JP6745622B2 - 粒状体選別装置 - Google Patents

粒状体選別装置 Download PDF

Info

Publication number
JP6745622B2
JP6745622B2 JP2016061875A JP2016061875A JP6745622B2 JP 6745622 B2 JP6745622 B2 JP 6745622B2 JP 2016061875 A JP2016061875 A JP 2016061875A JP 2016061875 A JP2016061875 A JP 2016061875A JP 6745622 B2 JP6745622 B2 JP 6745622B2
Authority
JP
Japan
Prior art keywords
passage
granular material
unit
passing
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016061875A
Other languages
English (en)
Other versions
JP2017170400A (ja
Inventor
泰守 黒水
泰守 黒水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2016061875A priority Critical patent/JP6745622B2/ja
Publication of JP2017170400A publication Critical patent/JP2017170400A/ja
Application granted granted Critical
Publication of JP6745622B2 publication Critical patent/JP6745622B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sorting Of Articles (AREA)

Description

本発明は、所定の通過方向で通過経路を通過する粒状体の品質状態を光学的に評価して、判定条件から外れた粒状体を除外する粒状体選別装置に関する。
特許文献1には、上方から上下方向で直線状に延びた通過経路に沿って落下してくる粒状体に対して、粒状体の通過方向で互いに重ならないように間隔をあけている第1検査領域と第2検査領域の2箇所で光学的検査を行い、その評価結果に基づいて粒状体を合格品と不合格品とに分けて回収する粒状体検査装置が開示されている。流動体の通過方向(落下方向)に関して、第2検査領域は、第1検査領域の下流側に位置し、評価結果に基づいて粒状体を区分けする選別ユニットは、さらに第2検査領域の下流側に位置する。
特開2015−203620号公報
上述したような構成の粒状体検査装置(粒状体選別装置)では、第1検査領域及び第2検査領域の通過中に不良品(または良品)と評価された粒状体が、選別ユニットに到達する正確なタイミングで、当該選別ユニットを動作させることが重要である。第1検査領域及び第2検査領域から選別ユニットまでの距離は設計寸法によって厳密に求めることが可能であるので、粒状体が通過経路を通過する速度、例えば落下速度が常に一定であると仮定すると、選別ユニットの動作タイミングを一度調整すれば、それ以後は正確に選別ユニットを動作させることが可能である。しかしながら、粒状体の速度は、粒状体の流れ密度、粒状体の形状、粒状体の重さによって変動する。このため、選別ユニットを正確なタイミングで動作させるための調整は、検査状況が変わる毎に、時間をかけて行わなければならない。このことは、検査業務の大きな負担となっていた。
このような実情から、粒状体の品質に基づく選別の正確さを維持しながらも調整負担が軽減できる粒状体選別装置が要望されている。
本発明による粒状体選別装置は、
被検査物である粒状体を所定の通過方向に沿って通過させる通過経路と、前記通過経路に配置された第1検査領域と、前記通過経路のうちの前記第1検査領域よりも下流側の位置に配置された第2検査領域と、前記通過経路のうちの前記第2検査領域よりも下流側に位置する分岐点において、前記通過経路から分岐する除外経路と、前記通過方向に対して交差する方向に延びる光軸を有するとともに前記第1検査領域に光学的照準を合わせた第1受光ユニットと、前記通過方向に対して交差する方向に延びる光軸を有するとともに、前記第2検査領域に光学的照準を合わせた第2受光ユニットと、前記第1受光ユニットからの第1受光信号に基づいて前記粒状体の良否を判定し、判定条件から外れた前記粒状体を除外品として検出する第1評価部と、前記第2受光ユニットからの第2受光信号に基づいて前記粒状体の良否を判定し、判定条件から外れた前記粒状体を除外品として検出する第2評価部と、前記除外品を前記除外経路に分岐させる選別ユニットと、前記第1受光信号と前記第2受光信号とに基づいて、前記通過経路における前記粒状体の通過速度を算定する速度算定部と、前記除外品として検出された前記粒状体の前記分岐点への到達タイミングを、前記通過速度に基づいて推定し、前記除外品を前記分岐点において前記選別ユニットを用いて前記通過経路から前記除外経路に分岐させるための分岐タイミングを算定する分岐タイミング算定部とを備え
前記速度算定部は、除外される前記粒状体に先行して前記通過経路を通過した前記粒状体に関して算定された前記通過速度を用いて、前記第1検査領域を通過する第1通過時間と、前記第2検査領域を通過する第2通過時間とから、前記粒状体が前記分岐点を通過する通過タイミングを導出するルックアップテーブルを作成し、
前記分岐タイミング算定部は、前記ルックアップテーブルから導出された前記通過タイミングを前記分岐タイミングとして算定する。
この構成によれば、速度算定部は、通過経路を通過する粒状体の通過速度を、粒状体の第1検査領域での粒状体の検出を示す第1受光信号と第2検査領域での当該粒状体の検出を示す第2受光信号との信号間隔から算定することができる。粒状体の通過速度が得られると、第1検査領域または第2検査領域での評価によって除外品として検出された粒状体が、通過経路から除外経路への分岐点に達する到達タイミング、結果的には、選別ユニットを用いて除外品を精度良く分岐させることができる分岐タイミングが算定できる。この通過速度の算定に必要となる、通過経路における2点での粒状体の検出には、第1受光信号及び第2受光信号を利用できる。この第1受光信号及び第2受光信号に基づいて粒状体の通過速度を算定するアルゴリズムと、通過速度を用いて分岐点への到達タイミングを推定して、選別ユニットを動作させる分岐タイミングを算定するアルゴリズムとを備えるだけで、本発明の実現が可能であり、費用負担が少ない。ここで用いられるアルゴリズムは、前もって算定された通過速度を用いて、第1検査領域を通過する第1通過時間と、前記第2検査領域を通過する第2通過時間とから、前記粒状体が前記分岐点を通過する通過タイミングを導出するルックアップテーブルとして、構成されている。
粒状体の通過経路での通過速度が得られると、当該通過速度と、分岐させるべき除外品としての粒状体が検出された位置から分岐点までの距離とから、この除外品を分岐させるタイミングを算定することができる。つまり、この分岐タイミングは、第1検査領域と第2検査領域とにおける粒状体に対する評価結果に基づいて算定することができる。このことから、本発明の好適な実施形態の1つでは、前記分岐タイミングは、前記第1評価部において前記除外品として検出された前記粒状体が前記分岐点に到達するタイミングとして算定される。第1受光信号は、第1検査領域を通過する粒状体を検出した信号であるので、当該第1受光信号によって除外品として検出された粒状体が分岐点に達するまでの時間は、第2検査領域で評価された粒状体が分岐点に達するまでの時間よりは長く、処理に余裕ができる点が有利である。
また、本発明の好適な実施形態の1つでは、前記分岐タイミングは、前記第2評価部において前記除外品として検出された前記粒状体が前記分岐点に到達するタイミングとして算定される。第2検査領域で評価された粒状体が分岐点に達するまでの時間は、第1検査領域で評価された粒状体が分岐点に達するまでの時間よりは短く、処理の余裕は少なくなるが、その間での通過速度の変動等の外乱の影響を受ける可能性は低減する。
粒状体が除外品と評価されるのは、第1検査領域と第2検査領域との両方の通過時とは限らず、どちらか一方の通過時にしか評価されないということも十分にあり得る。このことから、上述した、2つの分岐タイミング算定が、独立的に実行可能なことが好ましい。
本発明の好適な実施形態の1つでは、前記分岐タイミングの算定には、当該分岐タイミングに応じて除外される前記粒状体に先行して前記通過経路を通過した前記粒状体に関して算定された前記通過速度が用いられる。この構成では、評価された除外品それ自身の第1検査領域から第2検査領域までの通過時間を用いて通過速度を算定するのではなく、それより以前に、例えば検査開始時に最初に流れてくる粒状体を用いて算定された通過速度が利用される。これにより、検出不良や通過速度の算定エラーなどに起因する分岐不能や分岐精度の悪化を防ぐことができる。さらに、本発明の好適な実施形態の1つでは、前記分岐タイミングの算定には、当該分岐タイミングに除外される前記粒状体に先行して前記通過経路を通過した複数の前記粒状体の夫々に関して算定された複数の前記通過速度の平均値が用いられる。この構成では、一回だけの算定による通過速度をそれ以後に用いるのではなく、通過速度の算定を数回行って、その平均値をとるので、通過速度がある程度変動する場合、より適切な通過速度を利用することが可能となる。
検査効率を高めるために、通過経路の横断面は細長く形成することが好ましい。その際、粒状体の速度は、通過経路の幅方向の位置(例えば通過経路の両端領域と中央領域)によって異なることが少なくない。この問題を解決するためには、上述した粒状体の光学的検出、粒状体の速度算定、粒状体の分岐を、通過経路の横断方向で分割して、それぞれ独立した制御チャンネルで行うことが好ましい。このことから、本発明の好適な実施形態の1つでは、前記通過速度は、前記通過経路の幅方向に分割された区画ごとに算定され、前記分岐タイミング算定部による前記分岐タイミングの算定は、前記区画ごとに行われる。
粒状体が第1検査領域へ流下する際、通過経路の幅方向に偏向せずに、できるだけ直線的に流下することが好ましい。粒状体の斜行流下は速度のばらつきを生じさせ、正確な速度測定に悪影響を及ぼす。このため、本発明の好適な実施形態の1つでは、前記通過経路の一部を構成するとともに、前記粒状体を前記第1検査領域へ流下案内する搬送部材が備えられ、前記搬送部材の流下案内面には、前記通過方向に沿って複数の案内壁が延設されており、前記案内壁により前記通過経路が複数の通過経路区画に分割されている。この構成であれば、案内壁によって粒状体の幅方向に偏向が抑制される。
搬送部材における粒状体の流下速度は、粒状体と接触する、搬送部材の流下案内面の摩擦にも影響される。このため、粒状体の流下速度をできるだけ安定させるためには、前記搬送部材が金属材料からなり、前記流下案内面に対して摩擦を低減させる表面処理が施されていることが好適である。より具体的には、前記搬送部材はアルミ材であり、前記表面処理はアルマイト処理であることが好ましい。
選別ユニットによる、除外品の除外経路への分岐精度を高めるためには、環境変化などによる、検査対象となる粒状体の挙動変化(流下速度変動など)、粒状体の速度測定の測定誤差、選別ユニットの動作機器の挙動変化に、選別ユニットの動作制御を対応させることが好ましい。このため、本発明の好適な実施形態の1つでは、前記除外品を前記除外経路に分岐させるための、前記選別ユニットの作動開始時間または作動継続時間あるいはその両方が、変更可能である。これにより、選別ユニットは、上述した問題に対応することができ、高い精度で、除外品を除外経路へ分岐させることができる。同様の目的をさらに効果的に達成するため、本発明によるもう一つの好適な実施形態では、前記選別ユニットが、前記通過経路の幅方向に分割された区画毎に適合させた複数の選別サブユニットから構成されており、前記除外品を前記除外経路に分岐させるための、前記選別サブユニットの作動開始時間または作動継続時間あるいはその両方が独立して変更可能に構成されている。この構成では、通過経路の幅方向での粒状体流下速度の差異や速度測定なども吸収することができ、より高い精度で、除外品を除外経路へ分岐させることができる。
なお、本出願で定義されている、速度算定部が算定する通過速度及び分岐タイミング算定部が分岐タイミングの算定のために利用する通過速度は、物理的に厳密な意味での速度に限定されるわけではない。例えば、制御プログラム的には、第1検査領域から第2検査領域への通過時間によって設定されるルックアップテーブルを通じて、第1検査領域または第2検査領域における粒状体の通過タイミング(通過時刻)から、当該粒状体の分岐点への到着タイミング(到着時刻)、つまり分岐タイミングを導出することができる。このような技法も含め、通過速度の概念に基づいて分岐タイミングを算出する制御技法の全てが本発明に含まれる。
本発明による粒状体選別装置の基本的な選別制御原理を説明するための模式図である。 本発明による粒状体選別装置の基本的な選別制御原理を説明するための、図1とは異なる配置での模式図である。 本発明による粒状体選別装置の基本的な選別制御原理を説明するための図1及び図2とは異なる配置での模式図である。 本発明による粒状体選別装置の具体的な実施形態の1つである樹脂ペレット選別装置の全体側面図である。 第1検査領域と第2検査領域とにおける樹脂ペレット選別装置の縦断側面図である。 第1検査領域における光学要素の配置を模式的に示す平面図である。 制御装置における選別制御の機能を説明する機能ブロック図である。 ペレットの光学的検査を説明するための説明図である。 ペレットの光学的検査における正常と異常の判定基準を説明するための説明図である。 シュータに設けられた案内リブを示す正面図である。 シュータに設けられた案内リブの断面図である。
本発明による粒状体選別装置の具体的な実施形態を説明する前に、図1を用いて本発明を特徴付けている基本的な選別制御原理を説明する。ここでは、上方から上下方向で直線状に延びた通過経路Gに沿って移動してくる被検査物である粒状体を、その通過箇所である第1検査領域TA1と第2検査領域TA2で光学的検査を行う。第1検査領域TA1は、粒状体の通過方向で第2検査領域TA2の上流側に位置し、第1検査領域TA1と第2検査領域TA2とは、所定距離だけ離れている。通過経路Gの第2検査領域TA2よりさらに下流側に位置する分岐点TPで、除外経路Zが通過経路Gから分岐している。第1検査領域TA1と第2検査領域TA2との検査結果により、除外すべきと判定された粒状体は除外品として、除外経路Zに選別ユニットSDによって分岐される。
図1で示された例では、光学的検査の手法として、撮影素子を用いて通過経路Gを通過する粒状体を撮影し、その撮影画像を画像処理して、粒状体の品質(色ずれや形状ずれなど)を判定して、不良品を検知する画像評価手法を用いている。このため、通過方向に対して横断方向(例えば通過方向に直交)に延びる光軸OA1を有するとともに第1検査領域TA1に光学的照準を合わせた撮像素子を有する第1受光ユニット6Aと、通過方向に対して横断方向(例えば通過方向に直交)に延びる光軸OA2を有するとともに第2検査領域TA2に光学的照準を合わせた撮像素子を有する第2受光ユニット6Bとが備えられている。第1受光ユニット6Aから出力される第1受光信号(画像信号)は、予め設定されている画像処理を施された後、検知された粒状体が所定の判定条件(例えば、粒状体輪郭線内の色値や輝度値など)を満たすかどうかについて、第1評価部81で評価される。
同様に、第2受光ユニット6Bから出力される第2受光信号(画像信号)は、第2評価部82で評価される。所定の判定条件から外れた粒状体は、除外品として、分岐点TPで通過経路Gから除外経路Zに分岐される。除外品を除外経路Zに分岐させる選別ユニットSDとしては、粒状体の種別に応じて、種々の形態を採用することができる。さらに、通過経路Gが複数の粒状体が同時に通過できる横幅を有するので、ここでは、ライン状に並んだスリット状のノズルからエアーを吹き付ける方法が好都合である。ソレノイドで制御されるノズルからのエアーの吹き付け作用によってノズルの前を通過する除外品は、通過経路Gから除外経路Zに方向転換される。つまり、除外品が不良品とすれば、良品は通過経路Gをそのまま通過して良品ボックスに収納され、不良品は除外経路Zを経て不良品ボックスに収納される。
図1で示された例では、第1受光ユニット6Aと第2受光ユニット6Bとは、通過経路Gに対して同じ側に配置されている。つまり、通過経路Gを通過する粒状体に対して、互いに離れた通過位置で同じ方向から撮影して得られる受光信号が選別評価のために用いられる。このような第1受光ユニット6Aと第2受光ユニット6Bとの配置に、本発明は限定されるわけではない。例えば、図2に示すように、第1受光ユニット6Aと第2受光ユニット6Bとが、通過経路Gに対して互いに反対側となる位置に配置することもできる。
また、図1や図2で示された例では、第1光学ユニット1Aの光軸OA1及び第2光学ユニット1Bの光軸OA2は通過経路Gに対して直角に交わっていたが、図3に示すように傾斜角θ1とθ2をもって交わるように構成してもよい。図3では、光軸OA1と通過経路Gのなす角度が傾斜角θ1であり、光軸OA2と通過経路Gのなす角度が傾斜角θ2であり、θ1=θ2、θ1<θ2、θ1>θ2のいずれであってもよい。さらには、図では示さないが、第1受光ユニット6Aと第2受光ユニット6Bとに加えて、第3や第4、あるいはそれ以上の受光ユニットを備えてもよい。
選別制御系の構成要素として、同一の粒状体を検知した第1受光信号と第2受光信号とに基づいて通過経路Gにおける当該粒状体の通過速度を算定する速度算定部83が備えられている。第1検査領域TA1と第2検査領域TA2と分岐点TPとの間の距離は設計的に既知である。1つの粒状体が検知された第1受光信号の発生時間と、当該粒状体が検知された第2受光信号の発生時間との差分をとれば、第1検査領域TA1から第2検査領域TA2までの粒状体の通過時間が得られ、その結果、その通過速度が算定できる。通過経路Gを通過する粒状体の通過速度がほぼ一定とすれば、第1検査領域TA1または第2検査領域TA2あるいはその両方で検出された粒状体の分岐点TPを通過する時間を算定することができる。このことを利用して、分岐タイミング算定部84は、算定されている通過速度に基づいて除外品の分岐点TPへの到達タイミング(例えば時刻)を演算し、当該除外品を分岐点TPで除外経路Zに分岐させる分岐タイミングを算定する。分岐タイミング算定部84が、算定された分岐タイミングに基づいて、選別ユニットSDに動作信号を送出することで、選別ユニットSDによる除外品の選別が実行される。
通過経路Gの幅方向の位置によって粒状体の通過速度が異なることを考慮して、ここでは、第1検査領域TA1と第2検査領域TA2と選別ユニットSDとは、通過経路Gの横断方向で複数区画に区分けされ、それぞれの区画毎に、独立して受光信号の評価を行うため、受光信号系及び評価信号系の制御チャンネルが複数(1からnチャンネル)用意され、各区画に割り振られる。例えば、通過経路Gの右端区画、中央区画、左端区画で独立的に粒状体は検出され、区画毎に通過速度が算定され、区画毎に分岐タイミングが算定され、選別ユニットSDが動作される。なお、選別ユニットSDのエアー吹き出しノズルは、区分けされた区画毎に制御されることが好ましいが、全ての区画で共通化してもよい。
速度算定部83で算定された通過速度は、第1検査領域TA1または第2検査領域TA2で除外品と判定された粒状体の分岐点への到着時間、つまり分岐タイミングの算定に用いられる。この通過速度の算定が、選別処理の初期処理として行われるような場合では、複数回の通過速度の算定を実施し、その平均値や中間値などの代表値を通過速度として設定するようにしてもよい。もちろん、除外品と判定された粒状体それ自体の通過速度を算定して、当該通過速度を用いて分岐タイミングを算定してもよい。
次に本発明の具体的な実施形態を図4から図9を用いて説明する。この実施形態の粒状体選別装置は、粒状体としての半透明な樹脂ペレットを検査する装置であり、多数の樹脂ペレットを検査対象物として検査領域に送り込んで、正常物(合格品)であるか除外品(不合格品)であるかを光学的に評価する評価処理と、正常品と除外品との選別処理とを行なう。樹脂ペレットは、図1を用いて説明した基本原理に基づいて選別される。
図4に示すように、ペレットが一層で且つ幅広状態で、上下方向で間隔をあけた第1検査領域TA1と第2検査領域TA2とを通過するように流下案内する搬送部材として、具体的には、この実施形態ではペレットを第1検査領域TA1へ流下案内する搬送部材として、傾斜姿勢のシュータ11が備えられている。ペレットは、シュータ11の上部側に設けられた貯留ホッパ12から振動フィーダ13によって振動搬送され、シュータ11に投入される。投入されたペレットはシュータ11の上面(表面)を流下しながら、第1検査領域TA1の手前で放出され、第1検査領域TA1と第2検査領域TA2とを通過し、分岐点TPで正常物と異常物とに選別される。
図4に示すように、外部から供給されたペレットが貯留される貯留ホッパ12は、側面視で下端側ほど先細の筒状に形成され、振動フィーダ13は、貯留ホッパ12の下部から排出されるペレットを受止める受止め載置部14と、その受止め載置部14に振動を与える振動発生器13Aとを備えている。振動発生器13Aによって受止め載置部14に振動を与えることで、受止め載置部14の一端部からペレットが、シュータ11の(横断方向)幅方向全幅に亘って実質的に一層状態で広がってシュータ11上に供給される。シュータ11は、幅方向全幅に亘って平坦な流下案内面を形成している平面板状のシュータ11として構成されており、ペレットの通過経路Gの前半経路を形成している。
図5に拡大して示されているように、シュータ11により流下案内されるペレットはシュータ11から飛び出している間に検査を受ける。したがって、通過経路Gには、通過中のペレットを検査する第1検査領域TA1と第2検査領域TA2とが配置されている。第1検査領域TA1と第2検査領域TA2とは、互いに通過方向で間隔をあけて配置されている。第1検査領域TA1と第2検査領域TA2とを通過した正常なペレットは下方側の正常物回収部16にそのまま落下して回収され、異常物は、選別ユニットSDとしてのエアー吹き付け装置15による吹き付け作用によって方向転換されることによって分別され、異常物回収部17に回収される。
なお、シュータ11は、ペレットを流下案内面に沿ってスムーズに流下するように、この実施形態では約15°〜20°の傾斜角度αで傾斜しており(図4参照)、通過経路Gも同じ傾斜角度αで傾斜している。もちろん、粒状体の種類は、通過経路Gの形態によっては、傾斜角度αをほぼゼロとしてもよいし、90°に近い角度を採用してもよい。
第1検査領域TA1に対応する位置にペレットを検査するための第1光学ユニット1Aが備えられ、第2検査領域TA2に対応する位置にペレットを検査するための第2光学ユニット1Bが備えられている。第1光学ユニット1Aは、通過経路Gを挟んだ右側、つまり装置後側に第1正面照明ユニット4A及び第1受光ユニット6Aが配置され、通過経路Gを挟んだ左側つまり装置前側に第1背面照明ユニット5Aが配置されている。第1光学ユニット1Aの光軸OA1は、通過経路Gに対して直交しているので、結果的には第1光学ユニット1Aの光軸OA1は、水平線に対して傾斜角度αで傾斜している。また、第2光学ユニット1Bは、通過経路Gを挟んだ左側つまり装置前側に第2正面照明ユニット4B及び第2受光ユニット6B、通過経路Gを挟んだ右側つまり装置後側に第2背面照明ユニット5Bを配置している。第2光学ユニット1Bの光軸OA2も、通過経路Gに対して直交しているので、結果的には第2光学ユニット1Bの光軸OA2も、水平線に対して傾斜角度αで傾斜している。
第1光学ユニット1Aと第2光学ユニット1Bとは、通過経路Gの延び方向で所定距離だけ離れて対向配置されるとともに、それぞれ上向き照射光軸姿勢と下向き照射光軸姿勢とで配置されている。しかしながら、第1光学ユニット1Aと第2光学ユニット1Bとの構造は実質的に同じなので、ここでは第1光学ユニット1Aだけを説明して、第2光学ユニット1Bは省略する。
図5と、模式的に描かれた図6とに示されているように、第1正面照明ユニット4Aは、ライン照明モジュール41として、その照明中心線でもある光軸OA1を挟んで2つのLEDリニアアレイモジュール41a、41bが配置され、この2つのLEDリニアアレイモジュール41a、41bの照射側を覆うように、2つのLEDリニアアレイモジュール41a、41bに向けて膨出している湾曲状で板状の拡散部材42が配置されている。
LEDリニアアレイモジュール41a、41bは、それぞれ、LED素子が、1列以上でかつ通過経路Gの幅に対応する長さで並んでいる形態を有する。LEDリニアアレイモジュール41a、41bと拡散部材42とは、取付フレーム18aに固定されている。その際、拡散部材42は凸状となっている湾曲面側をLEDリニアアレイモジュール41a、41bと向き合う姿勢となっており、拡散部材42の頂部を照明中心線でもある光軸OA1が通過している。拡散部材42の凹状となっている湾曲面側、つまり第1検査領域TA1側は、ペレットの進入を阻止するためにガラス板44がはめ込まれている。
第1受光ユニット6Aは、撮影カメラで構成されており、レンズ部61を内蔵したレンズ筒体63と、ラインセンサ部62を内蔵したセンサパック64とからなる。レンズ筒体63のすぐ前方には、フィルタ66が配置されている。フィルタ66は、収納ケース18に固定されたフィルタブラケット67に取り付けられた挟持枠体67aによって挟み込み支持されている。挟持枠体67aはネジによってフィルタ66を締め付け固定しているので、接着剤で接合していようなものに比べて温度負荷に対して強い。この第1受光ユニット6Aの光軸OA1は1対の細長板形状のミラー60によって屈折されている。ミラー60は、カメラを固定するカメラホルダ18bにブラケット片60aを用いて固定されている。
この第1受光ユニット6Aの光軸OA1は、第1正面照明ユニット4Aの上下のLEDリニアアレイモジュール41aと41bとの間を通り抜け、さらに拡散部材42の頂部に形成されたスリット43及びガラス板44を通過して、第1検査領域TA1に達する。スリット43には、通過経路G側の面に分割処理膜46aが形成された光透過体46がはめ込まれている。
第1背面照明ユニット5Aは、面発光ユニット53を用いており、面発光ユニット自体は良く知られており、本発明では特定の形態に限定されていない。この実施形態において、板状の導光部材52の4つの側面に、それぞれライン照明モジュール51としてのLEDリニアアレイモジュールが取り付けられた面発光ユニット53が使用されている。また、導光部材52の投光面側に光透過保護板としてのガラス板54が配置されている。
次に、図7を用いて、この粒状体選別装置における選別制御機能を説明する。制御機能は、実質的に、制御装置5に集約されている。図7に示すように、第1正面照明ユニット4A、第2正面照明ユニット4B、第1背面照明ユニット5A、第2背面照明ユニット5Bは、光量調整回路71を介して制御装置5に接続されている。制御装置5には、タッチパネルを組み込んだ操作パネル80(図4参照)も接続されており、操作パネル80を介して光量調整のためのマニュアル操作信号が制御装置5に入力される。制御装置5は、入力されたマニュアル操作信号に基づいて、光量調整回路71に制御信号を出力する。光量調整回路71は、受け取った制御信号に基づいて、第1正面照明ユニット4A、第2正面照明ユニット4B、第1背面照明ユニット5A、第2背面照明ユニット5Bの各ライン照明モジュール41、51を個別に駆動制御し、その光量を調整する。
第1受光ユニット6Aのラインセンサ部62と第2受光ユニット6Bのラインセンサ部62とは、制御装置5に接続されている。なお、ラインセンサ部62は、複数の区画に区分けされ、区画毎にチャンネルが割り当てられている。したがって、第1受光ユニット6Aからの第1受光信号及び第2受光ユニット6Bからの第2受光信号は、それぞれ、複数チャンネルで制御装置5に送り込まれ、制御装置5における各処理もチャンネル単位で行われる。
制御装置5には、異常物(不合格品)を選別するための機能部として、第1評価部81、第2評価部82、速度算定部83、分岐タイミング算定部84、弁制御部85が、実質的にはソフトウエアまたはハードウエアあるいはその両方で構築されている。第1評価部81には、第1受光ユニット6Aのラインセンサ部62で取得された第1受光信号が入力され、第2評価部82には第2受光ユニット6Bのラインセンサ部62で取得された第2受光信号が入力される。第1評価部81は、第1受光信号に基づいて、第1検査領域TA1を通過するペレットが正常物(合格品)であるか、あるいは異常物(不合格品)であるかを評価する。第2評価部82は、第2受光信号に基づいて、第2検査領域TA2を通過するペレットが正常物(合格品)であるか、あるいは異常物(不合格品)であるかを評価する。
第1評価部81及び第2評価部82でのペレット評価の一例を図8と図9とを用いて以下に説明する。
図8に示されたラインセンサ部62と粒状体との関係から理解できるように、ラインセンサ部62の各受光素子は、ペレットの通過方向に対する横断方向で延びた走査ラインで粒状体からの光を微小区画pで検出し、ペレットの品質状態に応じた受光量を出力する。
この受光量(信号振幅値)は所定のしきい値と比較される。ここでは、しきい値として、正常な粒状体において得られる受光量に基づいて設定される上限しきい値THHと下限しきい値THLとが用いられる。この上限しきい値THHと下限しきい値THLとの間を適正光量範囲ΔEとし、測定された受光量がこの適正光量範囲ΔEに入れば正常とみなされ、この適正光量範囲ΔEを外れると、異常とみなされる。なお、ここでは、微小区画p単位の受光量でペレットの評価を行うのではなく、所定長さ分の微小区画pの集まりを評価単位として、評価される。このような評価単位は、検査対象物となるペレットの種類や品質仕様によって設定される。
例えば、粒状体の外周の一部の箇所に正常物と濃度が異なる異常箇所があるような場合に、その異常箇所からの反射光を受光した評価単位分のラインセンサ部62の受光量が、適正光量範囲ΔEを外れると、異常物の存在検出とみなされる。図9に異常物検出時のラインセンサ部62の出力が模式的に示されている。図9において、e0は、正常な粒状体からの標準的な反射光に対する出力電圧レベルである。受光素子の出力電圧が下限しきい値THLよりも小さい出力電圧レベルであるe1やe2は、正常な粒状体よりも反射率が小さ過ぎる異常物を示している。受光素子の出力電圧が上限しきい値THHよりも大きい出力電圧レベルであるe3は、正常な粒状体よりも反射率が大き過ぎる異常物を示している。
第1評価部81は、特定ペレット(例えば、異常物と評価されたペレット、あるいは、検査プロセスにおいて最初に通過するペレットなど)を検知した際に、その特定ペレットの第1検査領域TA1を通過する第1通過時間(図7ではt1で示されているタイムスタンプ)を出力する。同様に、第2評価部82は、その特定ペレットの第2検査領域TA2を通過する第2通過時間(図7ではt2で示されているタイムスタンプ)を出力する。
速度算定部83は、第1評価部81から送られてきた第1通過時間と第2通過時間とに基づいて、ペレットの通過速度、あるいは通過速度に依存する通過速度係数(パラメータ)を算定する。算定された通過速度、あるいは通過速度係数に基づいて、算定速度テーブル830が設定される。分岐タイミング算定部84は、第1検査領域TA1または第2検査領域TA2あるいはその両方で、異常物と評価されたペレットが分岐点TPを通過する通過時間を算定速度テーブル830から導出し、当該通過時間に基づいて、当該ペレットを分岐点TPで除外第1通過時経路Zへ分岐させる分岐タイミング:Tを出力する。
ペレットの通過速度は算定速度テーブル830に設定されているので、ペレットが第1検査領域TA1または第2検査領域TA2から分岐点TPに到達する到達時間は、演算で求めることができる。しかしながら、毎回、通過速度を算定するのではなく、前もって算定された通過速度をその後の選別処理に用いる場合には、そのような演算に代えて、前もって算定された通過速度を用いて、第1通過時間:t1と、第2通過時間:t2とから、ペレットが分岐点TPを通過する通過タイミング:Tを導出するルックアップテーブルを作成することで、毎回通過速度を算定する演算負荷を減らすことができる。このルックアップテーブルは、T=G(t1、t2)で表される関数テーブルと等価である。
第2検査領域TA2の下方に配置されているエアー吹き付け装置15は通過経路Gに開口した噴射ノズル15bを有する(図5参照)。この噴射ノズル15bへのエアー供給をオンオフする電磁弁15aへの制御信号は、弁制御部85から出力される。つまり、エアー吹き付け装置15は、異常物と評価されたペレット(例えば、樹脂処理過程で焼けて着色したペレットや、色の違うペレット等)が分岐点TPを通過するときに噴射ノズル15bからエアーを吹き付けて、当該ペレットを除外経路Zに分岐させ、異常物回収部17に収納させる。選別ユニットSDであるエアー吹き付け装置15の作動時間であるエアー供給のオン時間(電磁弁15aのオン時間)の長さ、つまり噴射の継続時間は、変更可能である。噴射の時間を長くすることで、良品を除外経路Zに分岐させる可能性は高くなるが、異常物を除外経路Zに分岐させる可能性も高くなり、安全側に制御する場合には、この継続時間を長くすることが好ましい。この噴射の継続時間を長くするには、噴射の開始時間を早めにすること、及び噴射の終了時間を遅らすこと、この2つの組み合わせで実現することができる。また、エアー吹き付け装置15が通過経路Gの幅方向に分割された区画毎に適合させた複数のエアー吹き付けモジュールから構成されている場合、各エアー吹き付けモジュールのエアー供給のオン時間(電磁弁15aのオン時間)の長さ、つまり噴射の継続時間は、それぞれ独立的に変更可能とすることができる。
この実施形態では、ペレットの通過経路Gの前半経路として構成されている搬送部材としてのシュータ11の流下案内面を形成している平板部の表面には、図10と図11に示すように、ペレットの通過方向に沿って複数の案内壁を作り出すべく案内リブ11aが所定の間隔をあけて形成されている。この案内リブ11aにより、通過経路Gの幅方向は複数の通過経路区画に分割されることになり、通過経路Gを流下するペレットの斜行は通過経路区画の幅内に限定される。この案内リブ11aの個数を増やすことで、通過経路区画の数、すなわち通過経路区画の幅を狭くすることができ、ペレットの斜行幅をさらに狭くすることができる。このシュータ11は、アルミ材からなり、その表面である流下案内面は、摩擦を低減させる表面処理としてアルマイト処理が施されている。なお、図10と図11では、板材を線状に突出させた形態の案内リブ11aによって案内壁を作り出しているが、案内壁を作り出す形態はこれに限定されない。例えば、通過経路区画を縦溝として形成してもよい。
〔別実施形態〕
(1)上述した実施形態では、ライン照明モジュール41は、その照明光軸が通過経路Gに対して直交するように配置されていたが、照明光軸が湾曲状の拡散部材42の湾曲面の鉛直軸となるように配置してもよい。
(2)上述した実施形態では、選別ユニットSDとしてエアー吹き付け装置15が用いられていたが、揺動板のような方向切換機構によって分別してもよい。また、異常物を選別ユニットSDによって分別するのではなく、正常物を分別するような構成を採用してもよい。
(3)上述した実施形態では、第1受光ユニットAと第2受光ユニットBとの2つの受光ユニットが用いられていたが、3つ以上の受光ユニットを用いることができる。3つ以上の受光ユニットを用いた場合、各受光ユニット間での粒状体の通過速度を算定することができる。複数の通過速度が得られる場合、複数の通過速度の平均演算等を用いて、その代表値を決めることができる。
本発明は、樹脂ペレットを検査対象物とする粒状体選別装置の他、籾などの各種の粒状体を検査対象物とする粒状体選別装置に利用可能である。
1A :第1光学ユニット
1B :第2光学ユニット
5 :制御装置
6A :第1受光ユニット
6B :第2受光ユニット
15 :エアー吹き付け装置
15a :電磁弁
15b :噴射ノズル
16 :正常物回収部
17 :異常物回収部
81 :第1評価部
82 :第2評価部
83 :速度算定部
84 :分岐タイミング算定部
85 :弁制御部
830 :算定速度テーブル
G :通過経路
SD :選別ユニット
TA1 :第1検査領域
TA2 :第2検査領域
TP :分岐点
Z :除外経路

Claims (11)

  1. 被検査物である粒状体を所定の通過方向に沿って通過させる通過経路と、
    前記通過経路に配置された第1検査領域と、
    前記通過経路のうちの前記第1検査領域よりも下流側の位置に配置された第2検査領域と、
    前記通過経路のうちの前記第2検査領域よりも下流側に位置する分岐点において、前記通過経路から分岐する除外経路と、
    前記通過方向に対して交差する方向に延びる光軸を有するとともに前記第1検査領域に光学的照準を合わせた第1受光ユニットと、
    前記通過方向に対して交差する方向に延びる光軸を有するとともに、前記第2検査領域に光学的照準を合わせた第2受光ユニットと、
    前記第1受光ユニットからの第1受光信号に基づいて前記粒状体の良否を判定し、判定条件から外れた前記粒状体を除外品として検出する第1評価部と、
    前記第2受光ユニットからの第2受光信号に基づいて前記粒状体の良否を判定し、判定条件から外れた前記粒状体を除外品として検出する第2評価部と、
    前記除外品を前記除外経路に分岐させる選別ユニットと、
    前記第1受光信号と前記第2受光信号とに基づいて、前記通過経路における前記粒状体の通過速度を算定する速度算定部と、
    前記除外品として検出された前記粒状体の前記分岐点への到達タイミングを、前記通過速度に基づいて推定し、前記除外品を前記分岐点において前記選別ユニットを用いて前記通過経路から前記除外経路に分岐させるための分岐タイミングを算定する分岐タイミング算定部と、が備えられ
    前記速度算定部は、除外される前記粒状体に先行して前記通過経路を通過した前記粒状体に関して算定された前記通過速度を用いて、前記第1検査領域を通過する第1通過時間と、前記第2検査領域を通過する第2通過時間とから、前記粒状体が前記分岐点を通過する通過タイミングを導出するルックアップテーブルを作成し、
    前記分岐タイミング算定部は、前記ルックアップテーブルから導出された前記通過タイミングを前記分岐タイミングとして算定する粒状体選別装置。
  2. 前記分岐タイミングは、前記第1評価部において前記除外品として検出された前記粒状体が前記分岐点に到達するタイミングとして算定される請求項1に記載の粒状体選別装置。
  3. 前記分岐タイミングは、前記第2評価部において前記除外品として検出された前記粒状体が前記分岐点に到達するタイミングとして算定される請求項1または2に記載の粒状体選別装置。
  4. 前記通過速度は、前記粒状体が前記第1検査領域を通過した時点から、同一の前記粒状体が前記第2検査領域を通過した時点までの時間と、前記第1検査領域から前記第2検査領域までの距離とを用いて算定される請求項1から3のいずれか一項に記載の粒状体選別装置。
  5. 前記通過速度として、前記分岐タイミングに除外される前記粒状体に先行して前記通過経路を通過した複数の前記粒状体に関して算定された複数の前記通過速度の平均値が用いられる請求項1から4のいずれか一項に記載の粒状体選別装置。
  6. 前記通過速度は、前記通過経路の幅方向に分割された区画ごとに算定され、
    前記分岐タイミング算定部による前記分岐タイミングの算定は、前記区画ごとに行われる請求項1からのいずれか一項に記載の粒状体選別装置。
  7. 前記通過経路の一部を構成するとともに、前記粒状体を前記第1検査領域へ流下案内する搬送部材が備えられ、前記搬送部材の流下案内面には、前記通過方向に沿って複数の案内壁が延設されており、前記案内壁により前記通過経路が複数の通過経路区画に分割されている請求項1からのいずれか一項に記載の粒状体選別装置。
  8. 前記搬送部材は金属材料からなり、前記流下案内面に対して摩擦を低減させる表面処理が施されている請求項に記載の粒状体選別装置。
  9. 前記搬送部材はアルミ材であり、前記表面処理はアルマイト処理である請求項に記載の粒状体選別装置。
  10. 前記除外品を前記除外経路に分岐させるための、前記選別ユニットの作動開始時間または作動継続時間あるいはその両方が、変更可能である請求項1からのいずれか一項に記載の粒状体選別装置。
  11. 前記選別ユニットが、前記通過経路の幅方向に分割された区画毎に適合させた複数の選別サブユニットから構成されており、前記除外品を前記除外経路に分岐させるための、前記選別サブユニットの作動開始時間または作動継続時間あるいはその両方が独立して変更可能である請求項1から10のいずれか一項に記載の粒状体選別装置。
JP2016061875A 2016-03-25 2016-03-25 粒状体選別装置 Active JP6745622B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061875A JP6745622B2 (ja) 2016-03-25 2016-03-25 粒状体選別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061875A JP6745622B2 (ja) 2016-03-25 2016-03-25 粒状体選別装置

Publications (2)

Publication Number Publication Date
JP2017170400A JP2017170400A (ja) 2017-09-28
JP6745622B2 true JP6745622B2 (ja) 2020-08-26

Family

ID=59972569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061875A Active JP6745622B2 (ja) 2016-03-25 2016-03-25 粒状体選別装置

Country Status (1)

Country Link
JP (1) JP6745622B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336322B2 (ja) * 2019-09-06 2023-08-31 清水建設株式会社 外観検査システム、及び外観検査方法
US11883854B2 (en) 2020-03-05 2024-01-30 Satake Corporation Optical sorter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265783A (ja) * 1985-09-13 1987-03-25 株式会社 サタケ 色彩選別機の粒子流下樋
JP3079932B2 (ja) * 1994-12-28 2000-08-21 株式会社佐竹製作所 穀粒色彩選別装置
JP2006110516A (ja) * 2004-10-18 2006-04-27 Seirei Ind Co Ltd 色彩選別機
JP6478474B2 (ja) * 2014-04-14 2019-03-06 株式会社クボタ 粒状体検査装置

Also Published As

Publication number Publication date
JP2017170400A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
US6452156B2 (en) Process and system for the optical inspection of transparent containers
CA2903984C (en) Device and method for transporting and examining fast-moving objects to be treated
JP6745622B2 (ja) 粒状体選別装置
CN102806208B (zh) 粒状体分选装置
JP2013043164A (ja) 光学式選別機用シュート
US20120241617A1 (en) Device for inspecting small pharmaceutical products
US11872596B2 (en) Object conveying and/or sorting system
CN110116497A (zh) 用于添加式地制造三维物体的设备
JP6478474B2 (ja) 粒状体検査装置
WO2013069736A1 (ja) 粒状体検査装置
JP4851856B2 (ja) 粒状体選別装置
US11426768B2 (en) Sorting apparatus
JPH1190345A (ja) 粒状体の検査装置
JP6157086B2 (ja) 粒状体検査装置
JP2006231233A (ja) 粒状体選別装置
JP7482798B2 (ja) 粒状体検査装置
TWI788786B (zh) 光學檢測裝置及其檢測方法
JP7071191B2 (ja) 粒状体選別装置
JP7482799B2 (ja) 粒状体検査装置
JP2012139650A (ja) ペットボトルのキャップ選別装置
JP2023056378A (ja) 検査装置
JP2023056379A (ja) 検査装置
JP2022108066A (ja) 粒状体検査装置
JP2022145004A (ja) 物品排除装置および物品検査装置
JPH07116608A (ja) 先端形状検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6745622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150