JP6759902B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP6759902B2
JP6759902B2 JP2016176731A JP2016176731A JP6759902B2 JP 6759902 B2 JP6759902 B2 JP 6759902B2 JP 2016176731 A JP2016176731 A JP 2016176731A JP 2016176731 A JP2016176731 A JP 2016176731A JP 6759902 B2 JP6759902 B2 JP 6759902B2
Authority
JP
Japan
Prior art keywords
voltage
converter
electric vehicle
main battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016176731A
Other languages
English (en)
Other versions
JP2018042431A (ja
Inventor
央光 河森
央光 河森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016176731A priority Critical patent/JP6759902B2/ja
Publication of JP2018042431A publication Critical patent/JP2018042431A/ja
Application granted granted Critical
Publication of JP6759902B2 publication Critical patent/JP6759902B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、電動車両に関し、特に、インバータ及びコンバータを備える電動車両に関する。
特開2009−100507号公報(特許文献1)は、バッテリと、コンバータと、インバータと、リレーと、制御装置とを備える電動車両を開示する。バッテリには第1の電力線対が接続され、インバータには第2の電力線対が接続されている。コンバータは、第1及び第2の電力線対の間に設けられている。リレーは、コンバータとバッテリとの間において、第1の電力線対に設けられている。コンバータは、第1及び第2のスイッチング素子を含む。第1及び第2のスイッチング素子には、第1及び第2のダイオードがそれぞれ逆並列に接続されている。第1のスイッチング素子と第1のダイオードとのペア(下アーム)は、第1の電力線対間に接続されている。第2のスイッチング素子と2のダイオードとのペア(上アーム)は、第1の電力線対の正極線と、第2の電力線対の正極線との間に接続されている。
この電動車両においては、コンバータにおいて過電流が検知された場合に、コンバータに含まれる各スイッチング素子を電気的に遮断するための指令が制御装置によって出力される。このような指令が制御装置によって出力された状態で、上アームが短絡しているためにコンバータからバッテリに流れる電流が検知されると、制御装置は、バッテリを保護するためにリレーを遮断する(特許文献1参照)。
特開2009−100507号公報
上記特許文献1においては、上アームが短絡した場合における電動車両の適切な走行方法(退避走行)が開示されている。一方、上アーム短絡以外の要因でコンバータに過電流等の異常が生じた場合にも、電動車両は、退避走行を行なう必要がある。退避走行を行なう場合であっても、補機バッテリの電力を維持することが好ましい。補機バッテリの電力が不足すると、電動車両が退避走行を継続できなくなる場合があるためである。
本発明は、このような課題を解決するためになされたものであって、その目的は、コンバータに過電流等の異常が生じたことに起因する退避走行時に、補機バッテリの電力をなるべく維持することができる電動車両を提供することである。
本発明に従う電動車両は、メインバッテリと、補機バッテリと、モータジェネレータと、インバータと、電力線対と、第1及び第2のコンバータと、キャパシタと、リレーと、制御装置とを備える。モータジェネレータは、回生発電可能に構成されている。インバータは、モータジェネレータを駆動する。電力線対は、メインバッテリに接続されている。第1のコンバータは、インバータと電力線対との間に設けられ、電圧変換を行なう。第2のコンバータは、補機バッテリと電力線対との間に設けられ、電圧変換を行なう。キャパシタは、電力線対間に接続されている。リレーは、キャパシタとメインバッテリとの間において、電力線対に設けられている。制御装置は、リレー、インバータ、並びに、第1及び第2のコンバータを制御するように構成されている。第1のコンバータは、電力線対間に接続されたスイッチング素子と、スイッチング素子に逆並列に接続されたダイオードとを有する下アームを含む。第1のコンバータは、第1のコンバータ内で過電流が検知された場合にフェール信号を制御装置に出力する。制御装置は、フェール信号を受け、かつ、所定条件が成立する場合には、下アームが短絡していると判定する。所定条件は、スイッチング素子を電気的に遮断するための指令が制御装置によって出力された状態において、キャパシタの電圧が所定電圧以下であり、かつ、メインバッテリの電流が所定電流以上であるという条件である。制御装置は、フェール信号を受け、かつ、所定条件が成立しない場合に、リレーよりもメインバッテリ側の回路で断線が生じていると判定されたときは、リレーが開放され、かつ、モータジェネレータにより発電された電力によって補機バッテリが充電されるモードで電動車両が退避走行するように、リレー、インバータ、並びに、第1及び第2のコンバータを制御する。
この電動車両においては、コンバータにおいて過電流が生じ、スイッチング素子を電気的に遮断するための指令が出力された場合に、たとえば、キャパシタの電圧が所定電圧以下であったとしても、メインバッテリの電流が所定電流未満である限り、下アームが短絡しているとは即座には判定されない。このような状況が生じる原因としては、下アームの短絡の他にリレーよりもメインバッテリ側の回路(高圧回路)における断線(たとえば、メインバッテリにおけるCID(Current Interrupt Device)故障)が考えられるためである。下アームが短絡しているのか、高圧回路において断線が生じているのかによって電動車両の適切な退避走行の方法が異なる。たとえば、スイッチング素子が短絡している場合には、モータジェネレータにより発電された電力によって補機バッテリを充電することができないのに対して、高圧回路が断線している場合には、モータジェネレータにより発電された電力によって補機バッテリを充電することができる。
この電動車両においては、高圧回路の断線が原因でフェール信号が出力された場合に、補機バッテリを充電可能な退避走行モードが選択される。したがって、この電動車両によれば、第1のコンバータに過電流が生じたことに起因する退避走行時、過電流発生の原因が高圧回路の断線である場合には、補機バッテリの電力を維持することができる。
本発明によれば、コンバータに過電流が生じたことに起因する退避走行時に、補機バッテリの電力をなるべく維持することができる電動車両を提供することができる。
電動車両の概略を示す図である。 スイッチング素子(下アーム)の短絡後、ヒューズの溶断前における、電流センサ及び電圧センサの出力を説明するための図である。 高圧回路で断線(メインバッテリにおけるCID故障)が生じている場合における、電流センサ及び電圧センサの出力を説明するための図である。 高圧回路の断線以外の理由で、電流センサの出力が略0Aを示し、かつ、電圧センサの出力が略0Vを示す場合を説明するための図である。 退避走行モードの選択処理手順を示すフローチャートである。
以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[電動車両の構成]
図1は、本実施の形態に従う電動車両100の概略を示す図である。以下では、電動車両100がハイブリッド車両である場合について説明する。
図1を参照して、電動車両100は、エンジン2と、動力分割機構3と、車輪4と、モータジェネレータMG1,MG2とを備える。また、電動車両100は、メインバッテリB1と、システムメインリレーSMRと、昇圧コンバータ10と、インバータ20,30と、DCDCコンバータ70と、補機バッテリB2と、電子制御ユニット(以下「ECU(Electronic Control Unit)」とも称する。)40とをさらに備える。また、電動車両100は、電流センサ52と、電圧センサ54,60,62,72と、コンデンサC1,C2とをさらに備える。
エンジン2及びモータジェネレータMG1,MG2は、動力分割機構3に連結されている。電動車両100は、エンジン2及びモータジェネレータMG2の少なくとも一方により生成される駆動力によって走行する。エンジン2が生成する動力は、動力分割機構3によって2経路に分割される。すなわち、一方は車輪4へ伝達される経路であり、もう一方はモータジェネレータMG1へ伝達される経路である。
モータジェネレータMG1,MG2は、交流回転電機である。たとえば、モータジェネレータMG1,MG2は、ロータに永久磁石が埋設された三相交流同期電動機である。
モータジェネレータMG1は、動力分割機構3によって分割されたエンジン2の運動エネルギーを用いて発電する。モータジェネレータMG1により発電された電力は、メインバッテリB1又は補機バッテリB2に供給される。また、モータジェネレータMG1により発電された電力は、モータジェネレータMG2及びインバータ30にも供給され得る。
モータジェネレータMG2は、メインバッテリB1に蓄えられた電力及びモータジェネレータMG1により発電された電力の少なくとも一方を用いて車両の走行駆動力を生成する。また、車両の制動時や下り斜面での加速度低減時に、モータジェネレータMG2は発電する。モータジェネレータMG2により発電された電力は、メインバッテリB1又は補機バッテリB2に供給される。
動力分割機構3は、モータジェネレータMG1,MG2及びエンジン2の間で動力を分配する。たとえば、動力分割機構3としては、サンギヤ、プラネタリキャリヤ及びリングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。この3つの回転軸がエンジン2及びモータジェネレータMG1,MG2の各回転軸にそれぞれ接続されている。
メインバッテリB1は、充放電可能に構成された電力貯蔵要素である。メインバッテリB1は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池等の二次電池を含んで構成されている。
電流センサ52は、メインバッテリB1に対して入出力される電流IBを検知し、検知結果をECU40へ出力する。電流センサ52は、メインバッテリB1の放電時に電流IBを正値として検知し、メインバッテリB1の充電時に電流IBを負値として検知する。電圧センサ54は、メインバッテリB1の電圧VB1を検知し、検知結果をECU40へ出力する。
ヒューズ56は、メインバッテリB1とシステムメインリレーSMRとの間に設けられている。ヒューズ56に大電流が流れると、内蔵の合金部品が溶断し、メインバッテリB1とシステムメインリレーSMRとが電気的に遮断される。
システムメインリレーSMRは、メインバッテリB1とコンデンサC1との間において、正極線PL1,負極線NL1の各々に設けられている。システムメインリレーSMRは、ECU40によって出力される信号SEに従って、開放状態と閉成状態とが切り替えられる。
昇圧コンバータ10は、インバータ20,30に接続された電力線対65と、メインバッテリB1に接続された電力線対55との間に設けられている。昇圧コンバータ10は、インバータ20,30の入力電圧(電力線対65間の電圧)をメインバッテリB1の電圧以上に昇圧する。昇圧コンバータ10は、スイッチング素子Q1,Q2と、ダイオードD1,D2と、リアクトルLとを含む。
スイッチング素子Q1は、正極線PL2と正極線PL1との間に接続されている。スイッチング素子Q2は、電力線対55間に接続されている。ダイオードD1,D2は、スイッチング素子Q1,Q2にそれぞれ逆並列に接続されている。リアクトルLは、コンデンサC1とスイッチング素子Q2との間において、正極線PL1に設けられている。昇圧コンバータ10は、ECU40により出力される信号PWC1に従ってスイッチング素子Q1,Q2を駆動することによって、インバータ20,30の入力電圧をメインバッテリB1の電圧以上に昇圧する。
以下では、スイッチング素子Q1とダイオードD1とのペアは、「上アーム」とも称される。また、スイッチング素子Q2とダイオードD2とのペアは、「下アーム」とも称される。スイッチング素子としては、たとえば、IGBT(Insulated Gate Bipolar Transistor)や、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)を用いることができる。
昇圧コンバータ10は、上アーム及び下アームの少なくとも一方に過電流が流れるとフェール信号FCVをECU40へ出力する。ECU40は、フェール信号FCVを受けることによって、昇圧コンバータ10の異常を検知することができる。ECU40は、フェール信号FCVを受けると、適切な退避走行モードを選択する。退避走行モードの選択については、後程詳しく説明する。
また、昇圧コンバータ10は、ECU40からシャットダウン信号SDCを受けると動作を停止する。具体的には、昇圧コンバータ10は、シャットダウン信号SDCを受けると、スイッチング素子Q1,Q2のゲートを遮断する。
コンデンサC1は、電力線対55間に接続される。コンデンサC1には、昇圧コンバータ10により昇圧される前の電圧(メインバッテリB1の電圧)が印加される。電圧センサ62は、コンデンサC1の電圧VLを検知し、その検知結果をECU40へ出力する。
コンデンサC2は、電力線対65間に接続される。コンデンサC2には、昇圧コンバータ10により昇圧された電圧が印加される。電圧センサ60は、コンデンサC2の電圧VHを検知し、その検知結果をECU40へ出力する。
インバータ20,30は、それぞれモータジェネレータMG1,MG2に対応して設けられている。インバータ20,30の制御は、それぞれ、ECU40により出力される信号PWI1,PWI2に従って行なわれる。
インバータ20は、モータジェネレータMG1の発電電力(三相交流電力)を直流電力に変換し、回生電力として正極線PL2へ出力する。また、インバータ20は、エンジン2の始動時、正極線PL2から受ける直流電力を三相交流電力に変換し、モータジェネレータMG1へ出力する。
インバータ30は、正極線PL2から受ける直流電力を三相交流電力に変換し、モータジェネレータMG2へ出力する。また、インバータ30は、車両の制動時や下り斜面での加速度低減時、モータジェネレータMG2の発電電力(三相交流電力)を直流電力に変換し、回生電力として正極線PL2へ出力する。
インバータ20,30は、それぞれ、ECU40からシャットダウン信号SD1,SD2を受けると動作を停止する。具体的には、インバータ20,30は、それぞれ、シャットダウン信号SD1,SD2を受けるとインバータに含まれるスイッチング素子(図示せず)のゲートを遮断する。
DCDCコンバータ70は、システムメインリレーSMRと昇圧コンバータ10との間において、電力線対55に接続されている。DCDCコンバータ70は、電圧変換を行なう。DCDCコンバータ70は、ECU40により出力される信号PWC2に従って、出力電圧を制御する。
補機バッテリB2は、再充電可能な直流電源であり、たとえば、鉛蓄電池やリチウムイオン電池等の二次電池によって構成されている。補機バッテリB2は、不図示の補機へ電力を供給する。補機バッテリB2は、DCDCコンバータ70の出力電力を受けることによって充電される。電圧センサ72は、補機バッテリB2の電圧を検知し、検知結果をECU40へ出力する。
ECU40は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、電動車両100における各機器の制御を行なう。なお、この制御は、必ずしもソフトウェアによって実現されるとは限られず、専用のハードウェア(電子回路)によって実現してもよい。
[適切な退避走行モードの選択]
昇圧コンバータ10において過電流が生じると、電動車両100は、過電流の原因が解消するまで、退避走行を行なう。昇圧コンバータ10において過電流が生じる原因としては、たとえば、下アームが短絡した場合や、システムメインリレーSMRよりもメインバッテリB1側の回路(以下、「高圧回路」とも称する。)で断線が生じた場合がある。
下アームが短絡すると、メインバッテリB1から昇圧コンバータ10に過電流が流れ込む。また、高圧回路で断線(たとえば、メインバッテリB1におけるCID故障や、システムメインリレーSMRにおけるオープン故障)が生じると、メインバッテリB1から昇圧コンバータ10への電力供給が停止するため、コンデンサC1の急激な電圧変化により、昇圧コンバータ10に過電流が発生する可能性がある。
退避走行を行なう場合であっても、補機バッテリB2の電力を維持することが好ましい。補機バッテリB2の電力が不足すると、電動車両100が退避走行を継続できなくなる場合があるからである。
しかしながら、昇圧コンバータ10における過電流の発生原因によっては、補機バッテリB2を充電できない場合がある。たとえば、下アームが短絡している場合には、スイッチング素子Q1をオン(導通)状態にしたとしても、インバータ20,30から出力される電力(モータジェネレータMG1,MG2の発電電力)は、下アームに流れ込んでしまい、補機バッテリB2には供給されない。
一方、高圧回路において断線が生じており、下アームが短絡していない場合には、スイッチング素子Q1をオン状態にするとともにスイッチング素子Q2をオフ(非導通)状態にすることによって、インバータ20,30から出力される電力は、補機バッテリB2に供給される。
したがって、昇圧コンバータ10において過電流が生じた場合に、その発生原因が、下アームの短絡であるのか、高圧回路における断線であるのかを判定することは重要である。過電流の発生原因を特定することができれば、高圧回路における断線が原因で昇圧コンバータ10において過電流が生じている場合には、電動車両100は、補機バッテリB2を充電可能なモードで退避走行を行なうことができる。
図2は、下アームの短絡後、ヒューズ56の溶断前における、電流センサ52及び電圧センサ62の出力を説明するための図である。なお、この状況においては、スイッチング素子Q2を電気的に遮断するための指令がECU40によって出力されている。
図2を参照して、このような状況においては、下アームが短絡しているため、メインバッテリB1からスイッチング素子Q2に大電流が流れ込む。大電流がスイッチング素子Q2に流れ込むため、コンデンサC1にはほとんど電流が流れ込まない。その結果、電流センサ52の出力IBは大きな値(≧所定電流)を示し、電圧センサ62の出力VLは略0V(≦所定電圧)を示す。
図3は、高圧回路で断線(メインバッテリB1におけるCID故障)が生じている場合における、電流センサ52及び電圧センサ62の出力を説明するための図である。なお、この状況においても、スイッチング素子Q2を電気的に遮断するための指令がECU40によって出力されている。
図3を参照して、このような状況においては、メインバッテリB1においてCID故障が生じているため、メインバッテリB1から電流が出力されない。その結果、電流センサ52の出力IBは略0Aを示し、電圧センサ62の出力VLは略0Vを示す。
このように、下アームが短絡している場合と、高圧回路で断線が生じている場合とでは、電圧センサ62の出力VLが略0Vである状況において、電流センサ52の出力IBが異なる。また、下アームの短絡以外が原因で、電圧センサ62の出力VLが所定電圧以下となり、かつ、電流センサ52の出力IBが所定電流以上となる可能性は低い。
したがって、電流センサ52の出力IBが所定電流以上であり、かつ、電圧センサ62の出力VLが所定電圧以下である場合には、ECU40は、下アームが短絡していると判定することができる。
一方、電圧センサ62の出力VLが略0Vを示し、かつ、電流センサ52の出力IBが略0Aを示すのは、高圧回路で断線が生じている場合だけではない。
図4は、高圧回路の断線以外の理由で、電圧センサ62の出力VLが略0Vを示し、かつ、電流センサ52の出力IBが略0Aを示す場合を説明するための図である。図4を参照して、この図が示す状況は、下アームが短絡した後、ヒューズ56に大電流が流れることによってヒューズ56が溶断した状況である。この状況においても、スイッチング素子Q2を電気的に遮断するための指令がECU40によって出力されている。
この状況においては、ヒューズ56が溶断しているため、メインバッテリB1から電流が出力されない。その結果、電流センサ52の出力IBは略0Aを示し、電圧センサ62の出力VLは略0Vを示す。したがって、電圧センサ62の出力VLが略0Vを示し、かつ、電流センサ52の出力IBが略0Aを示すからといって、高圧回路が断線しているとは限らない。なお、本実施の形態においては、下アームの短絡に起因するヒューズ56の溶断は、高圧回路断線ではなく、下アーム短絡と判定される。
したがって、本実施の形態に従う電動車両100においては、電圧センサ62の出力VLが所定電圧以下であり、かつ、電流センサ52の出力IBが所定電流以上であるという条件が満たされない場合には、別の方法によって、高圧回路で断線が生じているか否かが判定される。メインバッテリB1におけるCID故障は、たとえば、メインバッテリB1に設けられているバッテリECUによって検知される。ECU40は、バッテリECUからCID故障が生じた旨の情報を得ることができる。これにより、ECU40は、メインバッテリB1におけるCID故障の発生を検知することができる。
本実施の形態に従う電動車両100において、ECU40は、昇圧コンバータ10からフェール信号FCVを受け、かつ、所定条件が成立する場合には、下アームが短絡していると判定する。なお、所定条件とは、スイッチング素子Q2を電気的に遮断するための指令がECU40によって出力された状態において、コンデンサC1の電圧が所定電圧以下であり、かつ、メインバッテリB1の電流が所定電流以上であるという条件である。そして、ECU40は、昇圧コンバータ10からフェール信号FCVを受け、かつ、所定条件が成立しない場合に、高圧回路で断線が生じていると判定されたときは、システムメインリレーSMRが開放され、かつ、モータジェネレータMG1により発電された電力によって補機バッテリB2が充電されるモードで電動車両100が退避走行するように、システムメインリレーSMR、インバータ20,30、昇圧コンバータ10、及び、DCDCコンバータ70を制御する。
電動車両100においては、高圧回路の断線が原因でフェール信号FCVが出力された場合に、補機バッテリB2を充電可能な退避走行モードが選択される。したがって、電動車両100によれば、昇圧コンバータ10に過電流が生じたことに起因する退避走行時、過電流発生の原因が高圧回路の断線である場合には、補機バッテリB2の電力を維持することができる。
[退避走行モードの選択処理手順]
図5は、退避走行モードの選択処理手順を示すフローチャートである。図5を参照して、このフローチャートに示される処理は、昇圧コンバータ10からフェール信号FCVを受けた場合に、ECU40により実行される。
ECU40は、昇圧コンバータ10によりフェール信号FCVを受けたか否かを判定する(ステップS100)。フェール信号FCVを受けていないと判定されると(ステップS100においてNO)、処理はリターンに移行する。
一方、フェール信号を受けたと判定されると(ステップS100においてYES)、ECU40は、昇圧コンバータ10及びインバータ20,30にシャットダウン信号SDC,SD1,SD2をそれぞれ出力する(ステップS110)。
ECU40は、昇圧コンバータ10及びインバータ20,30がシャットダウンされた状態で、上述の所定条件(電圧センサ62の出力VL≦所定電圧、かつ、電流センサ52の出力IB≧所定電流)が成立するか否かを判定する(ステップS120)。たとえば、電流センサ52の出力IBは、フェール信号FCV発生後の出力IBの積算値としてもよい。所定条件が成立すると判定されると(ステップS120においてYES)、ECU40は、下アームが短絡していると判定する(ステップS180)。
一方、所定条件が成立しない(たとえば、電圧センサ62の出力VL≦所定電圧、かつ、電流センサ52の出力IB<所定電流)と判定されると(ステップS120においてNO)、ECU40は、電動車両100によりアドバンテージ走行が行なわれるように、昇圧コンバータ10及びインバータ20,30を制御する(ステップS130)。アドバンテージ走行とは、インバータ20,30がシャットダウンしており、かつ、昇圧コンバータ10がシャットダウンしていない状態で行なわれる走行である。アドバンテージ走行中に、メインバッテリB1においてCID故障が生じているか否かの判定が行なわれる。
CID故障が生じていると判定された場合には(ステップS140においてYES)、ECU40は、電動車両100によりバッテリレス走行が行なわれるように、システムメインリレーSMR、昇圧コンバータ10、DCDCコンバータ70、及び、インバータ20,30を制御する(ステップS150)。バッテリレス走行とは、システムメインリレーSMRが開放され、モータジェネレータMG1により発電された電力を用いてモータジェネレータMG2が走行駆動力を生成し、さらに、モータジェネレータMG1により発電された電力によって補機バッテリB2が充電される退避走行モードである。
CID故障が生じていないと判定された場合には(ステップS140においてNO)、ECU40は、電圧センサ62の出力VLがメインバッテリB1の電圧VB1近くまで復帰しているか否かを判定する(ステップS160)。
たとえば、コンデンサC1の電力が急に持ち出され、一時的にコンデンサC1の電圧が低下するような場合も考えられ、そのような場合には、退避走行を行なう必要がない。したがって、電圧センサ62の出力VLがメインバッテリB1の電圧VB1近くまで復帰していると判定された場合には(ステップS160においてYES)、ECU40は、電動車両100が退避走行ではない通常の走行をするように昇圧コンバータ10及びインバータ20,30を制御する(ステップS170)。
一方、電圧センサ62の出力VLがメインバッテリB1の電圧VB1近くまで復帰していないと判定された場合には(ステップS160においてNO)、下アームの短絡に起因するヒューズ56の溶断によって電流センサ52の出力IBが所定電流未満に低下していると考えられるため、ECU40は、下アームが短絡していると判定する(ステップS180)。
下アームが短絡していると判定されると、ECU40は、電動車両100によりVH−F/B走行が行なわれるように、昇圧コンバータ10及びインバータ20,30を制御する(ステップS190)。VH−F/B走行とは、昇圧コンバータ10がシャットダウンされた状態で、モータジェネレータMG1により発電された電力を用いてモータジェネレータMG2で走行駆動力を生成する退避走行モードである。なお、VH−F/B走行においては、システムメインリレーSMRが開放される。また、VH−F/B走行においては、昇圧コンバータ10がシャットダウンされているため、モータジェネレータMG1により発電された電力によって補機バッテリB2の充電を行なうことができない。
以上のように、本実施の形態に従う電動車両100において、ECU40は、昇圧コンバータ10からフェール信号FCVを受け、かつ、所定条件が成立しない場合に、高圧回路で断線が生じていると判定されたときは、システムメインリレーSMRが開放され、かつ、モータジェネレータMG1により発電された電力によって補機バッテリB2が充電されるモードで電動車両100が退避走行するように、システムメインリレーSMR、インバータ20,30、昇圧コンバータ10、及び、DCDCコンバータ70を制御する。したがって、電動車両100によれば、昇圧コンバータ10に過電流が生じたことに起因する退避走行時に、補機バッテリB2の電力をなるべく維持することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
2 エンジン、3 動力分割機構、4 車輪、10 昇圧コンバータ、20,30 インバータ、40 ECU、52 電流センサ、54,60,62,72 電圧センサ、55,65 電力線対、56 ヒューズ、70 DCDCコンバータ、100 電動車両、B1 メインバッテリ、B2 補機バッテリ、SMR システムメインリレー、C1,C2 コンデンサ、PL1,PL2 正極線、NL1,NL2 負極線、Q1,Q2 スイッチング素子、D1,D2 ダイオード、L リアクトル、MG1,MG2 モータジェネレータ。

Claims (2)

  1. 電動車両であって、
    メインバッテリと、
    補機バッテリと、
    回生発電可能に構成されたモータジェネレータと、
    前記モータジェネレータを駆動するインバータと、
    前記メインバッテリに接続された電力線対と、
    前記インバータと前記電力線対との間に設けられ、電圧変換を行なう第1のコンバータと、
    前記補機バッテリと前記電力線対との間に設けられ、電圧変換を行なう第2のコンバータと、
    前記電力線対間に接続されたキャパシタと、
    前記キャパシタと前記メインバッテリとの間において、前記電力線対に設けられたリレーと、
    前記リレー、前記インバータ、並びに、前記第1及び第2のコンバータを制御するように構成された制御装置とを備え、
    前記第1のコンバータは、
    前記電力線対間に接続されたスイッチング素子と、前記スイッチング素子に逆並列に接続されたダイオードとを有する下アームを含み、
    前記第1のコンバータ内で過電流が検知された場合にフェール信号を前記制御装置に出力し、
    前記制御装置は、前記フェール信号を受け、かつ、所定条件が成立する場合には、前記下アームが短絡していると判定し、
    前記所定条件は、前記スイッチング素子を電気的に遮断するための指令が前記制御装置によって出力された状態において、前記キャパシタの電圧が所定電圧以下であり、かつ、前記メインバッテリの電流が所定電流以上であるという条件であり、
    前記制御装置は、前記フェール信号を受け、かつ、前記所定条件が成立しない場合に、前記インバータをシャットダウンし、かつ、前記第1のコンバータをシャットダウンしないモードで前記電動車両が走行するように、前記インバータ及び前記第1のコンバータを制御し、走行中に、前記リレーよりも前記メインバッテリ側の回路で断線が生じているか否かを判定し、前記回路で断線が生じていると判定されたときは、前記リレーが開放され、かつ、前記モータジェネレータにより発電された電力によって前記補機バッテリが充電されるモードで前記電動車両が退避走行するように、前記リレー、前記インバータ、並びに、前記第1及び第2のコンバータを制御する、電動車両。
  2. 前記回路で断線が生じていないと判定された場合に、前記制御装置は、前記キャパシタの電圧を監視し、前記キャパシタの電圧が前記メインバッテリの電圧に達しているときには、前記下アームが短絡していると判定し、前記キャパシタの電圧が前記メインバッテリの電圧に達していないときには、前記下アームが短絡していないと判定する、請求項1に記載の電動車両。
JP2016176731A 2016-09-09 2016-09-09 電動車両 Active JP6759902B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016176731A JP6759902B2 (ja) 2016-09-09 2016-09-09 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176731A JP6759902B2 (ja) 2016-09-09 2016-09-09 電動車両

Publications (2)

Publication Number Publication Date
JP2018042431A JP2018042431A (ja) 2018-03-15
JP6759902B2 true JP6759902B2 (ja) 2020-09-23

Family

ID=61626636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176731A Active JP6759902B2 (ja) 2016-09-09 2016-09-09 電動車両

Country Status (1)

Country Link
JP (1) JP6759902B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078128A (ja) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 電気自動車
CN112977067B (zh) * 2021-03-03 2022-02-11 南京恒天领锐汽车有限公司 一种纯电动物流车高压配电柜的上电策略

Also Published As

Publication number Publication date
JP2018042431A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5626468B2 (ja) 車両および車両の制御方法
JP5227230B2 (ja) 電動車両
EP2864151B1 (en) Vehicle, power source system, and control method of power source system
JP4701821B2 (ja) 負荷駆動装置およびそれを搭載した車両
JP5228824B2 (ja) 車両の電源システムおよび車両
JP2013051831A (ja) 電動車両の電源制御装置
JP2013192278A (ja) 電動車両
JP2020156270A (ja) 電動車両の電源システム
JP2019054673A (ja) 電源装置
JP4905204B2 (ja) 負荷駆動装置
JP6759902B2 (ja) 電動車両
JP5949436B2 (ja) 車両、電源システムおよび電源システムの制御方法
JP2009296844A (ja) 電動車両およびリレー溶着判定方法
EP3068656A1 (en) Vehicle and charging and discharging system using vehicle
JP5696589B2 (ja) 車両および車両の制御方法
JP2014138473A (ja) 電源システムおよびそれを搭載する車両
JP2019187061A (ja) 電力制御システム
JP6337833B2 (ja) 負荷駆動装置
JP2014139038A (ja) 車両
JP2014155298A (ja) 電源システムおよびそれを搭載した車両
JP6274169B2 (ja) モータ駆動装置
JP7103320B2 (ja) 電源装置
JP2016215675A (ja) 電源装置
JP2007228777A (ja) 電源制御装置および車両
JP2014155297A (ja) 電源システムおよびそれを搭載した車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151