JP6737179B2 - 核酸の分離精製方法および固相担体、デバイス、キット - Google Patents

核酸の分離精製方法および固相担体、デバイス、キット Download PDF

Info

Publication number
JP6737179B2
JP6737179B2 JP2016552006A JP2016552006A JP6737179B2 JP 6737179 B2 JP6737179 B2 JP 6737179B2 JP 2016552006 A JP2016552006 A JP 2016552006A JP 2016552006 A JP2016552006 A JP 2016552006A JP 6737179 B2 JP6737179 B2 JP 6737179B2
Authority
JP
Japan
Prior art keywords
solid phase
phase carrier
nucleic acid
solution
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016552006A
Other languages
English (en)
Other versions
JPWO2016052386A1 (ja
Inventor
岡本 淳
淳 岡本
圭三 米田
米田  圭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2016052386A1 publication Critical patent/JPWO2016052386A1/ja
Application granted granted Critical
Publication of JP6737179B2 publication Critical patent/JP6737179B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Description

本発明は、核酸を分離精製する方法に関する。
遺伝子検査はゲノム解析技術の進歩により大きな注目を浴びてきている。特に、近年では個別化医療の普及や感染症領域におけるPOCT(臨床現場即時検査)など遺伝子検査に関連する市場が飛躍的に伸長し、遺伝子検査をさらに普及させると期待されている。
遺伝子検査を行なうには、初めに核酸を含む試料溶液から核酸を分離精製することが必要である。従来、核酸を含む試料溶液から核酸を得る方法としては、フェノール・クロロホルム法という技術が知られていた。この方法はフェノール・クロロホルムを用いてタンパク質、脂質などの夾雑物を不溶化させ、核酸を分離精製する方法である。かかる従来技術は、大量の核酸を安価に分離精製できるが、操作が煩雑であり、核酸の回収率も低く、フェノール・クロロホルムが最終精製物にコンタミするという問題点があった。また、フェノール・クロロホルム自体も有毒であるため、作業環境に制限があるという問題点があった。
一方、かかる問題点を解消すべく所謂Boom法という発明がなされた(例えば、特許文献1、非特許文献1参照)。この方法は、カオトロピック物質を利用してタンパク質、脂質などの夾雑物を可溶化し、核酸を固相担体に吸着させて回収後、核酸を再び溶解することで、核酸を分離精製する方法である。前記Boom法で用いられる固相担体としては、シリカフィルター(例えば、特許文献2、3参照)、シリカ磁性ビーズ(例えば、特許文献4〜6参照)などの様々な態様が知られている。
シリカフィルターを用いることで、迅速・簡便に核酸を分離精製できるが、検体(特に、血液などの高粘性液体)によっては、工程中に固相担体の詰まりが発生するという問題点があった。また、固相担体を通液させるために、10,000G以上の高い遠心力が必要となるため、自動化が困難であり、かつ得られる核酸が物理的な外力により断片化し易いという問題点もあった。
一方、シリカ磁性ビーズを用いることで、固相担体の詰まりの問題は解決でき、自動化も容易であるが、核酸の回収率が低下するという問題点があった。また、除去しきれないシリカ磁性粒子が最終精製物にコンタミするという問題点があった。
特開平2−289596号公報 特開2005−224167号公報 特開2006−296220号公報 特開2000−125860号公報 特開2000−300262号公報 特開2004−31792号公報
R. Boom, et al. Rapid and Simple Method for Purification of Nucleic Acids. Journal of Clinical Microbiology. 1990, vol.28, no.3, p.495−503.
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、核酸の回収率と通液性に優れた核酸の分離精製方法を提供することにある。
本発明者らは、(2)有機または無機繊維と(3)有機バインダーとを含む組成物から抄紙される固相担体(例えばシリカフィルター)を用いると、核酸の回収率を上げるために高目付けにせざるを得ず、高目付けにすると通液性が低下する、つまり核酸の回収率と通液性はトレードオフの関係にあることを見出した。そこで本発明者らは、(1)多孔性無機粒子と(2)有機または無機繊維と(3)有機バインダーとからなる組成物を含む固相担体を用いることで、低目付けでも核酸の回収率を保持できる、つまり核酸の回収率と通液性の両立が可能であることを見出し、本発明に至った。
また、本発明者らは、(3)有機バインダーとして、水系のろ過に一般的に用いられる親水性のバインダーを用いると、核酸の回収率が低下することを見出した。そこで本発明者らは、(3)有機バインダーとしてポリエチレン系ポリマーまたはポリエステル系ポリマー等の疎水性バインダーを用いることで、核酸の回収率がさらに向上することを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成からなる。
1. 核酸を分離精製するための固相担体であって、前記固相担体は、多孔性無機粒子と有機または無機繊維とが疎水性の有機バインダーにより結合しており、
前記多孔性無機粒子は、平均粒子径が1〜50μmである多孔性シリカ粒子であり、
前記有機または無機繊維は、セルロース繊維またはガラス繊維であり、
前記疎水性の有機バインダーは、ポリエチレン、ポリプロピレンまたはポリエステルであり、
前記固相担体中の多孔性無機粒子/有機または無機繊維/疎水性の有機バインダーの含有比率が2〜60/28〜68.6/12〜29.4である、
固相担体。
2. 前記多孔性無機粒子の形状が球状である、1に記載の固相担体。
3. 前記固相担体の目付けが、25〜200g/mである、1または2に記載の固相担体。
4. 前記固相担体の厚みが100〜500μmである、1〜3のいずれかに記載の固相担体。
5. 1〜4のいずれかに記載の固相担体を保持してなるデバイス。
6. 1〜4のいずれかに記載の固相担体または5に記載のデバイス、前記固相担体に核酸を吸着させるための結合液、前記固相担体から核酸以外の成分を洗浄するための洗浄液、前記固相担体から核酸を溶出するための溶出液を含む、核酸の分離精製キット。
7. 6に記載の分離精製キットを用い、少なくとも下記工程(A)から(D)をこの順に経ることを特徴とする核酸の分離精製方法。
(A)核酸を含む試料溶液と前記結合液とを混合して混合液を得る工程
(B)前記混合液と前記固相担体とを接触させ、前記固相担体に核酸を吸着させる工程
(C)前記洗浄液を用いて前記固相担体から核酸以外の成分を洗浄する工程
(D)前記溶出液を用いて前記固相担体から核酸を脱着させる工程
8. 前記核酸を含む試料溶液が血液である7に記載の核酸の分離精製方法。
本発明により、核酸を分離精製する方法において、高い核酸の回収率と高い固相担体の通液性を両立することができる。本発明を用いれば、血液などの粘性の高い生体由来物質からも低い遠心力により核酸を分離精製することができる。
本発明の核酸分離精製方法の適用例の一つである(スピンカラムの形態)。 本発明の核酸分離精製方法の適用例の一つである(シリンジの形態)。 本発明の核酸分離精製方法に用いる固相担体の例である。
以下、本発明を詳述する。
(分離精製の対象となる核酸)
本発明における分離精製の対象となる核酸の種類としては、特に限定されないが、例えば、DNAまたはRNA、1本鎖核酸または2本鎖核酸、直鎖状核酸または環状核酸が挙げられる。これらの中で、本発明は物理的な外力により極めて分解しやすいRNAの分離精製に用いることができ、total RNAの分離精製に好適に用いられる。
(核酸の分離精製原理)
本発明における核酸の分離精製の原理は、BOOM法(非特許文献1)として広く知られているシリカを用いた核酸抽出方法と同様の原理で、核酸の固相担体への特異的な結合、洗浄および溶出により核酸を分離精製する。
具体的には、
工程(A):混合工程において核酸を含む試料と結合液とを混合し、
工程(B):結合工程において前記混合液と固相担体とを接触させ、固相担体に核酸を吸着させ、
工程(C):洗浄工程において洗浄液と固相担体とを接触させ、固相担体から核酸以外の成分を洗浄し、
工程(D):溶出工程において溶出液と固相担体とを接触させ、固相担体から核酸を脱着させることで、核酸を含む試料から核酸を分離精製することができる。
前記工程(B)〜(D)では、核酸の吸着・洗浄・溶出のため、混合液・洗浄液・溶出液などの各種溶液に物理的な外力を加えて固相担体を通液させる。例えば、代表的な核酸抽出キットであるQIAamp、RNeasy(共にキアゲン社)では、底面に固相担体を固定したスピンカラムを用い、スピンカラムの上部に各種溶液を添加し、遠心分離機(例えば、8000〜15000G)により上から下へ通液させる方法が用いられる。
本発明の核酸分離精製方法を用いることにより、弱い外力をかけるだけで核酸の分離精製を行うことができる。例えば、外力が遠心力の場合、その程度は特に限定されないが、4000G以下の遠心力により核酸の分離精製を行うことが好ましく、3000G以下がより好ましく、2000G以下がさらに好ましい。4000G超の遠心分離操作を行おうとすると、一般的に大型の遠心分離機が必要となり、迅速・簡便な核酸抽出を行なうのが困難となる。また、物理的なダメージにより、核酸が分解する恐れもある。
具体的には、4000G以下の遠心力で遠心分離を行うことができる卓上小型遠心機(例えば、チビタン(登録商標))の使用や、シリンジ、ピペットなどの空気の圧力変化により吸引および吐出を行なう装置の使用が好ましい。前記方法において遠心力の下限は特に限定されないが、1000G以上が好ましい。
前記固相担体を固定する容器としては、遠心機を使用する場合はスピンカラムが、シリンジ、ピペットなどの空気の圧力変化により吸引および吐出を行なう装置を使用する場合は、ピペットチップもしくはそれに類似する形状の容器(例えば、ルアーフィッティング)が適している。ピペットチップの形状は、特に限定されないが、一般的に利用されている円錐形で先が切断されており筒状のチップが好ましい。当然ながら、ピペットチップに限らず、吸引吐出機構とのかん合部に密着できる形状であれば良く、所望の形状が選択できる。
本発明において4000G以下の遠心力で核酸の分離精製を行うためには、固相担体として少なくとも(1)多孔性無機粒子と(2)有機または無機繊維と(3)有機バインダーとからなる組成物を含む固相担体を用いる。一般的に固相担体として用いられるシリカフィルターを用いると、核酸の回収率には優れるものの、4000Gを超える遠心力での遠心工程が必要不可欠となり、大型の遠心分離機が必要となる。また核酸を含む試料の種類によってはフィルターに詰まりが発生する恐れがある。本発明においては、抄紙が好ましい。
前記多孔性無機粒子の組成は、核酸を吸着し得るものであれば特に限定されず、例えばシリカ、ガラス、アルミナ、ゼオライト、粘土鉱物などが挙げられる。これらの中でも、シリカが好ましく、多孔性シリカ粒子がより好ましい。
前記多孔性無機粒子の固相担体に含まれる量の下限は1重量%であることが好ましく、2重量%がより好ましく、3重量%がさらに好ましい。一方、上限は60重量%であることが好ましく、40重量%がより好ましく、20重量%がさらに好ましい。固相担体に含まれる量が1重量%より少ないと、核酸の回収率が低下する恐れがある。一方、固相担体に含まれる量が60重量%より多いと固相担体の強度が低下し、核酸の分離精製中に破れが発生する恐れがある。また、通液性が低下し、詰まりが発生する恐れがある。
前記多孔性無機粒子の形状は、球状であることが好ましい。形状が破砕状やシート状であると、核酸の回収率が低下する恐れがある。また、通液性が低下し、詰まりが発生する恐れがある。
前記多孔性無機粒子の平均粒子径の下限は、1μmであることが好ましく、2μmがより好ましく、3μmがさらに好ましい。一方、上限は50μmであることが好ましく、30μmがより好ましく、20μmがさらに好ましい。平均粒子径が1μmより小さいと、通液性が低下し、詰まりが発生する恐れがある。一方、平均粒子径が50μmより大きいと、固相担体の強度が著しく低下し、核酸の分離精製中に破れが発生する恐れがある。
前記有機または無機繊維は特に限定されないが、例えばセルロースなどのような有機繊維またはガラスなどのような無機繊維からなることが好ましく、ガラス繊維がより好ましい。
前記有機バインダーは特に限定されないが、例えばポリエチレン系ポリマーまたはポリエステル系ポリマー等の疎水性バインダーであることが好ましく、ポリエステル系ポリマーを含むバインダーであることがより好ましい。
前記固相担体の目付けは特に限定されないが、その下限は25g/mであることが好ましく、50g/mがより好ましい。一方、上限は200g/mであることが好ましく、150g/mがより好ましい。目付けが25g/mより小さいと、固相担体の強度が低下し、核酸の分離精製中に破れが発生する恐れがある。また、核酸の回収率が低下する恐れがある。一方、目付けが200g/mより大きいと、通液性が低下し、詰まりが発生する恐れがある。なお、固相担体は複数枚重ねて使用してもよく、複数枚重ねた際は全体の目付けを前記固相担体の目付けとする。
前記固相担体の厚みは特に限定されないが、その下限は100μmであることが好ましく、200μmがより好ましい。一方、上限は500μmであることが好ましく、400μmがより好ましい。厚みが100μmより薄いと、固相担体の強度が低下し、核酸の分離精製中に破れが発生する恐れがある。また、核酸の回収率が低下する恐れがある。一方、厚みが500μmより厚いと、通液性が低下し、詰まりが発生する恐れがある。なお、固相担体は複数枚重ねて使用してもよく、複数枚重ねた際は全体の厚みを前記固相担体の厚みとする。
前記担体の形態の一例を図3に示す。図3では、黒丸で示される「多孔性無機粒子」と、線で示される「有機または無機繊維」とが、有機バインダーで結合した態様を例示している。「多孔性無機粒子」および「有機または無機繊維」等の密度は、製造時のそれぞれの濃度を適宜設定することにより調整することが可能である。したがって当然であるが、前記担体の形態は図3に示されるものに限定されない。
前記固相担体を製造する方法は特に限定されないが、例えば湿式抄紙法により製造することが好ましい。
以下、各工程について詳述する。
(A:混合工程)
本発明の工程(A):混合工程は、核酸を含む試料と結合液とを混合する工程である。
本発明の混合工程で用いる核酸を含む試料としては、特に限定されず、例えば血液、血清、血球、髄液、喀痰、尿、胃液、鼻汁、糞便、精液、唾液、咽頭ぬぐい液、鼻腔ぬぐい液、鼻腔吸引液などの生体試料が挙げられる。また、培養した組織、細胞、細菌、ウイルスなども挙げられる。さらには、別な方法で精製した核酸についても該当する。これらの中でも、本発明は比較的カラム詰まりの発生しやすい血液からの核酸の分離精製に用いるのが好ましい。
本発明の混合工程で用いる結合液としては、カオトロピック物質を含む水溶液であることが好ましい。ここでカオトロピック物質とは、水溶液中でカオトロピックイオンを生成し、疎水性分子の水溶性を増加させる作用(カオトロピック効果)を有している物質のことである。前記カオトロピック物質としては、核酸の固相担体への吸着に寄与するものであれば特に限定されないが、例えばグアニジンチオシアン酸塩、グアニジン塩酸塩、グアニジン硝酸塩、グアニジン硫酸塩、ヨウ化ナトリウム、ヨウ化カリウム、過塩素酸ナトリウム、尿素が挙げられる。これらの中でも、カオトロピック効果の強さからグアニジンチオシアン酸塩、グアニジン塩酸塩が好ましい。また、前記カオトロピック物質は単独で用いても、二種以上を組み合わせて用いてもよい。前記カオトロピック物質濃度は、十分なカオトロピック効果が得られれば特に限定されないが、グアニジンチオシアン酸塩の場合は1.0〜6.0M、グアニジン塩酸塩の場合は1.0〜8.0Mであることが好ましい。グアニジンチオシアン酸塩の濃度が1.0Mより少ないと、十分なカオトロピック効果が得られない恐れがある。一方、グアニジンチオシアン酸塩の濃度が6.0Mより多いと保存中にグアニジンチオシアン酸塩が析出する恐れがある。同様にグアニジン塩酸塩の濃度が1.0Mより少ないと、十分なカオトロピック効果が得られない恐れがある。一方、グアニジン塩酸塩の濃度8.0Mより多いと保存中にグアニジン塩酸塩が析出する恐れがある。
前記結合液には、核酸と固相担体との結合を補助するために、アルコール類を含有させるのが好ましい。前記アルコール類としては、前記効果が得られれば、いかなる種類のアルコールを用いてもよいが、エタノール、イソプロパノールが好ましく、エタノールがより好ましい。また、前記アルコールは単独で用いても、二種以上を組み合わせて用いてもよい。前記アルコール濃度は、特に限定されないが、10〜70%が好ましく、10〜50%がより好ましい。アルコール濃度が10%より少ないと、十分な結合補助効果が得られない恐れがある。一方、アルコール濃度が70%より多くすると、核酸と固相担体との結合性はかえって減少する。
前記結合液には、pH調整や核酸の吸着効果向上のために緩衝剤を含有させるのが好ましい。前記緩衝剤としては、目的とするpH範囲において充分な緩衝能力を有していれば、いかなる種類の緩衝剤を用いてもよく、例えば、トリス、リン酸、フタル酸、クエン酸、マレイン酸、コハク酸、シュウ酸、ホウ酸、酒石酸、酢酸、炭酸、グッドバッファー(MES、ADA、PIPES、ACES、コラミン塩酸、BES、TES、HEPES、アセトアミドグリシン、トリシン、グリシンアミド、ビシン)などが挙げられる。これらの中でも、pH5.0〜9.0(好ましくはpH6.0〜8.0)において充分な緩衝能力を有するなどの理由から、トリス、リン酸、MES、PIPES、TES、HEPESが好ましい。また、前記緩衝剤は単独で用いても、二種以上を組み合わせて用いてもよい。前記緩衝剤の濃度は、特に限定されないが、10〜100mM程度が好ましい。
前記結合液には、細胞膜の破壊または細胞中に含まれるタンパク質を変性させる目的で界面活性剤を含有させてもよい。前記界面活性剤としては、前記効果が得られれば、いかなる種類の界面活性剤を用いてもよく、例えばポリオキシエチレンアルキルフェニルエーテル(Triton(登録商標)系界面活性剤など)、ポリオキシエチレンアルキルエーテル(Brij(登録商標)系界面活性剤など)、ポリオキシエチレンソルビタン脂肪酸エステル(Tween(登録商標)系界面活性剤など)、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アルキルグルコシド、ショ糖脂肪酸エステルなどの非イオン性界面活性剤が挙げられる。また、前記界面活性剤は単独で用いても、二種以上を組み合わせて用いてもよい。前記界面活性剤濃度は、特に限定されないが、0.1〜20%であることが好ましい。界面活性剤濃度が0.1%より少ないと、十分な細胞膜の破壊またはタンパク質の変性効果が得られない恐れがある。一方、界面活性剤濃度を20%より多くしても、効果の向上は見られない。
また、前記結合液には、核酸を含む試料中に含まれるタンパク質、特にヌクレアーゼを変性させる目的で、還元剤を含有させてもよい。前記還元剤としては、前記効果が得られれば、いかなる種類の還元剤を用いてもよく、例えば水素、ヨウ化水素、硫化水素、水素化アルミニウムリチウム、水素化ホウ素ナトリウムなどの水素化化合物、アルカリ金属、マグネシウム、カルシウム、アルミニウム、亜鉛などの電気的陽性の大きい金属、またはそれのアマルガム、アルデヒド類、糖類、ギ酸、シュウ酸などの有機酸化物、メルカプト化合物などが挙げられる。これらの中でも、2−メルカプトエタノール、ジチオスレイトールが好ましい。前記還元剤濃度は、特に限定されないが、1.0〜100mMであることが好ましい。還元剤濃度が1.0mMより少ないと、十分なタンパク質の変性効果が得られない恐れがある。一方、還元剤濃度が100mMより多くしても、効果の向上は見られない。
前記核酸を含む試料と結合液とを混合する方法は、特に限定されず、例えばボルテックスミキサーによる混和、転倒混和、ピペッティングなどが挙げられる。
(B:結合工程)
本発明の工程(B):結合工程は、前記混合液と固相担体とを接触させ、固相担体に核酸を吸着させる工程である。
前記混合液と固相担体とを接触させ、固相担体に核酸を吸着させる方法は、特に限定されず、例えば
(1)底面に固相担体を固定したスピンカラムを用い、スピンカラムの上部に混合液を添加し、遠心分離機により上から下へ通液させることで、固相担体に核酸を吸着させる方法
(2)ルアーフィッテングにより先端に固相担体を固定したシリンジを用い、混合液をシリンジの吸引吐出により繰り返し通液させることで、固相担体に核酸を吸着させる方法
(3)内部に固相担体を固定したピペットチップを用い、混合液をピペットの吸引吐出により繰り返し通液させることで、固相担体に核酸を吸着させる方法
が挙げられる。
なお、本発明の核酸分離精製方法において、通液方法は特に限定されない。例えば、重力を利用して液体を上から下へ流すことができる。あるいは、遠心分離機で遠心力をかけたり、シリンジ・ピペットなどの空気の圧力変化により吸引吐出を行うなど、何らかの外力をかけることによっても行うことができる。
(C:洗浄工程)
本発明の工程(C):洗浄工程は、洗浄液と固相担体とを接触させ、固相担体から核酸以外の成分(例えば、タンパク質、脂質など)を洗浄する工程である。なお、洗浄工程は、1回の洗浄で済ませてもよいし、複数回洗浄を繰り返してもよい。
本発明の洗浄工程で用いる洗浄液としては、固相担体に吸着している核酸を脱離させず、かつ核酸以外の成分を脱離させるものであれば、特に限定されないが、アルコール類を含む水溶液であることが好ましい。前記アルコール類としては、前記効果が得られれば、いかなる種類のアルコールを用いてもよいが、エタノール、イソプロパノールが好ましく、エタノールがより好ましい。また、前記アルコールは単独で用いても、二種以上を組み合わせて用いてもよい。前記アルコール濃度は、特に限定されないが、20〜100%が好ましく、30〜90%がより好ましい。アルコール濃度が20%より少ないと、核酸が脱離する恐れがある。
前記洗浄液には、pH調整や核酸の吸着効果向上のために緩衝剤を含有させるのが好ましい。前記緩衝剤としては、目的とするpH範囲において充分な緩衝能力を有していれば、いかなる種類の緩衝剤を用いてもよく、例えば、トリス、リン酸、フタル酸、クエン酸、マレイン酸、コハク酸、シュウ酸、ホウ酸、酒石酸、酢酸、炭酸、グッドバッファー(MES、ADA、PIPES、ACES、コラミン塩酸、BES、TES、HEPES、アセトアミドグリシン、トリシン、グリシンアミド、ビシン)などが挙げられる。これらの中でも、pH5.0〜9.0(好ましくはpH6.0〜8.0)において充分な緩衝能力を有するなどの理由から、トリス、リン酸、MES、PIPES、TES、HEPESが好ましい。また、前記緩衝剤は単独で用いても、二種以上を組み合わせて用いてもよい。前記緩衝剤濃度は、特に限定されないが、10〜100mM程度が好ましい。さらに、最終精製物へのコンタミを低減する目的から、洗浄液中の緩衝剤濃度は結合液中の緩衝剤濃度よりも低いことがより好ましい。
前記洗浄液と固相担体とを接触させ、固相担体から核酸以外の成分を洗浄する方法は、特に限定されず、例えば
(1)底面に固相担体を固定したスピンカラムを用い、スピンカラムの上部に洗浄液を添加し、遠心分離機により上から下へ通液させることで、固相担体から核酸以外の成分を洗浄する方法
(2)ルアーフィッテングにより先端に固相担体を固定したシリンジを用い、洗浄液をシリンジの吸引吐出により繰り返し通液させることで、固相担体から核酸以外の成分を洗浄する方法
(3)内部に固相担体を固定したピペットチップを用い、洗浄液をピペットの吸引吐出により繰り返し通液させることで、固相担体から核酸以外の成分を洗浄する方法
が挙げられる。
前記洗浄工程後に、必要に応じて、固相担体に残留した洗浄液を、遠心分離や加熱により除去することができる。加熱温度は50〜90℃が好ましく、60〜80℃がより好ましい。加熱温度が50℃より低いと、十分な洗浄液の除去効果が得られない。一方、加熱温度が90℃より高いと、核酸が分解・変性する恐れがある。
(D:溶出工程)
本発明の工程(D):溶出工程は、溶出液と固相担体とを接触させ、固相担体から核酸を脱着させる工程である。
本発明の溶出工程で用いる溶出液としては、固相担体に吸着している核酸を脱離させ、かつ核酸抽出後の反応、例えば逆転写、PCRに代表される核酸増幅反応を阻害しない溶液組成であれば、特に限定されないが、水、トリス−EDTA緩衝液[10mM トリス塩酸緩衝液、1mM EDTA、pH8.0]が好ましい。
前記溶出液は、溶出効率を上げるために必要に応じて加熱することができる。加熱温度は50〜90℃が好ましく、60〜80℃がより好ましい。加熱温度が50℃より低いと、十分な溶出率向上効果が得られない。一方、加熱温度が90℃より高いと、核酸が分解・変性する恐れがある。
前記溶出液と固相担体とを接触させ、固相担体から核酸を脱着させる方法は、特に限定されず、例えば
(1)底面に固相担体を固定したスピンカラムを用い、スピンカラムの上部に溶出液を添加し、遠心分離機により上から下へ通液させることで、固相担体から核酸を脱着させる方法
(2)ルアーフィッテングにより先端に固相担体を固定したシリンジを用い、溶出液をシリンジの吸引吐出により繰り返し通液させることで、固相担体から核酸を脱着させる方法
(3)内部に固相担体を固定したピペットチップを用い、溶出液をピペットの吸引吐出により繰り返し通液させることで、固相担体から核酸を脱着させる方法
が挙げられる。
本発明はまた、前記の核酸分離精製方法に用いるための固相担体であって、(1)多孔性無機粒子と(2)有機または無機繊維と(3)有機バインダーとからなる組成物を含む固相担体である。
本発明はまた、前記の核酸分離精製方法に用いるためのデバイスであって、前記の固相担体を保持しているデバイスである。前記デバイスの形態は特に限定されないが、スピンカラムやシリンジが好ましい。その具体的な形態は後述の実施例などで例示される。
本発明はまた、前記の核酸分離精製方法を行うための核酸の分離精製キットであって、前記の固相担体または前記のデバイス、固相担体に核酸を吸着させるための結合液、固相担体から核酸以外の成分を洗浄するための洗浄液、固相担体から核酸を溶出するための溶出液を含む、核酸の分離精製キットである。本発明のキットにおいて、前記の固相担体、結合液、洗浄液および溶出液以外の構成は特に限定されない。たとえばBoom法で用いられる公知の構成を含んでいてもよい。
以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、明細書中の評価法は以下の通りである。
[各種評価法]
<1.多孔性無機粒子の含有率>
下記式(1)にて算出した。
含有率(%)=(多孔性無機粒子の重量/固相担体の重量)×100 (1)
<2.多孔性無機粒子の形状>
各粒子を走査型電子顕微鏡(SEM)で観察し、[1]球また楕円体である球状 [2]立方体または直方体であるシート状 [3]その他のランダムな形状である破砕状 に分類した。
<3.多孔性無機粒子の平均粒子径>
各粒子を走査型電子顕微鏡(SEM)で観察し、100個の粒子の直径を測定し、平均直径(平均粒子径)を算出した。
<4.固相担体の目付け>
200mm×200mmの固相担体を、乾燥機で80℃×30分加熱し、デシケータ(乾燥剤:シリカゲル)で室温×30分静置した。その後、重量を測定し、1m当りの重量(目付け)に換算した。
<5.固相担体の厚み>
200mm×200mmの固相担体の10箇所で、荷重686Paの圧力を加えた時の厚みを測定し、平均厚みを算出した。
<6.核酸の濃度:10ng/μL以上>
測定対象の核酸溶液について、核酸濃度が10ng/μL以上の場合は、下記条件で核酸濃度を測定した。
(1)total RNAの場合
装置名 : Thermo Scientific社製
nano drop(登録商標)2000
測定モード : 核酸−RNA
試料液量 : 2μL
Blank : 水
(2)Genomic DNAの場合
装置名 : Thermo Scientific社製
nano drop(登録商標)2000
測定モード : 核酸−DNA
試料液量 : 2μL
Blank : 水
<7.核酸の濃度:10ng/μL以下>
測定対象の核酸溶液について、核酸濃度が10ng/μL以下の場合は、下記条件で核酸濃度を測定した。
(1)total RNAの場合
装置名 : Invitrogen社製 Qubit(登録商標)2.0
測定キット : Invitrogen社製 Qubit(登録商標)
RNA Assay Kit
容器 : Invitrogen社製 Qubit(登録商標)
assay tubes
測定モード : RNA−RNA
試料液量 : 10μL
Blank : 水
(2)Genomic DNAの場合
装置名 : Invitrogen社製 Qubit(登録商標)2.0
測定キット : Invitrogen社製 Qubit(登録商標)
dsDNA HS Assay Kit
容器 : Invitrogen社製 Qubit(登録商標)
assay tubes
測定モード : DNA−dsDNA High Sensitivity
試料液量 : 10μL
Blank : 水
<8.total RNA分解度(RIN値)>
測定対象のtotal RNA溶液について、下記条件でtotal RNA分解度(RIN値)を測定した。
装置名 : アジレント社製 Agilent 2200 TapeStation
測定キット : アジレント社製 HS RNA Screen Tape、
Sample Buffer、Ladder
試料液量 : 2μL
[実施例1]
多孔性シリカ粒子を5重量%と、ガラス繊維を66.5重量%と、ポリエステルバインダーを28.5重量%の比率で、湿式抄紙装置(東洋紡エンジニアリング社製)を使い固相担体1を作成した。得られた固相担体1の詳細を表1に示す。
次いで、固相担体1をベルトポンチTPO−70(トラスコ社製)にて7mmφの大きさに打ち抜いた。その後、エコノスピン(登録商標)IIa(ジーンデザイン社製)のシリカメンブレン、およびO−リングをシリカメンブレンフィルターハウジングから取り除き、シリカメンブレンの代わりに固相担体1を2枚シリカメンブレンフィルターハウジング内に配し、O−リングで固定し、スピンカラム1(図1参照)を作成した。
次いで、固相担体1をベルトポンチTPO−40(トラスコ社製)にて4mmφの大きさに打ち抜いた。その後、テルモシリンジ SS−02SZ(テルモ社製)の先端に、固相担体1を2枚介してメスルアーフィッティング VPRF206(アイシス社製)を接続し、シリンジ1(図2参照)を作成した。
[実施例2〜5]
多孔性シリカ粒子、ガラス繊維、ポリエステルバインダーの配合比率が異なる以外は、実施例1と同様にして、固相担体2〜5を作成した。得られた固相担体2〜5の詳細を表1に示す。
また、実施例1と同様にして、スピンカラム2〜5、シリンジ2〜5を作成した。
[実施例6、7]
多孔性シリカ粒子の平均粒子径が異なる以外は、実施例1と同様にして、固相担体6、7を作成した。得られた固相担体6、7の詳細を表1に示す。
また、実施例1と同様にして、スピンカラム6、7、シリンジ6、7を作成した。
Figure 0006737179
[実施例8、9]
多孔性シリカ粒子の形状が異なる以外は、実施例1と同様にして、固相担体8、9を作成した。得られた固相担体8、9の詳細を表2に示す。
また、実施例1と同様にして、スピンカラム8、9、シリンジ8、9を作成した。
[実施例10]
ガラス繊維の代わりにセルロース繊維を用いる以外は、実施例1と同様にして、固相担体10を作成した。得られた固相担体10の詳細を表2に示す。
また、実施例1と同様にして、スピンカラム10、シリンジ10を作成した。
[実施例11、12]
ポリエステルバインダーの代わりにポリエチレンバインダー、ポリプロピレンバインダーを用いる以外は、実施例1と同様にして、固相担体11、12を作成した。得られた固相担体11、12の詳細を表2に示す。
また、実施例1と同様にして、スピンカラム11、12、シリンジ11、12を作成した。
[実施例13、14]
固相担持の目付け、厚みが異なる以外は、実施例1と同様にして、固相担体13、14を作成した。得られた固相担体13、14の詳細を表2に示す。
また、実施例1と同様にして、スピンカラム13、14、シリンジ13、14を作成した。
Figure 0006737179
[比較例1、2]
多孔性シリカ粒子、ガラス繊維、ポリエステルバインダーの配合比率が異なる以外は、実施例1と同様にして、固相担体15、16を作成した。得られた固相担体15、16の詳細を表3に示す。固相担体16は、品位が悪く、また非常に脆いため、後の評価を行なうことができなかった。
また、実施例1と同様にして、スピンカラム15、シリンジ15を作成した。
[比較例3]
多孔性シリカ粒子の平均粒子径が異なる以外は、実施例1と同様にして、固相担体17を作成した。得られた固相担体17の詳細を表3に示す。
また、実施例1と同様にして、スピンカラム17、シリンジ17を作成した。
[比較例4]
ポリエステルバインダーの代わりにPVAバインダーを用いる以外は、実施例1と同様にして、固相担体18を作成した。得られた固相担体18の詳細を表3に示す。
また、実施例1と同様にして、スピンカラム18、シリンジ18を作成した。
Figure 0006737179
[比較例5〜7]
市販品である、エコノスピン(登録商標)IIa(ジーンデザイン社製)、RNeasy(登録商標)(キアゲン社製)、PureLink(登録商標)(ライフテクノロジーズ社製)のカラムをそのまま用いた。
<固相担体の通液性>
前記スピンカラム1〜18を用いて、固相担体の通液性を評価した。
Bovine Blood(フナコシ社製)600μLをスピンカラム1〜18にアプライし、微量高速冷却遠心機MX−307(トミー精工社製)にて1,000〜20,000Gでそれぞれ1分間遠心し、Bovine Blood(フナコシ社製)がスピンカラム中の固相担体を通液するために必要な最小の遠心力を評価した。得られた最小通液遠心力を表4に示す。
Figure 0006737179
<total RNAの回収率、total RNA分解度:スピンカラム法>
前記スピンカラム1〜18を用いてtotal RNA水溶液からのtotal RNA回収率、total RNA分解度の評価を行なった。試料溶液として、HeLa S3細胞よりセパゾール(登録商標)RNAI SuperG(ナカライテスク社製)を用いてプロトコール通りに分離精製した100ng/μLのtotal RNA水溶液(RIN値=9.9)100μLと、結合液としてRNeasy(登録商標)(キアゲン社製)のBuffer RLT 350μLとを、ボルテックスミキサーにて混合した。次いで、エタノールSP 250μL(ナカライテスク社製)を混合した後、スピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄した。次いで、洗浄液としてRNeasy(登録商標)(キアゲン社製)のBuffer RPE 500μLをスピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄する操作を2回繰り返した。最後に、溶出液としてNuclease−Free Water(ライフテクノロジーズ社製)30μLをスピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、total RNA水溶液を得た。得られたtotal RNA回収率、total RNA分解度を表5〜7に示す。なお、total RNA回収率は、下記式(2)より算出した。
total RNA回収率(%)={精製total RNA濃度(ng/μL)×溶出液量30(μL)}÷{投入total RNA濃度100(ng/μL)×投入total RNA液量100(μL)}×100 (2)
次いで、前記スピンカラム1〜18を用いて健常者血液からのtotal RNA回収率、total RNA分解度の評価を行なった。試料溶液として、健常者血液(全血)200μLと、結合液としてPureLink(登録商標)(ライフテクノロジーズ社製)のLysis Buffer 200μLとを混合し、ボルテックスミキサーにて混合した。次いで、エタノールSP 200μL(ナカライテスク社製)を混合した後、スピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄した。次いで、PureLink(登録商標)(ライフテクノロジーズ社製)のWash BufferI 700μLをスピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄した。次いで、PureLink(登録商標)(ライフテクノロジーズ社製)のWash BufferII 500μLをスピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄する操作を2回繰り返した。最後に、溶出液としてNuclease−Free Water(ライフテクノロジーズ社製)30μLをスピンカラム1〜18にアプライし、小型微量遠心機 PMC−060(トミー精工社製)にて1930Gで1分間遠心し、total RNA水溶液を得た。得られたtotal RNA回収率、total RNA分解度を表5〜7に示す。なお、total RNA回収率は下記式(3)より算出した。
total RNA回収率(%)={精製total RNA濃度(ng/μL)×溶出液量30(μL)}÷{単位血液量当りのtotal RNA量1.5(ng/μL)×投入血液量200(μL)}×100 (3)
<total RNAの回収率、RNA分解度:シリンジ法>
前記シリンジ1〜18を用いてtotal RNA水溶液からのtotal RNA回収率、total RNA分解度の評価を行なった。試料溶液として、HeLa S3細胞よりセパゾール(登録商標)RNAI SuperG(ナカライテスク社製)を用いてプロトコール通りに分離精製した100ng/μLのtotal RNA水溶液(RIN値=9.9)50μLと、結合液としてRNeasy(登録商標)(キアゲン社製)のBuffer RLT 175μLとを、ボルテックスミキサーにて混合した。次いで、エタノールSP 125μL(ナカライテスク社製)を混合した後、シリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄した。次いで、洗浄液としてRNeasy(登録商標)(キアゲン社製)のBuffer RPE 500μLをシリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄する操作を2回繰り返した。最後に、溶出液としてNuclease−Free Water(ライフテクノロジーズ社製)50μLをシリンジ1〜18にて吸引吐出を10回繰り返し、total RNA水溶液を得た。得られたtotal RNA回収率、total RNA分解度を表5〜7に示す。なお、total RNA回収率は下記式(4)より算出した。
total RNA回収率(%)={精製total RNA濃度(ng/μL)×溶出液量 50(μL)}÷{投入total RNA濃度 100(ng/μL)×投入total RNA液量 50(μL)}×100 (4)
次いで、前記シリンジ1〜18を用いて健常者血液からのtotal RNA回収率、total RNA分解度の評価を行なった。試料溶液として、健常者血液(全血)30μLと、Nuclease−Free Water(ライフテクノロジーズ社製)70μLと、結合液としてPureLink(登録商標)(ライフテクノロジーズ社製)のLysis Buffer 100μLとを混合し、ボルテックスミキサーにて混合した。次いで、エタノールSP 100μL(ナカライテスク社製)を混合した後、シリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄した。次いで、PureLink(登録商標)(ライフテクノロジーズ社製)のWash BufferI 700μLをシリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄した。次いで、PureLink(登録商標)(ライフテクノロジーズ社製)のWash BufferII 500μLをシリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄する操作を2回繰り返した。最後に、溶出液としてNuclease−Free Water(ライフテクノロジーズ社製)50μLをシリンジ1〜18にて吸引吐出を10回繰り返し、total RNA水溶液を得た。得られたtotal RNA回収率、total RNA分解度を表5〜7に示す。なお、total RNA回収率は下記式(5)より算出した。
total RNA回収率(%)={精製total RNA濃度(ng/μL)×溶出液量50(μL)}÷{単位血液量当りのtotal RNA量1.5(ng/μL)×投入血液量100(μL)}×100 (5)
<Genomic DNAの回収率:スピンカラム法>
前記スピンカラム1〜18を用いてGenomic DNA水溶液からのGenomic DNA回収率の評価を行なった。試料溶液として、100ng/μLのHuman Genomic DNA(ロシュ社製)100μLと、結合液としてジーンキューブ専用前処理セット(東洋紡社製)の溶解吸着液350μLとを混合し、ボルテックスミキサーにて混合した。次いで、エタノールSP 250μL(ナカライテスク社製)を混合した後、スピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄した。次いで、洗浄液としてジーンキューブ専用前処理セット(東洋紡社製)の洗浄液500μLをスピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、ろ液を廃棄する操作を2回繰り返した。最後に、溶出液としてNuclease−Free Water(ライフテクノロジーズ社製)30μLをスピンカラム1〜18にアプライし、小型微量遠心機PMC−060(トミー精工社製)にて1930Gで1分間遠心し、Genomic DNA水溶液を得た。得られたGenomic DNA回収率を表5〜7に示す。なお、Genomic DNA回収率は下記式(6)より算出した。
Genomic DNA回収率(%)={精製Genomic DNA濃度(ng/μL)×溶出液量30(μL)}÷{投入Genomic DNA濃度100(ng/μL)×投入Genomic DNA液量100(μL)}×100 (6)
<Genomic DNAの回収率:シリンジ法>
前記シリンジ1〜18を用いてGenomic DNA水溶液からのGenomic DNA回収率の評価を行なった。試料溶液として、100ng/μLのHuman Genomic DNA(ロシュ社製)50μLと、結合液としてジーンキューブ専用前処理セット(東洋紡社製)の溶解吸着液175μLとを混合し、ボルテックスミキサーにて混合した。次いで、エタノールSP 125μL(ナカライテスク社製)を混合した後、シリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄した。次いで、洗浄液としてジーンキューブ専用前処理セット(東洋紡社製)の洗浄液500μLをシリンジ1〜18にて吸引吐出を10回繰り返した後、ろ液を廃棄する操作を2回繰り返した。最後に、溶出液としてNuclease−Free Water(ライフテクノロジーズ社製)50μLをシリンジ1〜18にて吸引吐出を10回繰り返し、Genomic DNA水溶液を得た。得られたGenomic DNA回収率を表5〜7に示す。なお、Genomic DNA回収率は下記式(7)より算出した。
Genomic DNA回収率(%)={精製Genomic DNA濃度(ng/μL)×溶出液量50(μL)}÷{投入Genomic DNA濃度100(ng/μL)×投入Genomic DNA液量50(μL)}×100 (7)
Figure 0006737179
Figure 0006737179
Figure 0006737179
本発明により、高い核酸の回収率と高い固相担体の通液性を両立することができ、より迅速・簡便な核酸抽出可能となり、また核酸の分離精製工程の自動化も非常に容易であることからも、産業界に大きく寄与することが期待される。

Claims (8)

  1. 核酸を分離精製するための固相担体であって、前記固相担体は、多孔性無機粒子と有機または無機繊維とが疎水性の有機バインダーにより結合しており、
    前記多孔性無機粒子は、平均粒子径が1〜50μmである多孔性シリカ粒子であり、
    前記有機または無機繊維は、セルロース繊維またはガラス繊維であり、
    前記疎水性の有機バインダーは、ポリエチレン、ポリプロピレンまたはポリエステルであり、
    前記固相担体中の多孔性無機粒子/有機または無機繊維/疎水性の有機バインダーの含有比率が2〜60/28〜68.6/12〜29.4である、
    固相担体。
  2. 前記多孔性無機粒子の形状が球状である、請求項1に記載の固相担体。
  3. 前記固相担体の目付けが、25〜200g/mである、請求項1または2に記載の固相担体。
  4. 前記固相担体の厚みが100〜500μmである、請求項1〜3のいずれかに記載の固相担体。
  5. 請求項1〜4のいずれかに記載の固相担体を保持してなるデバイス。
  6. 求項1〜4のいずれかに記載の固相担体または請求項5に記載のデバイス、前記固相担体に核酸を吸着させるための結合液、前記固相担体から核酸以外の成分を洗浄するための洗浄液、前記固相担体から核酸を溶出するための溶出液を含む、核酸の分離精製キット。
  7. 請求項6に記載の分離精製キットを用い、少なくとも下記工程(A)から(D)をこの順に経ることを特徴とする核酸の分離精製方法。
    (A)核酸を含む試料溶液と前記結合液とを混合して混合液を得る工程
    (B)前記混合液と前記固相担体とを接触させ、前記固相担体に核酸を吸着させる工程
    (C)前記洗浄液を用いて前記固相担体から核酸以外の成分を洗浄する工程
    (D)前記溶出液を用いて前記固相担体から核酸を脱着させる工程
  8. 前記核酸を含む試料溶液が血液である、請求項7に記載の核酸の分離精製方法。
JP2016552006A 2014-09-30 2015-09-28 核酸の分離精製方法および固相担体、デバイス、キット Active JP6737179B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014200923 2014-09-30
JP2014200923 2014-09-30
PCT/JP2015/077277 WO2016052386A1 (ja) 2014-09-30 2015-09-28 核酸の分離精製方法および固相担体、デバイス、キット

Publications (2)

Publication Number Publication Date
JPWO2016052386A1 JPWO2016052386A1 (ja) 2017-07-13
JP6737179B2 true JP6737179B2 (ja) 2020-08-05

Family

ID=55630422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016552006A Active JP6737179B2 (ja) 2014-09-30 2015-09-28 核酸の分離精製方法および固相担体、デバイス、キット

Country Status (2)

Country Link
JP (1) JP6737179B2 (ja)
WO (1) WO2016052386A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192350A (ja) * 2016-04-21 2017-10-26 東ソー株式会社 マイコプラズマニューモニエの溶菌方法及び検出方法
KR20210088540A (ko) 2018-10-31 2021-07-14 도레이 카부시키가이샤 핵산 회수용 칼럼

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2012526A1 (en) * 1989-03-20 1990-09-20 Amar N. Neogi Natural fiber product coated with a thermoset binder material
ATE256735T1 (de) * 1993-08-30 2004-01-15 Promega Corp Zusammensetzungen und verfahren zur reinigung von nukleinsäuren
US6337026B1 (en) * 1999-03-08 2002-01-08 Whatman Hemasure, Inc. Leukocyte reduction filtration media
AU2001286499A1 (en) * 2000-08-16 2002-02-25 Matthew Baker Transfusion medicine leukodepletion filter devices as a source of genetic material for genotyping studies
US20020193030A1 (en) * 2001-04-20 2002-12-19 Li Yao Functional fibers and fibrous materials
AU2002318631B2 (en) * 2001-07-09 2007-08-02 Asahi Kasei Kabushiki Kaisha Method of purifying nucleic acid using nonwoven fabric and detection method
EP2042647B1 (en) * 2001-09-06 2012-02-01 Japan Vilene Company, Ltd. Fiber and fiber sheet carrying solid particles
JP4025135B2 (ja) * 2002-07-19 2007-12-19 富士フイルム株式会社 核酸の分離精製方法
WO2004033470A2 (en) * 2002-10-04 2004-04-22 Whatman, Inc. Methods and materials for using chemical compounds as a tool for nucleic acid storage on media of nucleic acid purification systems
JP2006083114A (ja) * 2004-09-17 2006-03-30 Hitachi High-Technologies Corp 核酸抽出方法、及び核酸遊離方法
US20070238118A1 (en) * 2006-04-06 2007-10-11 Ambion, Inc. Methods and kits for sequentially isolating rna and genomic dna from cells
WO2007149791A2 (en) * 2006-06-15 2007-12-27 Stratagene System for isolating biomolecules from a sample
JP2013209777A (ja) * 2012-03-30 2013-10-10 Teijin Ltd 湿式不織布および繊維製品
US8882876B2 (en) * 2012-06-20 2014-11-11 Hollingsworth & Vose Company Fiber webs including synthetic fibers
JP2014065989A (ja) * 2012-09-26 2014-04-17 Toray Ind Inc 抄紙用ポリエステルバインダー繊維

Also Published As

Publication number Publication date
WO2016052386A1 (ja) 2016-04-07
JPWO2016052386A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP4810164B2 (ja) 核酸分離精製方法
JP4699868B2 (ja) 核酸精製方法及び核酸精製器具
EP1911844A1 (en) Methods and kit for isolating nucleic acids
JP2006311803A (ja) 核酸精製方法、及び核酸精製器具
JP2007089574A (ja) Rna分離精製方法
JP2005154416A (ja) 核酸の分離精製方法、核酸分離精製カートリッジ、及び核酸分離精製キット
JP6737179B2 (ja) 核酸の分離精製方法および固相担体、デバイス、キット
JP2007244375A (ja) リボ核酸の分離精製方法
JP2006211973A (ja) 核酸の分離精製方法
JP2008072987A (ja) 微小流路、核酸回収装置、並びに核酸回収方法
JP5880626B2 (ja) 簡便かつ迅速な核酸抽出方法
JP2016067291A (ja) 核酸の分離精製方法
JP2010200661A (ja) 簡便かつ迅速な核酸抽出方法
JP2006238854A (ja) 核酸の分離精製方法
JP2005253464A (ja) 簡易的核酸抽出法
US20230383281A1 (en) Filtration methods and devices for fast nucleic acid extraction
JP2005151977A (ja) 核酸の分離精製方法
JP4825528B2 (ja) 核酸の分離精製方法
JP5627162B2 (ja) 核酸の分離精製方法および当該方法を利用した核酸分離キット
JP2005118007A (ja) 核酸の分離精製方法
JP4825527B2 (ja) 核酸の分離精製方法
JP2020191784A (ja) 核酸の回収方法、核酸結合用担体および核酸回収キット
JP2010233579A (ja) Dnaなどの分離精製機構
JP2005224167A (ja) Dnaなどの分離精製方法及び機構
JP2020191785A (ja) 核酸の回収方法、核酸結合用担体および核酸回収キット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350