JP2009016151A - 燃料電池発電装置のドレン回収装置 - Google Patents

燃料電池発電装置のドレン回収装置 Download PDF

Info

Publication number
JP2009016151A
JP2009016151A JP2007175852A JP2007175852A JP2009016151A JP 2009016151 A JP2009016151 A JP 2009016151A JP 2007175852 A JP2007175852 A JP 2007175852A JP 2007175852 A JP2007175852 A JP 2007175852A JP 2009016151 A JP2009016151 A JP 2009016151A
Authority
JP
Japan
Prior art keywords
drain
pot
pressure
fuel cell
cylinder member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007175852A
Other languages
English (en)
Inventor
Yasuaki Yamanaka
康朗 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007175852A priority Critical patent/JP2009016151A/ja
Publication of JP2009016151A publication Critical patent/JP2009016151A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】ドレンの液面管理を容易なものとする。
【解決手段】ドレン分離個所となる水クエンチャ17、アノード2入口、カソード3入口、アノード出口気液分離器12、カソード出口気液分離器15を、ドレン配管18,19,20,21,22を介してドレンポット8aに接続する。ドレンポットの液面レベルは、最も圧力の高いドレン分離個所である水クエンチャ17よりドレン6を導くドレン配管を19を水封できるように定める。ドレンポット8aよりも圧力の低いドレン分離個所となるカソード3入口、アノード出口気液分離器12、カソード出口気液分離器13は、ドレンポット8aとの圧力差に相当する水柱の高さ寸法以上の高所となる高さレベルに配設して、ドレン回収装置を形成する。各ドレン分離個所からのドレンを、ガスの吹き抜けや、ドレンの逆流を防止した状態で共通のドレンポット8aへ回収させる。
【選択図】図1

Description

本発明は、固体高分子型燃料電池を用いた燃料電池発電装置で発生するドレンを回収するための燃料電池発電装置のドレン回収装置に関するものである。
燃料電池は、燃料を用いた他の発電方法に比して熱効率が高く、又、環境汚染が少ないため、有効な発電装置として期待されている。特に、固体高分子型燃料電池(PEFC)は、100℃以下という低温で発電が行われ、出力密度が高いので、他の形式の燃料電池に比して小型化でき、しかも、電池構成材料の劣化が少ないこと、起動が容易であること、等の長所があることから、近年、小規模な業務用あるいは家庭用等の発電装置として使用されるようになってきている。
上記固体高分子型燃料電池を用いた発電装置(PEFC発電装置)の一般的な構成は、以下のようにしてある。すなわち、電解質としてフッ素系のイオン交換膜が用いられている固体高分子電解質膜の両面をカソード(空気極)とアノード(燃料極)の両ガス拡散電極で挟持させてなるセルを、セパレータを介し積層してスタックとし、且つ数セルに1つずつの冷却部を備えてなる構成として固体高分子型燃料電池を形成する。上記固体高分子型燃料電池におけるアノードの入口側には、改質器、シフトコンバータ、CO除去器(CO選択酸化反応器)を順に備えてなる燃料処理装置を、途中に加湿器を備えた改質ガス配管を介し接続して、燃料供給部より供給される都市ガス(天然ガス)やメタノール等の原料を、水蒸気と共に上記燃料処理装置へ供給して、該燃料処理装置の改質器にて水蒸気改質を行わせ、得られる改質ガス(燃料ガス)を、シフトコンバータに導いてシフト反応させ、更に、上記CO除去器にてCO除去処理するようにしてあり、しかる後、上記燃料処理装置より送出される改質ガスが、改質ガス配管上に設けてある加湿器にて加湿された後、上記固体高分子型燃料電池のアノードへ供給されるようにしてある。一方、上記カソードの入口側には、酸化ガス(空気)が、圧縮器(空気ブロワ)で圧縮された後、酸化ガス配管上の加湿器を経てから供給されるようにしてある。
かかる構成としてあることにより、上記固体高分子型燃料電池にて、アノード側に供給される改質ガス中の水素と、カソード側に供給される酸化ガス(空気)中の酸素とを電気化学反応(燃料電池反応)させて、この際発生する起電力を取り出すようにしてある。
又、上記固体高分子型燃料電池による燃料電池反応の後、アノードの出口より排出されるアノードオフガスには未反応の水素が残存している。そのため、上記アノードの出口側に接続してあるアノードオフガス配管を、上記燃料処理装置における改質器の燃焼室側のバーナに接続して、上記固体高分子型燃料電池のアノードオフガスを、上記アノードオフガス配管を経て上記燃料処理装置のバーナへ導いて燃焼させ、これにより、燃料処理装置における改質器の改質室にて水蒸気改質を行わせるための熱源として利用するようにしてある。
カソードの出口より排出されるカソードオフガスは、カソードオフガス配管を通して排出するようにしてある。
上記固体高分子型燃料電池発電装置は、上記したように固体高分子型燃料電池の運転温度が100℃以下であることから、固体高分子型燃料電池発電装置の系内では、燃料改質装置を除くと、上記改質ガス配管、酸化ガス配管、アノードオフガス配管、カソードオフガス配管には、ほぼ100℃以下でそれぞれ対応するプロセスガスが流れる構成となっている。
これに対し、上記したように、アノードへ供給する改質ガスは、燃料を水蒸気改質したものであることから水蒸気を多く含んでおり、更に、上記改質ガス及びカソードへ供給する酸化ガスは、それぞれ加湿器で加湿するようにしてあるため湿分を多く含んでいる。そのために、上記改質ガスや酸化ガスではドレンが発生し易い。又、これらのプロセスガスが燃料電池反応に供された後のアノードオフガスやカソードオフガスも湿分を多く含んでいて、ドレンが発生し易くなっている。
ところで、上記改質ガス及び酸化ガス中で発生したドレンが固体高分子型燃料電池のアノード及びカソードへ進入すると、電池電圧の低下をもたらす虞が懸念される。又、上記アノードオフガス中で発生したドレンが、上記改質器のバーナに吹き込まれるようになると、火炎が安定しなくなる等の不具合が生じる虞が懸念される。
上記のようなドレンに起因して固体高分子型燃料電池発電装置の安定性が損なわれる虞を未然に防止するための1つの手法としては、上記各種プロセスガスの配管を、ヒータによってドレンが発生しない温度間で加熱することが考えられる。しかし、この手法は、補機動力の増加に繋がってしまうという問題が生じる。
そのために、上記ドレンによって固体高分子型燃料電池発電装置の安定性が損なわれる虞を未然に防止するための別の手法としては、上記改質ガスや酸化ガスやアノードオフガスの流路に、適宜ドレンポットやドレンの分離管を設けることで、上記改質ガスや酸化ガスで発生するドレンが上記固体高分子型燃料電池へ供給される虞を未然に防止するようにしたり、上記アノードオフガスにて発生するドレンが改質器のバーナへ吹き込まれる虞を未然に防止させるようにすることが考えられてきている(たとえば、特許文献1、特許文献2、特許文献3、特許文献4参照)。
なお、本発明者は、上記カソードオフガス中で発生するドレンを回収して、上記加湿器における加湿用の水として再利用することを考えている。又、燃料改質装置で生成させる水素リッチな改質ガスを、固体高分子型燃料電池の許容温度以下まで冷却するための構成として、上記改質ガスを水と直接接触させて冷却(ダイレクトクエンチ)するようにしてある水クエンチャを使用することを考えている。この場合には、該水クエンチャから、上記アノードガスの冷却に供した後の水が連続的に排出されるようになる。
特開2005−216822号公報 特開平8−185883号公報 特開平11−250927号公報 特開2000−12057号公報
ところが、上記したように、複数のドレン分離個所でドレンを分離するために、各ドレン分離個所ごとに個別のドレンポットを設ける場合は、該各ドレンポットごとに個別に液面管理を行わなければならず、又、機器数が増加してしまう。更に、制御的にも複雑になるというのが実状である。
そのため、ドレンを一個所に集中させて、1つのドレンポットへすべてのドレンを回収するようにすれば、ドレンの液面管理を1つのドレンポットで行うことができて、ドレンの液面管理をより容易なものとすることができると考えられる。
しかし、実際には、上記固体高分子型燃料電池発電装置にて、ドレンが発生する各種プロセスガスの流路は、流通するガスの圧力がそれぞれ異なっているため、上記各種プロセスガスの流路よりドレンを導くためのドレン回収ラインを、1つのドレンポットに単に接続しても、すべてのドレンを上記1つのドレンポットに集めることは困難である。すなわち、圧力の高いガスの流路からは、ドレンポットへドレン以外にガスも流入して、ガスのショートパスラインが形成されてしまう虞が生じる。一方、圧力の低いガスの流路に対しては、ドレンポット内のドレンが上記圧力の低いガスの流路へ逆流して、バブリングを生じると云う虞が生じる。
したがって、現状では、流通するプロセスガスの圧力が近似している系統同士は、ドレン配管を集合させることが可能であるが、ガスの圧力の異なる系統については、それぞれ別々に、ドレンポットを備えたドレンの排出機構を設けるようにせざるを得ず、このために、該各ドレン排出機構ごとのドレンの液面管理が必要とされる。
そこで、本発明は、固体高分子型燃料電池発電装置における複数のドレン分離個所で分離するドレンを、ガスの圧力が異なる系統であるとしても、1つの共通のドレンポットへ一緒に回収できるようにし、更には、燃料改質装置で生成させる水素リッチな改質ガスを水と直接接触させて冷却するようにしてある水クエンチャより排出される水をも一緒に回収でき、且つ液面管理をすべて一括して行うことができる燃料電池発電装置のドレン回収装置を提供しようとするものである。
本発明は、上記課題を解決するために、請求項1に対応して、燃料電池発電装置における複数のドレン分離個所よりドレンを導くドレン配管を、共通のドレンポットに接続し、且つ上記ドレンポットよりも高い圧力を有するドレン分離個所のうち、最も圧力の高いドレン分離個所からドレンを導くドレン配管を水封できるように上記ドレンポットの液面レベルを定め、更に、上記ドレンポットより圧力の低いドレン分離個所は、上記ドレンポットの液面レベルよりも、それぞれのドレンポットとの圧力差に相当する水柱の高さ寸法以上の高所となる高さレベルに配設してなる構成とする。
又、上記構成において、ドレンポットよりも高い圧力を有するドレン分離個所と、ドレンポットとの間に、中間水封ヘッダを設けるようにした構成とする。
更に、上記構成における中間水封ヘッダを、上下方向に所要寸法延び且つ上下両端部が閉塞された外筒部材と、該外筒部材の上部所要高さ位置から、外筒部材の底板を貫通して該外筒部材の下方位置まで上下方向に延びる内筒部材と、該内筒部材の下端側をドレンポットに連通させると共に、上記外筒部材をドレンポットに一体に連結する連結部と、上記外筒部材の上方位置から、該外筒部材の天井板を貫通して該外筒部材の内底部付近まで上下方向に延びるドレン流入管を備えてなる構成として、上記ドレン流入管の上端部に、ドレン分離個所よりドレンを導くドレン配管を接続するようにした構成とする。
上述の各構成におけるドレンポットとして、ブロワにより加圧して燃料電池のカソードへ供給する酸化ガスを加湿するための加湿器を用いるようにした構成とする。
又、上述の各構成において、ドレンポットよりも高い圧力を有するドレン分離個所のうち、最も圧力の高いドレン分離個所を、改質ガスを冷却するための水クエンチャとした構成とする。
本発明の燃料電池発電装置のドレン回収装置によれば、以下の如き優れた効果を発揮する。
(1)燃料電池発電装置における複数のドレン分離個所よりドレンを導くドレン配管を、共通のドレンポットに接続し、且つ上記ドレンポットよりも高い圧力を有するドレン分離個所のうち、最も圧力の高いドレン分離個所からドレンを導くドレン配管を水封できるように上記ドレンポットの液面レベルを定め、更に、上記ドレンポットより圧力の低いドレン分離個所は、上記ドレンポットの液面レベルよりも、それぞれのドレンポットとの圧力差に相当する水柱の高さ寸法以上の高所となる高さレベルに配設してなる構成としてあるので、圧力が異なる複数のドレン分離個所より出るドレンを、1つの共通のドレンポットへパッシブに回収することができる。しかも、上記ドレンポットより高い圧力のドレン分離個所よりドレンポットへガスが吹き抜けてガスのショートパスラインが形成される虞、及び、上記ドレンポットよりも低い圧力のドレン分離個所に対してドレンが逆流する虞を、未然に且つ確実に防止することができる。
(2)したがって、燃料電池発電装置で生じるドレンの液面管理を、1つのドレンポットで実施することが可能になるため、該ドレンの液面管理を容易なものとすることができる。又、燃料電池発電装置におけるドレンの回収のために要する機器数の削減化を図ることができると共に、制御を簡単なものとすることが可能になる。
(3)ドレンポットよりも高い圧力を有するドレン分離個所と、ドレンポットとの間に、中間水封ヘッダを設けるようにした構成とすることにより、上記ドレンポットよりも高い圧力を有するドレン分離個所と、ドレンポットとの圧力差が大きい場合にも、ドレンポットの液面レベルを低く抑えることができて、ドレン回収装置の高さ寸法を低く抑えることが可能になる。
(4)中間水封ヘッダを、上下方向に所要寸法延び且つ上下両端部が閉塞された外筒部材と、該外筒部材の上部所要高さ位置から、外筒部材の底板を貫通して該外筒部材の下方位置まで上下方向に延びる内筒部材と、該内筒部材の下端側をドレンポットに連通させると共に、上記外筒部材をドレンポットに一体に連結する連結部と、上記外筒部材の上方位置から、該外筒部材の天井板を貫通して該外筒部材の内底部付近まで上下方向に延びるドレン流入管を備えてなる構成として、上記ドレン流入管の上端部に、ドレン分離個所よりドレンを導くドレン配管を接続するようにした構成とすることにより、上記中間水封ヘッダを上記ドレンポットと一体化することができて、ドレン回収装置のコンパクト化をはかるのに有利なものとすることができる。
(5)ドレンポットとして、ブロワにより加圧して燃料電池のカソードへ供給する酸化ガスを加湿するための加湿器を用いるようにした構成とすることにより、回収するドレンを上記酸化ガスを加湿するための水として直接利用することができる。又、上記酸化ガスを加湿するための水とは別に回収するドレンを貯めるためのタンクを設ける必要をなくすことができて、装置のコンパクト化を図るのに有利なものとすることができる。しかも、上記加湿器内は、ブロワにより加圧した酸化ガスが流通しているために所要の圧力が作用していることから、各ドレン分離個所との差圧を小さく抑えることができて、ドレンポットの液面レベルを低く抑えることが可能になる。
(6)ドレンポットよりも高い圧力を有するドレン分離個所のうち、最も圧力の高いドレン分離個所を、改質ガスを冷却するための水クエンチャとした構成とすることにより、燃料改質装置で改質してなる改質ガスを、燃料電池へ供給する改質ガス経路における上流部に存在して、改質ガスの圧力が高くなっている水クエンチャより排出されるドレンを効率よく回収することができる。
以下、本発明を実施するための最良の形態を図面を参照して説明する。
図1は本発明の燃料電池発電装置のドレン回収装置の実施の一形態を示すもので、以下のようにしてある。
すなわち、図1に示した燃料電池発電装置のドレン回収装置は、固体高分子型燃料電池発電装置における固体高分子型燃料電池1のアノード2の入口側に接続してある改質ガス配管4を流通する改質ガス5より発生して上記アノード2の入口より出るドレン6と、ブロワ7より加湿器8を経てカソード3の入口側に接続してある酸化ガス配管9を流通する酸化ガス(空気)10より発生して上記カソード3の入口より出るドレン6と、アノードオフガスライン11上に設けたアノード出口気液分離器12にてアノードオフガス13より分離するドレン6と、カソードオフガスライン14上に設けたカソード出口気液分離器15にてカソードオフガス16より分離するドレン6と、上記改質ガス配管4上に設けて図示しない燃料改質装置で生成させる改質ガス5を水と直接接触させて冷却するための水クエンチャ17より上記改質ガス5の冷却に供された後に連続的に排出される水としてのドレン6とを、上記加湿器8の水タンクを1つの共通のドレンポット8aとして、一緒に回収することができるようにした構成とする。
以下、詳述する。
ここで、上記各ドレン分離個所における圧力について示すと、先ず、上記ドレンポット8aの圧力P0は、ブロワ7より供給される酸化ガス(空気)10を、加湿器8自体を経た後、酸化ガス配管9、固体高分子型燃料電池1のカソード3を順次流通させる際に生じる圧力損失に相当する圧力となっている。
次に、上記水クエンチャ17の圧力P1は、上記図示しない燃料改質装置で生成させた改質ガス5を、該水クエンチャ17自体を経た後、改質ガス配管4、固体高分子型燃料電池1のアノード2を順次流通させる際に生じる圧力損失に相当する圧力となっており、しかも、上記水クエンチャ17の圧力P1は、上記ドレンポット8aの圧力P0よりも高く(P1>P0)なっている。
次いで、上記アノード2の入口側の圧力P2は、上記水クエンチャ17より改質ガス配管4を通して導かれる改質ガス5を、該アノード2に流通させる際に生じる圧力損失に相当する圧力となっており、上記水クエンチャ17の圧力P1よりも該水クエンチャ17自体の内部圧力損失に相当する分、圧力が低く(P2<P1)なっている。又、本実施の形態で示す固体高分子型燃料電池1の場合は、上記アノード2の入口側の圧力P2は、上記ドレンポット8aの圧力P0よりも高く(P2>P0)なるように設定してあるものとする。
上記カソード3の入口側の圧力P3は、上記加湿器8より酸化ガス配管9を通して導かれる酸化ガス10を、該カソード3に流通させる際に生じる圧力損失に相当する圧力となっており、上記加湿器8の圧力、すなわち、ドレンポット8aの圧力P0よりも該加湿器8自体の内部圧力損失に相当する分、圧力が低く(P3<P0)なっている。
上記アノード出口気液分離器12の圧力P4は、上記アノード2の入口側の圧力P2よりも、該アノード2の内部圧力損失に相当する分、圧力が低下した値(P4<P2)となっている。
更に、上記カソード出口気液分離器15の圧力P5は、上記カソード3の入口側の圧力P3よりも、該カソード3の内部圧力損失に相当する分、圧力が低下した値(P5<P3)となっている。又、本実施の形態で示す固体高分子型燃料電池1の場合、該カソード出口気液分離器15の圧力P5は、上記アノード出口気液分離器12の圧力P4よりも低い圧力(P5<P4)となるようにしてある。
以上のように、それぞれ圧力の異なる系統に属する各ドレン分離個所からのドレン6を、上記共通のドレンポット8aへ回収できるようにするために、本発明の燃料電池発電装置のドレン回収装置では、第1に、上記各ドレン分離個所のうち、最も高い圧力を有するドレン分離個所である上記水クエンチャ17の圧力P1に着目して、該水クエンチャ17の圧力P1が、上記ドレンポット8aの圧力P0を上回る圧力差(P1−P0)に応じて、水クエンチャ17よりドレン6を導くドレン配管18を水封できるように、上記ドレンポット8aの液面レベルh0を設定する。
より具体的には、上記水クエンチャ17の圧力P1と、ドレンポット8aの圧力P0との圧力差1kPa当り100mm以上の割合で、上記ドレンポット8aにおける液面レベルh0が、該ドレンポット8aにおける上記ドレン配管18の接続個所の高さレベルよりも上方に位置するように、該ドレンポット8aの液面レベルh0を設定するようにした構成としてある。
すなわち、このドレンポット8aの液面レベルh0の設定により、上記ドレン配管18の接続個所に作用する圧力(単位面積当たりに作用する水柱の圧力、以下同様)を便宜的にh0で示すと、以下の式(1)が成り立つようにしてある。
P0+h0>P1 ・・・(1)
更に、上記水クエンチャ17を設置する高さ位置は、上記ドレンポット8aの液面レベルh0よりも所要寸法上方となる高さ位置に配設するようにする。これにより、固体高分子型燃料電池発電装置の運転停止時に、上記水クエンチャ17の圧力がゼロの場合であっても、上記ドレンポット8a内に貯留されているドレン6が、上記水クエンチャ17へ逆流する虞はない。又、上記固体高分子型燃料電池発電装置の運転時に上記水クエンチャ17に圧力P1が作用するようになると、該水クエンチャ17の圧力P1と、上記ドレンポット8aの圧力P0との圧力差が生じるために、上記ドレン配管18内のドレン6が、上記圧力P1と圧力P0の圧力差(P1−P0)に応じてドレンポット8a側へ押し込まれて、該ドレン配管18内の液面レベルh1が、上記ドレンポットの液面レベルh0よりも低下するようになる。しかし、この場合であっても、上記式(1)のようにドレンポット8aの液面レベルh0が設定してあることにより、該ドレン配管18内の液面レベルh1が、上記ドレンポット8aに対するドレン配管18の接続個所の高さレベルを下回ることがないため、上記ドレン配管18の水封が確実に行われて、水クエンチャ17を流通している改質ガス5が、上記ドレンポット8aへ吹き抜ける虞を未然に防止できるようにしてある。
次に、上記したように、固体高分子型燃料電池1のアノード2の入口側の圧力P2は、上記ドレンポット8aの圧力P0よりも高い圧力となっている。一方、上記カソード3の入口側の圧力P3は、上記ドレンポット8aの圧力P0よりも低い圧力となっている。以上のことに鑑みて、上記アノード2の入口から出るドレン6と、上記カソード3の入口から出るドレン6の分離個所、すなわち、固体高分子型燃料電池1自体を配設する高さレベルh2が、上記ドレンポット8aの圧力P0とカソード3の入口側の圧力P3との圧力差1kPa当り100mm以上の割合で、上記ドレンポット8aの液面レベルh0よりも上方に位置するように、該固体高分子型燃料電池1の高さレベルh2を設定して配設するようにしてある。更に、上記アノード2及びカソード3の入口から出るドレン6を導くためのドレン配管19,20を、上記水クエンチャ17からのドレン6を導くドレン配管18の途中位置に合流させるようにそれぞれ接続した構成としてある。これにより、以下の式(2)が成り立つようになる。
P3+h2>P0 ・・・(2)
したがって、固体高分子型燃料電池発電装置の運転時に、上記カソード3の入口側の圧力P3が、ドレンポット8aの圧力P0より低下すると、該カソード3の入口から出るドレン6をドレンポット8aへ導くドレン配管20内では、該ドレンポット8a内に貯留されているドレン6が、上記圧力P3と圧力P0の圧力差(P0−P3)に応じて上記カソード3側へ押し込まれて、該ドレン配管20内における液面レベルが上昇するようになる。しかし、この場合であっても、上記式(2)のように固体高分子型燃料電池1の高さレベルh2が設定してあることで、上記ドレンポット8a内のドレン6がカソード3の入口側におけるドレン分離個所まで上昇して逆流する虞を未然に防止できるようにしてある。又、上記固体高分子型燃料電池発電装置の運転時には、上記アノード2の入口側の圧力P2は、上記ドレンポット8aの圧力P0より高くなるが、上記アノード2の入口側の圧力P2は、上述した水クエンチャ17の圧力P1より低いため、アノード2の入口より出るドレン6を上記ドレンポット8aへ導くドレン配管19は、上記水クエンチャ7とドレンポット8aを接続しているドレン配管18と同様の原理で確実に水封することができる。このため、上記固体高分子型燃料電池1のアノード2へ供給される改質ガス5が、上記ドレンポット8aへ吹き抜ける虞を未然に防止できるようにしてある。
次いで、上記アノード出口気液分離器12の圧力P4は、上記ドレンポット8aの圧力P0よりも低い圧力となっている。このことに鑑みて、上記アノード出口気液分離器12は、その配設する高さレベルh3が、上記ドレンポット8aの圧力P0とアノード出口気液分離器の圧力P4との圧力差1kPa当り100mm以上の割合で、上記ドレンポット8aの液面レベルh0よりも上方に位置するように、該アノード出口気液分離器12の高さレベルh3を設定して配設するようにしてある。更に、ドレン配管21を介してドレンポット8aに接続した構成としてある。これにより、以下の式(3)が成り立つようになる。
P4+h3>P0 ・・・(3)
したがって、固体高分子型燃料電池発電装置の運転時に、上記アノード出口気液分離器12の圧力P4が、ドレンポット8aの圧力P0より低下することにより、該アノード出口気液分離器12のドレン6をドレンポット18aへ導くドレン配管21内では、ドレンポット8a内に貯留されているドレン6が、上記圧力P4と圧力P0の圧力差(P0−P4)に応じて上記アノード出口気液分離器12側へ押し込まれて、該ドレン配管21内における液面レベルが上昇するようになる。しかし、この場合であっても、上記式(3)のようにアノード出口気液分離器12の高さレベルh3が設定してあるため、上記ドレンポット8a内のドレン6がアノード出口気液分離器12まで上昇して逆流する虞を未然に防止できるようにしてある。
次いで、上記カソード出口気液分離器15の圧力P5は、上記ドレンポット8aの圧力P0よりも低い圧力となっている。このことに鑑みて、上記カソード出口気液分離器15は、その配設する高さレベルh4が、上記ドレンポット8aの圧力P0とアノード出口気液分離器15の圧力P5との圧力差1kPa当り100mm以上の割合で、上記ドレンポット8aの液面レベルh0よりも上方に位置するように、該アノード出口気液分離器15の高さレベルh4を設定して配設するようにしてある。更に、ドレン配管22を介して上記アノード出口気液分離器12よりドレンポット8aへドレン6を導くドレン配管21途中位置に合流させるように接続した構成としてある。これにより、以下の式(4)が成り立つようになる。
P5+h4>P0 ・・・(4)
したがって、固体高分子型燃料電池発電装置の運転時に、上記カソード出口気液分離器15の圧力P5が、ドレンポット8aの圧力P0より低下することにより、該カソード出口気液分離器15のドレン6をドレンポット8aへ導くドレン配管22内では、ドレンポット8a内に貯留されているドレン6が、上記圧力P5と圧力P0の圧力差(P0−P5)に応じて上記カソード出口気液分離器15側へ押し込まれて、該ドレン配管22内における液面レベルが上昇する。しかしこの場合であっても、上記式(4)のようにカソード出口気液分離器15の高さレベルh4が設定してあるため、上記ドレンポット8a内のドレン6がカソード出口気液分離器15まで上昇して逆流する虞を未然に防止できるようにしてある。
なお、上記各プロセスガスの配管4,9,11,14には、図示したような勾配を適宜設けて、ドレン6を円滑に排出できるようにしてあるものとする。23はカソードオフガス16の排熱を回収するためのカソードオフガス熱回収器である。
以上の構成としてあるドレン回収装置を装備した固体高分子型燃料電池発電装置を運転すると、固体高分子型燃料電池1のアノード2へ供給される改質ガス5中の湿分が凝縮することによって生じるドレン6は、自重により上記アノード2の入口よりドレン配管19を経てドレンポット8aへ回収される。一方、カソード3へ供給される酸化ガス10中の湿分が凝縮することによって生じるドレン6は、自重により上記カソード3の入口よりドレン配管20を経て上記ドレンポット8aへ回収される。
又、アノードオフガス13中の湿分が凝縮することによって発生するドレン6は、アノード出口気液分離器12にてアノードオフガス13と分離された後、自重によりドレン配管21を通して上記ドレンポット8aへ回収される。
カソードオフガス16中の湿分が凝縮することによって発生するドレン6は、カソード出口気液分離器15にてカソードオフガス16と分離された後、自重によりドレン配管22を通して上記ドレンポット8aへ回収される。
したがって、上記のようなドレン6に起因して固体高分子型燃料電池発電装置の電池電圧の低下が生じたり、上記アノードオフガス13中で発生したドレン6が、図示しない改質器のバーナに吹き込まれて火炎が安定しなくなる、等の固体高分子型燃料電池発電装置の安定性が損なわれる虞が未然に防止されるようになる。
更に、水クエンチャ17における図示しない燃料改質装置より導かれる改質ガス5の冷却に伴って生じるドレン6は、自重によりドレン配管18を経て上記ドレンポット8aへ回収されるようになる。
このように、本発明の燃料電池発電装置のドレン回収装置によれば、固体高分子型燃料電池発電装置におけるアノード2の入口、カソード3の入口、アノード出口気液分離器12、カソード出口気液分離器15、及び、水クエンチャ17という作用しているガスの圧力が異なる複数のドレン分離個所より出るドレン6を、1つの共通のドレンポット8aへパッシブに回収することができる。しかも、この際、上述したように、最も圧力の高いドレン分離個所である上記水クエンチャ17、及び、上記ドレンポット8aよりも高い圧力の別のドレン分離個所であるアノード2の入口側から上記ドレンポット8aへガスが吹き抜けてガスのショートパスラインが形成される虞を未然に防止することができる。同時に、上記ドレンポット8aの圧力P0よりも低い圧力のドレン分離個所である固体高分子型燃料電池1のカソード3の入口側や、アノード出口気液分離器12、カソード出口気液分離器15に対しては、ドレンポット8a内に貯留されているドレン6が逆流する虞を未然に防止することができる。
よって、固体高分子型燃料電池発電装置で生じるドレン6の液面管理を、上記1つのドレンポット8aで実施することができて、該ドレン6の液面管理を容易なものとすることができる。したがって、固体高分子型燃料電池発電装置におけるドレン6の回収のために要する機器数の削減化を図ることができると共に、制御を簡単なものとすることが可能になる。
更に、ドレンポット8aとして、ブロワ7により加圧して固体高分子型燃料電池1のカソード3へ供給する酸化ガス10を加湿するための加湿器8を用いるようにしてあるため、回収するドレン6を上記酸化ガス10を加湿するための水として直接利用することができる。又、上記加湿器8に装備される水タンクと別に、回収するドレン6を貯めることのみに用いるタンクを別途設ける必要がないため、装置のコンパクト化を図るのに有利なものとすることができる。しかも、上記加湿器8内は、ブロワ7により加圧した酸化ガス10が流通していて、所要の圧力が作用していることから、上述した各ドレン分離個所との差圧を小さく抑えることができて、ドレンポット8aの液面レベルh0を低く抑えるのに有利なものとすることができる。
更に又、水クエンチャ17を、ドレンポット8aにドレン配管18を介して接続した構成としてあるため、図示しない燃料改質装置で改質してなる改質ガス5を、固体高分子型燃料電池1へ供給して発電に供するための改質ガス5の流通経路における上流部に存在していて、改質ガス5の圧力が高くなっている水クエンチャ17より排出されるドレン6を、ドレンポット8aへ効率よく回収することが可能となる。
次に、図2は本発明の実施の他の形態を示すもので、上記図1の実施の形態におけるドレンポット8aに、圧力の高いドレン分離個所からのドレンを容易に回収できるようにするための応用例を示すものである。
すなわち、上記図1の実施の形態では、各ドレン分離個所のうち、最も高い圧力を有する水クエンチャ17の圧力P1が、上記ドレンポット8aの圧力P0を上回る圧力差(P1−P0)に応じて、上記式(1)が成立するように、上記ドレンポット8aにおける液面レベルh0を設定するようにした構成としてある。したがって、上記水クエンチャ17の圧力P1と、上記ドレンポット8aの圧力P0との圧力差がより大きい場合は、上記ドレンポット8aに要求される液面レベルh0が高くなることから、該ドレンポット8aの高さ寸法を大として、上記ドレン回収装置全体の高さ寸法を大きくする必要が生じる。
そこで、本実施の形態では、上記水クエンチャ17の圧力P1と、上記ドレンポット8aの圧力P0との圧力差が大きい場合であっても、ドレン回収装置の高さ寸法を抑えることができるようにするために、上記水クエンチャ17と上記ドレンポット8aとの間に、中間水封ヘッダ24を設けた構成とする。
詳述すると、上記中間水封ヘッダ24は、ドレンポット8aにおける図1に示したと同様のドレン配管接続高さ位置より所要高さ位置まで上下方向に延びる略U字型の管路25の一方の上端部25aを、上記管路25よりも大きい断面積で該管路25よりもやや高い位置まで上下方向に延びる筒状の投入部26の上端部に連通接続した構成としてある。更に、該中間水封ヘッダ24の上記管路25の他方の上端部25bを、上記水クエンチャ17の下端部に接続すると共に、上記投入部26の下端部を、上記ドレンポット8aにおける上記ドレン配管接続高さ位置に、ドレン配管27を介して接続した構成としてある。
h5は、上記ドレンポット8aにおける上記ドレン配管27の接続高さ位置を基準とする上記管路25の一方の上端部25aと投入部26との接続個所の高さレベルを示す。28は、上記ドレンポット8aと上記投入部26の上端部同士を接続する均圧ラインである。その他の構成は一部図示を省略してあるが、図1に示したものと同様の構成としてあるものとし、同一のものには同一の符号が付してある。
本実施の形態によれば、上記中間水封ヘッダ24を備えることにより、固体高分子型燃料電池発電装置の運転時に、上記水クエンチャ17の圧力P1が高まると、上記ドレンポット8aと均圧ライン28によって接続されていることで該ドレンポット8aの圧力P0と等しい圧力となっている上記投入部26との圧力差により、該水クエンチャ17より排出されて上記中間水封ヘッダ24の管路25内に溜まるドレン6が、上記管路25内にて、投入部26側へ押し込まれ、該投入部26との接続部となる上記管路の25の一方の上端部25aを越えたドレン6は、上記投入部26へ溢流する。その後、上記投入部26へ流入したドレン6は、ドレン配管27を通して上記ドレンポット8aへ回収されるようになる。
この場合、上記水クエンチャ17より連続的に排出されるドレン6を導く上記管路25を水封できる条件は、以下の式(5)のようになる。
P0+h5>P1 ・・・(5)
したがって、上記水クエンチャ17より排出されるドレン6の流路を水封するための条件は、上記ドレンポット8aの液面レベルh0ではなく、上記中間水封ヘッダ24の管路25の一方の上端部25aの上記ドレンポット8aにおけるドレン配管接続高さ位置を基準とする高さレベルh5によって設定することが可能になる。
よって、上記水クエンチャ17の圧力P1と、上記ドレンポット8aの圧力P0との圧力差が大きい場合には、上記中間水封ヘッダ24の上記高さレベルh5を大きく設定することで、容易に且つ確実に上記水クエンチャ17とドレンポット8aとの間を水封することができる。このために、ドレンポット8aの液面レベルh0を低く抑えることができるようになることから、本発明の燃料電池発電装置のドレン回収装置の高さ寸法を低く抑えることが可能になる。
次いで、図3は本発明の実施の更に他の形態として、上記図2の実施の形態の変形例を示すもので、図2に示したと同様の構成において、中間水封ヘッダ24における略U字型の管路25の一方の上端部25aを、上記管路25よりも大きな断面積を有する投入部26の上端部に連通接続した構成に代えて、上記管路25の一方の上端部25aを、該一方の上端部25aと対応する高さ位置に配設した気液分離器29に接続すると共に、該気液分離器29における液体の出口側を、上記ドレンポット8aにおける上記と同様のドレン配管接続高さ位置に、ドレン配管30を介して接続した構成としたものである。
28は上記気液分離器29と、ドレンポット8aの上端部同士を接続する均圧ラインである。その他の構成は図2に示したものと同様であり、同一のものには同一の符号が付してある。
本実施の形態によれば、固体高分子型燃料電池発電装置の運転時に、上記水クエンチャ17の圧力P1が高まると、上記ドレンポット8aと均圧ライン28によって接続されていることで該ドレンポット8aの圧力P0と等しい圧力となっている上記気液分離器29との圧力差により、該水クエンチャ17より排出されて上記中間水封ヘッダ24の管路25内に溜まるドレン6が、上記管路25内にて、上記気液分離器29側へ押されて、上記管路の25の一方の上端部25aを越えたドレン6が、上記気液分離器29へ溢流する。その後、該気液分離器29へ流入したドレン6は、ドレン配管30を通して上記ドレンポット8aへ回収されるようになる。
この場合にも、上記水クエンチャ17より連続的に排出されるドレン6の流路を水封できる条件は、上記式(5)のようになることから、図2に示したと同様の効果を得ることができる。
図4は本発明の実施の更に他の形態を示すもので、図2に示したと同様の構成において、中間水封ヘッダ24の投入部26に、水クエンチャ17より排出されるドレン6に加えて、ドレンポット8aの圧力P0よりも圧力の高い別のドレン分離個所である固体高分子型燃料電池1のアノード2の入口側より出るドレン6を導くことができるようにしたもので、以下のようにしてある。
すなわち、上記アノード2の入口側におけるドレン分離個所に、上下方向に所要寸法を延びる略U字型の管路31の一方の上端部31aを接続すると共に、該管路31の他方の上端部31bを、図2に示したと同様の中間水封ヘッダ24における投入部26の上端部に連通接続する。且つ上記略U字型の管路31の下端部の位置から、上記投入部26との接続個所としてある上記他方の上端部31bまでの高さレベルh6を、上記水クエンチャ17より排出されるドレン6を導くための管路25に設定してある上記高さレベルh5より、上記水クエンチャ17の圧力損失分に相当する水柱の高さ寸法h7を引いた寸法に設定してある。
その他の構成は図2に示したものと同様であり、同一のものには同一の符号が付してある。
本実施の形態によれば、アノード2の入口より出るドレン6を導く管路31は、以下の式(6)の条件で水封できるようになる。
P0+h6>P2
したがって、上記水クエンチャ17より排出されるドレン6の流路を水封するための条件は、上記ドレンポット8aの液面レベルh0に依存することなく、上記中間水封ヘッダ24に設けた上記管路31の下端部から他方の上端部31bまでの高さレベルh6によって設定することが可能になる。
よって、上記固体高分子型燃料電池のアノード2の入口側の圧力P2と、上記ドレンポット8aの圧力P0との圧力差が大きい場合であっても、上記管路31における上記高レベルh6の値を大きく設定するのみで対応できるため、ドレンポット8aの液面レベルh0を低く抑えて、本発明の燃料電池発電装置のドレン回収装置の高さ寸法を低く抑えることに有利な構成とすることができる。
図5は本発明の実施の更に他の形態を示すもので、上記図4の実施の形態に示したように、複数のドレン分離個所より導かれるドレン6を流入させる中間水封ヘッダ24を、ドレンポット8aと一体に設ける構成としたもので、以下のようにしてある。
すなわち、ドレンポット8aの下端部の一側に、横方向に所要寸法延びる中空の連結部32を、該連結部32の一端側がドレンポット8aの内部に連通するようにして一体に設ける。上記連結部32の上側には、上下方向に所要寸法延び且つ上端部が閉塞された外筒部材33を、該外筒部材33の底部が上記連結部32の天井板によって水密に閉塞されるように取り付ける。上記外筒部材33の内側の所要位置には、該外筒部材33の上部所要高さ位置から、外筒部材33の底板を貫通して上記連結部32の内側まで上下方向に延びる内筒部材34を設ける。
更に、上記外筒部材33の所要寸法上方位置から、該外筒部材33の天井板を貫通して外筒部材33の内底部付近まで上下方向に延びる複数本、たとえば、3本のドレン流入管35,36,37を設けて、該各ドレン流入管35と36と37の上端部に、水クエンチャ17よりドレン6を導くドレン配管18と、アノード2の入口より出るドレン6を導くドレン配管19と、アノード出口気液分離器12より回収されるドレン6を導くドレン配管21とをそれぞれ接続した構成としてある。
その他の構成は図4に示したものと同様であり、同一のものには同一の符号が付してある。
本実施の形態によれば、固体高分子型燃料電池発電装置の運転中に上記水クエンチャ17、アノード2の入口、アノード出口気液分離器12でそれぞれ発生するドレン6は、対応するドレン配管18,19,21より上記各ドレン流入管35,36,37を経て上記外筒部材33の内側へ流入させられる。上記外筒部材33内に流入したドレン6は、上記内筒部材34の上端の高さレベルに達するまで該外筒部材33内に貯留された後、上記内筒部材の上端部を溢流したドレン6が、内筒部材34の下端から、連結部32を経て、ドレンポット8aへ回収される。この際、上記各ドレン分離個所のうち、ドレンポット8aの圧力P0よりも高い圧力を有するドレン分離個所である上記水クエンチャ17と、アノード2の入口よりそれぞれドレン6を導くドレン配管18と19が接続してあるドレン流入管35と36では、管内の液面レベルが、上記ドレンポット8aと上記各ドレン分離個所との圧力差に応じて、上記外筒部材33の内側にて内筒部材34の上端位置まで貯留されるドレン6の液面レベルよりも低下するようになる。したがって、この液面レベルの低下分よりも、上記各ドレン流入管35,36の下端高さ位置と、上記内筒部材34の上端高さ位置との差分が大きくなるように、上記各ドレン流入管35,36の下端高さ位置と、上記内筒部材34の上端高さ位置とをそれぞれ設定しておくことで、上記外筒部材33の内側にて各ドレン流入管35,36の下端高さ位置と上記内筒部材34の上端高さ位置との間に存在するドレンを、上記水クエンチャ17と、アノード2の入口よりそれぞれドレン6を導くドレン配管18と19に対する中間水封ヘッダとして機能させることができる。よって、上記水クエンチャ17やアノード2の入口よりドレンポット8aへ改質ガス5(図1参照)が吹き抜けるガスのショートパスラインが形成される虞を未然に防止することができる。
又、ドレンポット8aの圧力P0よりも低い圧力のドレン分離個所である上記アノード出口気液分離器12よりドレン6を導くドレン配管21が接続してある上記ドレン流入管37では、上記ドレンポット8aとアノード出口気液分離器12との圧力差に応じて、該ドレン流入管37内の液面レベルが、上記外筒部材33内に貯留されているドレンの液面レベルよりも上昇するようになる。しかし、この場合であっても、アノード出口気液分離器12を設置する高さレベルh3を、図1の実施の形態で示したと同様に設定するようにすれば、該アノード出口気液分離器12までドレンが逆流する虞を未然に防止することができる。
更に、本実施の形態では中間水封ヘッダを、ドレンポット8aに一体に設けることができるようにしてあるため、ドレン回収装置のコンパクト化を図るのに有利なものとすることができる。
なお、本発明は上記実施の形態のみに限定されるものではなく、燃料電池発電装置においてドレンを分離する必要が生じるいかなるドレン分離個所からのドレンの回収にも適用してよい。又、上記各実施の形態で示したドレン分離個所は必須ではなく、燃料電池発電装置の構成に応じてドレン分離個所を変更したり、増減してもよい。したがって、上記ドレンポットに接続するドレン分離個所の数は増減してもよい。
図2、図3、図4、図5の各実施の形態に示した中間水封ヘッダは、燃料電池発電装置におけるドレンポットよりも圧力の高いドレン分離個所であれば、いかなるドレン分離個所とドレンポットとの間に適用するようにしてもよい。
上記各実施の形態では、いずれも、ドレンポット8aとして加湿器8を用いたが、加湿器8とは別にドレンポットを設ける場合にも適用できる。その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
本発明の燃料電池発電装置のドレン回収装置の実施の一形態を示す概要図である。 本発明の実施の他の形態として、図1の装置に適用する中間水封ヘッダの構成を示す概要図である。 本発明の実施の更に他の形態として、図2の中間水封ヘッダの変形例を示す概要図である。 本発明の実施の更に他の形態として、図1の装置に適用する中間水封ヘッダの別の構成例を示す概要図である。 本発明の実施の更に他の形態として、図1の装置に適用する中間水封ヘッダの更に別の構成例を示す概要図である。
符号の説明
1 固体高分子型燃料電池
2 アノード
3 カソード
5 改質ガス
6 ドレン
7 ブロワ
8 加湿器
8a ドレンポット
10 酸化ガス
12 アノード出口気液分離器(ドレン分離個所)
15 カソード出口気液分離器(ドレン分離個所)
17 水クエンチャ
18,19,20,21,22 ドレン配管
24 中間水封ヘッダ
32 連結部
33 外筒部材
34 内筒部材
35,36,37 ドレン流入管

Claims (5)

  1. 燃料電池発電装置における複数のドレン分離個所よりドレンを導くドレン配管を、共通のドレンポットに接続し、且つ上記ドレンポットよりも高い圧力を有するドレン分離個所のうち、最も圧力の高いドレン分離個所からドレンを導くドレン配管を水封できるように上記ドレンポットの液面レベルを定め、更に、上記ドレンポットより圧力の低いドレン分離個所は、上記ドレンポットの液面レベルよりも、それぞれのドレンポットとの圧力差に相当する水柱の高さ寸法以上の高所となる高さレベルに配設してなる構成を有することを特徴とする燃料電池発電装置のドレン回収装置。
  2. ドレンポットよりも高い圧力を有するドレン分離個所と、ドレンポットとの間に、中間水封ヘッダを設けるようにした請求項1記載の燃料電池発電装置のドレン回収装置。
  3. 中間水封ヘッダを、上下方向に所要寸法延び且つ上下両端部が閉塞された外筒部材と、該外筒部材の上部所要高さ位置から、外筒部材の底板を貫通して該外筒部材の下方位置まで上下方向に延びる内筒部材と、該内筒部材の下端側をドレンポットに連通させると共に、上記外筒部材をドレンポットに一体に連結する連結部と、上記外筒部材の上方位置から、該外筒部材の天井板を貫通して該外筒部材の内底部付近まで上下方向に延びるドレン流入管を備えてなる構成として、上記ドレン流入管の上端部に、ドレン分離個所よりドレンを導くドレン配管を接続するようにした請求項2記載の燃料電池発電装置のドレン回収装置。
  4. ドレンポットとして、ブロワにより加圧して燃料電池のカソードへ供給する酸化ガスを加湿するための加湿器を用いるようにした請求項1、2又は3記載の燃料電池発電装置のドレン回収装置。
  5. ドレンポットよりも高い圧力を有するドレン分離個所のうち、最も圧力の高いドレン分離個所を、改質ガスを冷却するための水クエンチャとした請求項1、2、3又は4記載の燃料電池発電装置のドレン回収装置。
JP2007175852A 2007-07-04 2007-07-04 燃料電池発電装置のドレン回収装置 Pending JP2009016151A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175852A JP2009016151A (ja) 2007-07-04 2007-07-04 燃料電池発電装置のドレン回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175852A JP2009016151A (ja) 2007-07-04 2007-07-04 燃料電池発電装置のドレン回収装置

Publications (1)

Publication Number Publication Date
JP2009016151A true JP2009016151A (ja) 2009-01-22

Family

ID=40356815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175852A Pending JP2009016151A (ja) 2007-07-04 2007-07-04 燃料電池発電装置のドレン回収装置

Country Status (1)

Country Link
JP (1) JP2009016151A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006774A (ja) * 2010-06-23 2012-01-12 Rinnai Corp 改質器ユニット
JPWO2013157274A1 (ja) * 2012-04-19 2015-12-21 パナソニックIpマネジメント株式会社 水素生成装置及び燃料電池システム
JP2017117518A (ja) * 2015-12-21 2017-06-29 本田技研工業株式会社 燃料電池システム
CN113293394A (zh) * 2020-02-21 2021-08-24 本田技研工业株式会社 水电解系统和水位误差计算装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006774A (ja) * 2010-06-23 2012-01-12 Rinnai Corp 改質器ユニット
JPWO2013157274A1 (ja) * 2012-04-19 2015-12-21 パナソニックIpマネジメント株式会社 水素生成装置及び燃料電池システム
JP2017117518A (ja) * 2015-12-21 2017-06-29 本田技研工業株式会社 燃料電池システム
CN113293394A (zh) * 2020-02-21 2021-08-24 本田技研工业株式会社 水电解系统和水位误差计算装置
CN113293394B (zh) * 2020-02-21 2024-03-15 本田技研工业株式会社 水电解系统和水位误差计算装置

Similar Documents

Publication Publication Date Title
KR102383498B1 (ko) 연료 전지 시스템
US10381665B2 (en) Device and method for heating fuel cell stack and fuel cell system having the device
US11581559B2 (en) Carbon dioxide production system
JP3809646B2 (ja) 燃料電池装置
JP4921619B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
US20090123795A1 (en) Condensate drainage subsystem for an electrochemical cell system
KR101413388B1 (ko) 연료 전지 시스템
JP2005276757A (ja) 燃料電池コジェネレーションシステム
JP2009016151A (ja) 燃料電池発電装置のドレン回収装置
KR101095665B1 (ko) 연료전지 발전 시스템
US20070048581A1 (en) Fuel cell system
JP2009064619A (ja) 燃料電池システム
JP2001143733A (ja) 燃料電池システムの加湿装置
US7514165B2 (en) Fuel cell system fluid recovery
JP2009076216A (ja) 燃料電池発電システムとその水循環システム
JP4971629B2 (ja) 燃料電池発電システムおよびその運転方法
JP2008121910A (ja) 湿度交換型加湿器およびそれを用いた燃料電池発電システム
JP2008251447A (ja) 燃料電池発電装置のドレン処理装置
JP5502521B2 (ja) 燃料電池システム
KR100664086B1 (ko) 기액분리기 및 이를 적용한 연료전지
JP5171103B2 (ja) 燃料電池コージェネレーション装置
JP2007073394A (ja) 燃料電池システム
JP2007250447A (ja) 燃料電池システムにおける水処理装置
US20110143231A1 (en) Integrated piping module in fuel cell system
JP2009123445A (ja) 燃料電池発電装置の循環水処理装置