従来よりも小型かつ簡素に構成し得る水素生成装置および燃料電池システムを提供する。また、水処理系のコストを従来よりも低減し得る水素生成装置および燃料電池システムを提供する。
本開示の一態様の水素生成装置は、原料ガスおよび改質水を用いて水素含有ガスを生成する改質器と、水蒸気を含むガスが冷却されて発生する凝縮水が流通する凝縮水経路と、循環水が循環する循環水経路と、前記循環水経路に設けられ、前記循環水を脱イオン化するイオン交換樹脂フィルタと、前記凝縮水経路に設けられた第1貯留部と前記循環水経路に設けられた第2貯留部とを備える貯留タンクと、前記循環水経路の分岐部から分岐し、前記循環水を改質水として前記改質器へ供給するための改質水経路と、を備え、前記第1貯留部は、前記凝縮水が流入する第1流入口と前記凝縮水が外部へオーバーフローする第1流出口とを備え、前記第2貯留部は、前記循環水が流入する第2流入口と前記循環水が流出する第2流出口とを備え、前記凝縮水経路は、前記第1貯留部と前記第2貯留部のうち前記第1貯留部とのみ接続し、前記第1貯留部および前記第2貯留部同士は、前記第1流出口より下方に設けられた第1連通部を介して連通しており、前記第1貯留部の内部空間と前記第2貯留部の内部空間とが同一圧力に保たれている。
また、本開示の一態様の燃料電池システムは、上記の一態様の水素生成装置と、前記水素含有ガスおよび酸化剤ガスを用いて発電する燃料電池と、前記燃料電池から排出された排ガスが流通する排ガス経路と、を備え、前記凝縮水経路は、前記排ガスが冷却して発生した凝縮水が流通している。
本開示の一態様の水素生成装置および燃料電池システムは、水処理系を従来よりも小型かつ簡素に構成し得る。また、本開示の一態様の水素生成装置および燃料電池システムは、水処理系のコストを従来よりも低減し得る。
図1は、第1実施形態の水素生成装置の一例を示す図である。 図2は、図1の分岐部の説明に用いる図である。 図3は、第1実施形態の第1実施例の水素生成装置の一例を示す図である。 図4は、第1実施形態の第2実施例の水素生成装置の一例を示す図である。 図5は、第1実施形態の第3実施例の水素生成装置における貯留タンクの一例を示す図である。 図6は、第1実施形態の第4実施例の水素生成装置における貯留タンクの一例を示す図である。 図7は、第2実施形態の燃料電池システムの一例を示す図である。 図8は、第2実施形態の第1実施例の燃料電池システムの一例を示す図である。 図9は、第2実施形態の第2実施例の燃料電池システムの一例を示す図である。 図10は、第2実施形態の第2実施例の燃料電池システムの一例を示す図である。
発明者らは、特許文献1の燃料電池システムにおける水処理系の問題点について鋭意検討し、以下の知見を得た。
特許文献1の燃料電池システムは、水処理系のタンクとして第一水タンクおよび第二水タンクを備え、第一水タンク部に脱気機構が設けられている。従って、水処理系の部品点数が増える。これにより、水処理系のシステム全体が大型化および複雑化する可能性がある。また、水処理系のコストが嵩む可能性がある。
また、特許文献1の燃料電池システムでは、第一水タンクと第二水タンクとの間の圧力差の影響が十分に検討されていない。このため、高温の水蒸気改質反応に由来する塩素、カルシウム、硫酸、アンモニアなどの燃料電池のセルスタックの触媒および改質触媒を被毒する成分を含む第一水タンクの水、細菌などを含む第一水タンクの水が、第二水タンクへ必要量以上、供給される可能性がある。触媒を被毒する成分を含む水は燃料電池システムの劣化を促進し、また、細菌などを含む水はシステムの配管の詰まりの原因となるため、回収水処理部において回収水を十分に処理する必要がある。すると、回収水処理部での抗菌剤の使用量、イオン交換樹脂の濾材量が多量となるので、水処理系のシステム全体が大型化する可能性がある。また、水処理系のコストが嵩む可能性がある。
このように、発明者らは、従来例では、水処理系の小型化、簡素化および低コスト化については未だ改善の余地があることを見出し、以下の本開示の一態様に到達した。
すなわち、本開示の第1の態様の水素生成装置は、原料ガスおよび改質水を用いて水素含有ガスを生成する改質器と、水蒸気を含むガスが冷却されて発生する凝縮水が流通する凝縮水経路と、循環水が循環する循環水経路と、循環水経路に設けられ、循環水を脱イオン化するイオン交換樹脂フィルタと、凝縮水経路に設けられた第1貯留部と循環水経路に設けられた第2貯留部とを備える貯留タンクと、循環水経路の分岐部から分岐し、循環水を改質水として改質器へ供給するための改質水経路と、を備え、第1貯留部は、凝縮水が流入する第1流入口と凝縮水が外部へオーバーフローする第1流出口とを備え、第2貯留部は、循環水が流入する第2流入口と循環水が流出する第2流出口とを備え、前記凝縮水経路は、前記第1貯留部と前記第2貯留部のうち前記第1貯留部とのみ接続し、第1貯留部および第2貯留部同士は、第1流出口より下方に設けられた第1連通部を介して連通しており、第1貯留部および第2貯留部のそれぞれの内部空間が同一圧力に保たれている。
かかる構成によると、本態様の水素生成装置は、水処理系を従来よりも小型かつ簡素に構成し得る。また、本態様の水素生成装置は、水処理系のコストを従来よりも低減できる。
具体的には、単一の貯留タンクの内部が第1貯留部と第2貯留部とに分けられている。第1貯留部には凝縮水が流入し、第2貯留部には循環水が流入するように構成されている。そして、第1貯留部は、凝縮水の外部へのオーバーフローが行われる第1流出口を介して大気に開放されているので、特許文献1に記載のような脱気機構を用いずに、第1貯留部に貯留する凝縮水の脱気を行い得る。
また、第1貯留部の内部空間と第2貯留部の内部空間とが同一圧力に保たれるので、凝縮水経路と循環水経路との間に生じる圧力差によって、第1貯留部および第2貯留部の水位が影響されない。つまり、本態様の水素生成装置では、第2貯留部の水が不足する場合に限り、不足した水量に相当する量の第1貯留部の凝縮水が、第1連通部を通じて第2貯留部へ流入する。
ここで、高温(例えば、600℃−800℃程度)の水蒸気改質が行われた後の水蒸気を含むガスが冷却されて発生する凝縮水は、塩素、カルシウム、硫酸、アンモニアなどの改質触媒を被毒する成分を含む可能性がある。一方、循環水経路を循環する循環水は化学反応を起こさないので、かかる触媒被毒成分を含む可能性は低い。
以上の理由により、塩素、カルシウム、硫酸、アンモニアなどの改質触媒を被毒する成分を含む凝縮水が、必要量以上、浄化された循環水に混入することが抑制される。
このようにして、本態様の水素生成装置では、循環水経路に設けられるイオン交換樹脂の濾材量を従来よりも少なくできる。
また、本開示の第2の態様の水素生成装置は、第1の態様の水素生成装置において、第2貯留部の循環水は、外部へオーバーフローせずに循環水経路を流通している。
かかる構成によると、貯留タンクの水量が多い場合には、凝縮水のみを排水できる。つまり、イオン交換樹脂フィルタで浄化される循環水が無駄に排水されない。従って、イオン交換樹脂の濾材量を、循環水を外部へオーバーフローで排水させる場合に比べて少量にできる。
また、本開示の第3の態様の水素生成装置は、第1の態様または第2の態様の水素生成装置において、第2貯留部の第2流入口および第2流出口はいずれも、凝縮水経路とは接続されずに、循環水経路に接続されている。
かかる構成によると、塩素、カルシウム、硫酸、アンモニアなどの改質触媒を被毒する成分を含む凝縮水が流通する凝縮水経路と、循環水(浄化水)を貯留する第2貯留部とを、単一の貯留タンクにおいて適切に分離することができる。
また、本開示の第4の態様の水素生成装置は、第1の態様−第3の態様のいずれかの水素生成装置において、循環水経路に設けられ、循環水を循環させる第1ポンプと、改質水経路に設けられ、改質水の流量を調整する第2ポンプと、を備える。
かかる構成によると、循環水経路および改質水経路のそれぞれに、循環水(浄化水)を、必要な適量の流量で流通させることができる。具体的には、改質器に、適量の改質水を供給できる。よって、改質器において、原料ガスの改質反応が適切に行われる。
また、本開示の第5の態様の水素生成装置は、第1の態様−第4の態様のいずれかの水素生成装置において、上記の分岐部は、循環水の流れ方向に対して、イオン交換樹脂フィルタの下流、かつ第2貯留部の上流の循環水経路に設けられている。かかる構成の採用は、以下の理由よる。
水素生成装置の使用時、例えば、イオン交換樹脂の粒子間の隙間に空気が存在する場合がある。この場合、循環水がイオン交換樹脂を通過する際に、循環水とともに気泡が、イオン交換樹脂フィルタから排出される可能性がある。そこで、本態様の水素生成装置では、イオン交換樹脂フィルタから出た気泡を、分岐部において、改質水経路側に導かずに、循環水経路側へ導くように構成している。よって、気泡による改質器の水枯れ、故障の発生などが抑制され、改質器の耐久性が向上する。
以下、添付図面を参照しつつ、本開示の実施形態および実施例について説明する。なお、以下で説明する実施形態および実施例は、いずれも本開示の一具体例を示すものである。つまり、以下に示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、いずれも一例であり、本開示を限定するものではない。また、以下に示される構成要素のうち、本開示の最上位概念を規定する独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、装置構成の図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比などについては正確な表示ではない場合がある。
(第1実施形態)
[装置構成]
図1は、第1実施形態の水素生成装置の一例を示す図である。なお、図面において、便宜上、「上」および「下」が取られており、重力は上から下に作用するものとする。
図1に示す例では、本実施形態の水素生成装置100は、改質器11と、凝縮水経路12と、循環水経路13と、イオン交換樹脂フィルタ14と、分岐部15と、改質水経路16と、第1ポンプ17と、第2ポンプ18と、貯留タンク30と、を備える。
改質器11は、原料ガスおよび改質水を用いて水素含有ガスを生成する。具体的には、改質器11において、原料ガスが改質反応して、水素含有ガスが生成される。改質反応は、改質水を用いる反応であれば、どのような形態であっても構わない。改質反応として、例えば、水蒸気改質反応およびオートサーマル反応などを例示できる。改質触媒の触媒金属には、一般的に、Pt、Ru、Rhなどの貴金属系触媒およびNiからなる群の中から選択される少なくとも1種を用いることができる。改質器11から排出される水素含有ガスは、図示しない適宜の水素利用機器(例えば、燃料電池)で利用される。なお、改質器11は、高温(例えば、600℃−800℃程度)で動作するので、改質器11の外殻は、ステンレススチールなどの金属で構成する方がよい。
図1には示されていないが、各改質反応において必要となる機器は適宜設けられる。例えば、改質反応が水蒸気改質反応であれば、改質水を蒸発することで水蒸気を生成する蒸発器が設けられる。改質反応がオートサーマル反応であれば、水素生成装置100には、更に、改質反応用の空気を供給する空気供給器が設けられる。
原料ガスは、図示しない原料ガス供給器により改質器11に供給される。原料ガス供給器は、改質器11へ供給する原料ガスの流量を調整する機器であり、例えば、昇圧器と流量調整弁により構成される。あるいは、原料ガス供給器は、昇圧器および流量調整弁のいずれか一方により構成されてもよい。昇圧器として、例えば、ブースタ式ポンプが用いられるが、これに限定されるものではない。原料ガスは、原料ガス供給源より供給される。原料ガス供給源は、所定の供給圧を備えるもので、例えば、原料ボンベ、原料インフラなどが挙げられる。原料ガスとして、例えば、メタンを主成分とする都市ガスおよび天然ガス、LPGなどの少なくとも炭素および水素から構成される有機化合物を含む炭化水素燃料ガスを用いることができる。都市ガスとは、ガス会社から配管を通じて、家庭などへ供給されるガスをいう。
凝縮水経路12は、水蒸気を含むガスが冷却されて発生する凝縮水が流通する流路である。なお、凝縮水経路12には、図1においては図示しない凝縮器が設けられている。水蒸気を含むガスは、例えば、改質器11で生成された水素含有ガスでもよいし、水素生成装置100を燃料電池システムに組み込む場合は、燃料電池から排出された排ガスでもよい。
循環水経路13は、循環水が循環する流路である。そして、イオン交換樹脂フィルタ14は、循環水経路13に設けられ、循環水を脱イオン化している。また、第1ポンプ17が循環水経路13に設けられている。第1ポンプ17は、循環水経路13の循環水を循環できれば、どのような構成であっても構わない。第1ポンプ17として、例えば、羽車式の軸流ポンプ、ブランジャーポンプなどを例示できる。これにより、循環水が循環水経路13を循環することで、循環水の脱イオン化(浄化)が行われる。
改質水経路16は、循環水経路13の分岐部15から分岐し、循環水を改質水として改質器11へ供給するための流路である。また、第2ポンプ18が、改質水経路16に設けられている。第2ポンプ18は、改質器11へ供給する改質水の流量を調整する機器である。第2ポンプ18は、改質水の流量を調整できれば、どのような構成であっても構わない。第2ポンプ18として、例えば、ブランジャーポンプなどを例示できる。これにより、循環水経路13および改質水経路16のそれぞれに、循環水(浄化水)を必要な適量の流量で流通させることができる。具体的には、改質器11に、適量の改質水を供給できる。よって、改質器11において、原料ガスの改質反応が適切に行われる。
貯留タンク30は、凝縮水経路12に設けられた第1貯留部31と循環水経路13に設けられた第2貯留部32とを備える。なお、貯留タンク30の外殻は、耐蝕性が高いステンレススチールなどの金属、または、耐薬品性が高いポリプロピレンなどのプラスチックで構成する方がよい。第1貯留部31は、凝縮水が流入する第1流入口33と凝縮水が外部へオーバーフローする第1流出口34とを備える。第1流入口33は、循環水経路13とは接続されずに、凝縮水経路12に接続されている。第2貯留部32は、循環水が流入する第2流入口35と循環水が流出する第2流出口36とを備える。第2流入口35および第2流出口36はいずれも、凝縮水経路12とは接続されずに、循環水経路13に接続されている。また、第2貯留部32の循環水は、外部へオーバーフローせずに循環水経路13を流通している。
このように、本実施形態の水素生成装置100では、例えば、貯留タンク30に仕切る部材など(例えば、図5および図6の隔壁38参照)を設けることで、第1貯留部31および第2貯留部32が、単一の貯留タンク20内に形成されている。
また、本実施形態の水素生成装置100では、第1貯留部31および第2貯留部32同士は、第1流出口34より下方に設けられた第1連通部37を介して連通しており、第1貯留部31の内部空間S1および第2貯留部32の内部空間S2が同一圧力に保たれている。なお、これらの内部空間S1、S2を同一圧力に保つための具体的な構成例については実施例1および実施例2で説明する。第1連通部37の具体的な構成例については実施例3および実施例4で説明する。
また、本実施形態の水素生成装置100では、上記の分岐部15は、循環水の流れ方向に対して、イオン交換樹脂フィルタ14の下流、かつ第2貯留部32の上流の循環水経路13に設けられている。これは以下の理由による。
図2に示すように、水素生成装置100の使用時、例えば、イオン交換樹脂14Aの粒子間の隙間に空気が存在する場合がある。この場合、循環水がイオン交換樹脂14Aを通過する際に、循環水とともに気泡Aが、イオン交換樹脂フィルタ14から排出される可能性がある。そこで、本実施形態の水素生成装置100では、イオン交換樹脂フィルタ14から出た気泡Aを、分岐部15において、改質水経路16側に導かずに、循環水経路13側へ導くように構成している。よって、気泡Aによる改質器11の水枯れ、故障の発生などが抑制され、改質器11の耐久性が向上する。
[動作]
以下、水素生成装置100の起動時の動作の一例について図1を参照しながら説明する。
なお、以下の動作は、図示しない制御器が、例えば、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備え、演算処理部が、記憶部に記億された制御プログラムを読み出すことで、自動で行われるものであってもよい。
まず、貯留タンク30の第2貯留部32の蓋部に設けられた給水口40(例えば、図5および図6参照)から外部の水(例えば、市水)の給水が行われる。このとき、貯留タンク30が所定量の水で満たされたかどうかは、第1流出口34からの排水の有無で確認される。なお、かかる給水を、市水ではなくイオン交換水で行えば、イオン交換樹脂14Aの濾材量を少量にできる。
以上で、水素生成装置100の起動準備が完了する。
次いで、第1ポンプ17が作動される。これにより、第2貯留部32に貯留された循環水が、第2流出口36から循環水経路13を循環する。このとき、循環水が、イオン交換樹脂フィルタ14で浄化される。
そして、第2ポンプ18が作動される。これにより、循環水経路13の分岐部15から適量の改質水が、改質水経路16を通じて改質器11へ送られる。すると、改質器11では、原料ガスおよび改質水を用いた改質反応により水素含有ガスが生成される。水素含有ガスは、適宜の水素利用機器(例えば、燃料電池)に利用される。
改質器11で生成された水素含有ガス、および水素含有ガスを燃焼した燃焼排ガスなどは水蒸気を含む。よって、かかる水蒸気を含むガスが、図示しない凝縮器で冷却されると、水蒸気を含むガスから凝縮水が発生する。そして、この凝縮水が、凝縮水経路12を通じて第1貯留部31に流入する。
第1貯留部31の凝縮水の余剰分は、第1流出口34から外部へオーバーフローで排水される。
循環水が不足する場合、不足水量に相当する量の凝縮水が、第1連通部37を通じて第1貯留部31から第2貯留部32へ補充される。補充された凝縮水は、その後、イオン交換樹脂フィルタ14で浄化され、改質器11で改質水として再利用される。
以上により、本実施形態の水素生成装置100は、水処理系を従来よりも小型かつ簡素に構成し得る。また、本実施形態の水素生成装置100は、水処理系のコストを従来よりも低減できる。
具体的には、単一の貯留タンク30の内部が第1貯留部31と第2貯留部32とに分けられ、これらの第1貯留部31および第2貯留部32のそれぞれに、凝縮水および循環水のそれぞれが流入するように構成されている。そして、第1貯留部31は、凝縮水の外部へのオーバーフローが行われる第1流出口34を介して大気に開放されているので、特許文献1に記載のような脱気機構を用いずに、第1貯留部31に貯留する凝縮水の脱気を行い得る。
また、第1貯留部31の内部空間S1および第2貯留部32の内部空間S2が同一圧力に保たれるので、凝縮水経路12と循環水経路13との間に生じる圧力差によって、第1貯留部31および第2貯留部32の水位が影響されない。つまり、本実施形態の水素生成装置100では、第2貯留部32の水が不足する場合に限り、不足水量に相当する量の第1貯留部31の凝縮水が、第1連通部37を通じて第2貯留部32へ流入する。すなわち、改質水経路16を通じて改質器11へ送られ、改質器11で改質水として利用される水量に相当する量の第1貯留部31の凝縮水が、第1連通部37を通じて第2貯留部32へ流入する。
ここで、高温(例えば、600℃−800℃程度)の水蒸気改質が行われた後の水蒸気を含むガスが冷却されて発生する凝縮水は、改質触媒を被毒する成分を含む可能性がある。一方、循環水経路13を循環する循環水は化学反応は起こさないので、かかる触媒被毒成分を含む可能性は低い。
以上の理由により、塩素、カルシウム、硫酸、アンモニアなどの改質触媒を被毒する成分を含む凝縮水が、改質器11で改質水として利用される必要量以上、浄化された循環水に混入することが抑制される。
このようにして、本実施形態の水素生成装置100では、循環水経路13に設けられるイオン交換樹脂14Aの濾材量を従来よりも少なくできる。
また、本実施形態の水素生成装置100では、第2貯留部32の循環水は、外部へオーバーフローせずに循環水経路13を流通しているので、貯留タンク30の水量が多い場合には、凝縮水のみを排水できる。つまり、イオン交換樹脂フィルタ14で浄化される循環水が無駄に排水されない。よって、イオン交換樹脂14Aの濾材量を、循環水を外部へオーバーフローで排水させる場合に比べて少量にできる。
また、本実施形態の水素生成装置100では、凝縮水経路12Aは第1貯留部31および第2貯留部32のうち第1貯留部31とのみ接続している。すなわち、第2貯留部32の第2流入口35および第2流出口36はいずれも、凝縮水経路12Aとは接続されずに、循環水経路13に接続されている。よって、塩素、カルシウム、硫酸、アンモニアなどの改質触媒を被毒する成分を含む凝縮水が流通する凝縮水経路12Aと、循環水(浄化水)を貯留する第2貯留部32とを、単一の貯留タンク30において適切に分離することができる。従って、第2貯留部32と凝縮水経路12Aとが接続している場合と比較して、第2貯留部32に貯留される循環水(浄化水)をより綺麗な状態で保つことができるため、イオン交換樹脂14Aの濾材量をより少量にできる。
(第1実施例)
図3は、第1実施形態の第1実施例の水素生成装置の一例を示す図である。
図3に示す例では、本実施例の水素生成装置100は、改質器11と、凝縮水経路12と、循環水経路13と、イオン交換樹脂フィルタ14と、分岐部15と、改質水経路16と、第1ポンプ17と、第2ポンプ18と、貯留タンク30Aと、を備える。
改質器11、凝縮水経路12、循環水経路13、イオン交換樹脂フィルタ14、分岐部15、改質水経路16、第1ポンプ17および第2ポンプ18については第1実施形態と同様であるので説明を省略する。
本実施例の水素生成装置100は、第1の態様−第5の態様のいずれかの水素生成装置100において、第1貯留部31および第2貯留部32同士は、第1流出口34より上方に設けられた第2連通部39を介して連通している。なお、第2連通部39は、例えば、貯留タンク30Aの内部を第1貯留部31と第2貯留部32とに仕切る部材など(例えば、図5および図6の隔壁38参照)に設けられた孔であっても構わない。
かかる構成によると、第2連通部39を設けることにより、第1貯留部31の内部空間S1および第2貯留部32の内部空間S2を同一の大気圧に保つことができる。また、第2連通部39が第1流出口34より上方に設けられていることにより、第1貯留部31から第2貯留部32へ凝縮水が第2連通部39を通じて流入することを抑制できる。
なお、本実施例の水素生成装置100は、上記の特徴点以外は、第1の態様−第5の態様のいずれかの水素生成装置100と同様に構成しても構わない。
(第2実施例)
図4は、第1実施形態の第2実施例の水素生成装置の一例を示す図である。
図4に示す例では、本実施例の水素生成装置100は、改質器11と、凝縮水経路12と、循環水経路13と、イオン交換樹脂フィルタ14と、分岐部15と、改質水経路16と、第1ポンプ17と、第2ポンプ18と、貯留タンク30Bと、を備える。
改質器11、凝縮水経路12、循環水経路13、イオン交換樹脂フィルタ14、分岐部15、改質水経路16、第1ポンプ17および第2ポンプ18については第1実施形態と同様であるので説明を省略する。
本実施例の水素生成装置100は、第1の態様−第5の態様のいずれかの水素生成装置100において、第1貯留部31の内部空間S1および第2貯留部32の内部空間S2は、大気に開放されている。例えば、貯留タンク30Bの外殻を構成する外壁の内部空間S2と接する部分に、第2貯留部32の内部空間S2を大気に開放するための開口部32Aが設けられていてもよい。開口部32Aを設ける位置は、第1貯留部31の第1流出口34の配置位置よりも少し上方にする方がよい。これは、第2貯留部32の水位が第1貯留部31の水位よりも高くなる場合、両者の水位の高低差が大きくなると、第1連通部37を通じて第2貯留部32から第1貯留部31へ流入する冷却水(イオン交換水)の量が多くなる可能性が高いからである。
かかる構成によると、第1貯留部31の内部空間S1を大気に開放するための第1流出口、および第2貯留部32の内部空間S2を大気に開放するための開口部32Aを設けることにより、第1貯留部31の内部空間S1および第2貯留部32の内部空間S2を同一の大気圧に保つことができる。また、第1貯留部31の水位が第2貯留部32の水位より高い場合には、開口部32Aが第1流出口34より上方に設けられていることにより、第1貯留部31から第2貯留部32へ適量の凝縮水を、第1連通部37を通じて給水することができる。また、第2貯留部32の水位が第1貯留部31の水位より高い場合に、開口部32Aが第1流出口34より少し上方に設けられていることにより、第2貯留部32から第1貯留部31へ必要量以上の冷却水(イオン交換水)が第1連通部37を通じて流入することを抑制できる。
なお、本実施例の水素生成装置100は、上記の特徴点以外は、第1の態様−第5の態様のいずれかの水素生成装置100と同様に構成しても構わない。
(第3実施例)
図5は、第1実施形態の第3実施例の水素生成装置における貯留タンクの一例を示す図である。
本実施例の水素生成装置100は、第1の態様−第5の態様および第1実施形態の第1実施例−第2実施例のいずれかの水素生成装置100において、貯留タンク30Cは、貯留タンク30C内を第1貯留部31と第2貯留部32とに仕切る隔壁38を備え、第1連通部37は、隔壁38に設けられた孔37Aで構成されている。なお、図5では、第1実施例の貯留タンク30Aの隔壁38に、孔37Aを設ける例を示したが、第2実施例の貯留タンク30Bの隔壁38に、このような孔を設けても構わない。
かかる構成によると、部品の追加を行わずに、簡易な構成で、第2貯留部32の水が不足する場合に限り、不足水量に相当する量の第1貯留部31の凝縮水が、孔37Aを通じて第2貯留部32へ流入する。つまり、第2貯留部32の水位が、第1貯留部31の水位よりも低くなった場合に限り、第1貯留部31の凝縮水を、孔37Aを通じて第2貯留部32へ流入させ得る。
なお、本実施例の水素生成装置100は、上記の特徴点以外は、第1の態様−第5の態様および第1実施形態の第1実施例−第2実施例のいずれかの水素生成装置100と同様に構成しても構わない。
(第4実施例)
図6は、第1実施形態の第4実施例の水素生成装置における貯留タンクの一例を示す図である。
本実施例の水素生成装置100は、第1の態様−第5の態様および第1実施形態の第1実施例−第2実施例のいずれかの水素生成装置100において、貯留タンク30Dは、貯留タンク30D内を第1貯留部31と第2貯留部32とに仕切る隔壁38を備え、第1連通部37は、隔壁38に設けられた逆止弁37Bを備え、逆止弁37Bは、第2貯留部32から第1貯留部31に向かう水の流れを遮断するように構成されている。逆止弁37Bの構成は周知であるので詳細な説明は省略する。なお、図6では、第1実施例の貯留タンク30Aの隔壁38に、逆止弁37B孔を設ける例を示したが、第2実施例の貯留タンク30Bの隔壁38に、このような逆止弁を設けても構わない。
かかる構成によると、第2貯留部32の水が不足する場合に限り、不足水量に相当する量の第1貯留部31の凝縮水が、逆止弁37Bを通じて第2貯留部32へ流入する。つまり、第2貯留部32の水位が、第1貯留部31の水位よりも低くなった場合に限り、第1貯留部31の凝縮水を、逆止弁37Bを通じて第2貯留部32へ流入させ得る。また、逆止弁37Bで第2貯留部32から第1貯留部31に向かう水の流れが遮断されるので、このような逆止弁37Bを設けない場合に比べ、第2貯留部32の循環水(浄化水)の第1貯留部31の凝縮水への拡散が適切に抑制される。
なお、本実施例の水素生成装置100は、上記の特徴点以外は、第1の態様−第5の態様および第1実施形態の第1実施例−第2実施例のいずれかの水素生成装置100と同様に構成しても構わない。
(第2実施形態)
図7は、第2実施形態の燃料電池システムの一例を示す図である。
図7に示す例では、本実施形態の燃料電池システム200は、第1の態様−第5の態様および第1実施形態の第1実施例−第4実施例のいずれかの水素生成装置100と、燃料電池50と、排ガス経路51と、を備える。
燃料電池50は、水素生成装置100からの水素含有ガスおよび酸化剤ガスを用いて発電する。酸化剤ガスとして、例えば、空気を例示できる。燃料電池50は、いずれの種類の燃料電池であってもよい。燃料電池50として、例えば、高分子電解質形燃料電池、固体酸化物形燃料電池、りん酸形燃料電池などを例示できる。
排ガス経路51は、燃料電池50から排出された排ガスが流通する流路である。また、凝縮水経路12Aは、排ガスが冷却して発生した凝縮水が流通する流路である。排ガスは、水蒸気を含み、かかる排ガスとして、例えば、燃料電池50から排出されるアノードオフガスまたはカソードオフガスなどを例示できる。また、このようなアノードオフガスおよびカソードオフガスが、図示しない燃焼器で燃焼する場合、排ガスとして、燃焼器からの燃焼排ガスを例示できる。
排ガス経路51には、適宜の凝縮器52が設けられている。これにより、凝縮器52において、排ガスが冷却されて、排ガス中の水蒸気が凝縮する。そして、凝縮水は、排ガスが流れる排ガス経路51から分離され、凝縮水経路12Aを流通し、水素生成装置100へと送られる。そして、凝縮水は、図1に示すように、水素生成装置100の貯留タンク30の第1貯留部31で貯留される。
凝縮器52は、排ガス中の水蒸気を凝縮できれば、どのような構成であっても構わない。凝縮器52として、例えば、排ガスを加熱流体とする熱交換器を例示できる。熱交換器の具体例は、第1実施例−第2実施例で説明する。第1実施例では、高分子電解質形燃料電池システムにおける熱交換器が例示され、第2実施例では、固体酸化物形燃料電池システムにおける熱交換器が例示されている。
なお、本実施形態の水素生成装置100の構成および動作は、燃料電池50を第1実施形態および第1実施形態の第1実施例−第4実施例のいずれかの水素生成装置100から生成する水素含有ガスを使用する水素利用機器と考えれば、第1実施形態および第1実施形態の第1実施例−第4実施例のいずれかと同様であるので詳細な説明を省略する。
以上により、本実施形態の燃料電池システム200は、水処理系を従来よりも小型かつ簡素に構成し得る。また、本実施形態の燃料電池システム200は、水処理系のコストを従来よりも低減できる。
具体的には、図1に示すように、単一の貯留タンク30の内部が第1貯留部31と第2貯留部32とに分けられ、これらの第1貯留部31および第2貯留部32のそれぞれに、凝縮水および循環水のそれぞれが流入するように構成されている。そして、第1貯留部31は、凝縮水の外部へのオーバーフローが行われる第1流出口34を介して大気に開放されているので、特許文献1に記載のような脱気機構を用いずに、第1貯留部31に貯留する凝縮水の脱気を行い得る。
また、図1に示すように、第1貯留部31の内部空間S1および第2貯留部32の内部空間S2が同一圧力に保たれるので、凝縮水経路12Aと循環水経路13との間に生じる圧力差によって、第1貯留部31および第2貯留部32の水位が影響されない。つまり、本実施形態の燃料電池システム200に使用される水素生成装置100では、第2貯留部32の水が不足する場合に限り、不足水量に相当する量の第1貯留部31の凝縮水が、第1連通部37を通じて第2貯留部32へ流入する。
ここで、排ガスが冷却されて発生する凝縮水は、改質触媒、燃料電池50の触媒などを被毒する成分を含む可能性があるが、循環水経路13を循環する循環水は化学反応を起こさないので、かかる触媒被毒成分を含む可能性は低い。
以上の理由により、塩素、カルシウム、硫酸、アンモニアなどの改質触媒および燃料電池50の触媒を被毒する成分を含む凝縮水が、必要量以上、浄化された循環水に混入することが抑制される。
このようにして、本実施形態の燃料電池システム200では、循環水経路13に設けられるイオン交換樹脂14Aの濾材量を従来よりも少なくできる。
また、本実施形態の燃料電池システム200では、第2貯留部32の循環水は、外部へオーバーフローせずに循環水経路13を流通しているので、貯留タンク30の水量が多い場合には、凝縮水のみを排水できる。つまり、イオン交換樹脂フィルタ14で浄化される循環水が無駄に排水されない。よって、イオン交換樹脂14Aの濾材量を、循環水を外部へオーバーフローで排水させる場合に比べて少量にできる。
また、本実施形態の燃料電池システム200では、第2貯留部32の第2流入口35および第2流出口36はいずれも、凝縮水経路12Aとは接続されずに、循環水経路13に接続されている。よって、塩素、カルシウム、硫酸、アンモニアなどの改質触媒を被毒する成分を含む凝縮水が流通する凝縮水経路12Aと、循環水(浄化水)を貯留する第2貯留部32とを、単一の貯留タンク30において適切に分離することができる。
(第1実施例)
図8は、第2実施形態の第1実施例の燃料電池システムの一例を示す図である。
図8に示す例では、本実施形態の燃料電池システム200は、改質器11と、凝縮水経路12Aと、循環水経路13と、イオン交換樹脂フィルタ14と、分岐部15と、改質水経路16と、第1ポンプ17と、第2ポンプ18と、貯留タンク30と、加熱器(セルスタック50A)と、排ガス経路51Aと、熱交換器52Aと、冷却器60と、を備える。
改質器11、凝縮水経路12A、循環水経路13、イオン交換樹脂フィルタ14、分岐部15、改質水経路16、第1ポンプ17、第2ポンプ18および貯留タンク30については第1実施形態の水素生成装置100または第2実施形態の燃料電池システム200と同様であるので説明を省略する。
加熱器は、循環水経路13に設けられ、循環水を加熱する。加熱器は、循環水経路13を循環する循環水を加熱できれば、どのような構成であっても構わないが、本実施例の燃料電池システム200では、上記の加熱器は、高分子電解質形燃料電池のセルスタック50Aである。
具体的には、燃料電池システム200が、高分子電解質形燃料電池システムの場合、高分子電解質形燃料電池のセルスタック50Aの反応は発熱反応となる。よって、セルスタック50Aは発電時の熱により高温化するが、セルスタック50Aの温度は、所定の動作温度(例えば、60℃−80℃程度)に維持する必要がある。そこで、セルスタック50A内に循環水経路13を通過させることで、セルスタック50Aの温度が上記動作温度を超えないように制御される。このとき、セルスタック50Aは、低温状態の循環水に熱を与えるので、循環水を加熱する加熱器として機能する。これにより、セルスタック50Aで発生する熱で循環水の温度を上げることができるので、特別な化学処理などを行わずに、細菌の繁殖を抑制できる。
冷却器60は、循環水経路13に設けられ、循環水を冷却する。冷却器60は、循環水経路13を循環する循環水を冷却できれば、どのような構成であっても構わない。冷却器60として、例えば、空冷式の放熱器などを例示できる。これにより、循環水経路13を循環する循環水を冷却することで、セルスタック50Aの温度を所定の動作温度に維持できる。つまり、セルスタック50Aを通過した循環水の過昇温を、冷却器60により適切に抑制できる。
なお、図示しない制御器が、図示しない温度検知器の検知温度に基づいて、セルスタック50Aの温度が所定の動作温度となるように、循環水流量のフィードバック制御などを行っても構わない。
ここで、本実施例の燃料電池システム200では、循環水経路13の循環水は、貯留タンク30の第2貯留部32、冷却器60、イオン交換樹脂フィルタ14、分岐部15および加熱器(セルスタック50A)をこの順に流通している。これにより、循環水は、イオン交換樹脂フィルタ14に流入する前に冷却器60を通って冷却される。よって、イオン交換樹脂14Aの濾材の使用温度を低く維持できて、イオン交換樹脂フィルタ14の耐久性が向上する。また、イオン交換樹脂フィルタ14の下流側の分岐部15の作用により、上記の通り、改質水経路16を流れる改質水への気泡混入を抑制できる。よって、気泡による改質器11の水枯れ、故障の発生などが抑制され、改質器11の耐久性が向上する。更に、循環水が加熱器(セルスタック50A)を通過する際に、上記の通り、細菌の繁殖を抑制できる。
また、本実施例の燃料電池システム200では、凝縮器として、排ガス経路51Aが通過する熱交換器52Aが例示されている。熱交換器52Aは、図8に示すように、熱交換が行われる両流体の流れが対向し、並行流熱交換器等に比べて熱交換性能が高い対向流熱交換器であっても構わない。ここで、排ガス経路51Aには、例えば、改質器11に隣接して配された燃焼器(図示せず)からの燃焼排ガスなどが流通し、燃焼排ガスが、熱交換器52Aの加熱流体に用いられている。なお、このような燃焼排ガスは、例えば、セルスタック50Aから排出されるアノードオフガスおよびカソードオフガスが、この燃焼器により燃焼することで生成されてもよい。この場合、熱交換器52Aの受熱流体として、例えば、給湯用の貯湯水などを用いることができる。これにより、熱交換器52Aの熱交換で燃焼排ガスの温度を下げることができるので、燃焼排ガス中の水蒸気を凝縮水として適切に回収できる。同時に、燃焼排ガスの熱を給湯用の貯湯水で適切に回収できる。
なお、本実施例の燃料電池システム200は、高分子電解質形燃料電池のセルスタック50Aに代えて、あるいは、本セルスタック50Aとともに、加熱器として、排ガス経路51Aを流通する燃焼排ガスと循環水とが熱交換する熱交換器(図示せず)を備えていてもよい。この場合、本実施例の燃料電池システム200は、空冷式の放熱器に代えて、あるいは、空冷式の放熱器とともに、冷却器60として、貯湯水と循環水とが熱交換する熱交換器(図示せず)を備えていてもよい。この構成では、燃焼排ガスの温度を下げるとともに、燃焼排ガスの熱を貯湯水で適切に回収できる。また、燃焼排ガス中の水蒸気を凝縮させて凝縮水を回収できるとともに、燃料電池システム200の外へ排出される燃焼排ガスの湿度を下げることができる。
なお、本実施例の燃料電池システム200は、上記の特徴点以外は、第2実施形態の燃料電池システム200と同様に構成しても構わない。
(第2実施例)
図9および図10は、第2実施形態の第2実施例の燃料電池システムの一例を示す図である。
図9に示す例では、本実施形態の燃料電池システム200は、改質器11と、凝縮水経路12Aと、循環水経路13と、イオン交換樹脂フィルタ14と、分岐部15と、改質水経路16と、第1ポンプ17と、第2ポンプ18と、貯留タンク30と、排ガス経路51Bと、固体酸化物形燃料電池50Bと、加熱器(第1熱交換器52B)と、冷却器60と、を備える。
改質器11、凝縮水経路12A、循環水経路13、イオン交換樹脂フィルタ14、分岐部15、改質水経路16、第1ポンプ17、第2ポンプ18および貯留タンク30については第1実施形態の水素生成装置100または第2実施形態の燃料電池システム200と同様であるので説明を省略する。
加熱器は、循環水経路13に設けられ、循環水を加熱する。加熱器は、循環水経路13を循環する循環水を加熱できれば、どのような構成であっても構わないが、本実施例の燃料電池システム200では、上記の加熱器は、循環水と排ガスとが熱交換する第1熱交換器52Bである。つまり、第1熱交換器52Bは、排ガス経路51Bおよび循環水経路13に設けられている。
具体的には、燃料電池システム200が、固体酸化物形燃料電池システムの場合、固体酸化物形燃料電池50Bから高温(例えば、600℃−800℃程度)の排ガスが排出される。そこで、第1熱交換器52Bに排ガス経路51Bおよび循環水経路13が通過することで、排ガスを加熱流体に用い、循環水を受熱流体に用いて、両流体の熱交換が行われる。
このとき、第1熱交換器52Bは、低温状態の循環水に熱を与えるので、循環水を加熱する加熱器として機能する。これにより、第1熱交換器52Bの熱交換で循環水の温度を上げることができるので、特別な化学処理などを行わずに、細菌の繁殖を抑制できる。
また、第1熱交換器52Bは、高温状態の排ガスから熱を奪うので、排ガス経路51Bを流通する排ガスが冷却される凝縮器としても機能する。これにより、第1熱交換器52Bの熱交換で排ガスの温度を下げることができるので、排ガス中の水蒸気を凝縮水として適切に回収できる。同時に、排ガスの熱を循環水で適切に回収できる。
冷却器60は、循環水経路13に設けられ、循環水を冷却する。冷却器60は、循環水経路13を循環する循環水を冷却できれば、どのような構成であっても構わないが、図10に示すように、本実施例の燃料電池システム200では、上記の冷却器60は、貯湯タンク61と、貯湯タンク61に貯留する貯湯水と循環水とが熱交換する第2熱交換器52Cとを備えてもよい。第2熱交換器52Cは、循環水経路13に設けられている。つまり、貯湯タンク61内を通過する循環水経路13の部分が、第2熱交換器52Cを構成している。
これにより、循環水経路13を循環する循環水を冷却することで、循環水の温度が、第1熱交換器52Bにおいて排ガス中の水蒸気を凝縮させるのに必要な適温に維持される。つまり、第1熱交換器52Bを通過した循環水の過昇温を、冷却器60により適切に抑制できる。同時に、循環水の熱を給湯用の貯湯水で適切に回収できる。
なお、図示しない制御器が、図示しない温度検知器の検知温度に基づいて、循環水の温度が所定の適温となるように、循環水流量のフィードバック制御などを行っても構わない。
ここで、本実施例の燃料電池システム200では、循環水経路13の循環水は、貯留タンク30の第2貯留部32、冷却器60、イオン交換樹脂フィルタ14、分岐部15および加熱器(第1熱交換器52B)をこの順に流通している。これにより、循環水は、イオン交換樹脂フィルタ14に流入する前に冷却器60を通って冷却される。よって、イオン交換樹脂14Aの濾材の使用温度を低く維持できて、イオン交換樹脂フィルタ14の耐久性が向上する。また、イオン交換樹脂フィルタ14の下流側の分岐部15の作用により、上記の通り、改質水経路16を流れる改質水への気泡混入を抑制できる。よって、気泡による改質器11の水枯れ、故障の発生などが抑制され、改質器11の耐久性が向上する。更に、循環水が加熱器(第1熱交換器52B)を通過する際に、上記の通り、細菌の繁殖を抑制できる。
なお、図10では、図9で例示される固体酸化物形燃料電池システムの冷却器60が、貯湯タンク61と第2熱交換器52Cとを備える例が示されているが、これに限らない。例えば、図8で例示される高分子電解質形燃料電池システムの冷却器60が、貯湯タンク61と第2熱交換器52Cとを備えても構わない。
また、上記全ての実施形態および全ての実施例はそれぞれ、互いに相手を排除しない限り、互いに組み合わせてもよい。また、上記説明から、当業者にとっては、本開示の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
本開示の一態様は、水処理系を従来よりも小型かつ簡素に構成し得る水素生成装置および燃料電池システムとして利用できる。また、本開示の一態様は、水処理系のコストを従来よりも低減し得る水素生成装置および燃料電池システムとしても利用できる。
11 :改質器
12 :凝縮水経路
12A :凝縮水経路
13 :循環水経路
14 :イオン交換樹脂フィルタ
14A :イオン交換樹脂
15 :分岐部
16 :改質水経路
17 :第1ポンプ
18 :第2ポンプ
30 :貯留タンク
30A :貯留タンク
30B :貯留タンク
30C :貯留タンク
30D :貯留タンク
31 :第1貯留部
32 :第2貯留部
32A :開口部
33 :第1流入口
34 :第1流出口
35 :第2流入口
36 :第2流出口
37 :第1連通部
37A :孔
37B :逆止弁
38 :隔壁
39 :第2連通部
40 :給水口
50 :燃料電池
50A :セルスタック
50B :固体酸化物形燃料電池
51 :排ガス経路
51A :排ガス経路
51B :排ガス経路
52 :凝縮器
52A :熱交換器
52B :第1熱交換器
52C :第2熱交換器
60 :冷却器
61 :貯湯タンク
100 :水素生成装置
200 :燃料電池システム
A :気泡
S1 :内部空間
S2 :内部空間

Claims (16)

  1. 原料ガスおよび改質水を用いて水素含有ガスを生成する改質器と、
    水蒸気を含むガスが冷却されて発生する凝縮水が流通する凝縮水経路と、
    循環水が循環する循環水経路と、
    前記循環水経路に設けられ、前記循環水を脱イオン化するイオン交換樹脂フィルタと、
    前記凝縮水経路に設けられた第1貯留部と前記循環水経路に設けられた第2貯留部とを備える貯留タンクと、
    前記循環水経路の分岐部から分岐し、前記循環水を改質水として前記改質器へ供給するための改質水経路と、
    を備え、
    前記第1貯留部は、前記凝縮水が流入する第1流入口と前記凝縮水が外部へオーバーフローする第1流出口とを備え、
    前記第2貯留部は、前記循環水が流入する第2流入口と前記循環水が流出する第2流出口とを備え、
    前記凝縮水経路は、前記第1貯留部と前記第2貯留部のうち前記第1貯留部とのみ接続し、
    前記第1貯留部および前記第2貯留部同士は、前記第1流出口より下方に設けられた第1連通部を介して連通しており、前記第1貯留部の内部空間と前記第2貯留部の内部空間とが同一圧力に保たれている水素生成装置。
  2. 前記第2貯留部の循環水は、外部へオーバーフローせずに前記循環水経路を流通している、請求項1に記載の水素生成装置。
  3. 前記第2流入口および前記第2流出口はいずれも、前記凝縮水経路とは接続されずに、前記循環水経路に接続されている、請求項1または2に記載の水素生成装置。
  4. 前記循環水経路に設けられた第1ポンプと、
    前記改質水経路に設けられた第2ポンプと、
    を備える、請求項1から3のいずれかに記載の水素生成装置。
  5. 前記分岐部は、前記循環水の流れ方向に対して、前記イオン交換樹脂フィルタの下流、かつ前記第2貯留部の上流の前記循環水経路に設けられている、請求項1から3のいずれかに記載の水素生成装置。
  6. 前記第1貯留部および前記第2貯留部同士は、前記第1流出口より上方に設けられた第2連通部を介して連通している、請求項1から5のいずれかに記載の水素生成装置。
  7. 前記第1貯留部および前記第2貯留部のそれぞれの内部空間は、大気に開放されている請求項1から5のいずれかに記載の水素生成装置。
  8. 前記貯留タンクは、前記貯留タンク内を前記第1貯留部と前記第2貯留部とに仕切る隔壁を備え、
    前記第1連通部は、前記隔壁に設けられた孔で構成されている請求項1から7のいずれかに記載の水素生成装置。
  9. 前記貯留タンクは、前記貯留タンク内を前記第1貯留部と前記第2貯留部とに仕切る隔壁を備え、
    前記第1連通部は、前記隔壁に設けられた逆止弁を備え、前記逆止弁は、前記第2貯留部から前記第1貯留部に向かう水の流れを遮断する、請求項1から7のいずれかに記載の水素生成装置。
  10. 原料ガスおよび改質水を用いて水素含有ガスを生成する改質器と、
    前記水素含有ガスおよび酸化剤ガスを用いて発電する燃料電池と、
    前記燃料電池から排出された排ガスが流通する排ガス経路と、
    前記排ガスが冷却されて発生する凝縮水が流通する凝縮水経路と、
    循環水が循環する循環水経路と、
    前記循環水経路に設けられ、前記循環水を脱イオン化するイオン交換樹脂フィルタと、
    前記凝縮水経路に設けられた第1貯留部と前記循環水経路に設けられた第2貯留部とを備える貯留タンクと、
    前記循環水経路の分岐部から分岐し、前記循環水を改質水として前記改質器へ供給するための改質水経路と、
    を備え、
    前記第1貯留部は、前記凝縮水が流入する第1流入口と前記凝縮水が外部へオーバーフローする第1流出口とを備え、
    前記第2貯留部は、前記循環水が流入する第2流入口と前記循環水が流出する第2流出口とを備え、
    前記凝縮水経路は、前記第1貯留部と前記第2貯留部のうち前記第1貯留部とのみ接続し、
    前記第1貯留部および前記第2貯留部同士は、前記第1流出口より下方に設けられた第1連通部を介して連通しており、前記第1貯留部の内部空間と前記第2貯留部の内部空間とが同一圧力に保たれている、
    燃料電池システム。
  11. 前記循環水経路に設けられ、前記循環水を加熱する加熱器および前記循環水を冷却する冷却器を備える請求項10に記載の燃料電池システム。
  12. 前記加熱器は、前記燃料電池のセルスタックである請求項11に記載の燃料電池システム。
  13. 前記加熱器は、前記循環水と前記排ガスとが熱交換する第1熱交換器である請求項11に記載の燃料電池システム。
  14. 前記冷却器は、前記貯湯タンクに貯留する貯湯水と前記循環水とが熱交換する第2熱交換器を備える請求項12または13に記載の燃料電池システム。
  15. 前記循環水経路の循環水は、前記第2貯留部、前記冷却器、前記イオン交換樹脂フィルタ、前記分岐部および前記加熱器をこの順に流通している請求項1から14のいずれかに記載の燃料電池システム。
  16. 原料ガスおよび改質水を用いて水素含有ガスを生成する改質器と、
    前記水素含有ガスおよび酸化剤ガスを用いて発電する固体酸化物形燃料電池と、
    前記固体酸化物形燃料電池から排出された排ガスが流通する排ガス経路と、
    前記排ガスが冷却されて発生する凝縮水が流通する凝縮水経路と、
    循環水が循環する循環水経路と、
    前記排ガス経路および前記循環水経路に設けられ、前記排ガスと前記循環水とが熱交換する第1熱交換器と、
    前記循環水経路に設けられ、前記循環水を脱イオン化するイオン交換樹脂フィルタと、
    前記循環水経路に設けられ、前記循環水と貯湯水とが熱交換する第2熱交換器と、
    前記凝縮水経路に設けられた第1貯留部と前記循環水経路に設けられた第2貯留部とを備える貯留タンクと
    前記循環水経路の分岐部から分岐し、前記循環水を改質水として前記改質器へ供給するための改質水経路と、
    を備え、
    前記第1貯留部は、前記凝縮水が流入する第1流入口と前記凝縮水が外部へオーバーフローする第1流出口とを備え、
    前記第2貯留部は、前記循環水が流入する第2流入口と前記循環水が流出する第2流出口とを備え、
    前記第1貯留部および前記第2貯留部同士は、前記第1流出口より下方に設けられた第1連通部を介して連通しており、前記第1貯留部および前記第2貯留部のそれぞれの内部空間が同一圧力に保たれている燃料電池システム。
JP2016228658A 2015-12-14 2016-11-25 水素生成装置および燃料電池システム Active JP6765085B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243450 2015-12-14
JP2015243450 2015-12-14

Publications (2)

Publication Number Publication Date
JP2017109919A JP2017109919A (ja) 2017-06-22
JP6765085B2 true JP6765085B2 (ja) 2020-10-07

Family

ID=57460408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228658A Active JP6765085B2 (ja) 2015-12-14 2016-11-25 水素生成装置および燃料電池システム

Country Status (3)

Country Link
US (1) US10122038B2 (ja)
EP (1) EP3182492B1 (ja)
JP (1) JP6765085B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110959212B (zh) * 2017-07-27 2023-02-21 大日工业株式会社 燃料电池装置
KR200492508Y1 (ko) * 2018-12-17 2020-10-28 주식회사 한국가스기술공사 자동 압축공기식 펌핑장치
DE102021207807A1 (de) 2021-07-21 2023-01-26 Mahle International Gmbh Brennstoffzellenvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035632A1 (fr) * 2000-10-20 2002-05-02 Matsushita Electric Industrial Co., Ltd. Systeme de pile a combustible et procede de fonctionnement de ce systeme
JP4886968B2 (ja) * 2004-02-24 2012-02-29 アイシン精機株式会社 燃料電池システム
JP5033323B2 (ja) 2005-11-11 2012-09-26 株式会社Eneosセルテック 燃料電池装置
JP2008269807A (ja) 2007-04-16 2008-11-06 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム
JP5063189B2 (ja) * 2007-05-29 2012-10-31 京セラ株式会社 燃料電池装置
WO2009047897A1 (ja) * 2007-10-11 2009-04-16 Panasonic Corporation 燃料電池システム
JP5383112B2 (ja) * 2008-07-29 2014-01-08 アイシン精機株式会社 燃料電池システム
JP5524673B2 (ja) 2010-03-30 2014-06-18 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2012199019A (ja) 2011-03-18 2012-10-18 Osaka Gas Co Ltd 燃料電池システム
JP6476566B2 (ja) * 2014-03-20 2019-03-06 アイシン精機株式会社 燃料電池システム

Also Published As

Publication number Publication date
US20170170504A1 (en) 2017-06-15
JP2017109919A (ja) 2017-06-22
EP3182492A1 (en) 2017-06-21
US10122038B2 (en) 2018-11-06
EP3182492B1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6534116B2 (ja) 固体酸化物形燃料電池システム
JP6765085B2 (ja) 水素生成装置および燃料電池システム
JP2010257644A (ja) 燃料電池システムの制御方法
JP5092186B2 (ja) 燃料電池コージェネシステム
JP2013012381A (ja) 燃料電池コージェネレーションシステム
JP5063189B2 (ja) 燃料電池装置
JP2007157508A (ja) 気液分離装置および気液分離装置を備えた燃料電池発電システム
KR101778228B1 (ko) 고온형 연료전지 시스템
JP6480298B2 (ja) 燃料電池システム
JP2009076216A (ja) 燃料電池発電システムとその水循環システム
JP2010257645A (ja) 燃料電池システムの制御プログラム
JP2008198400A (ja) 燃料電池発電システム
JP2009016151A (ja) 燃料電池発電装置のドレン回収装置
JP7018591B2 (ja) 燃料電池システム
JP2012216358A (ja) 燃料電池システム
JP5534775B2 (ja) 燃料電池コージェネレーションシステム
JP7109218B2 (ja) 燃料電池システム
JP4158468B2 (ja) 燃料電池発電システム
JP6534125B2 (ja) 固体酸化物形燃料電池システム
JP4660888B2 (ja) 燃料電池発電システムおよびその運転方法
JP2003249255A (ja) 燃料電池システム
JP2015103417A (ja) 燃料電池発電装置
JP5495637B2 (ja) 燃料電池システム
AU2012365474B2 (en) A liquid electrolyte fuel cell system
JP5178095B2 (ja) 燃料電池装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6765085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151