JP6732872B2 - 広域中和抗hiv抗体 - Google Patents

広域中和抗hiv抗体 Download PDF

Info

Publication number
JP6732872B2
JP6732872B2 JP2018243618A JP2018243618A JP6732872B2 JP 6732872 B2 JP6732872 B2 JP 6732872B2 JP 2018243618 A JP2018243618 A JP 2018243618A JP 2018243618 A JP2018243618 A JP 2018243618A JP 6732872 B2 JP6732872 B2 JP 6732872B2
Authority
JP
Japan
Prior art keywords
antibody
pgt121
antibodies
seq
nos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243618A
Other languages
English (en)
Other versions
JP2019071888A (ja
Inventor
ムーケット,ヒューゴ
ヌッセンツヴァイク,ミッチェル
ビヨークマン,パメラ,ジェイ.
シャーフ,ルイーズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockefeller University
Original Assignee
Rockefeller University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockefeller University filed Critical Rockefeller University
Publication of JP2019071888A publication Critical patent/JP2019071888A/ja
Application granted granted Critical
Publication of JP6732872B2 publication Critical patent/JP6732872B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/42Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • C07K16/1063Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • AIDS & HIV (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

関連出願の相互参照
本出願は、米国特許法第119条(e)に従って、2012年10月18日出願の米国
特許仮出願第61/715,642号の優先権を主張し、その全体を参照により本明細書
に援用する。
連邦政府支援の研究または開発に関する陳述
本明細書に開示する発明は、少なくとも一部は、アメリカ国立衛生研究所からの助成番
号P01 AI081677のもと政府支援によりなされた。したがって、アメリカ合衆
国政府は、本発明に一定の権利を有する。
本発明は、ヒト免疫不全ウイルス(「HIV」)に対する広域かつ強力な抗体に関する
HIVは、後天性免疫不全症候群(AIDS)を引き起こし、生命を危うくする日和見
感染および悪性疾患をもたらす、消耗症候群、中枢神経系変性および強い免疫抑制をはじ
めとする臨床像を特徴とする、ヒトにおける状態である。1981年のその発見以来、H
IV1型(HIV−1)により、世界中で少なくとも2千500万人が死亡している。H
IV感染がたとえ毎年2.5%減少したとしても、今後20年にわたって2〜6千万人が
感染することになると予測される。HIV感染の治療または抑制のための治療薬および方
法が必要とされている。
一部のHIV感染者は、彼らの血清中に広域中和IgG抗体を見せる。しかし、これら
の抗体の特異性および活性に関しては、有効なワクチンを設計する上でのそれらの潜在的
重要性にもかかわらず、殆ど判っていない。動物モデルにおいて、中和抗体の受動伝達は
、ウイルス攻撃に対する防御の一因となり得る。中和抗体応答は、HIV感染者において
も発現され得るが、血清応答の詳細な構成は、まだ十分に明らかにされていない。
本発明は、広域中和抗HIV抗体の新規カテゴリーに関する。前記抗体のコンセンサス
重および軽鎖アミノ酸配列を下に列挙するとともに、図3aおよび3bに示す:
QVQLQESGPGLVKPSETLSLTCSVSGXSXDXYWS
WIRQSPGKGLEWIGYVHDSGDTNYNPSLKSRVXSLDT
SKNQVSLKLXVTAADSAXYYCARAX10HGX11RIYG
IVAFGEX12FTYFYMDVWGKGTTVTVSS(配列番号1)
SXVRPQPPSLSVAPGETARIXCGEXSLGSRAVQWYQ
QRPGQAPSLIIYNNQDRPSGIPERFSGSPDXFGTTAT
LTITXVEAGDEADYYCHIWDSRXPTXWVFGGGTTLTV
L(配列番号2)。
配列番号1または2の配列において、各「X」は、いずれのアミノ酸残基であってもよ
く、またはアミノ酸がなくてもよい。好ましくは、各Xは、図3aおよび3bに示すよう
なクローナル変異体10−259、10−303、10−410、10−847、10−
996、10−1074、10−1121、10−1130、10−1146、10−1
341および10−1369、ならびに10−1074抗体の人工修飾バージョン、10
−1074GM、の対応する位置の残基であり得る。
したがって、本発明の1つの態様は、配列番号33〜38から成る群より選択される配
列を有する少なくとも1つの相補性決定領域(CDR)を有する、単離された抗HIV抗
体、またはその抗原結合部分を特徴とするが、ただし、前記抗体が、抗体PGT−121
、122または123でないことを条件とする。配列番号33〜38は、図3aおよび3
bに示すようなKabatシステムによる重鎖CDR(CDRH)1〜3および軽鎖CD
R(CDRL)1〜3の配列を指す。1つの実施形態において、前記CDRは、配列番号
39〜104から成る群より選択される配列、すなわち、下記表1に示すようなKABA
TシステムによるCDR配列を含有することができる。あるいは、前記CDRは、下記表
1に示すようなIMGTシステムによる、それらの対応する抗体のCDR配列から選択さ
れる配列を含有することができる。
1つの実施形態において、前記単離された抗HIV抗体、またはその抗原結合部分は、
CDRH1、CDRH2およびCDRH3を含む重鎖可変領域を含有し、この際前記CD
RH1、CDRH2およびCDRH3は、配列番号33〜35のそれぞれの配列を含む。
前記CDRH1、CDRH2およびCDRH3は、配列番号39〜41、配列番号45〜
47、配列番号51〜53、配列番号57〜59、配列番号63〜65、配列番号69〜
71、配列番号75〜77、配列番号81〜83、配列番号87〜89、配列番号93〜
95、配列番号99〜101、および配列番号131〜133から成る群より選択される
CDRHセットのそれぞれの配列も含むことができる。あるいは、前記CDRHは、下記
表1に示すようなIMGTシステムによる、それらの対応する抗体のCDR配列から選択
されるそれぞれの配列を含有することができる。
別の実施形態において、前記単離された抗HIV抗体、またはその抗原結合部分は、C
DRL1、CDRL2およびCDRL3を含む軽鎖可変領域を含有し、この際前記CDR
L1、CDRL2およびCDRL3は、配列番号36〜38のそれぞれの配列を含む。例
えば、前記CDRL1、CDRL2およびCDRL3は、配列番号42〜44、配列番号
48〜50、配列番号54〜56、配列番号60〜62、配列番号66〜68、配列番号
72〜74、配列番号78〜80、配列番号84〜86、配列番号90〜92、配列番号
96〜98、配列番号102〜104、および配列番号134〜136から成る群より選
択されるCDRLセットのそれぞれの配列を含むことができる。あるいは、前記CDRL
は、下記表1に示すようなIMGTシステムによる、それらの対応する抗体のCDR配列
から選択されるそれぞれの配列を含有することができる。
さらにもう1つの実施形態において、上述の単離された抗HIV抗体、またはその抗原
結合部分は、(i)CDRH1、CDRH2およびCDRH3を含む重鎖可変領域と、(
ii)CDRL1、CDRL2およびCDRL3を含む軽鎖可変領域とを含む。前記CD
RH1、CDRH2、CDRH3、CDRL1、CDRL2およびCDRL3は、配列番
号39〜44、配列番号45〜50、配列番号51〜56、配列番号57〜62、配列番
号63〜68、配列番号69〜74、配列番号75〜79、配列番号81〜86、配列番
号87〜92、配列番号93〜98、配列番号99〜104、および配列番号131〜1
36から成る群より選択されるCDRセットのそれぞれの配列を含むことができる。ある
いは、前記CDRHおよびCDRLは、下記表1に示すようなIMGTシステムによる、
それらの対応する抗体のCDR配列から選択されるそれぞれの配列を含有することができ
る。
さらなる実施形態において、前記単離された抗HIV抗体、またはその抗原結合部分は
、(i)配列番号1のコンセンサスアミノ酸配列を有する重鎖および(ii)配列番号2
のコンセンサスアミノ酸配列を有する軽鎖の、一方または両方を含有する。前記重鎖は、
配列番号3、5、7、9、11、13、15、17、19、21、23および129から
成る群より選択される配列を含有することができ、および前記軽鎖は、配列番号4、6、
8、10、12、14、16、18、20、22、24および130から成る群より選択
される配列を含有することができる。例えば、前記重鎖および前記軽鎖は、配列番号3〜
4、配列番号5〜6、配列番号7〜8、配列番号9〜10、配列番号11〜12、配列番
号13〜14、配列番号15〜16、配列番号17〜18、配列番号19〜20、配列番
号21〜22、配列番号23〜24、および129〜130のそれぞれの配列を含むこと
ができる。
好ましい実施形態において、前記単離された抗HIV抗体は、10−259、10−3
03、10−410、10−847、10−996、10−1074、10−1074G
M、10−1121、10−1130、10−1146、10−1341、および10−
1369から成る群より選択されるものである。それらの対応する重鎖可変領域、軽鎖可
変領域、CDRH1〜3およびCDRL1〜3を図3aおよび3bに示す。さらに好まし
い実施形態において、前記単離された抗HIV抗体は、10−1074様抗体、すなわち
、10−847、10−996、10−1074、10−1074GM、10−1146
、および10−1341からなる群より選択されるものである。この群の抗体は、現在の
ウイルスを中和する点でPGT121より強力である。上で論じた抗体は、ヒト抗体、ヒ
ト化抗体、またはキメラ抗体であることができる。
第二の態様において、本発明は、上で論じた抗HIV抗体、またはその抗原結合部分、
のCDR、重鎖可変領域または軽鎖可変領域をコードする配列を有する、単離された核酸
を提供する。前記核酸を有するベクター、および前記ベクターを有する培養細胞も特徴と
する。
前記核酸、ベクターおよび培養細胞を、抗HIV抗体またはその断片を作るための方法
に用いることができる。この方法は、数ある中でも、上述の培養細胞を得る工程、前記細
胞を、そのベクターによってコードされているポリペプチドの発現および抗体またはその
断片の構築を可能にする条件下で培地において培養する工程、および前記抗体または断片
を前記培養細胞または前記細胞の培地から精製する工程を含む。
第三の態様において、本発明は、(i)上述の少なくとも1つの抗HIV抗体、または
その抗原結合部分と(ii)医薬的に許容される担体とを含む医薬組成物を特徴とする。
第四の態様において、本発明は、HIV感染またはHIV関連疾患を予防または処置す
る方法を提供する。この方法は、数ある中でも、かかる予防または治療を必要とする患者
を特定するステップ;および治療有効量の上述の少なくとも1つの抗HIV抗体、または
その抗原結合部分、を含有する第一の治療薬を前記患者に投与するステップを含む。前記
方法は、第二の治療薬、例えば、抗ウイルス薬を投与するステップをさらに含むことがで
きる。
第五の態様において、本発明は、医薬的有効量の上述の少なくとも1つの単離された抗
HIV抗体、またはその抗原結合部分、の医薬的に許容される投与単位と、医薬的有効量
の抗HIV薬の医薬的に許容される投与単位とを有するキットを提供する。前記2つの医
薬的に許容される投与単位は、単一の医薬的に許容される投与単位の形態を場合によって
はとることができる。例示的抗HIV薬は、非ヌクレオシド逆転写酵素阻害剤、プロテア
ーゼ阻害剤、侵入または融合阻害剤、およびインテグラーゼ阻害剤から成る群より選択さ
れるものであることができる。
第六の態様において、本発明は、被検体におけるHIV感染の診断、予後または治療モ
ニタリング用のキットを提供する。前記キットは、被検体からの生体試料中の抗HIV中
和抗体に特異的に結合する1つ以上の検出試薬を含有する。前記キットは、PCRまたは
質量分析を行うための試薬をさらに含むことができる。
本発明の1つ以上の実施形態の詳細を下の説明の中で述べる。本発明の他の特徴、目的
および利点は、その説明およびクレームからはっきりするであろう。
PGT121様および10−1074様変異体の中和活性を示す図である。(A)TZM−blアッセイにおけるPGT121様および10−1074様抗体の中和効力を比較するヒートマップ。より濃い色=より強力な中和;白色=中和なし。(B)9ウイルスに対する平均IC80(y軸)とgp120およびgp140への結合についての見かけのK値(x軸)の間の相関関係。 PGT121様および10−1074様変異体の中和活性を示す図である。(C)119ウイルスの拡張パネルに対するTZM−blアッセイにおけるPGT121、10−996および10−1074抗体の中和幅および効力を比較するグラフ。y軸は、x軸上に示されている濃度までのIC50値の累積度数を示す。クモの巣グラフ(左上角)は、HIV−1クレードによる中和されたウイルスの度数分布を示す。(D)モル中和率(MNR;FabとIgGのIC50濃度比)を示すドットプロット。水平のバーは、全ウイルスの平均IC50を表す。 PGT121様および10−1074様変異体の中和活性を示す図である。(E)過去(Hist.)および現在(Cont.)の抗体陽転者から単離したウイルスに対するPGT121(濃い灰色)および10−1074(薄い灰色)の中和効力を比較する棒グラフ。ns、有意でない;**、p<0.005。PGT121および10−1074による現在のウイルスの中和についての中央値IC50間の倍数での差(fold difference)を示す。 PGT121GMおよび10−1074GM突然変異体抗体の結合および中和活性を示す図である。(A)10−1074、PGT121、PGT121GMおよび10−1074GM抗体とgp120およびgp140との結合についての見かけのK値を比較する棒グラフ。エラーバーは、3回の独立した実験から得たK値のSEMを示す。「野生型」対「グリコミュータント(glycomutant)」抗体のK値間の倍数での差を示す。(B)グリカン(図7A)のPGT121および10−1074による結合と突然変異体抗体(PGT121GMおよび10−1074GM)による結合とを比較する棒グラフ。結合の数値スコアを、1スポットにつき5fmolで整列させたプローブについての蛍光強度(2反復スポットでの平均)として測定する。(C)40ウイルスのパネルに対するTZM−blアッセイにおけるPGT121、PGT121GM、10−1074および10−1074GM抗体の中和幅および効力を比較するカバレッジグラフ。 PGT121および10−1074クローナル変異体の配列アラインメントを示す図である。(A)PGT121様および10−1074様抗体の重鎖(IgH)ならびにすべてのクローナル変異体についての推定生殖細胞系(GL)VHのアミノ酸アラインメント。Kabat(.J Exp Med 132(2):211−250)およびIMGT(Nucleic Acids Res 37(Database issue):D1006−1012)により定義された、結晶構造、フレームワーク(FWR)および相補性決定領域(CDR)に基づくアミノ酸番号付けを示す。カラー陰影は、酸性(赤色)、塩基性(青色)およびチロシン(緑色)アミノ酸を示す。 PGT121および10−1074クローン変異体の配列アラインメントを示す図である。(B)Aと同じだが、軽鎖(IgL)についてのもの。 PGT121および10−1074クローナル変異体の結合親和性を示す図である。(A)表面プラズモン共鳴(SPR)によって測定したPGT121 IgG抗体変異体とYU−2 gp140およびgp120リガンドとの相互作用の結合親和性。M、mol/L;s、秒;RU、応答単位;/、検出された結合なし。カイ値(Χ)<10は、曲線へのフィッティングに用いた1:1結合モデルが実験データを十分に説明することを示す。示されている平衡および速度定数は、IgGの二価結合の結果として生ずる結合活性効果を説明するための「見かけの」定数と考えられる。(B)PGT121様(青色陰影)および10−1074様(緑色陰影)についての会合(k)および解離(k)速度定数を示すドットプロット。(C)IgG抗体のgp120およびgp140へのそれらの結合についてのkおよびk値(x軸)を、表4に示す9ウイルスに対するそれらの中和効力(平均IC80値)(y軸)に対して比較する線形回帰グラフ。 gp120「コア」タンパク質、gp120GD324−5AA突然変異体および線状gp120V3ペプチドへのPGT121変異体の結合を示す図である。(A)無傷のYU−2 gp120と比較したHXB2 gp120コアおよび2CC−コアタンパク質へのPGT121様および10−1074様抗体のELISAベースの結合分析。x軸は、y軸上に示されているELISA値(OD405nm)を得るために要した抗体濃度(M)を示す。抗CD4bs抗体VRC01(Science 329(5993):856−861)、抗V3ループ抗体10−188(PLoS One 6(9):e24078)および非HIV反応性抗体mGO53(Science 301(5638):1374−1377)を対照として使用した。すべての実験を少なくとも2反復で行った。代表データを示す。 gp120「コア」タンパク質、gp120GD324−5AA突然変異体および線状gp120V3ペプチドへのPGT121変異体の結合を示す図である。(B)(A)と同じだが、gp120GD324−5AA突然変異体タンパク質への結合についてのもの。すべての実験を少なくとも2回行った。代表データを示す。 gp120「コア」タンパク質、gp120GD324−5AA突然変異体および線状gp120V3ペプチドへのPGT121変異体の結合を示す図である。(c)gp120V3−C3オーバーラッピングペプチドに対するPGT121様および10−1074様抗体ならびに対照抗体(陽性対照、10−188、1−79、2−59および2−1261(Nature 458(7238):636−640))および陰性対照、mGO53)のELISA反応性を比較する棒グラフ。y軸は、2μg/mLのIgG抗体を試験することによって得たELISA値(OD405nm)を示す。個々のペプチドのアミノ酸配列を右下に示す。すべての実験を少なくとも2回行った。代表データを示す。 gp120グリコシル化突然変異体および脱グリコシル化gp120へのPGT121の結合を示す図である。(A)gp120、gp120NNT301−3 03AAA、gp120N332Aおよびgp120N332A/NNT301−303 AAAへのPGT121および10−1074抗体変異体のELISAベースの結合分析。x軸は、y軸上に示されているELISA値(OD405nm)を得るために要した抗体濃度(M)を示す。黒色断続線および連続線は、陽性(10−188)および陰性(mGO53)抗体対照群の4つの抗原に対する平均反応性を示す。すべての実験を少なくとも2回行った。 gp120グリコシル化突然変異体および脱グリコシル化gp120へのPGT121の結合を示す図である。(B)未処理gp120(WT、野生型)、PNGaseF消化gp120およびEndoH消化gp120を比較する銀染色SDS−PAGEゲル。L、プロテインラダー。すべての実験を少なくとも2回行った。 gp120グリコシル化突然変異体および脱グリコシル化gp120へのPGT121の結合を示す図である。(C)(A)と同じだが、未処理gp120とPNGase F処理gp120を比較するもの。すべての実験を少なくとも2回行った。 gp120グリコシル化突然変異体および脱グリコシル化gp120へのPGT121の結合を示す図である。(D)(A)と同じだが、未処理gp120とEndoH処理gp120を比較するもの。すべての実験を少なくとも2回行った。 グリカンへのPGT121および10−1074クローナル変異体の結合を示す図である。(A)N−グリカンへの直接結合をPGT121様および10−1074様抗体について調査するためのグリカンマイクロアレイ分析において使用した15 N−グリカンプローブのセットの単糖類配列。DHは、N−グリカンが還元アミノ化によって結合された脂質タグ1,2−ジヘキサデシル−sn−グリセロ−3−ホスホエタノールアミン(DHPE)を示す。注目すべき重要な特徴は、(i)PGT121群抗体は、1−3結合によってコアマンノースに連結されたガラクトース末端アンテナを有するモノアンテナN−グリカンプローブ10(N2)を結合したが、コアマンノースに1−6結合されたアンテナを有する異性体N−グリカンプローブ11(指定N4)を結合しなかったこと;(ii)バイアンテナプローブ13(NA2)の場合と同様に、このガラクトース末端1−6結合アンテナの存在は、結合を許容し、(α2−3結合ではなく)α2−6結合シアル酸の存在も許容したこと、(iii)ガラクトースがなく、N−アセチルグルコサミンで終わる、バイアンテナプローブ12(NGA2)は、結合されなかった、ことである。 グリカンへのPGT121および10−1074クローン変異体の結合を示す図である。(B)PGT121様、10−1074様および生殖細胞系列型(GL)抗体によるグリカン結合を比較する棒グラフ。10−188、すなわち抗V3ループ抗体、を陰性対照として使用した。結合の数値スコアを1スポットにつき2fmol(白色)および5fmol(灰色)で配列したプローブについての蛍光強度(2回のスポットでの平均)として測定した。 高マンノースのみの(high−mannose−only)gp120およびウイルスに対する抗体結合および中和活性を示す図である。(A)キフネンシンで処理した細胞において生産されたYU−2 gp120(gp120kif)と未処理細胞において生産されたgp120(WT、野生型)を比較する銀染色SDS−PAGEゲル。L、プロテインラダー。(B)YU−2 gp120(gp120WT)およびgp120kifへのPGT121様(青色ラベル)および10−1074様(緑色ラベル)抗体の結合のELISA比較。x軸は、y軸に示されているELISA値(OD405 nm)を得るために要した抗体濃度(M)を示す。 高マンノースのみの(high−mannose−only)gp120およびウイルスに対する抗体結合および中和活性を示す図である。(C)キフネンシンの存在(ウイルスkif)または不在(ウイルスWT)下で生産された選択PGT121感受性/10−1074耐性シュードウイルスに対して評価したPGT121についての中和曲線。水平断続線は50%中和を示し、IC50値をx軸上の抗体濃度から得ることができる。実験を3回行った。エラーバーは、3回測定のSDを示す。(D)HEK293S GnTI−/−細胞(ウイルスGnT −/−)においてまたは野生型細胞(ウイルスWT)において生産されたYU−2およびPVO.4シュードウイルスに対する選択抗体の中和活性を比較する棒グラフ。y軸は、x軸上に示されているウイルスの中和についての平均IC50値(μg/mL)を示す。エラーバーは、2回の独立した実験から得たIC50値のSEMを示す。 PGT121、10−996および10−1074の中和活性を示す図である。(A)示されているHIV−1クレードのウイルスに対するPGT121、10−996および10−74の(TZM−blアッセイおよび119シュードウイルスのパネルを使用して決定した)中和効力を比較するグラフ。x軸は、50%中和(IC50)を達成するために要した抗体濃度(μg/mL)を示す。y軸は、x軸上に示されている濃度までのIC50値の累積度数を示す。 PGT121、10−996および10−1074の中和活性を示す図である。(B)TZM−bl中和アッセイによって決定したときの119ウイルスの拡張パネルに対するPGT121、10−996および10−1074の中和幅および効力を比較するグラフ。y軸は、x軸上に示されている濃度までのIC80値の累積度数を示す。 PGT121、10−996および10−1074の中和活性を示す図である。(C)グラフは、PGT121および10−1074による選択ウイルスの中和曲線を示す。水平断続線は50%中和を示し、IC50値をx軸上の抗体濃度から得ることができる。実験を3回行った。エラーバーは、3回測定のSDを示す。 過去対現在のクレードBウイルスに対する中和活性を示す図である。選択bNAbについての過去(Hist.)と、現在(Cont.)の抗体陽転者から単離したクレードBウイルスに対する中和効力とを比較するドットプロット。水平バーは、患者1人あたりの全ウイルスについての中央値IC50を表す。群間差をマン・ホイットニー検定を用いて評価した。ns、有意でない。 11広域作用性抗HIV−1 mAbのパネルでの2つのR5指向性SHIVの中和を示す表である。SHIVAD8EO(A)およびSHIVDH12−V3AD8(B)を中和するための算出IC50値。 受身投与された中和mAbの血漿濃度とマカクの2つの異なるR5SHIVの後のウイルス獲得との関係を示す図である。黒丸は、防御された(無獲得)サルを示し;白丸は、感染した動物を指す。 bNAbの血漿濃度を示す表である。血漿試料における中和活性を測定することによりmAbの濃度を決定した。(A)あるbNAbに対しては感受性であるが、他のbNAbに対しては感受性でないHIV−1株(すなわち、HIV−1株X2088_9(10−1074感受性);HIV−1株Q769_d22(3BNC117感受性))に対する10−1074および3BNC117のTZM.bl中和アッセイにおいて測定されたID50値。(B)抗体投与前(preP)の、しかし0.01、0.1、1、10および100μg/mLの抗体10−1074(青色)または3BNC117(緑色)でスパイクした血漿の中和活性。(A)における測定ID50値に基づき、血漿ID50力価として報告する(左カラム)および抗体濃度に変換した(右カラム)中和活性。 bNAbの血漿濃度を示す表である。血漿試料における中和活性を測定することによりmAbの濃度を決定した。(C)示されているマカク血漿試料においてbNAb投与前(プレ採血)および後(日数)に測定したID50力価(左カラム)およびbNAbの濃度(右カラム)。
本発明は、gp120上の、複合型N−グリカンを含む、炭水化物依存性エピトープを
認識することができる、HIVに対する広域中和抗体(bNAb)の新規カテゴリーの予
想外の発見に少なくとも一部は基づく。
抗体は、殆どのワクチンの成功に不可欠であり、HIVに対する抗体は、最近のRV1
44抗HIVワクチン試験では防御に唯一相関するものであるようである。一部のHIV
−1感染患者は、感染の2〜4年後、gp160ウイルススパイクに対して広域中和血清
活性を発現するが、突然変異による自己ウイルス脱出のため、これらの抗体は、感染した
ヒトを一般に防御しない。それにもかかわらず、広域中和活性は、ウイルスに対して選択
圧をかけ、広域中和抗体(bNAb)のマカクへの受動伝達は、SHIV感染に対する防
御になる。それ故、かかる抗体を惹起するワクチンは、ヒトにおけるHIV感染に対して
防御性であり得ると提案されている。
単個細胞抗体クローニング法の開発により、bNAbはHIV−1 gp160スパイ
ク上のいくつかの異なるエピトープを標的にすることが明らかになった。大部分の強力な
HIV−1 bNAbは、CD4結合部位(CD4bs)を認識し(Science 3
33(6049):1633−1637;Nature 477(7365):466−
470;Science 334(6060):1289−1293)、かつV1/V2
(PG9/PG16)(Science 326(5950):285−289)および
V3ループ(PGT)(Nature 477(7365):466−470)を含む、
可変ループを伴う炭水化物依存性エピトープを認識する(Nature 477(736
5):466−470;Science 326(5950):285−289;Sci
ence 334(6059):1097−1103;Nature 480(7377
):336−343)。今までに研究された抗体は小さなクローンファミリーの固有の例
またはメンバーであるので、炭水化物依存性エピトープについては殆ど判っていない。
PGT抗体により標的にされるHIV−1およびエピトープに対する中和抗体応答をよ
りよく理解するために、我々は、PGT121を生産したクレードA感染患者から、gp
160特異的IgGメモリー応答を支配する大きいクローンファミリーのメンバーを単離
した。本明細書に開示するように、PGT121抗体は、配列、結合親和性、中和活性な
らびに炭水化物およびV3ループの認識に従って、2つの群、すなわちPGT121様群
および10−1074様群に分かれる。10−1074および関連ファミリーメンバーは
、新規伝播ウイルスに対する広域反応性を含む、珍しい強力な中和を呈示する。以前に特
性付けられた炭水化物依存性bNAbとは異なり、PGT121は、グリカンマイクロア
ッセイ実験において、高マンノースではなく複合型N−グリカンに結合する。PGT12
1および10−1074の、それらの生殖細胞系前駆体の構造および複合型N−グリカン
に結合したPGT121の構造と比較した、結晶構造により、それらの独特な特性が合理
的に説明される。
1つの例では、高マンノースではなく複合型N−グリカンを認識する点でグリカン依存
性bNabの中でもユニークである、PGT121をコードするB細胞クローンを単離す
るためにアッセイを行った。PGT121クローンは、PGT121様群および10−1
074様群に分かれ、これらは、配列、結合親和性、炭水化物認識および中和活性によっ
て区別される。10−1074群は、無タンパク質のグリカンに検出可能な程度に結合し
ないにもかかわらず、顕著な効力および幅を呈示する。リガンドを持たないPGT121
、10−1074およびそれらの生殖細胞系前駆体の結晶構造は、炭水化物認識差がCD
RH2とCDRH3間のクレフトにマッピングされることを明示し、前記クレフトは、離
れたPGT121構造では複合型N−グリカンによって占有されていた。PGT121と
10−1074間のグリカン接触残基の交換により、中和活性におけるこれらの残基の重
要性が確認された。HIVエンベロープは、高マンノースN−グリカンおよび複合型N−
グリカンの様々な特性を呈示し、したがって、抗HIV bNAbによる複合型N−グリ
カン認識の最初の構造特性付けを含むこれらの結果は、抗体および最終的にはワクチンが
広域中和活性をいかにして実現し得るのかを理解するために重要である。
本明細書において用いる場合の用語「抗体」(Ab)は、モノクローナル抗体、ポリク
ローナル抗体、多重特異性抗体(例えば、二重特異性抗体および多反応性抗体)、および
抗体断片を含む。したがって、用語「抗体」は、本明細書におけるいずれの文脈で用いる
場合も、任意の特異的結合メンバー、免疫グロブリンクラスおよび/またはアイソタイプ
(例えば、IgG1、IgG2、IgG3、IgG4、IgM、IgA、IgD、IgE
およびIgM);ならびにそれらの生物学的に関連した断片または特異的結合メンバー(
Fab、F(ab’)2、Fv、およびscFv(一本鎖または関連エンティティ)を、
これらに限定されないが、含む)を、これらに限定されないが、含むことを意図したもの
である。抗体は、ジスルフィド結合によって相互接続された少なくとも2つの重(H)鎖
および2つの軽(L)鎖を有する糖タンパク質、またはその抗原結合部分であると、当該
技術分野では理解されている。重鎖は、重鎖可変領域(VH)および重鎖定常領域(CH
1、CH2およびCH3)で構成されている。軽鎖は、軽鎖可変領域(VL)および軽鎖
定常領域(CL)で構成されている。重鎖および軽鎖両方の可変領域は、フレームワーク
領域(FWR)および相補性決定領域(CDR)を含む。それら4つのFWR領域は相対
的に保存される一方で、CDR領域(CDR1、CDR2およびCDR3)は超可変領域
に相当し、NH2末端からCOOH末端へと次のように配列される:FWR1、CDR1
、FWR2、CDR2、FWR3、CDR3およびFWR4。重および軽鎖の可変領域は
、抗原と相互作用する結合ドメインを含有する一方で、そのアイソタイプに依存して、定
常領域(単数または複数)は、宿主組織または因子への免疫グロブリンの結合を媒介し得
る。
本明細書において用いる場合の「抗体」の定義には、キメラ抗体、ヒト化抗体および組
換え抗体、トランスジェニック非ヒト動物から産生されたヒト抗体、ならびに当業者に利
用可能な濃縮技術を用いてライブラリーから選択された抗体も含まれる。
用語「可変」は、可変(V)ドメインのある一定のセグメントが抗体間で配列の点で大
幅に異なることを指す。Vドメインは、抗原結合を媒介し、特定の抗体のその特定の抗原
に対する特異性を規定する。しかし、その可変性は、可変領域の110アミノ酸スパン全
体にわたって均一に分布していない。それよりむしろ、V領域は、各々が9〜12アミノ
酸長である「超可変領域」と呼ばれる超可変性のより短い領域によって隔てられた、15
〜30アミノ酸のフレームワーク領域(FR)と呼ばれる比較的不変のストレッチから成
る。天然重鎖のおよび軽鎖の可変領域は、各々、3つの超可変領域によって接続された、
主としてβシート構造をとる、4つのFRを含み、前記超可変領域は、前記βシート構造
を接続する、および場合によっては前記βシート構造の一部を形成する、ループを形成す
る。各鎖内の超可変領域は、FRにより極めて互いに近接して互い保持され、他の鎖から
の超可変領域とともに、抗体の抗原結合部位の形成に寄与する(例えば、Kabat e
t al.,Sequences of Proteins of Immunolog
ical Interest,5th Ed.Public Health Servi
ce,National Institutes of Health,Bethesd
a,Md.(1991)を参照されたい)。
本明細書において用いる場合の用語「超可変領域」は、抗原結合に関与する、抗体のア
ミノ酸残基を指す。超可変領域は、一般に、「相補性決定領域」(CDR)からのアミノ
酸残基を含む。
本明細書において用いる場合の用語「モノクローナル抗体」は、実質的に均一な抗体の
集団から得られる抗体を指し、すなわち、その集団を構成する個々の抗体は、少量存在す
ることがある、起こり得る自然発生突然変異を除いて、同一である。用語「ポリクローナ
ル抗体」は、異なる決定基(「エピトープ」)に対して配向した異なる抗体を含む調製物
を指す。
本明細書におけるモノクローナル抗体は、重および/または軽鎖の一部分が、特定の種
に由来する抗体または特定の抗体クラスもしくはサブクラスに属する抗体における対応す
る配列と同一または相同であるが、前記鎖(単数または複数)の残部は、別の種に由来す
る抗体または別の抗体クラスもしくはサブクラスに属する抗体ならびにかかる抗体の断片
(ただし、それらの断片が所望の生物活性を呈示する場合に限る)における対応する配列
と同一または相同である、「キメラ」抗体を含む(例えば、米国特許第4,816,56
7号明細書;およびMorrison et al.,Proc.Natl.Acad.
Sci.USA,81:6851−6855(1984)を参照されたい)。本記載発明
は、ヒト抗体に由来する可変領域抗原結合配列を提供する。したがって、ここで主に対象
となるキメラ抗体は、1つ以上のヒト抗原結合配列(例えば、CDR)を有するとともに
、非ヒト抗体に由来する1つ以上の配列、例えばFRまたはC領域配列、を含有する抗体
を含む。加えて、ここに含まれるキメラ抗体は、ある抗体クラスまたはサブクラスのヒト
可変領域抗原結合配列と、別の抗体クラスまたはサブクラスに由来する別の配列、例えば
FRまたはC領域配列とを含むものである。
「ヒト化抗体」は、一般に、非ヒトであるソースから導入された1つ以上のアミノ酸残
基を有するヒト抗体であると考えられる。これらの非ヒトアミノ酸残基は、「移入」残基
と呼ばれることが多く、この移入残基は、典型的に、「移入」可変領域から得られる。ヒ
ト化は、ヒト抗体の対応する配列を移入超可変配列で置換することにより、Winter
および共同研究者の方法に従って行ってもよい(例えば、Jones et al.,N
ature, 321:522−525(1986);Reichmann et al
.,Nature,332:323−327(1988);Verhoeyen et
al.,Science,239:1534−1536(1988)を参照されたい)。
したがって、かかる「ヒト化」抗体は、インタクトヒト可変領域より実質的に少ない可変
領域が非ヒト種からの対応する配列によって置換されているキメラ抗体(例えば、米国特
許第4,816,567号明細書を参照されたい)である。
「抗体断片」は、インタクト抗体の一部分、例えば、インタクト抗体の抗原結合または
可変領域を含む。抗体断片の例としては、Fab、Fab’、F(ab’)2およびFv
断片;ダイアボディ;線状抗体(例えば、米国特許第5,641,870号明細書;Za
pata et al.,Protein Eng.8(10):1057−1062[
1995]を参照されたい);一本鎖抗体分子;ならびに抗体断片から形成された多重特
異性抗体が挙げられるが、これらに限定されない。
「Fv」は、完全抗原認識および抗原結合部位を含有する最小抗体断片である。この断
片は、緊密な、非共有結合で会合している1重鎖および1軽鎖可変領域ドメインの二量体
を含有する。これらの2つのドメインのフォールディングから、6つの超可変ループ(H
およびL鎖から各々3ループ)が生まれ、前記ループは、アミノ酸残基を抗原結合に与え
、抗原結合特異性を抗体に付与する。しかし、単一可変領域(または抗原に特異的なCD
Rを3つだけ含む、Fvの半分)であっても、全結合部位より低い親和性でではあるが、
抗原を認識および結合する能力を有する。
「一本鎖Fv」(「sFv」または「scFv」)は、単一ポリペプチド鎖へと接続さ
れたVHおよびVL抗体ドメインを含む抗体断片である。sFvポリペプチドは、VHド
メインとVLドメイン間にポリペプチドリンカーをさらに含むことができ、そのポリペプ
チドリンカーにより、sFvは抗原結合に望ましい構造を形成することが可能になる。s
Fvの総説については、例えば、Pluckthun in The Pharmaco
logy of Monoclonal Antibodies,vol.113,Ro
senburg and Moore eds.,Springer−Verlag,N
ew York,pp.269−315(1994);Borrebaeck 1995
,infraを参照されたい。
用語「ダイアボディ」は、Vドメインの鎖内対合ではなく鎖間の対合が実現され、その
結果、二価断片、すなわち、2つの抗原結合部位を有する断片になるように、VHドメイ
ンとVLドメイン間に短いリンカー(約5〜10残基)を有するsFv断片を構築するこ
とによって調製された、小さい抗体断片を指す。二重特異性ダイアボディは、2つの抗体
のVHおよびVLドメインが異なるポリペプチド鎖上に存在する2つの「交差」sFv断
片のヘテロ二量体である。ダイアボディは、例えば、欧州特許第404,097号明細書
;国際公開第93/11161号パンフレット;およびHollinger et al
.,Proc.Natl.Acad.Sci.USA,90:6444−6448(19
93)に、より十分に記載されている。
完全ヒト形態で生産することができるドメイン抗体(dAb)は、約11kDaから約
15kDaの範囲の、抗体の最小の公知抗原結合断片である。dAbは、免疫グロブリン
の重および軽鎖(それぞれ、VHおよびVL)の頑強な可変領域である。それらは、微生
物細胞培養で高度に発現され、例えば溶解度および温度安定性を含む(しかしこれらに限
定されない)好適な生物物理学的特性を示し、ならびに例えばファージディスプレイなど
のインビトロ選択システムによる選択および親和性成熟によく適している。dAbは、単
量体として生物活性であり、それらの小さいサイズおよび固有の安定性のおかげで、より
大きい分子にフォーマットして、長期血清半減期または他の薬理活性を有する薬物を作る
ことができる。これらの技術の例は、例えば、ラクダ重鎖Igに由来する抗体について国
際公開第9425591号パンフレットに記載されており、加えて、米国特許出願公開第
20030130496号明細書にはファージライブラリーからの単一ドメイン完全ヒト
抗体の単離が記載されている。
FvおよびsFvは、定常領域が全くないインタクト結合部位を有する唯一の種である
。したがって、それらは、インビボ使用中の非特異的結合低減に適している。sFv融合
タンパク質を、sFvのアミノまたはカルボキシ末端いずれかでエフェクタータンパク質
の融合を生じさせるように構築することができる。例えば、Antibody Engi
neering,ed.Borrebaeck,上掲を参照されたい。前記抗体断片は、
例えば米国特許第5,641,870号明細書に記載されているような、例えば「線状抗
体」であることもできる。かかる線状抗体断片は、単一特異性または二重特異性であるこ
とができる。
ある実施形態において、本記載発明の抗体は、二重特異性または多重特異性である。二
重特異性抗体は、少なくとも2つの異なるエピトープに対する結合特異性を有する抗体で
ある。例として、二重特異性抗体は、単一の抗原の2つの異なるエピトープに結合するこ
とができる。他のかかる抗体は、第一の抗原結合部位と第二の抗原のための結合部位を組
み合わせることができる。あるいは、抗HIVアームを、白血球上のトリガー分子、例え
ばT細胞受容体分子(例えば、CD3)、またはIgGのFc受容体(FcガンマR)、
例えばFcガンマRI(CD64)、FcガンマRII(CD32)およびFcガンマR
III(CD16)、に結合するアームと組み合わせて、細胞防御メカニズムを感染細胞
に集中および局在させることができる。二重特異性抗体を使用して、殺細胞剤を感染細胞
に局在させることもできる。二重特異性抗体を、完全長抗体または抗体断片(例えば、F
(ab’)2二重特異性抗体)として調製することができる。例えば、国際公開第96/
16673号パンフレットには二重特異性抗ErbB2/抗FcガンマRIII抗体が記
載されており、米国特許第5,837,234号明細書には二重特異性抗ErbB2/抗
FcガンマRI抗体が開示されている。例えば、二重特異性抗ErbB2/抗Fcアルフ
ァ抗体は、国際公開第98/02463号パンフレットにおいて報告されており;米国特
許第5,821,337号明細書には二重特異性抗ErbB2/抗CD3抗体が教示され
ている。例えば、Mouquet et al.,Polyreactivity In
creases The Apparent Affinity Of Anti−HI
V Antibodies By Heteroligation. Nature.4
67,591−5(2010)、およびMouquet et al.,Enhance
d HIV−1 neutralization by antibody heter
oligation” Proc Natl Acad Sci U S A.2012
Jan 17;109(3):875−80も参照されたい。
二重特異性抗体の作製方法は、当該技術分野において公知である。完全長二重特異性抗
体の旧来の生産は、2つの免疫グロブリン重−軽鎖対の共発現に基づき、この場合、前記
2本の鎖は異なる特異性を有する(例えば、Millstein et al.,Nat
ure,305:537−539(1983)を参照されたい)。類似の手順が、例えば
、国際公開第93/08829号パンフレット、Traunecker et al.,
EMBO J.,10:3655−3659(1991)に開示されている。Mouqu
et et al.,Enhanced HIV−1 neutralization
by antibody heteroligation” Proc Natl Ac
ad Sci U S A.2012 Jan 17;109(3):875−80も参
照されたい。
あるいは、所望の結合特異性(抗体−抗原結合部位)を有する抗体可変領域を免疫グロ
ブリン定常ドメイン配列に融合させる。この融合は、ヒンジ、CH2およびCH3領域の
少なくとも一部を含む、Ig重鎖定常領域とのものである。いくつかの実施形態によると
、軽鎖結合に必要な部位を含有する第一の重鎖定常領域(CH1)が、融合体の少なくと
も1つに存在する。免疫グロブリン重鎖融合体をコードするおよび所望される場合には免
疫グロブリン軽鎖をコードするDNAを、別個の発現ベクターに挿入し、適する宿主細胞
にコトランスフェクトする。これは、その構築に用いられる不等比の3つのポリペプチド
鎖が所望の二重特異性抗体の最適な収量を与える実施形態では、3つのポリペプチド断片
の相互比率の調整に、より大きい自由度を持たせる。しかし、等比の少なくとも2つのポ
リペプチド鎖の発現が高収量をもたらすとき、または前記比が所望の鎖の組み合わせの収
量に有意な影響を及ぼさないときには、2つのまたは3つすべてのポリペプチド鎖のコー
ド配列を単一の発現ベクターに挿入することが可能である。
抗体断片から二重特異性抗体を生成するための技法も文献に記載されている。例えば、
化学結合を用いて二重特異性抗体を調製することができる。例えば、Brennan e
t al.,Science,229:81(1985)には、インタクト抗体をタンパ
ク質分解切断して、F(ab’)2断片を生成する手順が記載されている。これらの断片
をジチオール錯化剤、亜ヒ酸ナトリウム、の存在下で還元して、ビシナルジチオールを安
定させ、分子間ジスルフィド形成を防止する。次いで、生成されたFab’断片をチオニ
トロ安息香酸塩(TNB)誘導体に変換する。次いで、Fab’−TNB誘導体の一方を
メルカプトエチルアミンでの還元によってFab’−チオールに再変換し、等モル量の他
方のFab’−TNB誘導体と混合して二重特異性抗体を形成する。生成された二重特異
性抗体を、酵素の選択的固定のための薬剤として使用することができる。
抗体の他の修飾を本明細書では企図している。例えば、様々な非タンパク質様ポリマー
の1つ、例えばポリエチレングリコール、ポリプロピレングリコール、ポリオキシアルキ
レン、またはポリエチレングリコールとポリプロピレングリコールのコポリマーに、抗体
を結合させることができる。例えばコアセルベーション法によりもしくは界面重合により
調製されたマイクロカプセル(例えば、それぞれ、ヒドロキシメチルセルロース、もしく
はゼラチン−マイクロカプセルおよびポリ(メチルメタクリレート)マイクロカプセル)
内に、コロイドドラッグデリバリーシステム(例えば、リポソーム、アルブミンマイクロ
スフェア、マイクロエマルジョン、ナノ粒子およびナノカプセル)内に、またはマクロエ
マルジョン内に抗体を捕捉することもできる。かかる技法は、例えば、Remingto
n’s Pharmaceutical Sciences,16th edition
,Oslo,A.,Ed.,(1980)に開示されている。
典型的には、本記載発明の抗体を、当該技術分野において利用可能なベクターおよび方
法を用いて組換え生産する。インビトロ活性化B細胞によってヒト抗体を産生することも
できる(例えば、米国特許第5,567,610号および同第5,229,275号明細
書を参照されたい)。本発明において有用な分子遺伝学および遺伝子工学の一般的方法は
、Molecular Cloning:A Laboratory Manual(S
ambrook,et al.,1989,Cold Spring Harbor L
aboratory Press),Gene Expression Technol
ogy(Methods in Enzymology,Vol.185,edited
by D.Goeddel,1991.Academic Press,San Di
ego,CA),“Guide to Protein Purification”i
n Methods in Enzymology(M.P.Deutshcer,ed
.,(1990)Academic Press,Inc.);PCR Protoco
ls:A Guide to Methods and Applications(I
nnis,et al.1990.Academic Press,San Diego
,CA),Culture of Animal Cells:A Manual of
Basic Technique,2nd Ed.(R.I.Freshney.19
87.Liss,Inc.New York,NY)、およびGene Transfe
r and Expression Protocols,pp.109−128,ed
.E.J.Murray,The Humana Press Inc.,Clifto
n,N.J.)の現行版に記載されている。遺伝子操作のための試薬、クローニングベク
ターおよびキットは、商業ベンダー、例えば、BioRad、Stratagene、I
nvitrogen、ClonTechおよびSigma−Aldrich Co.から
入手可能である。
内因性免疫グロブリン生産が不在の状態でヒト抗体の全レパートリーを生産できるトラ
ンスジェニック動物(例えば、マウス)においてヒト抗体を生産することもできる。例え
ば、キメラおよび生殖細胞系突然変異体マウスにおける抗体重鎖連結領域(JH)遺伝子
のホモ接合型欠失は、内因性抗体生産の完全阻害をもたらすことが記載されている。ヒト
生殖細胞系免疫グロブリン遺伝子アレイのかかる生殖細胞系突然変異体マウスへの移入は
、抗原チャレンジ時にヒト抗体の生産をもたらす。例えば、Jakobovits et
al.,Proc.Natl.Acad.Sci.USA,90:2551(1993
);Jakobovits et al.,Nature,362:255−258(1
993);Bruggemann et al.,Year in Immuno.,7
:33(1993);米国特許第5,545,806号、同第5,569,825号、同
第5,591,669号明細書(すべてGenPharm);米国特許第5,545,8
07号明細書;ならびに国際公開第97/17852号パンフレットを参照されたい。か
かる動物を、本記載発明のポリペプチドを含むヒト抗体を生産するように遺伝子操作する
ことができる。
抗体断片の生産のために様々な技法が開発されている。旧来、これらの断片は、インタ
クト抗体のタンパク質分解消化によって得られた(例えば、Morimoto et a
l.,Journal of Biochemical and Biophysica
l Methods 24:107−117 (1992);およびBrennan e
t al.,Science,229:81(1985)を参照されたい)。しかし、今
はこれらの断片を遺伝子組換えの宿主細胞によって直接生産することができる。Fab、
FvおよびScFv抗体断片は、すべて、大腸菌(E.coli)において発現および大
腸菌から分泌させることができ、このことから大量のこれらの断片の容易な生産が可能で
ある。Fab’−SH断片を大腸菌から直接回収し、化学的にカップリングしてF(ab
’)2断片を形成することができる(例えば、Carter et al.,Bio/T
echnology 10:163−167(1992)を参照されたい)。別のアプロ
ーチによると、F(ab’)2断片を遺伝子組換えの宿主細胞培養物から直接単離するこ
とができる。サルベージ受容体結合エピトープ残基を含む、インビボ半減期が増加された
FabおよびF(ab’)2断片は、米国特許第5,869,046号明細書に記載され
ている。抗体断片の他の生産法は、当業者には明白であろう。
ファージディスプレイ、リボソームディスプレイ(Hanes and Pluckt
hun,1997,Proc.Nat.Acad.Sci.94:4937−4942)
、細菌ディスプレイ(Georgiou,et al.,1997,Nature Bi
otechnology 15:29−34)および/または酵母ディスプレイ(Kie
ke,et al.,1997,Protein Engineering 10: 1
303−1310)を含む(しかしこれらに限定されない)濃縮法を用いてライブラリー
から抗体断片を選択するための当該技術分野において公知である他の技法を前に論じた技
法の代案として用いて、一本鎖抗体を選択してもよい。一本鎖抗体は、糸状ファージ技術
を直接用いて生産された一本鎖抗体のライブラリーから選択される。ファージディスプレ
イ技術は当該技術分野において公知である(例えば、米国特許第5,565,332号、
同第5,733,743号、同第5,871,907号、同第5,872,215号、同
第5,885,793号、同第5,962,255号、同第6,140,471号、同第
6,225,447号、同第6,291650号、同第6,492,160号、同第6,
521,404号、同第6,544,731号、同第6,555,313号、同第6,5
82,915号、同第6,593,081号明細書、ならびに他の米国特許ファミリーメ
ンバー、または1992年5月24日に出願された英国特許第9206318号に基づく
優先権出願の願書に開示されているようなCambridge Antibody Te
chnology(CAT)からの技術を参照されたい;Vaughn,et al.1
996,Nature Biotechnology 14:309−314も参照され
たい)。利用可能な組換えDNA技術、例えば、DNA増幅法(例えば、PCR)を用い
て、またはことによるとそれぞれのハイブリドーマcDNAをテンプレートとして使用す
ることにより、一本鎖抗体を設計し、構築してもよい。
変異体抗体も本発明の範囲に含まれる。したがって、本出願に記載の配列の変異体も本
発明の範囲に含まれる。親和性が向上された抗体配列のさらなる変異体を、当該技術分野
において公知の方法を用いて得ることができ、それらの変異体は本発明の範囲内である。
例えば、アミノ酸置換を用いて、親和性がさらに向上された抗体を得ることができる。あ
るいは、ヌクレオチド配列のコドン最適化を用いて、抗体生産のための発現系における翻
訳効率を向上させることができる。
かかる変異体抗体配列は、本出願に記載の配列と70%以上の(すなわち、80%、8
5%、90%、95%、97%、98%、99%またはそれ以上の)配列同一性を共有す
ることになる。かかる配列同一性は、基準配列(すなわち、本出願に記載の配列)の完全
長に対して算定される。本明細書において言及するときの同一率は、NCBI(国立生物
工学情報センター;www.ncbi.nlm.nih.gov/)により指定されたデ
フォルトパラメータ[Blosum 62行列;ギャップ開始ペナルティ=11およびギ
ャップ伸長ペナルティ=1]を用いてBLASTバージョン2.1.3を使用して決定し
たときのものである。例えば、本明細書に開示する配列の1つ以上についての少なくとも
約5、10、15、20、30、40、50、75、100、150以上の近接するペプ
チドおよびこれらの間のすべての中間長のペプチドを含むペプチド配列が本発明によって
提供される。本明細書において用いる場合、用語「中間長」は、引用値間の任意の長さ、
例えば、7、8、9、10、11、12、13、14、15、16、17、18、19な
ど;21、22、23など;30、31、32など;50、51、52、53など;10
0、101、102、103など、150、151、152、153などを記述すること
を意図したものである。
本発明は、血清中で広域中和活性を有する抗体を、単独で、または他の抗体、例えば、
VRC01、抗V3ループ、CD4bsおよびCD4i抗体ならびにPG9/PG16様
抗体(しかしこれらに限定されない)との組み合わせで提供する。
別の実施形態によると、本発明は、HIVに感染しているまたはHIV感染の危険があ
るヒトまたは非ヒト霊長類患者に、ヒトにおけるHIVに対する防御免疫応答またはHI
Vウイルスの低減の誘導に十分な量およびスケジュールによる投与に適したHIV抗体組
成物の調製および投与方法を提供する。
別の実施形態によると、本発明は、本発明の少なくとも1つの抗体と医薬的に許容され
る担体とを含むワクチンを提供する。1つの実施形態によると、前記ワクチンは、本明細
書に記載する少なくとも1つの抗体と医薬的に許容される担体とを含むワクチンである。
前記ワクチンは、本明細書に記載する特性を有する複数の抗体を任意の組み合わせで含む
ことができ、および当該技術分野において公知であるようなHIVを中和する抗体をさら
に含むことができる。
組成物が、ワクチン接種後の様々な亜型のHIV感染の進行を予防的にまたは治療的に
処置するために、本明細書に開示する単一の抗体である場合があり、または同じであるま
たは異なる本明細書に開示する抗体の組み合わせである場合もあることを理解されたい。
かかる組み合わせは、所望の免疫性に従って選択することができる。抗体を動物またはヒ
トに投与するとき、それを、通常の当業者に公知であるような1つ以上の医薬的に許容さ
れる担体、賦形剤またはアジュバントと併用することができる。前記組成物は、VRC0
1、b12、抗V3ループ、CD4bsおよびCD4i抗体ならびにPG9/PG16様
抗体を含む(しかしこれらに限定されない)、当該技術分野において公知の広域中和抗体
をさらに含むことができる。
さらに、HIVの治療についての患者における効果レベルの判定に関しては、特に、適
切な動物モデルを利用でき、様々な遺伝子療法プロトコルのHIVに対するインビボ有効
性を評価するために幅広く実施されている(Sarver et al.(1993b)
,上掲)。これらのモデルとしては、マウス、サルおよびネコが挙げられる。これらの動
物がHIV疾患に自然にかかりやすくなくても、ヒト末梢血単核細胞(PBMC)、リン
パ節、胎児肝臓/胸腺または他の組織を用いて再構成されたキメラマウスモデル(例えば
、SCID、bg/nu/xid、NOD/SCID、SCID−hu、免疫適格SCI
D−hu、骨髄切除BALB/c)をレンチウイルスベクターまたはHIVに感染させ、
HIV病因モデルとして利用することができる。同様に、サル免疫不全ウイルス(SIV
)/サルモデルを利用することができ、ネコ免疫不全ウイルス(FIV)/ネコモデルを
利用することもできる。前記医薬組成物は、AIDSの治療的処置に使用するとき、本発
明によるベクターと共に他の医薬を含有することができる。これらの他の医薬をそれらの
旧来の様式で(すなわち、HIV感染を処置するための薬剤として)使用することができ
る。
別の実施形態によると、本発明は、有効量の単離されたHIV抗体、または親和性成熟
バージョン、を含む抗体ベースの医薬組成物を提供し、これは、HIVウイルスの感染を
低下させるための予防的または治療的処置の選択肢をもたらす。本発明の抗体ベースの医
薬組成物を、当該技術分野において公知の任意の数の戦略(例えば、McGoff an
d Scher,2000,Solution Formulation of Pro
teins/Peptides:In McNally,E.J.,ed.Protei
n Formulation and Delivery.New York,NY:M
arcel Dekker;pp.139−158;Akers and Defili
ppis,2000,Peptides and Proteins as Paren
teral Solutions.In:Pharmaceutical Formul
ation Development of Peptides and Protei
ns.Philadelphia,PA:Talyor and Francis;pp
.145−177;Akers,et al.,2002,Pharm.Biotech
nol.14:47−127を参照されたい)によって製剤化してよい。患者への投与に
適する医薬的に許容される組成物は、許容される温度範囲内での保管中に生物活性を保持
する上に最大安定性を促進しもする製剤中に有効量の抗体を含有することになる。前記医
薬組成物は、所望される製剤に依存して、医薬的に許容される希釈剤、医薬的に許容され
る担体および/または医薬的に許容される賦形剤、もしくは動物またはヒトへの投与用の
医薬組成物の製剤化に一般に用いられる、そのようなビヒクルも含むことができる。前記
希釈剤は、前記組み合わせの生物活性に影響を及ぼさないように選択される。かかる希釈
剤の例は、蒸留水、リン酸緩衝生理食塩水、リンガー溶液、デキストロース溶液、および
ハンクス溶液である。本発明の医薬組成物または製剤において有用である賦形剤の量は、
それを必要とする被検体に投与すべきときにその組成物を均一に分散させることができる
ようにその組成物全体にわたって抗体を均一に分配するのに役立つ量である。それは、所
望の有益な緩和または治癒結果もたらすと同時に高すぎる濃度から起こるであろう一切の
有害副作用を最少にする濃度に抗体を希釈するのに役立つことがある。それは、保存効果
を有することもある。したがって、高い生理活性を有する抗体については、いっそう多く
の賦形剤を利用することになる。その一方で、より低い生理活性を呈示するいずれの活性
成分(単数または複数)についても、より少ない量の賦形剤を利用することになる。
上記抗体を、および本明細書に記載する抗体の少なくとも1つまたは組み合わせを含む
抗体組成物またはワクチン組成物を、HIVウイルス感染の予防的および治療的処置のた
めに投与することができる。
本発明は、軽鎖および重鎖の新規アミノ酸配列、ならびに図3に収載するような配列番
号1および2の重および軽鎖についてのコンセンサス配列を含む、単離されたポリペプチ
ドにも関する。
他の関連した実施形態において、本発明は、図3に収載するHIV抗体のアミノ酸配列
;配列番号1および2の重および軽鎖についてのコンセンサス配列、をコードするポリペ
プチド変異体を提供する。これらのポリペプチド変異体は、本明細書に記載する方法(例
えば、標準パラメータを用いるBLAST解析)を用いて決定したときに本発明のポリペ
プチド配列と比較して少なくとも70%、75%、80%、85%、90%、95%、9
6%、97%、98%または99%あるいはそれ以上の配列同一性を有する。アミノ酸の
類似性などに考慮することにより、これらの値を適切に調整して、コードされたタンパク
質の対応する同一性を決定することができることは、当業者には理解されるであろう。
用語「ポリペプチド」は、その従来の意味で、すなわち、アミノ酸の配列として用いて
いる。ポリペプチドは、特定の長さの生成物に限定されない。ペプチド、オリゴペプチド
およびタンパク質は、ポリペプチドの定義に含まれ、かかる用語は、特に別段の指示がな
い限り、本明細書では交互に用いることができる。この用語は、自然に発生するものおよ
び自然に発生しないもの両方の、ポリペプチドの発現後修飾、例えばグリコシル化、アセ
チル化、リン酸化など、および当該技術分野において公知の他の修飾も含む。ポリペプチ
ドは、タンパク質全体である場合もあり、またはその部分配列である場合もある。本発明
に関連して対象となる特定のポリペプチドは、抗原またはHIV感染細胞に結合できる、
CDR、VHおよびVLを含むアミノ酸部分配列である。
ポリペプチド「変異体」は、この用語を本明細書において用いる場合、本明細書に具体
的に開示するポリペプチドとは1つ以上の置換、欠失、付加および/または挿入の点で典
型的に異なるポリペプチドである。かかる変異体は、天然起源である場合もあり、または
例えば、本発明の上記ポリペプチド配列の1つ以上の修飾、および本明細書に記載のポリ
ペプチドの1つ以上の生物活性の評価、および/もしくは当該技術分野において周知の多
数の技法のうちのいずれかの使用によって、合成的に生成される場合もある。
例えば、あるアミノ酸を、タンパク質構造内の他のアミノ酸と、他のポリペプチド(例
えば、抗原)または細胞に結合する能力のかなりの喪失を伴うことなく置換することがで
きる。タンパク質の結合能力および性質は、そのタンパク質の生物学的機能活性を規定す
るので、あるアミノ酸配列置換をタンパク質配列、したがってその基礎となるDNAコー
ド配列に起こすことができ、それにより同様の特性を有するタンパク質を得られる。した
がって、本開示組成物のペプチド配列、または前記ペプチドをコードする対応DNA配列
に、それらの生物学的有用性または活性を著しく喪失することなく、様々な変更を加える
ことができることが考えられる。
多くの場合、ポリペプチド変異体は、1つ以上の保存的置換を含有することになる。「
保存的置換」は、ペプチド化学の当業者によりそのポリペプチドの二次構造およびヒドロ
パシー性が実質的に不変であると予想されるような、あるアミノ酸が類似の特性を有する
別のアミノ酸に置換されることである。
アミノ酸置換は、一般に、アミノ酸側鎖置換基の、例えば、それらの疎水性、親水性、
電荷、サイズなどの、相対的類似性に基づく。例えば、様々な前述の特性を考慮に入れる
置換は、当業者に周知であり、アルギニンとリシン;グルタミン酸塩とアスパラギン酸塩
;セリンとトレオニン;グルタミンとアスパラギン;およびバリンとロイシンとイソロイ
シンを含む。
「相同性」または「配列同一性」は、配列をアラインし、必要に応じて、最大相同率を
達成するためにギャップを挿入した後に非変異体配列と同一であるポリヌクレオチドまた
はポリペプチド配列変化での残基の百分率を指す。特定の実施形態において、ポリヌクレ
オチドおよびポリペプチド変異体は、本明細書に記載するポリヌクレオチドまたはポリペ
プチドとの少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも
約90%、少なくとも約95%、少なくとも約98%、または少なくとも約99%のポリ
ヌクレオチドまたはポリペプチド相同性を有する。
かかる変異体ポリペプチド配列は、本出願に記載の配列と70%以上(すなわち、80
%、85%、90%、95%、97%、98%、99%またはそれ以上の)配列同一性を
共有することになる。さらなる実施形態において、本記載発明は、本明細書に開示するア
ミノ酸配列の様々な長さの連続ストレッチを含むポリペプチド断片を提供する。例えば、
本明細書に開示する配列の1つ以上についての連続する少なくとも約5、10、15、2
0、30、40、50、75、100、150またはそれ以上のペプチドおよびそれらの
間のすべての中間長のペプチドを含むペプチド配列が本発明によって提供される。
本発明は、本記載発明抗体の軽および重鎖の一部またはすべてをコードする核酸配列、
およびそれらの断片も含む。遺伝子コードの冗長性のため、同じアミノ酸配列をコードす
るこれらの配列の変異体が存在することになる。
本発明は、図3に収載するHIV抗体の重および軽鎖のペプチドをコードする単離され
た核酸配列、ならびに配列番号1および2の重および軽鎖のコンセンサス配列も含む。
他の関連実施形態において、本記載発明は、図3に収載するHIV抗体の重および軽鎖
のポリペプチド配列;配列番号1および2の重および軽鎖のコンセンサス配列、をコード
するポリヌクレオチド変異体を提供する。これらのポリヌクレオチド変異体は、本明細書
に記載する方法(例えば、標準パラメータを用いるBLAST解析)を用いて決定したと
きに本発明のポリヌクレオチド配列と比較して少なくとも70%、少なくとも75%、少
なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも
96%、少なくとも97%、少なくとも98%または少なくとも99%またはそれ以上の
配列同一性を有する。コドン縮重、アミノ酸類似性、リーディングフレーム配置などを考
慮に入れることにより、これらの値を適切に調整して、2つのヌクレオチド配列によって
コードされたタンパク質の対応する同一性を決定することができることは、当業者には理
解されるであろう。
用語「核酸」および「ポリヌクレオチド」は、一本鎖または二本鎖RNA、DNA、ま
たは混合ポリマーを指すために本明細書では交互に用いられる。ポリヌクレオチドは、ゲ
ノム配列、追加のゲノムおよびプラスミド配列、ならびにより小さい操作された遺伝子セ
グメントであって、ポリペプチドを発現するまたは発現するように適応され得るセグメン
トを含むことができる。
「単離された核酸」は、他のゲノムDNAからはもちろん、天然に天然配列を伴う、タ
ンパク質または複合体、例えばリボソームおよびポリメラーゼからも実質的に分離されて
いる核酸である。この用語は、その天然に存在する環境から除去された核酸配列を包含し
、組換体またはクローン化DNA単離体、および化学合成類似体、または異種のシステム
によって生合成された類似体を含む。実質的に純粋な核酸は、単離された形態の前記核酸
を含む。したがって、これは、初めから単離されているような核酸を指し、人間の手で単
離された核酸に後で加えられた遺伝子または配列を除外しない。
ポリヌクレオチド「変異体」は、この用語を本明細書において用いる場合、本明細書に
具体的に開示するポリヌクレオチドとは、1つ以上の置換、欠失、付加および/または挿
入の点で典型的に異なるポリヌクレオチドを指す。かかる変異体は、天然起源である場合
もあり、または例えば、本発明のポリヌクレオチド配列の1つ以上の修飾、および本明細
書に記載のコードされたポリペプチドの1つ以上の生物活性の評価、および/もしくは当
該技術分野において周知の多数の技法のうちのいずれかの使用によって、合成的に生成さ
れる場合もある。
本記載発明のポリヌクレオチドの構造に修飾を施すことができ、所望の特性を有する変
異体または誘導体ポリペプチドをコードする機能性分子をなお得ることができる。本発明
のポリペプチドの等価のまたはさらには改善された変異体または部分を作り出すためにポ
リペプチドのアミノ酸配列を改変することが所望されるとき、典型的に、当業者は、コー
ドするDNA配列のコドンの1つ以上を変更することになる。
典型的に、ポリヌクレオチド変異体は、その変異体ポリヌクレオチドによってコードさ
れたポリペプチドの免疫原性の結合特性が、本明細書に具体的に示すポリヌクレオチド配
列によってコードされたポリペプチドに比べて実質的に減少されないような、1つ以上の
置換、付加、欠失および/または挿入を含有する。
さらなる実施形態において、本記載発明は、本明細書に開示する配列の1つ以上と同一
のまたは相補的な配列の様々な長さの連続ストレッチを含むポリヌクレオチド断片を提供
する。例えば、本明細書に開示する配列の1つ以上についての連続する少なくとも約10
、15、20、30、40、50、75、100、150、200、300、400、5
00または1000あるいはそれ以上のヌクレオチドおよびそれらの間のすべての中間長
のヌクレオチドを含むポリヌクレオチドであって、引用値間の、例えば、16、17、1
8、19など、21、22、23など、30、31、32など、50、51、52、53
など、100、101、102、103など、150、151、152、153などの、
および200〜500、500〜1000中のすべての整数を含む、任意の長さを包含す
るポリヌクレオチドが、本発明によって提供される。
本発明の別の実施形態において、本明細書が提供するポリヌクレオチド配列、またはそ
の断片、またはその相補配列に、中から高ストリンジェンシー条件下で、ハイブリダイズ
できるポリヌクレオチド組成物を提供する。ハイブリダイゼーション法は、分子生物学技
術分野において周知である。例証のために、本発明のポリヌクレオチドと他のポリヌクレ
オチドのハイブリダイゼーションを試験するための適切な中等度のストリンジェントな条
件は、5xSSC、0.5%SDS、1.0mM EDTA(pH8.0)の溶液中での
予備洗浄;50〜60℃、5xSSCで一晩のハイブリダイゼーション;続いて2回の6
5℃で20分間の、各々、0.1%SDSを含有する2x、0.5xおよび0.2xSS
Cでの洗浄を含む。ハイブリダイゼーションのストリンジェンシーを、例えば、ハイブリ
ダイゼーション溶液の塩含量および/またはハイブリダイゼーションを行う温度を変える
ことによって容易に操作することができることは、当業者には理解されるであろう。例え
ば、別の実施形態において、適切な高度にストリンジェントなハイブリダイゼーション条
件は、ハイブリダイゼーションの温度を例えば60〜65℃または65〜70℃に上昇さ
せることを除いて、上に記載したものを含む。
いくつかの実施形態において、前記ポリヌクレオチド変異体または断片によってコード
されたポリペプチドは、天然ポリヌクレオチドによってコードされたポリペプチドと同じ
結合特異性を有する(すなわち、同じエピトープまたはHIV株に特異的にまたは優先的
に結合する)。いくつかの実施形態において、本記載ポリヌクレオチド、ポリヌクレオチ
ド変異体、断片およびハイブリダイゼーション配列は、本明細書に具体的に示すポリペプ
チド配列についてのものの少なくとも約50%、少なくとも約70%および少なくとも約
90%のレベルの結合活性を有するポリペプチドをコードする。
本記載発明のポリヌクレオチド、またはそれらの断片を、それ自体のコード配列の長さ
に関係なく、他のDNA配列、例えば、プロモーター、ポリアデニル化シグナル、追加の
制限酵素部位、複数のクローニング部位、他のコードセグメントなどと組み合わせること
ができるので、それらの全長は、かなり変動し得る。ほぼあらゆる長さの核酸断片が用い
られる。例えば、長さ約10000、約5000、約3000、約2000、約1000
、約500、約200、約100、約50塩基対などの全長(すべての中間長を含む)を
持つ例示的なポリヌクレオチドセグメントが本発明の多くの実施に含まれる。
本発明による核酸配列を含むベクター、例えば発現ベクターが、さらに本発明の範囲に
含まれる。かかるベクターで形質転換された細胞も本発明の範囲に含まれる。
本発明は、本発明の核酸を含むベクターおよび宿主細胞、ならびに本発明のポリペプチ
ドの生産のための組換え法も提供する。本発明のベクターは、例えばプラスミド、ファー
ジ、コスミドおよびミニ染色体を含む、任意のタイプの細胞または生物において複製でき
るものを含む。いくつかの実施形態において、本記載発明のポリヌクレオチドを含むベク
ターは、そのポリヌクレオチドの成長もしくは複製に適したベクターであるか、または本
記載発明のポリペプチドの発現に適したベクターである。かかるベクターは、当該技術分
野において公知であり、市販されている。
「ベクター」は、シャトルベクターおよび発現ベクターを含む。典型的に、プラスミド
構築は、細菌のプラスミドの、それぞれ複製および選択のために、複製起点(例えば、C
olE1複製起点)および選択マーカー(例えば、アンピシリンまたはテトラサイクリン
耐性)も含むことになる。「発現ベクター」は、細菌細胞または真核細胞中の、本発明の
抗体断片を含む抗体の発現に必要な制御配列または調節要素を含有するベクターを指す。
本明細書において用いる場合、用語「細胞」は、哺乳動物細胞またはヒト細胞など(し
かしこれらに限定されない)の真核、多細胞種のものを(例えば、単細胞の酵母細胞とは
対照的に)含むが、これらに限定されない、任意の細胞であることができる。細胞は、単
一エンティティとして存在する場合もあり、または細胞のより大きなコレクションの一部
である場合もある。かかる「細胞のより大きなコレクション」は、例えば、細胞培養物(
混合されたものか純粋なもの)、組織(例えば、内皮、上皮、粘膜もしくは他の組織)、
器官(例えば、肺、肝臓、筋肉および他の器官)、器官系(例えば、循環器系、呼吸器系
、胃腸系、泌尿器系、神経系、外皮系もしくは他の器官系)、または生物(例えば、鳥類
、哺乳類など)を含むことができる。
本発明のポリヌクレオチドを全体として合成してもよく、または少しずつ合成して組み
合わせてもよく、そして、例えば、適切な制限部位および制限酵素を用いる線状ベクター
への前記ポリヌクレオチドのサブクローニングを含む、ルーチンの分子生物学および細胞
生物学法を用いて、ベクターに挿入してもよい。本記載発明のポリヌクレオチドを、その
ポリヌクレオチドの各鎖に相補的なオリゴヌクレオチドプライマーを使用してポリメラー
ゼ連鎖反応により増幅する。これらのプライマーは、ベクターへのサブクローニングを助
長するための制限酵素切断部位も含む。複製可能なベクター成分は、一般に、次のものの
1つ以上を含むがこれらに限定されない:シグナル配列、複製起点、および1つ以上の、
マーカーまたは選択可能な遺伝子。
本発明のポリペプチドを発現するために、そのポリペプチドをコードするヌクレオチド
配列、または機能的等価物を、適切な発現ベクター、すなわち、挿入したコード配列の転
写および翻訳に必要な要素を含有するベクターに挿入してよい。対象となるポリペプチド
ならびに適切な転写および翻訳制御要素をコードする配列を含有する発現ベクターを構築
するために、当業者に周知の方法を用いてよい。これらの方法としては、インビトロ組換
えDNA法、合成法、およびインビボ遺伝子組換えが挙げられる。かかる技法は、例えば
、Sambrook,J.,et al.(1989)Molecular Cloni
ng,A Laboratory Manual,Cold Spring Harbo
r Press,Plainview,N.Y.、およびAusubel,F.M.et
al.(1989)Current Protocols in Molecular
Biology,John Wiley & Sons,New York.N.Y.
に記載されている。
本発明は、本発明の抗体、ポリペプチドおよび核酸を使用して診断および予後アッセイ
を実施する際に有用なキットも提供する。本発明のキットは、本発明のHIV抗体、ポリ
ペプチドまたは核酸を標識された形態または未標識の形態いずれかで含む、適切な容器を
含む。加えて、前記抗体、ポリペプチドまたは核酸を間接結合アッセイに適する標識され
た形態で供給するとき、そのキットは、適切な間接アッセイを行うための試薬をさらに含
む。例えば、前記キットは、標識の性質に依存して酵素基質または誘導体化剤を含む、1
つ以上の適する容器を含むことがある。対照試料および/または説明書も含むことがある
。本発明は、PCRまたは質量分析によって生体試料中の本発明のHIV抗体の存在また
はHIV抗体のヌクレオチド配列を検出するためのキットも提供する。
本明細書において用いる場合の「標識」は、「標識された」抗体を生成するために抗体
に直接または間接的に結合される検出可能な化合物または組成物を指す。標識を本明細書
に開示するポリペプチドおよび/または核酸配列に結合することもできる。前記標識は、
単独で検出可能であることができ(例えば、放射性同位元素標識もしくは蛍光標識)、ま
たは酵素標識の場合は、検出可能である基質化合物もしくは組成物の化学的変成を触媒す
ることができる。本記載発明の抗体およびポリペプチドを、例えば、精製または診断応用
に用いるために、エピトープタグまたは標識を含むように修飾することもできる。適する
検出手段としては、標識、例えば、これらに限定されないが、放射性ヌクレオチド、酵素
、補酵素、蛍光剤、化学発光剤、色素原、酵素基質または補因子、酵素阻害剤、補欠分子
族複合体、フリーラジカル、粒子、色素などの使用を含む。
別の実施形態によると、本発明は、診断方法を提供する。診断方法は、一般に、患者か
ら採取した生体試料、例えば、血液、血清、唾液、尿、痰、細胞スワブ試料または組織生
検材料などをHIV抗体と接触させること、および前記抗体が前記試料に、対照試料また
は所定のカットオフ値と比較して、選択的に結合するかどうかを判定し、それによってH
IVウイルスの存在を示すことを含む。
別の実施形態によると、本発明は、患者からの生体試料中の本発明のHIV抗体の存在
を検出するための方法を提供する。検出方法は、一般に、患者から生体試料、例えば、血
液、血清、唾液、尿、痰、細胞スワブ試料または組織生検材料などを採取し、HIV抗体
またはそれらの断片、もしくはHIV抗体をコードする核酸を単離すること、および前記
生体試料中のHIV抗体の存在について検査することを含む。また、本発明は、細胞にお
けるHIV抗体のヌクレオチド配列を検出するための方法を提供する。HIV抗体のヌク
レオチド配列を、本明細書に開示するプライマーを使用して検出してもよい。患者からの
生体試料中のHIV抗体の存在を、公知の組換え法および/または質量分析装置の使用に
より決定してもよい。
別の実施形態において、本発明は、生体試料において高度に保存されたコンセンサス配
列を含む重鎖と高度に保存されたコンセンサス配列を含む軽鎖とを含むHIV抗体を検出
するための方法を提供し、この方法は、哺乳動物被検体から免疫グロブリン含有生体試料
を採取すること、前記試料からHIV抗体を単離すること、および前記重鎖および軽鎖の
高度に保存されたコンセンサス配列を同定することを含む。前記生体試料は、血液、血清
、唾液、尿、痰、細胞スワブ試料または組織生検材料であってよい。前記アミノ酸配列を
、例えばPCRおよび質量分析を含む、当該技術分野において公知の方法によって決定し
てよい。
用語「評価」(assessing)は、任意の形態の測定を含み、およびある要素が
存在するか否かを決定することを含む。用語「判定」(determing)、「測定」
(measuring)、「評価」(evaluating)、「評価」(assess
ing)および「分析」(assaying)は、交互に用いられ、定量的および定性的
決定を含む。評価は、相対的であることもあり、または絶対的であることもある。「の存
在を評価」は、存在する何かの量を判定すること、および/またはそれが存在するのか、
または不在であるのかを判定することを含む。本明細書において用いる場合、用語「判定
」、「測定」および「評価」(assessing)および「分析」は、交互に用いられ
、定量的決定と定性的判定の両方を含む。
II.ウイルス複製を低減させる方法
被検体におけるHIVウイルス力価、ウイルス複製、ウイルス増殖またはHIVウイル
スタンパク質の量の増加を低減させるための方法をさらに提供する。別の態様によると、
ある方法は、被検体における1つ以上のHIV株または単離体のHIV力価、ウイルス複
製またはHIVタンパク質の量の増加を低減させるのに有効な量のHIV抗体を被検体に
投与することを含む。
別の実施形態によると、本発明は、ウイルス複製を低減させる、またはさらなる宿主細
胞または組織へのHIV感染の拡大を低減させる方法を提供し、この方法は、gp120
上の抗原エピトープに結合する抗体またはその一部分と哺乳動物細胞を接触させることを
含む。
III.治療方法
別の実施形態によると、本発明は、ウイルス感染症に感染した、例えばHIVなどに感
染した、哺乳動物を治療するための方法を提供し、この方法は、本明細書に開示するHI
V抗体を含む医薬組成物を前記哺乳動物に投与することを含む。1つの実施形態によると
、HIVに感染した哺乳動物を治療するための前記方法は、本発明の抗体またはその断片
を含む医薬組成物を前記哺乳動物に投与することを含む。本発明の前記組成物は、開示す
る特性を有する1つより多くの抗体(例えば、複数の抗体または抗体のプール)を含むこ
とができる。前記組成物は、当該技術分野において公知であるような他のHIV中和抗体
、例えば、これらに限定されないが、VRC01、PG9およびb12も含むことができ
る。
受動免疫がウイルス性疾患の予防および治療のための有効で安全な戦略であることは証
明されている。(例えば、Keller et al.,Clin. Microbio
l.Rev.13:602−14(2000);Casadevall,Nat.Bio
technol.20:114(2002);Shibata et al.,Nat.
Med.5:204−10(1999);およびIgarashi et al.,Na
t.Med.5:211−16(1999)を参照されたい)。ヒトモノクローナル抗体
を使用する受動免疫は、HIVの救急予防および治療のための緊急治療戦略を実現する。
HIV関連疾患または障害の危険がある被検体としては、感染者と接触した患者、また
は何らかの他の方法でHIVに曝露された患者を含む。疾患または障害を予防するか、あ
るいはその進行を遅らせるために、HIV関連疾患または障害に特有の症状の兆候の前に
予防薬の投与を行うことができる。
ヒトおよび非ヒト患者のインビボでの治療のために、本発明のHIV抗体を含む医薬製
剤を前記患者に投与または提供する。インビボ療法に使用するとき、本発明の抗体を前記
患者に治療有効量(すなわち、患者のウイルス負荷量を無くすまたは低減させる量)で投
与する。前記抗体を、公知の方法に従って、例えば、静脈内投与により、例えばボーラス
としてもしくはある期間にわたっての持続注入により、筋肉内、腹腔内、脳脊髄内(in
tracerobrospinal)、皮下、関節内、関節滑液嚢内、クモ膜下、経口、
局所または吸入経路により、ヒト患者に投与する。前記抗体を非経口投与することができ
、可能な場合には標的細胞部位に投与することができ、または静脈内投与することができ
る。いくつかの実施形態では、抗体を静脈内または皮下投与によって投与する。本発明の
治療用組成物を患者または被検体に全身投与してもよいし、非経口投与してもよいし、ま
たは局所投与してもよい。治療成功および疾患の改善を評価するための上記パラメータは
、医師には周知のルーチン手順によって容易に測定される。
非経口投与のために、前記抗体を、医薬的に許容される非経口ビヒクルを伴う注射用単
位剤形(溶液、懸濁液、エマルジョン)で製剤化してもよい。かかるビヒクルの例として
は、水、食塩水、リンガー溶液、デキストロース溶液、および5%ヒト血清アルブミンが
挙げられるが、これらに限定されない。非水性ビヒクルとしては、不揮発性油およびオレ
イン酸エチルが挙げられるが、これらに限定されない。リポソームを担体として使用する
ことができる。前記ビヒクルは、少量の添加剤、例えば、等張性および化学的安定性を向
上させる物質、例えば緩衝液および保存薬などを含有することもある。前記抗体をかかる
ビヒクル中、約1mg/mLから10mg/mLの濃度で製剤化することができる。
用量および薬剤投与計画は、医師によって容易に決定される様々な因子、例えば、感染
の性質、例えばその治療指数、患者、および患者の病歴に依存する。一般に、治療有効量
の抗体を患者に投与する。いくつかの実施形態において、投与される抗体の量は、患者体
重の約0.1mg/kgから約50mg/kgの範囲である。感染のタイプおよび重症度
に依存して、体重の約0.1mg/kgから約50mg/kg(例えば、約0.1〜15
mg/kg/用量)の抗体が、例えば1回以上の別々の投与によるか、または連続注入に
よる、患者への投与のための初期候補の投与量である。この治療の経過は、従来の方法お
よび分析によって、および医師もしくは他の当業者に公知の基準に基づいて、容易にモニ
ターされる。処置成功および疾患の改善を評価するための上記パラメータは、医師には公
知のルーチン手順によって容易に測定可能である。
他の治療法を本発明のHIV抗体の投与と併用してもよい。併用投与は、別々の製剤ま
たは単一の医薬製剤を使用する同時投与、およびいずれかの順序での逐次投与を含み、こ
の際、好ましくは両方(またはすべての)活性薬剤がそれらの生物活性を同時に発揮する
期間がある。かかる併用療法は、相乗治療効果をもたらすことができる。処置成功および
疾患の改善を評価するための上記パラメータは、医師には周知のルーチン手順によって容
易に測定可能である。
用語「治療する」または「治療」もしくは「緩和」は、交互に用いられ、治療的処置と
、予防的または予防対策との両方を指し、この際目的は、標的とされる病的状態または障
害を予防するまたは遅らせる(和らげる)ことである。治療を必要とする者は、障害を既
に有する者、ならびに、障害に罹患しやすい者または障害を予防しなければならない者も
含む。被検体または哺乳動物は、本発明の方法に従って治療量の抗体を受けた後、その患
者が、次の1つ以上に関して観察可能なおよび/または測定可能な低減もしくは次の1つ
以上の不在:感染細胞数の低減または感染細胞の不在;感染している全細胞のパーセント
の低減;および/もしくは特定の感染に付随する症状の1つ以上のある程度の軽減;罹患
率および死亡率低減、ならびに生活の質の問題の向上を示す場合、感染がうまく「治療さ
れる」。疾患の治療成功および疾患の改善を評価するための上記パラメータは、医師に公
知のルーチン手順によって容易に測定可能である。
用語「治療有効量」は、被検体または哺乳動物における疾患または障害の治療に有効な
抗体または薬物の量を指す。
1つ以上のさらなる治療薬と「併用での」投与は、同時(同時に行う)投与および任意
の順序での逐次投与を含む。
本明細書において用いる場合の「担体」は、用いられる投与量および濃度で、曝露され
る細胞または哺乳動物に対して非毒性である、医薬的に許容される担体、賦形剤または安
定剤を含む。多くの場合、生理的に許容される担体は、pH緩衝水溶液である。生理的に
許容される担体の例としては、リン酸塩、クエン酸塩および他の有機酸などの緩衝液;ア
スコルビン酸を含むがこれに限定されない抗酸化物質;低分子量(約10残基未満)ポリ
ペプチド;タンパク質、例えば、これらに限定されないが、血清アルブミン、ゼラチンま
たは免疫グロブリン;親水性ポリマー、例えば、これに限定されないが、ポリビニルピロ
リドン;アミノ酸、例えば、これらに限定されないが、グリシン、グルタミン、アスパラ
ギン、アルギニンまたはリシン;単糖類、二糖類および他の炭水化物(グルコース、マン
ノースまたはデキストリンを含むが、これらに限定されない);キレート剤、例えば、こ
れに限定されないが、EDTA;糖アルコール、例えば、これらに限定されないが、マン
ニトールまたはソルビトール;塩形成性対イオン、例えば、これに限定されないが、ナト
リウム;ならびに/または非イオン界面活性剤、例えば、これらに限定されないが、TW
EEN、ポリエチレングリコール(PEG)およびPLURONICSが挙げられるが、
これらに限定されない。
範囲の値が与えられている場合、文脈による別段の明確な指図がない限り下限の単位の
十分の一までの、その範囲の上限と下限の間の各介在値、および表示範囲内の任意の他の
表示または介在値が本発明に包含されると解される。これらのより小範囲に独立して含ま
れることがある、これらのより小範囲の上限および下限も、表示範囲内の一切の特別に除
外される限度次第だが、本発明に包含される。表示範囲が、一方または両方の限度を含む
場合、含まれるこれらの両方の限度のいずれかを除外する範囲も本発明に含まれる。
実施例1
この実施例は、下の実施例2〜5において用いる材料および方法を記載する。
HIV抗体は、以前に記載されているようなgp140特異的単一B細胞捕捉(Mou
quet,H.et al.PLoS One 6,e24078(2011);Til
ler,T.et al.J Immunol Methods 329,112−24
(2008);およびScheid,J.F.et al.Nature 458,63
6−40(2009))に従ってクローニングし、生成した。PGT121GMおよび1
0−1074GM「グリコミュータント」抗体は、HC位置32、53、54、58、9
7、100lにおける10−1074残基をPGT121に置換することによっておよび
その逆によって産生させた。抗gp140−抗体のHIV Envタンパク質への結合特
性は、以前に記載されている(Scheid,J.F.et al.Science 3
33,1633−7(2011);Walker,L.M.et al.Nature
477,466−70(2011);およびMouquet,H.et al.PLoS
One 6,e24078(2011))ようにELISA、SPRおよびグリカンマ
イクロアレイアッセイによって分析された。中和は、(i)TZM.bl細胞におけるル
シフェラーゼベースの分析、および(ii)以前に記載されている(Li,M.et a
l.J Virol 79,10108−25(2005);Euler,Z.et a
l.Journal of virology 85,7236−45(2011);お
よびBunnik,E.M.et al.Nature medicine 16,99
5−7(2010))ような一次HIV−1変異体での感染を用いるPBMCベースの分
析を用いて評価した。PGT121(「リガンドを持たない」および「リガンドを持つ」
)、10−1074およびGL Fab断片の構造を、それぞれ2.8Å、2.3Å、1
.8Åおよび2.4Å分解能への分子置換によって解明した。
単一B細胞RT−PCRおよびIg遺伝子分析
患者10(pt10;Nature 477(7365):466−470では患者1
7と呼ばれている)PBMCからのgp140CD19IgGB細胞の単一細胞選
別、cDNA合成およびIg遺伝子のネステッドPCR増幅は、以前の研究(PLoS
One 6(9):e24078)で行った。PGT121クローナル変異体によって発
現されたIgλ遺伝子を、突然変異を受ける可能性のある領域(31)を避けるためにリ
ーダー領域内のさらに上流のフォワードプライマー(L−Vλ3−2102:5’CT
GGACCGTTCTCCTCCTCG 3’)を使用してPCR増幅した。すべてのP
CR産物をシークエンシングし、Ig遺伝子使用、CDR3分析およびVH/Vκ体細胞
超変異数について分析した(IgBLAST;http://www.ncbi.nlm
.nih.gov/igblastおよびIMGT(登録商標);http://www
.imgt.org)。ClustalW分析機能(デフォルトパラメータ)を有するM
acVectorプログラム(v.12.5.0)を用いて多重配列アラインメントを行
い、また、それらを用いて、隣接結合法によって(ベストツリーモードおよび外群付根法
で)系統樹を生成した。あるいは、UPGMA法を(ベストツリーモードで)用いて系統
樹を生成した。
PGT121様および10−1074様抗体の生殖細胞系(GL)前駆体遺伝子セグメ
ントを、IgBLAST(http://www.ncbi.nlm.nih.gov/
igblast)およびIMGT(登録商標)/V−QUEST(http://www
.imgt.org/IMGT_vquest/share/textes/)を使用し
てV4−5901、J03、V3−2102およびJ02として同
定した。(これらの遺伝子セグメントは、ヒト抗体のレパートリーの中で最も頻繁に使用
されるものである(PLoS One 6(8):e22365;Immunogene
tics 64(5):337−350)。代表GL祖先配列を構築するために、我々は
、IgBLAST(http://www.ncbi.nlm.nih.gov/igb
last)を使用して、10−996(最少体細胞超変異を含有する抗体)のIgHおよ
びIgL配列をGL配列にアラインした。GL IgH配列は、成熟VおよびJ遺伝
子セグメントをそれらのGL対応部分で置換し、N領域ヌクレオチドおよびD遺伝子セ
グメントを含むCDRH3領域のために10−996配列を使用することによって構築し
た。GL IgL配列は、V3−2102およびJ02遺伝子セグメント配列
から構築した。
抗体のクローニングおよび生産
精製され消化されたPCR産物をヒトIgγ発現またはIgλ発現ベクター(J I
mmunol Methods 329(1−2):112−124)にクローニングし
た。その後、IgHおよびIgλ遺伝子を含有するベクターをシークエンシングし、元の
PCR産物配列と比較した。PGT121および10−303は、同じIgλ遺伝子を共
有し、IgH遺伝子の位置2での1つのアミノ酸の違いを有した(図4);それ故、PG
T121 IgGを生産するために、我々は、部位特異的突然変異(QuikChang
e Site−Directed Mutagenesis Kit;Stratage
ne)により10−303IgH遺伝子に単一置換(V2M)を導入することによって生
成した10−303IgλおよびPGT121 IgH遺伝子を使用した。Hisタグ付
きFabを生成するために、IgG1 C1ドメイン、続いて6x−Hisタグをコー
ドするために我々の標準Igγベクター(Science 301(5638):13
74−1377)を修飾することにより、PGT121および10−1074 V遺伝
子を6xHis−IgCγ1発現ベクターにサブクローニングした。PGT121GM
S32Y、K53D、S54R、N58T、H97R、T100lY)および10−10
74GM(Y32S、D53K、R54S、T58N、R97H、Y100lT)突然変
異体抗体をコードするIgH DNA断片を、合成ミニ遺伝子(IDT)として得、Ig
γ発現ベクターにサブクローニングした。
10−1074GMについての重鎖配列を下に列挙し、突然変異に下線を引く。10−
1074GMの軽鎖配列は、10−1074と同じである。
QVQLQESGPGLVKPSETLSVTCSVSGDSMNNYWTWIRQS
PGKGLEWIGYISKSESAYNPSLNSRVVISRDTSKNQLSL
KLNSVTPADTAVYYCATARGQRIYGVVSFGEFFYYSMD
VWGKGTTVTVSS。
抗体およびFab断片は、ポリエチレンイミン(PEI)−沈殿法(PLoS One
6(9):e24078)を用いてIgHおよびIgL発現プラスミドの指数成長HE
K293T細胞(ATCC、CRL−11268)への一過性トランスフェクションによ
り生産した。プロテインGセファロースビーズ(GE Healthcare)をその製
造業者の説明書に従って使用してIgG抗体を親和性精製した。下で説明するようにHi
sPur(商標)コバルト樹脂(Thermo scientific)を使用してFa
b断片を親和性精製した。
HIV−1 Envタンパク質
QuikChange Site−Directed Mutagenesisキット
(Stratagene)をその製造業者の説明書に従って使用して、アラニン突然変異
をpYU−2 gp120ベクター(J.Sodroski,Harvard Medi
cal Schoolからの贈与品)の位置301から303(Asn−Asn−Thr
)、324から325(Gly−Asp)および332(Asn)(HXBc2アミノ酸
番号付け)に導入した。同じ手順を用いて、pYU−2 gp120N332Aベクター
におけるAsn262gp120とAsn406gp120の間に位置する各PNGSに
単一アラニン突然変異を導入することによって「二重グリカン」突然変異体を生成した。
部位特異的突然変異をDNAシークエンシングによって確認した。
YU−2 gp140(Journal of virology 74(12):5
716−5725)、YU−2 gp120、HXB2c gp120コア(Natur
e 393(6686):648−659)、HXB2c 2CCコア(PLoS Pa
thog 5(5):e1000445)タンパク質、およびYU−2 gp120突然
変異体タンパク質をコードする発現ベクターを使用して、HEK 293T細胞をトラン
スフェクトした。高マンノースのみのYU−2 gp120タンパク質(gp120ki
)を生産するために、25μMキフネシン(Enzo Life Sciences)
をトランスフェション時に添加した。培養上清を回収し、10mMイミダゾール、50m
Mリン酸ナトリウム、300mM塩化ナトリウム;pH7.4への試料の緩衝液交換を可
能にする遠心分離ベースの濾過装置(Vivacell 100、Sartorius
Stedim Biotech Gmbh)を使用して濃縮した。HisPur(商標)
コバルト樹脂(Thermo scientific)をその製造業者の説明書に従って
使用してアフィニティークロマトグラフィーによってタンパク質を精製した。
脱グリコシル化反応のために、PBS中の50μgのHEK 293T細胞生産YU−
2 gp120を一晩、37℃で、変性剤を含有しないそれぞれの反応バッファー中の2
00UのPNGase F(New England Biolabs)または10,0
00UのEndo H(New England Biolabs)で消化した。遠心
濾過機(Amicon(登録商標)Ultra、Millipore)を使用してバッフ
ァーをPBSに交換した後、グリコシダーゼ処理されたgp120(200ng)を、4
〜12%NuPAGEゲル(Invitrogen)を使用するSDS−PAGE、続い
て銀染色(Pierce Silver Stain Kit、Thermo Scie
ntific)によって検査した。
ELISAs
高結合性96ウェルELISAプレート(Costar)を一晩、PBS中の100n
g/ウェルの精製gp120で被覆した。洗浄後、プレートを2時間、2%BSA、1μ
M EDTA、0.05%Tween−PBS(ブロッキングバッファー)でブロックし
、その後、2時間、26.7nM(またはYU−2 gp120二重グリカン突然変異体
を使用するELISAについては427.2nM)の濃度のIgGとともにインキュベー
トし、PBSで7回連続的に1:4希釈した。洗浄後、ヤギHRP結合抗ヒトIgG抗体
(Jackson ImmunoReseach)(ブロッキングバッファー中0.8μ
g/mLで)との1時間のインキュベーションにより、およびHRP色素原基質(ABT
S溶液、Invitrogen)(PLoS One 6(9):e24078)の添加
によりプレートを進めた。選択されたgp120V3オーバーラッピングペプチドへの抗
体結合を、前に説明したペプチド−ELISA法を用いて試験した。
競合ELISAsのために、gp120被覆プレートを2時間、ブロッキングバッファ
ーでブロックし、その後、PBS中の抗体競合物質の1:2系列希釈液(5.2から66
7nMのIgG濃度範囲)中、ビオチン化抗体(PGT121については26.6nM、
10−1074については0.21nM、10−996については0.43nM、および
10−1369については1.67nMの濃度で)とともに2時間インキュベートした。
HRP結合ストレプトアビジン(Jackson ImmunoReseach)を(ブ
ロッキングバッファー中、0.8μg/mLで)使用して、上で説明したようにプレート
を進めた。すべての実験を少なくとも繰り返しで行った。
グリカンマイクロアレイ分析
脂質に結合したグリカンプローブ(ネオ糖脂質)を、2つのレベル(2および5fmo
l/スポット)で、繰り返し、ニトロセルロース被覆スライドガラスにロボット制御でプ
リントすること(Methods Mol Biol 808:117−136)により
、マイクロアレイを生成した。高マンノースおよび複合型のNグリカンに由来する15の
ネオ糖脂質を含有するマイクロアレイを用いて、結合アッセイを行った。プローブの配列
を図7Aに示す。簡単に言うと、抗体を50μg/mLで試験し、結合をビオチン化抗ヒ
トIgG(Vector)、続いてAlexaFluor 647標識ストレプトアビジ
ン(Molecular Probes)で検出した。
表面プラズモン共鳴
Biacore T100(Biacore,Inc)(Nature 467(73
15):591−595)を用いて実験を行った。簡単に言うと、YU−2 gp140
およびgp120タンパク質を300RUのカップリング密度でCM5チップ(Biac
ore,Inc)上に第一級アミンカップリングさせた。抗gp120 IgGおよび生
殖細胞系前駆体(GL)を、35μL/分の流量と3分の会合相および5分の解離相で、
1μMおよび10μMでそれぞれフローセル上に注入した。10mMグリシン−HCl
pH2.5の50μL/分の流量での30秒の注入によって、センサー面を再生した。解
離(k(秒−1))、会合(k(M−1−1)および結合定数(K(M)または
(M−1)を、バルク反射係数(RI)補正のない1:1結合モデルを使用して、背
景差分後、動態解析から算定した(Biacore T100 Evaluationソ
フトウェア)。1:1結合モデルを使用して算定した二価IgGについての結合定数を、
値が潜在的結合活性効果(avidity effects)を含むことを強調する
ために、本文書では「見かけの」親和性と呼ぶ。
中和アッセイ
TZM.bl細胞におけるルシフェラーゼベースのアッセイ(J Virol 79(
16):10108−10125)を用いて、ウイルス中和を評価した。試験したHIV
−1シュードウイルスは、主に、tier−2およびtier−3ウイルス(Journ
al of virology 84(3):1439−1452)を含有した(表4お
よび5)。高マンノースのみのシュードウイルスを、25μMキフネシンで処理された野
生型細胞(Enzo Life Sciences)において(図8C)またはHEK2
93S GnTI−/−細胞において(図8D)生産した。非線形回帰分析を用いて、最
大半量の阻害が観察された濃度(IC50値)を算定した。1985年と1989年の間
のセロコンバージョン日が判っているクレードB感染ドナー(「過去の抗体陽転者」、n
=14)または2003年と2006年のセロコンバージョン日が判っているクレードB
感染ドナー(「現在の抗体陽転者」、n=21)から単離した一次HIV−1変異体(n
=95)での感染を用いて、以前に特性付けされたPBMCに基づくアッセイ(Jour
nal of virology 85(14):7236−7245;Nat Med
16(9):995−997)でも中和活性を評価した。各抗体の中和活性を、中和さ
れたウイルスの割合を0.001から50μg/mLの範囲のIC50値にフィッティン
グするGraphPad Prismソフトウェア(v5.0b)を使用してベストフィ
ット曲線下面積として算定した。(10−1074で得られた)最高値によってすべての
AUC値を正規化することにより、相対曲線下面積(RAUC)値を導出した。
統計分析
統計分析をGraphPad Prismソフトウェア(v5.0b)で行った。gp
120およびgp140に対する抗体の見かけの結合親和性に対する、選択された9ウイ
ルス株パネルに対するTZM−blアッセイにおける中和効力を、スピアマン相関検定を
用いて分析した。マン・ホイットニー検定を用いて、(i)PGT121または10−1
074群に属する抗体のgp120/gp140に対する親和性、および(ii)過去お
よび現在の抗体陽転者から単離されたウイルスに対する中和活性を比較した。
結晶化および構造決定
結晶化のために6x−Hisタグ付きPGT121、10−1074および10−99
6GL Fabを発現させた。Fabを一過性トランスフェクトHEK293−6E細胞
の上清から逐次的Ni2+−NTAアフィニティー(Qiagen)およびSuperd
ex200 10/300(GE Healthcare)サイズ排除クロマトグラフィ
ーによって精製した。リガンドを持たないPGT121 Fabの結晶については、PG
T121 IgGを一過性トランスフェクトHEK293−6E細胞の上清からプロテイ
ンAアフィニティークロマトグラフィー(Pierce)によって単離し、そのIgGの
パパイン切断によってFab断片を得、Superdex200 10/300(GE
Healthcare)サイズ排除クロマトグラフィーによってさらに精製した。
精製されたFabをPBSバッファー中8〜20mg/mL(「リガンドを持たない」
PGT121、8mg/mL;10−1074およびGL、20mg/mL)に濃縮した
。3倍モル過剰のNA2グリカンと混合し、20℃で2時間インキュベートしたタンパク
質試料(最終濃度:15mg/mL)から、「リガンドを持つ」PGT121 Fab結
晶を調製した。20℃で、1:1のタンパク質対リザーバ比を用いて、400nL液滴で
、Mosquito(登録商標)結晶化ロボット(TTP labs)で、結晶化状態を
スクリーニングした。「リガンドを持たない」PGT121 Fabの結晶(P2
;a=56.8、b=74.7、c=114.9Å)を、24%PEG 4,000
、0.1M Tris−HCl pH8.5、10mM CuCl中で得、「リガンド
を持つ」PGT121 Fabの結晶(P2;a=67.8、b=67.8、
c=94.1Å)を、17%PEG 10,000、0.1M Bis−Tris pH
5.5、0.1M CHCOOHNH中で得た。10−1074 Fabの結晶(P
;a=61.4、b=40.3、c=84.5Å;β=95.39°)を、25%P
EG 3,350、0.1M Bis−Tris pH5.5、0.2M NaCl中で
得、GL Fabの結晶(P2;a=54.9、b=344.7、c=55.2Å;β
=91.95°)は、20%PEG 3,350、0.24Mマロン酸ナトリウムpH7
.0、10mM MnCl中で得た。20%グリセロール(「リガンドを持たない」お
よび「リガンドを持つ」PGT121 Fab)または20%エチレングリコール(10
−1074FabおよびGL Fab)を含有する母液に浸漬し、その後、液体窒素でフ
ラッシュ冷却することによって、結晶を凍結保護した。
Stanford Synchrotron Radiation Lightsou
rce(SSRL)においてPilatus 6Mピクセル検出器(Dectris)を
用いてビームライン12−2(波長=1.029Å)で回折データを収集した。XDSを
使用してデータにインデックスを付け、統合し、スケール化した。「リガンドを持たない
」PGT121 Fab結晶から得たデータを用い、我々は、Phenixを使用して、
CDRH3およびCDRL3ループ内の残基を除去した後の2つの検索モデル、すなわち
、PGT128 FabのC−Cドメイン(PDBコード3PV3)および2F5の
−Vドメイン(PDBコード3IDJ)を用いて1つの非対称ユニット(重および
軽鎖についての鎖HおよびL、それぞれ)につき1つのFabの分子置換ソリューション
を見つけた。その後、我々は、「リガンドを持たない」PGT121構造を検索モデルと
して用いて、「リガンドを持つ」PGT121 Fab(1つの非対称ユニットにつき1
つのFab)、10−1074 Fab(1つの非対称ユニットにつき1つのFab)お
よびGL(1つの非対称ユニットあたり4つのFab)についての分子置換ソリューショ
ンを見つけた。
Phenixを用いて反復改良(GLについての非結晶学的対称拘束を含む)を行い、
Cootを用いてモデルを電子密度マップに手動でフィッティングした。原子モデルをP
GT121 Fabについては3.0Å分解能(Rwork=21.6%、Rfree
26.4%)に、10−1074 Fabについては、1.9Å分解能(Rwork=1
8.7%、Rfree=22.3%)に、4つのGL Fab分子については2.4Å分
解能(Rwork=19.4%、Rfree=23.7%)におよび「リガンドを持つ」
PGT121 Fabについては2.4Å分解能(Rwork=20.1%、Rfree
=24.9%)に改良した。PGT121 Fabの原子モデルは、ラマチャンドランプ
ロットの好適、許容および非許容領域内に95.2%、4.9%および0.0%の残基を
それぞれ含有する(10−1074 Fab:98.8%、0.9%、0.2%;GL
Fab:96.0%、3.8%、0.23%;「リガンドを持つPGT121 Fab:
96.7%、3.1%、0.2%)。PyMOLを分子可視化のために、およびFab構
造の図を生成するために使用した。埋まっている表面積の算定は、1.4Åプローブを使
用してAreaimol(CCP4スイート)で行った。
PyMOLのSuperスクリプトを用いてFab構造を整合した。PDBeFold
を用いて、ペアワイズCαアラインメントを行った。
実施例2 PGT121クローン型の優勢および多様性
YU−2 gp140三量体を「ベイト」として使用してクレードA感染アフリカ人ド
ナーからgp140特異的IgGメモリーB細胞を単離した。23のユニークなクローン
ファミリーに対応する、87のマッチする免疫グロブリン重(IgH)および軽(IgL
)鎖遺伝子を同定した。IgH抗gp140レパートリーでは1つのクローンファミリー
が優勢であり、それはすべての増殖B細胞クローンの約28%に相当する。このB細胞フ
ァミリーは、PGT121−123と同じクローンに対応し(Nature 477(7
365):466−470)、38メンバーを含有し、そのうち29は、ヌクレオチドレ
ベルでユニークな変異体であった(表3)。それらのIgHヌクレオチド配列に基づき、
PGT121ファミリーは、2群に分かれる:PGT121−123および9つの近縁変
異体を含有するPGT121様群と、20メンバーを含有する、10−1074様の、第
二の群。我々の旧来のプライマー(J Immunol Methods 329(1−
2):112−124;Science 301(5638):1374−1377)は
、フレームワーク領域1をコードする領域でのヌクレオチド欠失のためPGT121B細
胞クローンによって発現されるIgL遺伝子を増幅しなかったが、大きく体細胞突然変異
した遺伝子を増幅するように設計された新たなIgλ特異的プライマーを使用して38I
gλ遺伝子のうちの24の遺伝子を得た(表3)。IgH遺伝子の高い超突然変異レベル
(平均でVH遺伝子の18.2%)と一致して、増幅されたIgλ遺伝子は、非常に突然
変異しており(平均でVλ遺伝子の18.2%)、フレームワーク領域1(FWR1)に
ヌクレオチド欠失(12から21ヌクレオチド)をおよびフレームワーク領域3(FWR
3)に9ヌクレオチド挿入を有した(図3Bおよび表3)。
3つのPGT抗体(PGT−121、−122および−123)、11のPGT121
および10−1074クローナル変異体(10−259、10−303、10−410、
10−847、10−996、10−1074、10−1121、10−1130、10
−1146、10−1341、10−1369、および10−1074GM、)、推定生
殖細胞系(GL)、およびコンセンサス配列の配列アラインメントを図3(a)および3
(b)に示す。IMGTおよびKABT両方のシステムに従って、対応する重鎖可変領域
、軽鎖可変領域、重鎖CDRおよび軽鎖CDRについての配列を下の表1に収載する。K
ABTシステムに従って配列に割り当てられた配列識別番号を下の表2に収載する。
11の新規のユニークな変異体を発現させ(表3)、ELISAおよび表面プラズモン
共鳴(SPR)によってYU−2 gp120およびgp140への結合を実証した。別
段の注記がない限り、これらおよび他の実験についてのgp120およびgp140タン
パク質は、複合型Nグリカンまたは高マンノースNグリカンのいずれかをPNGSに結合
させることができる哺乳動物細胞において発現させた。gp120との反応性レベルは、
PGT121および10−1074群に属する抗体間で異なり、後者のほうが、主として
10−1074類縁抗体についてのgp120/gp140からの遅い解離(図4B)の
ため、高い見かけの親和性を呈示した(図3A)。
実施例3 PGT121および10−1074エピトープ
V3ループステムの近傍のAsn332gp120は、PGT121による結合および
ウイルス中和に極めて重要であると報告されており(Nature 477(7365)
:466−470)、それ故、我々は、PGT121様および10−1074様抗体によ
る抗原認識におけるV3の役割を調査した。V1−V3ループを欠く(gp120コア
またはV3の一部分を保持する(2CC−コア)HXB2 gp120「コア」タンパク
質を使用し、およびV3ステムに二重アラニン置換を有するYU−2 gp120突然変
異体タンパク質(gp120GD324−5AA)を使用して、ELISAを行った。試
験した抗体は、インタクトYU−2 gp120と比較してV3ループを欠く変異体およ
びgp120GD324−5AAに対する減少した反応性を示し、10−1074群抗体
の結合が最も影響を受けた(図5AおよびB)。これらの結果は、両方の抗体群による認
識が、V3ループの近傍のタンパク質決定基を必要とすることを示唆する。V3に及ぶオ
ーバーラッピングペプチドに結合した抗体はなく、これは、標的エピトープが、不連続で
あること、および/または単離されたペプチドによって達成されない特定の高次構造を必
要とすることを示唆する(図5C)。
Asn332gp120(以前の番号付け(J Proteome Res 7(4)
:1660−1674)ではAsn337gp120)は、配列Asn−X−Ser/T
hrと定義された有望なN−グリコシル化部位(PNGS)のN末端残基である。Asn
332gp120および/またはそのN結合グリカンが、新規PGT121群および10
−1074群抗体のgp120反応性に必要とされるかどうかを判定するために、我々は
、ELISAによってYU−2gp120N332Aへのそれらの結合を試験した。N3
32A置換は、PGT121およびすべての新規抗体変異体の結合を減少させたが、隣接
グリコシル化部位を欠く突然変異体gp120(gp120NNT301−3AAA突然
変異体)に対するそれらの反応性は不変であった。Asn332gp120PNGSに加
えて、PNGSが、新規抗体による認識に影響を及ぼすかどうかを判定するために、我々
は、YU−2 gp120におけるN332A突然変異をAsn262gp120とAs
n406gp120間に位置するPNGSの突然変異と組み合わせた一連の11の二重グ
リカン突然変異体を構築した。PGT121様および10−1074様抗体のすべてが、
gp120N332Aに対する親和性について匹敵する親和性で二重グリカン突然変異体
の各々に結合した。
PGT121様および10−1074様抗体による全グリカン認識を比較するために、
我々は、複合型N−グリカンと高マンノースN−グリカンの両方を切断するPNGase
Fで処理したYU−2 gp120へのそれらの結合を調査した。gp120は、それ
が変性されない限り、酵素的により完全に脱グリコシル化され得ないので、PNGase
F処理は、天然にフォールディングされたgp120の部分的な脱グリコシル化をもた
らした(図6)。それにもかかわらず、前記2群の抗体の反応性は、PNGase Fに
よるgp120の部分的脱グリコシル化が、すべてのPGT121様抗体の結合活性を減
少させたが、いずれの10−1074様抗体の結合活性も減少させなかった点で異なった
(図6C)。高マンノースN−グリカンを切断するが複合型N−グリカンを切断しないE
ndo Hで処理したYU−2 gp120を用いて行った類似の実験は、PGT121
様抗体より10−1074様抗体の結合に影響を及ぼした(図6D)。
N−グリカンマイクロアレイにより、7つの試験したPGT121様抗体のうちの6つ
は、ガラクトースまたはα2−6結合シアル酸を末端に有する複合型モノまたはバイアン
テナN−グリカンへの検出可能な結合を示すが、高マンノース型グリカンへの検出可能な
結合を示さないことが明らかになった。これは、PGT121−123の高マンノースN
グリカンへの結合がない、ならびにgp120結合についてのManおよびMan
ンドロンによる競合がないという以前の報告を確証し、拡張する(図7)。対照的に、1
0−1074様抗体による無タンパク質のグリカンへの検出可能な結合はなかった(図7
)。PGT121様抗体は、無タンパク質の複合型N−グリカンに結合し、高マンノース
N−グリカンには結合しなかったが、PGT121様抗体は、PNGSへの高マンノース
グリカンの排他的結合をもたらすマンノシダーゼ阻害剤であるキフネシンで処理した細胞
において生産されたYU−2 gp120(gp120kif)への結合を保持した(図
8B)。PGT121様抗体の大部分は、gp120kifへの結合に、小さいが再現性
のある減少を呈示した。一方、10−1074様抗体は、gp120kifへの完全結合
を保持した(図8B)。これらの結果は、高マンノースNグリカンはもちろん、複合型N
−グリカンも、PGT121様抗体のエピトープに関与し得るという仮説と一致する。
各群の2つの代表メンバー(PGT121様群についてはPGT121および10−1
369;10−1074様群については10−1074および10−996)を用いて競
合ELISAによりエピトープマッピング実験を行った。4つすべての抗体が交差競合を
示したが、PGT121は、10−996および10−1074のgp120への結合を
逆の場合より穏やかに阻害した。標的エピトープをさらにマッピングするために、我々は
、V3ループのクラウン(図5)、CD4bs、共受容体結合部位(CD4誘導型;CD
4i)、一群の高マンノースN−グリカン(2G12)(Journal of vir
ology 76(14):7293−7305;Proc Natl Acad Sc
i USA 102(38):13372−13377))または位置301および33
2のV3ループおよびN結合グリカン(PGT128)を認識する抗gp120抗体を使
用した。抗V3クラウン抗体は、PGT121および10−1369の結合を阻害したが
、10−996および10−1074の結合に干渉しなかった。PGT128、およびよ
り少ない程度に2G12は、4つすべての抗体のgp120への結合を減少させたが、C
D4bsおよびCD4i抗体は、減少させなかった。
考え合わせると、これらのデータは、PGT121クローンメンバーが、V3ループお
よびAsn332gp120関連グリカンの近傍のタンパク質決定基を含む部位を認識す
ることを示唆する。しかし、クローンは、gp120に対する親和性が異なるとともにエ
ピトープ形成におけるグリカンの役割が異なる2つのファミリー、PGT121様群およ
び10−1074様群、に分かれる。
実施例4 広域かつ強力なHIV中和
新規PGT121変異体の中和活性を評価するために、我々は、gp120位置332
のPNGSを欠くR1166.c1を含む10のウイルス株を使用して、TZM−bl細
胞のHIV感染を阻害するそれらの能力を測定した。10−1074様抗体を含めて、す
べてのPGT121変異体は、9つのシュードウイルスを中和し、およびいずれもR11
66.c1コントロールを中和しなかった(図1Aおよび表4)。中和活性は、HIVス
パイクに対する親和性と相関し、10−1074群は、PGT121群よりわずかに大き
い効力を示した(図1Bおよび図4C)。PGT121/10−1074抗体クローン型
の代表的な生殖細胞系バージョン(GL)は、gp120/gp140を結合することが
できず、そのパネル内のいずれのウイルスも中和することもできなかった。これは、体細
胞突然変異が結合および中和には必要であることを含意する。GL軽鎖と突然変異10−
1074−または10−996−群重鎖の対合は、結合または中和をレスキューすること
ができなかった。これは、両方の突然変異鎖が抗体パラトープの正しい構築に寄与するこ
とを示唆する。
119の中和困難シュードウイルス(tier−2およびtier−3として分類され
る)の拡張パネルに対するPGT121の中和活性と2つの10−1074様抗体(10
−996および10−1074)の中和活性を比較するために次のアッセイを行った(表
4および5)。10−996および10−1074は、PGT121に類似した中和効力
および幅を示した(図1C、図9ならびに表5および6)。予想どおり、gp120位置
332および/または334(Asn332−X−Ser334/Thr334PNGS
に及ぶ)のアミノ酸変化を有する大部分のウイルスは、中和に対して耐性であった(83
.8%がPGT121に対して耐性であり、100%が10−1074および10−99
6に対して耐性であった)。中和に対して耐性のウイルスの大部分(10−996につい
ては68.5%、10−1074については72.5%およびPGT121については6
0.8%)が、このPNGSでの突然変異に起因した(表7)。匹敵する中和活性がIg
GおよびFab形態のPGT121および10−1074について観察された。これは、
二価がそれらの活性にとって重要でないことを示唆する(図1D)。
PGT121および10−1074による中和におけるHIVエンベロープ上の複合型
N−グリカンの潜在的役割を評価するために、我々は、2つの異なる方法で、高マンノー
スのみのビリオンを生産した:キフネシンで処理した細胞におけるシュードウイルスの構
築による、結果としてManGlcNAcN結合グリカンが得られる方法、またはH
EK293S GnTI−/−細胞における構築による、結果としてManGlcNA
N結合グリカンが得られる方法。我々は、PGT121が、3つのキフネシン由来P
GT121感受性/10−1074耐性株のうちの2つを、野生型細胞において生産され
たそれらの対応物と等価に中和することを発見した(図8C)。GnTI−/−細胞にお
いて生産された2つのPGT121感受性/10−1074耐性ウイルス株は、野生型細
胞において生産されたそれらの対応物と同等にPGT121および10−1074に対し
て感受性があった。複合型N−グリカンは、CD4結合部位が抗体結合しないようにある
程度保護するという以前の報告と一致して、GnTI−/−細胞において生産されたウイ
ルスは、CD4結合部位抗体(NIH45−46G54Wおよび3BNC60)に対して
より感受性があった(図8D)。
実施例5 新規伝染HIV−1
次に、我々は、伝染始祖(transmitted founder)ウイルスに対す
るPGT121および10−1074の活性を、1985年と1989年の間に抗体陽転
した個体(「過去の抗体陽転者」、n=14)または2003年と2006年の間に抗体
陽転した個体(「現在の抗体陽転者」、n=25)のコホートから単離した95のクレー
ドBウイルスを使用して末梢血単核細胞(PBMC)ベースのアッセイで中和を評価する
ことによって調査した(51、52)。我々は、PGT121および10−1074を、
抗CD4bs bNAbおよび他のbNAb(VRC01、PG9/PG16、b12、
2G12、4E10および2F5を含む)と比較した。中和活性のクラスター化分析は、
2つの群への分離を示した;PGT121/10−1074群は、抗CD4bsおよびP
G9抗体を含む最も活性の高いHIV中和剤を含んだ(表8)。驚くべきことに、10−
1074は、このクレードBウイルスパネルに対して非常に優れた中和効力を示し、試験
したすべてのbNAbについて0.1μg/mLで最大幅(95のクレードBウイルスの
67%)を呈示した(表8)。10−1074は、現在のクレードBウイルスに対してP
GT121より高い効力(〜20倍差)を示したが、両方の抗体は、現在のウイルスより
過去のウイルスに対して有効であった(図1Eおよび図10)。
実施例6 PGT121、10−1074およびGLの結晶構造
PGT121様抗体と1074様抗体間の差の構造決定因子を調査するために、我々は
、PGT121、10−1074および代表的な生殖細胞系前駆体(GL)のFab断片
の結晶構造をそれぞれ3.0Å、1.9Åおよび2.4Å分解能で解明した(表9)。前
記3つのFabの中での重および軽鎖可変ドメイン(VおよびV)の重ね合わせによ
り、主鎖構造の保存とともにGLに対する差が親和性成熟FabのCDRH3およびCD
RL3ループの小さな変位に限定されることが明らかになった(表10)。
抗体により共有される珍しい特徴は、それらの長い(25残基)CDRH3ループであ
り、このループは、VドメインFおよびG鎖を伸長する2本鎖逆平行βシートを形成す
る。各Fabにおいて、伸長CDRH3ループの先端は、主として非極性残基を含有する
。類似の構造的特徴が、エピトープがgp120 V1V2ループを含む炭水化物感受性
抗体であるPGT145のCDRH3について観察された。しかし、PGT145のCD
RH3の伸長された2本鎖βシートは、先端に2つの硫酸化チロシンを含む、負の電荷を
有する残基を主として含有する。PGT121およびPGT145のV−Vのアライ
ンメント(表10)は、CDRH3PGT145が以前のCDRH3PGT121を伸長
すること、ならびにその先端とVドメインは整列されるが、PGT121、10−10
74およびGLのCDRH3はVの方に傾くことを示す。Vの方へのCDRH3PG
T121/CDRH310−1074/CDRH3GLの傾きは、CDRH2とCDRH
3間のクレフトを開き、これは、類縁の抗体では共有されない特徴である。
PGT121および10−1074は、GLに対しておよび互いに大きく異なる(13
2残基のうち、PGT121VHは、10−1074VHおよびGLVHとそれぞれ36
および45残基異なり、10−1074VHとGLVHは29異なる)。これらのPGT
121/10−1074の差の大部分は、CDRVHループおよびCDRL3にある。興
味深いことに、CDRH3における6つの置換(残基100d、100f、100h、1
00j、100l、100n)は、2残基ごとに置換されるように交互になっており、そ
の結果、VへのCDRH3の傾きに起因してCDRH2とCDRH3間のクレフトが再
び表面に現れることになる。この領域は、PGT121および10−1074の異なる微
細な特異性の一因となる可能性が高い。重鎖フレームワーク領域3(FWR3HC)にお
ける5つの他の溶媒曝露置換(残基64、78、80−82;鎖DおよびE)は、HIV
抗体におけるフレームワーク領域がgp120と接触できることを考えると、潜在的抗原
接触部位である。微細な特異性差の一因となり得る他の差としては、10−1074また
はGLには存在しないAsp56HCの近傍のPGT121上の負のパッチ(10−10
74およびGLにおけるSer56HC)、ならびにGLの類似した表面では見いだせな
いCDRL1およびCDRL3上の正のパッチが挙げられる。
PGT121および10−1074に共通の体細胞突然変異は、それらのエピトープの
共有の特徴に関与し得る。PGT121および10−1074の重鎖は、(36のPGT
121−GL差および29の10−1074−GL差のうち)3つの共通の突然変異しか
共有しない。対照的に、PGT121および10−1074は、(37のPGT121−
GL差および36の10−1074−GL差のうち)18の共通の軽鎖突然変異を共有し
、それらには、鎖DおよびEを接続するループの膨隆の原因となる、軽鎖FWR3内への
挿入、および低負電荷の表面をもたらす、CDRL2GL内のAsp50LC−Asp5
LCのPGT121と10−1074両方におけるAsn50LC−Asn51LC
の置換が含まれる。LCPGT121およびLC10−1074に導入される多数の共通
の置換(LC置換のおおよそ50%)は、PGT121および10−1074によって共
有されるエピトープの潜在的接触領域としてCDRL1、CDRL2およびFWR2LC
を指摘する。
次に、Asn332gp120結合およびAsn301gp120結合グリカンならび
にV3を認識するPGT128であって、複合型N−グリカン変性タンパク質を生産する
ことができない細胞において発現される外部ドメイン/ミニV3ループ gp120との
複合体として解明されたものであるPGT128の構造との比較を行った。PGT121
および10−1074のCDRH3ループとは異なり、PGT128CDRH3は、PG
T128VLの方に傾いておらず、CDRH3PGT128は、2本鎖βシートを含まな
い。加えて、CDRH3PGT128(18残基)は、PGT121および10−107
4(24残基)のCDRH3より短いが、CDRH2PGT128は、PGT121また
は10−1074においても見られない6残基挿入を含有する。これらの差のため、PG
T128ではCDRH2が最も顕著な特徴であるのに対し、PGT121および10−1
074ではCDRH3が最も顕著である。CDRH2PGT128およびCDRL3PG
T128は一緒に、Asn332gp120に結合しているMan8/9を認識し、CD
RH3PGT128は、V3ループ基部と接触する。このgp120認識モードは、PG
T121および10−1074には、それらのCDRH2およびCDRH3ループの構造
的特徴がPGT128のものと有意に異なるので、不可能であり、これは、無タンパク質
高マンノースグリカンを認識する、PGT121および10−1074ではなく、PGT
128の能力(図7)と一致する。
実施例7 PGT121−グリカン複合体の結晶構造
複合型シアル化バイアンテナグリカンを伴うPGT121の2.4Å分解能構造を、N
A2、複合型アシアリルバイアンテナグリカン(図7)を含む条件下で得た結晶を使用し
て解明した(表9)。驚くべきことに、我々の結晶構造におけるPGT121に結合した
グリカンは、NA2ではなく、むしろ、結晶格子内の隣接PGT121 Fabからの複
合型Nグリカン、具体的にはAsn105HCに結合しているN−グリカンであった。こ
のグリカン同一性は、Asn105HCへのグリコシド結合についてのおよびManα1
−3Manアンテナ上の末端シアル酸についての電子密度があるため、明らかである(M
anα1−6Manアンテナのガラクトースおよびシアル酸部分は、未解明であった)。
結合グリカンの組成は、マイクロアレイ実験においてPGT121により結合されたα2
−6シアル化A2(2−6)グリカンの部分に対応し(図7)、かつ、HEK293T細
胞において発現されたタンパク質上のPNGSに結合している複合型N−グリカンでの予
想したシアリル結合に対応した。この構造(「リガンドを持つ」PGT121)のV
ドメインは、結合N−グリカンのないPGT121構造(「リガンドを持たない」P
GT121)のV−Vドメインに有意差なく重なり合う(図10)が、エルボ屈曲角
(elbow bend angle)(V−VとC1−C擬二分子(pseu
do−dyad)間の角度)は構造間で異なる。この差は、結晶格子力に依存して変動し
得るエルボ屈曲角をFabにとらせる柔軟性を反映する可能性が高い。
ある結晶構造(「リガンドを持つ」PGT121構造)では複合型N−グリカンの結合
が観察され、別の構造(「リガンドを持たない」PGT121構造)では観察されなかっ
たことを考えると、我々は、gp120に結合していない複合型N−グリカンに対するP
GT121の親和性は、結晶中のPGT121の濃度(〜10mM)の範囲内であると推
測する。単離されたグリカンを結合するためのKが、ManGlcNAc−Asn
へのPG9結合について得られた1.6mM Kに匹敵する、1〜10mMの範囲内で
あると仮定すると、単離されたグリカンのPGT121結合についてのKは、gp12
0に対するPGT121の親和性、nM範囲である、へのほんの小さな寄与を表す(図4
A)。
「リガンドを持つ」PGT121構造内のグリカンは、Vドメインと排他的に相互作
用し、3つすべてのCDR内の残基と広範に接触する(PGT121HC上の埋まってい
る表面積=600Å)。接触は、9つのアミノ酸での10の直接の水素結合および18
の水媒介水素結合(図11)を含み、枝分かれ部位のマンノースに結合したN−アセチル
グルコサミン部分と1−3アンテナ上の末端シアル酸との間にグリカンを固定している。
Asp31HCとの水媒介水素結合に加えて、PGT121残基Asp31HCおよびH
is97HCとの3つの直接の水素結合を含む、PGT121とのいくつかの接触がこの
シアル酸によってなされる。シアル酸は、水媒介グリカン内水素結合ネットワークにも寄
与する。シアル酸との直接の接触は、我々のグリカンマイクロアレイ分析におけるPGT
121のシアル化A2(2−6)グリカンに対する、非シアル化NA2グリカンに対する
よりも強い結合(図7)の説明になり得る。1−3アンテナのN−アセチルグルコサミン
およびガラクトース部分により確立される広範な水媒介タンパク質接触により、非シアル
化モノおよびバイアンテナグリカンについてPGT121への観察された結合を説明する
ことができるだろう(図7)。
グリカンへの直接のまたはおそらくアミノ酸側鎖の接触に寄与する残基のうちの6つ(
Ser32HC−CDRH1、Lys53HC−CDRH2、Ser54HC−CDRH
、Asn58HC−CDRH2、His97HC−CDRH3、Thr100lHC−
CDRH3)は、10−1074のもの(Tyr32HC−CDRH1、Asp53HC
−CDRH2、Arg54HC−CDRH2、Thr58HC−CDRH2、Arg97
HC−CDRH3、Tyr100lHC−CDRH3)と異なり、PGT121様抗体間
で高度に保存されるが、10−1074様抗体間ではされない。10−1074残基には
、観察されたグリカン接触をなすための、または立体的衝突の原因となる嵩高い側鎖を有
するための、対応する官能基がない。これらの残基のうちの4つは、GLのもの(Tyr
32HC−CDRH1、Tyr53HC−CDRH2、Gln97HC−CDRH3、T
yr100lHC−CDRH3)とも異なり、これは、我々のグリカンマイクロアレイに
おける無タンパク質複合型グリカンへの10−1074様抗体およびGLの結合の欠乏が
、水素結合および/または立体的衝突(例えば、Arg9710−1074対してHis
97PGT121;Tyr100l10−1074対してThr100lPGT121
の欠如に起因することを示唆する。CDRHループにおいて、PGT121と10−10
74群の間の配列の差の大部分のように、特に、我々が結合した複合型N−グリカンを観
察したCDRH2とCDRH3の間のクレフトの表面について、gp120上の複合型グ
リカンの異なる認識は、観察されたそれらの微細な特異性の差のいくつかまたはすべての
主要因でありうる。
実施例8 グリカン含有抗体残基の置換は中和に影響を及ぼす
「リガンドを持つ」PGT121構造から同定された複合型N−グリカン含有残基の寄
与を評価するために、我々は、複合型グリカン含有残基をPGT121と10−1074
間で交換するように設計した2つの突然変異体抗体、すなわち、PGT121残基(Ig
H Y32S、D53K、R54S、T58N、R97H、Y100lTにおける6置換
)を有する10−1074 IgG、および相互置換を有するPGT121 IgGを産
生した。「グリコミュータント」抗体(10−1074GMおよびPGT121GM)は
、SPRによって測定したとき、YU−2 gp120/gp140に対して野生型に近
い見かけの親和性を呈示した(図2A)。これは、前記置換は、PGT121および10
−1074両方によって中和されたウイルス株に由来するエンベロープスパイクへの結合
を破壊しなかったこと(図1A)の証拠になる。PGT121複合型N−グリカン含有残
基を、両方の野生型抗体により結合されたgp120/gp140への結合を破壊するこ
となく10−1074バックグラウンド内に適応させることができることは、微細な特異
性差にもかかわらず抗原結合が総体的に類似していることを含意する。
野生型PGT121とは異なり、PGT121GMは、マイクロアレイ実験においてグ
リカン結合を示さなかった。これは、置換位置の10−1074残基が無タンパク質グリ
カン結合と適合性を有さないこと(図2B)を確証し、および「リガンドを持つ」PGT
121構造内のグリカンと接触している残基が前記マイクロアレイにおける複合型グリカ
ンの認識に関与するという示唆を裏付ける。10−1074GMもまた無タンパク質グリ
カンへの結合を示さなかった(図2B)。これは、無タンパク質複合型N−グリカンのた
めの結合部位の生成に、置換されたものの他にも残基が関与することを示す。
次に、TZM−blベースのアッセイを用いて、野生型抗体と「グリコミュータント」
抗体の中和を比較した。我々は、PGT121または10−1074に対して異なる耐性
を有する株ならびに両方の野生型抗体に感受性の株を含む、40のウイルス株を試験した
(図2Cおよび表12)。精製YU−2エンベロープタンパク質へのPGT121GM
よび10−1074GMの結合と一致して、両方の突然変異体はYU−2ウイルスを中和
したが、PGT121感受性株の64%は、PGT121GMに対して耐性であった(図
2Cおよび表12)。これは、「リガンドを持つ」PGT121構造において同定された
グリカン含有残基が、PGT121の中和活性に関係があることを示唆する。逆に、10
−1074GMは、4つの10−1074感受性株(WITO4160.33、ZM21
4M.PL15、Ce1172_H1、および3817.v2.c59)に対する3倍よ
り大きい効力増加を含めて、10−1074感受性株に対して野生型10−1074より
高い平均効力を呈示した(図2Cおよび表12)。一般に、10−1074へのPGT1
21置換は、PGT121感受性/10−1074耐性株では10−1074GMに対す
る感受性を付与しないが、これらの株のうちの2つ(CNE19および62357_14
_D3_4589)は、10−1074GMに対して感受性になった(それぞれ、IC
=0.19μg/mLおよび40.8μg/mL)。興味深いことに、これらは、イン
タクトAsn332gp120結合PNGSを含む唯一のPGT121感受性/10−1
074耐性株である。他のPGT121感受性/10−1074耐性株は、Asn332
gp120結合グリカンを欠き、かつPGT121GMおよび10−1074GMに対し
て耐性であり、これは、野生型PGT121に対するそれらの感受性が、隣接N−グリカ
ン、および/またはエピトープのタンパク質部分による補償を必要とすることを含意する
。機能の劇的な獲得が、1つの株(CNE19)に対する10−1074GMについての
み観察されたが、この結果は、10−1074感受性株に対して10−1074GMにつ
いて観察された一般的改善(図2C)とともに、結晶学的に同定されたグリカン含有残基
がある状況ではPGT121様認識特性を10−1074に移入する場合があり、および
/または他の状況ではその効力に影響を及ぼす場合があるという解釈と一致する。加えて
、PGT121感受性株に対するPGT121GMの中和活性の喪失は、PGT121の
中和活性は、「リガンドを持つ」PGT121構造において複合型N−グリカンと接触す
ると同定された残基を必要とすることの証拠となる。
結果
PGT121は、2つのクローン的に関連したメンバーのみを生じさせる、元をただせ
ば機能性スクリーニングにおいてクレードA感染ドナーの血清中で同定された、グリカン
依存性bNAbである。gp140三量体を、単一細胞選別のための「ベイト」として使
用して、29の新たなクローナル変異体を単離した。PGT121クローンファミリーは
、近縁抗体のはっきりと異なる群、PGT121群および10−1074群、を含む。結
果は、両方の群のエピトープが、Asn332gp120およびV3ループの基部にPN
GSを含むことを示唆する。PGT121様および10−1074様抗体群は、アミノ酸
配列、gp120/gp140結合親和性、および中和活性が異なり、10−1074様
抗体は、中和がAsn332gp120におけるインタクトPNGSに完全に依存するが
、PGT121様抗体は、Asn332gp120PNGSを欠く一部のウイルス株を中
和することができた。
2つの抗体群間の注目に値する差は、PGT121様抗体が炭水化物アレイにおいて複
合型N−グリカンを結合したのに対して、10−1074様抗体が試験したいずれの無タ
ンパク質N−グリカンにも検出可能な結合を示さなかったことである(図7)。抗HIV
抗体による無タンパク質グリカン結合は、常に検出されるとは限らない;例えば、PG9
は、gp120結合高マンノースグリカンを認識するが、マイクロアレイではいずれの無
タンパク質グリカンへの結合も検出されなかった。したがって、グリカンマイクロアレイ
における陽性結果は、抗体エピトープの特定のグリカンの関与を含意するが、陰性結果は
、グリカン認識を排除しない。例えば、たとえグリカンマイクロアレイ実験において検出
可能でなくても、高マンノースグリカンは、PGT121エピトープに関与することがあ
り、これは、高マンノースのみの形態のgp120タンパク質およびビリオンの結合およ
び中和と一致する(図8)。
PGT121、10−1074およびそれらのGL前駆体の間の差についての分子的基
礎をそれらの結晶構造によって一部明らかにした。軽鎖体細胞突然変異体の大部分はPG
T121および10−1074間で共有されるが、重鎖の突然変異は異なるという発見は
、軽鎖がgp120エピトープの共有部分と接触し、重鎖がはっきりと異なる特徴部を認
識することを示唆する。これらの三つの抗体のすべては、潜在エピトープの接近を可能に
し得る非極性の先端を有する伸長したCDRH3を呈示する。2つの成熟Fabの抗原結
合部位の差は、主として、CDRH2と伸長したCDRH3の間のクレフトに限局された
。興味深いことに、CDRH2とCDRH3間の推定抗原結合クレフトは、PGT121
および10−1074の代表的な生殖細胞系前駆体においても見つけられた。
ドメイン残基に結合している複合型シアル化N−グリカンが隣接PGT121Fa
bの結合部位と相互作用する結晶構造からPGT121様抗体によるグリカン認識に関す
る構造情報を得た。「リガンドを持つ」PGT121構造のいくつかの特徴は、それが、
PGT121様抗体によるgp120上の複合型N−グリカンの認識を理解するために適
していることを示唆する。第一に、α2−6シアル化グリカンA2(2−6)PGT12
1に対応する構造におけるグリカンは、マイクロアレイにおいて結合する(図7)。第二
に、前記グリカンは、エピトープ認識に関与することが構造分析により示唆されたCDR
H3とCDRH2間のクレフトを用いてPGT121と相互作用し、このことは、PGT
121および10−1074構造におけるVの方へのCDRH3の異常な傾きを潜在的
に説明する。第三に、グリカンと相互作用すると同定されたV残基の大部分は、PGT
121と10−1074間で異なり、これにより、グリカンマイクロアレイにおける異な
る結合プロファイルが合理的に説明され、およびタンパク質結合実験において明らかにな
った異なる微細な特異性を潜在的に説明する。第四に、PGT121と10−1074間
の結晶学的に同定されたグリカン接触残基の交換は、一部分、それらの特性を転移した:
PGT121GMは、10−1074同様、無タンパク質グリカンに結合しなかったが、
PGT121GMおよび10−1074GMの両方が、精製YU−2 gp120/gp
140への野生型に近い結合を保存した。PGT121GMは、野生型PGT121およ
び10−1074によって中和された一部のウイルス株を中和する能力を保持したが、P
GT121感受性/10−1074耐性である株を中和することはできなかった。これは
、グリカン結合モチーフが、10−1074耐性株に対するPGT121の中和活性にと
って不可欠であることの証拠となる。相互交換のため、結晶学的に同定されたグリカンモ
チーフの転移と一致して、ならびにPGT121様および10−1074様抗体のエピト
ープが類縁であるという仮説と一致して、10−1074GMの中和効力は、10−10
74に対して増加され、または影響を受けず、およびある場合には、10−1074GM
は、PGT121感受性/10−1074耐性株を強力に中和した。PGT121様およ
び10−1074様抗体に対して感受性のウイルスについてのAsn332gp120に
おけるPNGSとの相互作用以外、PGT121中和データを入手できる株からのgp1
20配列の分析において、10−1074耐性株には一般にAsn332gp120関連
PNGSがないことを除き、ウイルス株の異なるカテゴリー(PGT121感受性/10
−1074感受性、PGT121感受性/10−1074耐性、PGT121耐性/10
−1074感受性)についてPNGS利用の明確なパターンは出てこない。
実施例9 抗HIV−1中和mAbのインビボでの受動伝達
5つの単離された強力かつ広域作用性の抗HIV中和モノクローナル抗体をアカゲザル
に投与し、24時間後にそれらのアガケザルを2つの異なるSHIVのいずれかで直腸内
にチャレンジ感染した。チャレンジ感染した60匹の動物から得た結果を併せることによ
り、曝露されたサルの50%においてウイルス獲得を予防する血漿中の防御中和力価は、
おおよそ1:100であった。
動物実験
この研究において用いたマカクは、MHCクラスIMamu−A01対立遺伝子につ
いて陰性であった。
R5指向性SHIVDH12−V3AD8の構築
SHIVAD8EO(PNAS 109,19769−19774(2012))gp
120 V3コード領域の5’および3’の半分に対応するプライマー(フォワードプラ
イマー:AGAGCATTTTATACAACAGGAGACATAATAGGAGAT
ATAAGACAAGCACATTGCAACATTAGTAAAGTAAAATGGC
、およびリバースプライマー:TCCTGGTCCTATATGTATACTTTTCC
TTGTATTGTTGTTGGGTCTTGTACAATTAATTTCTACAGT
TTCATTC)でのPCR突然変異誘発を用いて、これらのV3配列をpSHIVDH
12_CL7分子クローンの遺伝的背景(J.of Virology 78,5513
−5519(2004))に、Platinum PFX DNAポリメラーゼ(Inv
itrogen)を使用して導入した。ゲル精製後、PCR産物をT4ポリヌクレオチド
キナーゼ(GibcoBRL)で処理し、平滑末端結合してpSHIVDH12_V3A
D8を生成し、それを使用してコンピテント細胞を形質転換させた。
ウイルス
先ず、リポフェクタミン2000(Invitrogen、カリフォルニア州カールズ
バッド)を使用して293T細胞をSHIVAD8EOまたはSHIVDH12−V3A
D8分子クローンでトランスフェクトすることにより、ウイルスストックを調製した。4
8時間後に培養上清を回収し、アリコートを使用するまで−80℃で保管した。コンカナ
バリンA刺激性アカゲザルPBMC(500μL中、2×10細胞)を1時間のスピノ
キュレーション(J.of Virology 74,10074−10080(200
0))によりトラスフェクト細胞上清で感染させ、同数/体積の活性化PBMCと混合し
、培養培地を毎日置換して少なくとも12日間、培養物を維持した。上清培地の試料をピ
ークRT生産時あたりでプールして個々のウイルスストックを調製した。
抗体
11のモノクローナル抗体(VRC01、NIH45−46、45−46G54W、4
5−46m2、3BNC117、12A12、1NC9、および8ANC195、10−
1074、PGT121、およびPGT126)を単離し、生産した。DEN3、デング
ウイルスNS1特異的ヒトIgG1モノクローナル抗体(PNAS 109,18921
−18925(2012))、または対照ヒトIgG(NIH Nonhuman Pr
imate Reagent Resource http://www.nhprea
gents.org)を陰性対照抗体としてこの研究で使用した。曝露前受動伝達に選択
したモノクローナル抗体を、ウイルスチャレンジ感染の24時間前に静脈内投与した。
血漿ウイルスRNAレベルの定量
血漿中のウイルスRNAレベルをリアルタイム逆転写−PCR(ABI Prism
7900HT配列検出システム;Applied Biosystems)によって決定
した。
血漿中の抗体濃度
サル血漿中の投与したモノクローナル抗体の濃度を、酵素結合免疫吸着検定法(ELI
SA)により、組換えHIV−1JRFL gp120(Progenics Phar
maceuticals)またはHIVIIIB(Advanced Biotechn
ology inc)(J.of Virology 75,8340−8347(20
01))を使用して測定した。簡単に言うと、マイクロタイタープレートをHIV−1
gp120(2μg/mL)で被覆し、一晩、4℃でインキュベートした。プレートをP
BS/0.05%Tween−20で洗浄し、1%(容量/容量)BSAでブロックした
。ブロッキング後、抗体または血漿試料の系列希釈物をそのプレートに添加し、1時間、
室温でインキュベートした。アルカリホスファターゼに結合したヤギ抗ヒトIgG F(
ab)2断片(Pierce)で結合を検出し、SIGMAFAST OPD(Sigm
a−Aldrich)で視覚化した。中和モノクローナル抗体の減衰半減期を、抗体投与
後第5日または第7日で開始する血漿濃度に基づく単一指数減衰式によって算定した(J
.of Virology 84,1302−1313(2010))。
中和アッセイ
アカゲザルから採取した血漿試料中に存在する各mAbのインビトロ効力および中和活
性を、2タイプの中和アッセイによって評価した;1)偽型チャレンジ感染ウイルスでの
TZM−blエントリアッセイ(AIDS Res Hum Retroviruses
26,89−98(2010))または2)複製可能なウイルスでの14日PBMC複
製アッセイ(J.of virology 76,2123−2130(2002))。
TZM−blアッセイのために、SHIVAD8EOまたはSHIVDH12_V3AD
8に由来するenv遺伝子を発現する偽型ウイルスであって、それぞれのエンベロープタ
ンパク質を発現するpNLenv1およびpCMVベクターで293T細胞をコトランス
フェクトすることによって調製したものである偽型ウイルス(J.of Virolog
y 84,4769−4781(2010))とともに、系列希釈mAbまたは血漿試料
をインキュベートした。50%中和阻害用量(IC50)力価を、細胞対照RLU減算後
、ウイルス対照ウェル中のレベルと比較した相対発光単位(RLU)の50%低下を生じ
させる希釈度として算定した(J.of Virology 84,1439−1452
(2010))。サブタイプB HIV−1単離体に対して広範な中和活性を呈示する(
J.of General Virology 91,2794−2803(2010)
)、コホート研究からの血漿試料を使用して、TZM−bl細胞アッセイにより、SHI
VDH12_V3AD8分子クローンの中和表現型(力価レベル)を決定した。
動物防御力価の決定および統計分析
ウイルスチャレンジ感染した動物の50または80%のウイルス獲得を予防する結果と
なる、各R5 SHIVに対する血漿中の中和力価の算定を、リードおよびミュンヒの方
法(Am J Hyg 27,493−497(1938))を用いて行った。1つの有
意な異常値の動物(DEW7)は、算定から割愛した。60匹すべての受動免疫サルを使
用してインビボで滅菌免疫性(sterilizing immunity)を付与する
ために要する血漿中の力価(Cambridge University Press,
Cambridge,England,ed.3rd,2007)の間の関係を、尤度比
検定に基づくこのモデルからのp値を含んで、モデル化するために、プロビット回帰を用
いた。様々なインビボ防御レベル(33%、50%、80%、90%および95%)に必
要な血漿力価をプロビッドモデル推定値から決定し、ブートストラップ法を用いて、90
%信頼区画を構築した。
結果:
SHIVDH12_V3AD8は、SHIVAD8EO同様、Tier2抗HIV−1
中和感受性特性を有した(表13)。SHIVDH12_V3AD8を静脈内にまたは直
腸内に接種したアカゲザルは、感染後(PI)第2から3週の時点で血漿の105から1
07ウイルスRNAコピー/mLの範囲でピークのウイルス血症を呈示した。大部分のS
HIVDH12_V3AD8感染動物において、血漿ウイルス負荷量は、第8から20週
PIの間にバクグラウンドレベルに低下する。
11の最近報告された広域反応性抗HIV−1 mAbに対するSHIVAD8EOの
中和感受性を、最初にTZM−blアッセイシステムにおいて判定した(図11Aおよび
B)。これらの抗体のうちの8つ、VRC01、NIH45−46(23)、45−46
G54W、45−46m2、3BNC117、12A12、1NC9および8ANC19
5は、gp120 CD4 bsを標的にし(Science 333,1633−16
37(2011))、ならびに3つ、10−1074、PGT121およびPGT126
(Nature 477,466−470(2011))は、HIV−1 gp120
N332グリカンの存在に依存した。SHIVAD8EOに対して試験したとき、3つの
グリカン依存性mAbすべてが、CD4 bs mAbより大きい効力を呈示した(図1
1A)。gp120 N332グリカンを標的にする前記3つのmAbについてのIC5
0値は、0.09から0.15μg/mLの範囲であった。CD4 bs mAbは、最
も強力である3BNC117により、はるかに広範囲(0.14から6.34μg/mL
)のIC50中和活性を呈示した。中和mAb効力の同様の序列(グリカン依存性>CD
4 bs依存性)が、SHIVDH12−V3AD8でも観察されたが、その中和活性は
、SHIVAD8EOについて観察されたIC50値と比較してはるかに広い(>100
倍)範囲にわたって分布した(図11B)。SHIVDH12−V3AD8は、SHIV
AD8EOより、グリカンターゲッティングmAbに対して多少感受性が高く、CD4
bs中和mAbに対して耐性が高かった。
図11に示した結果に基づき、5つの中和mAbを曝露前受動伝達研究に選択した:V
RC01(これは、特性付けすべき新たに単離された広域作用性NAbの第一のCD4b
s NAbであったので);CD4 bs mAb 45−46m2および3BNC11
7(これらの両方は、SHIVAD8EOおよびSHIVDH12−V3AD8に対して
強い中和活性を呈示した);ならびにgp120 N332グリカン依存性mAb、PG
T121および10−1074。
受動伝達実験についてのプロトコルは、漸減量の中和mAbの静脈内投与および24時
間後の動物への直腸内チャレンジ感染であった。目標は、ウイルス獲得を阻止することで
あり、個々のマカクへのヒト化抗HIV mAbの反復投与がそれらの効力を低下させる
ことがあり得、および/またはことによると、アナフィラキシー反応を誘導することがあ
り得るという知識を加味して、単回接種後にインビボ感染を確立するために十分なサイズ
のSHIVチャレンジ感染用量を選択した。これに関して、我々は、アカゲザルにおいて
SHIVAD8の直腸内力価測定を以前に行い、アカゲザルPBMCにおけるエンドポイ
ント希釈によって決定した1×103 TCID50の接種が、おおよそ3の動物感染用
量50(AID50)を投与することと等価であることを報告した(J.of viro
logy 86,8516−8526(2012))。実際、3 AID50の単回直腸
内接種は、10匹のアカゲザルのうちの10匹においてSHIVAD8EOおよびSHI
VDH12−V3AD8での感染の確立に成功する結果となった。
第一の受動伝達実験の対照として、抗デングウイルスNS1 IgG1 mAbを動物
に静脈内投与し、24時間後にSHIVAD8EOでチャレンジ感染した。両方のサル(
ML1およびMAA)が急速に感染し、第2週PIに血漿ウイルス血症のピークレベルを
生じた。VRC01は、ウイルス獲得に対する防御について試験した第一の抗HIV−1
中和mAbであり、それを50mg/kgの用量で2匹のマカクに投与した。接種を受け
た2匹のマカクのうちの1匹(DEGF)は、SHIVAD8EOチャレンジ感染から完
全に防御され、45週の観察期間にわたって血漿ウイルス血症の形跡も細胞随伴性ウイル
スDNAの形跡もなかった。他方の50mg/kg VRC01レシピエント(DEH3
)は感染したが、ピークの血漿ウイルス血症が第5週PIまで遅延された。より少量(2
0mg/kg)のVRC01を投与した追加の二匹のマカクは、SHIVAD8EOチャ
レンジ感染から防御されなかった。これらの結果を表13に要約する。
SHIVAD8EOチャレンジ感染に対するPGT121の防御特性を次に調査した。
PGT121は、TZM−blアッセイにおいて測定された最も強力なグリカン標的化中
和mAbの1つであった(図11)。VRC01で得た結果に基づき、20mg/kgで
のインビボPGT121 mAb力価測定から始めることを選択した。チャレンジ感染を
受けた2匹のサル(KNXおよびMK4)は、SHIVAD8EOチャレンジ感染に耐え
た。より少ない量(すなわち、5mg/kg、1mg/kg、または0.2mg/kg)
のPGT121を投与したとき、2匹動物のうち1匹、2匹動物のうち2匹、および2匹
の動物のうち0匹が、それぞれ防御された(表13)。
SHIVDH12−V3AD8獲得を阻止するVRC01およびPGT121 mAb
の能力を同様に評価した(表13)。VRC01で得られた結果は、SHIVAD8EO
チャレンジ感染で観察されたものに匹敵した:30mg/kgの2匹のレシピエントのう
ちの1匹は、SHIVDH12−V3AD8感染の確立から防御された。PGT121
mAbは、SHIVDH12−V3AD8獲得の予防においてVRC01より著しく高か
った:0.2mg/kg PGT121の2匹のレシピエントのうちの2匹が感染に耐え
た。PGT121は、SHIVAD8EOインビボ感染に対して、SHIVDH12−V
3AD8の予防において多少有効であるようでもあった(表13)。この結果は、インビ
トロアッセイにおける2つのSHIVの中和についてのPGT121のIC50値の8倍
差(図11)と一致する。
アカゲザルへの10−1074、3BNC117または45−46m2中和mAbの受
動伝達、続いてのSHIVAD8EOまたはSHIVDH12−V3AD8いずれかでの
チャレンジ感染の結果を表13に要約する。10−1074 mAbは、両方のSHIV
のインビボ獲得を強力に阻止した。CD4bs 3BNC117および45−46m2
mAbを、図11に示すインビトロ中和実験における両方のSHIVに対するそれらのI
C50値に基づいて、マカクへの受動伝達に選択した。3BNC117は、5mg/kg
で2匹のサルのうちの2匹においてSHIVAD8EO感染の阻止に成功したが、1mg
/kgの用量を与えた他の2匹の動物では阻止に成功しなかった(表13)。これは、同
じ量の3BNC117を、SHIVDH12−V3AD8チャレンジ感染を受けたマカク
に投与したときに観察された結果(2匹のうちの1匹が5mg/kgで感染し、2匹のう
ちの1匹が1mg/kgで感染した)に類似していた。
受動伝達を受けたマカクから様々な時点で採取した血漿試料をHIV−1 gp120
ELISAによって分析して中和mAb濃度を決定した。一般に、チャレンジ感染の時
点(抗体投与の24時間後)の各mAbの血漿濃度は、投与した抗体の用量と相関した(
表13)。
血漿mAb濃度とインビボ防御の関係を図12に示す。評価した5つの中和mAbのう
ち、PGT121は、両方のウイルスに対して明らかに最も有効であり、SHIVDH1
2−V3AD8は、このmAbに対してのほうが多少大きい感受性を呈示した(2匹のサ
ルのうちの2匹が0.2μg/mLの血漿濃度で防御された)。対照的に、ほぼ400μ
g/mLのVRC01の血漿濃度が、同じSHIVDH12−V3AD8チャレンジ感染
ウイルスから2匹の動物のうちの1匹を防御するために必要であった(表13)。この研
究でマカクに投与した最も強力なCD4 bs mAb、3BNC117は、いずれかの
SHIVの獲得を予防する点でもVRC01よりおおよそ6から10倍有効であった(図
12、表13)。
PGT121、10−1074、3BNC117およびVRC01 mAbの循環半減
期は、かなり似ていた:それぞれ3.5日、3.5日、3.3日および3.1日。対照的
に、45−46m2の半減期は極度に短く、決定することができなかった。20mg/k
gのヒト化中和mAb投与の24時間後の数匹のマカクにおける血漿mAb濃度(すなわ
ち、おおよそ250μg/mL[表13])に基づき、20mg/kgの45−46m2
を受けた2匹のサルは、15.0および17.6μg/mLの血漿mAb濃度しか有さず
、これは、24時間での他の中和mAbに比べて95%より大きな減衰であった。
マカクをSHIVAD8EOおよびSHIVDH12−V3AD8でチャレンジ感染し
たとき、mAb投与の24時間後に採取した血漿試料を用いて中和力価を測定した。表1
3に示すように、抗ウイルス血漿中和力価とSHIV感染からの防御との間に良好な相関
関係が観察された。2つのグリカン依存性mAb(PGT121および10−1074)
の投与の結果、ウイルスチャレンジ感染時に抗HIV−1中和活性の最高力価が明確に得
られた。45−46m2 mAbのレシピエントにおいて測定された力価は、その極度に
短いインビボ半減期のため、検出限界であったかまたは検出不能であった。
チャレンジ感染を受けたサルの50%においてウイルス獲得を予防するために必要とさ
れる、血漿中で測定される、中和力価を、ReedおよびMuenchにより記載された
方法(Am J Hyg 27,493−497(1938))を用いて算定した。SH
IVAD8EOでチャレンジ感染した28匹のサル、またはSHIVDH12−V3AD
8でチャレンジ感染した32匹のサルについて、これらの防御力価を別々に導出した(表
15および16)。SHIVAD8EOまたはSHIVDH12−V3AD8でチャレン
ジ感染した動物の50%を防御するために要する血漿中和力価をそれぞれ1:115およ
び1;96であると算定した。これらの類似した力価が、1)同一の経路および接種サイ
ズによるSHIVチャレンジ感染および2)同じ中和mAb集団の投与後に得られたので
、60匹すべての動物からの中和データを併せ、プロビット回帰に付して、血漿中和力価
とインビボ防御との関係を調査した。さらなる確認として、SHIVウイルスについての
項を60匹すべてのマカクに関するプロビット回帰モデルに含めたとき、2つのSHIV
ウイルス間の差の証拠はなかった(p=0.16)。60匹のマカクの群全体に適用した
とき、プロビット回帰は、1:104の血漿中和力価が動物の50%においてウイルス獲
得を予防すると推定した。データのプロビッド分析により、1:57または1:329の
50%血漿中和力価が、被曝動物のそれぞれ33%または80%を防御することも推定し
た。
実施例10 慢性感染のHIVインビボモデルへの中和mABの投与
方法の要約:SHIVAD8EOに対する広域作用性3BNC11724および10−
107423中和mAbの中和活性を、最初に、SHIVAD8EOに対するTZM−b
l細胞システムで判定した。R5指向性SHIVAD8EOでチャレンジ感染した慢性感
染の動物におけるウイルス獲得を阻止するまたは血漿ウイルス血症を制御するそれらの能
力を、血漿ウイルス負荷量および細胞随伴性ウイルス核酸をモニターすることにより評価
した;CD4+ T細胞サブセットのレベルをフローサイトメトリーによって測定した。
循環ウイルス変異体のSGA分析および血漿中の抗体レベルの決定。NAbの血漿濃度を
、10−1074または3BNC117のいずれかにのみ感受性があるHIV−1シュー
ドウイルス調製物に対する中和活性を測定することによって決定した。
結果:
慢性感染マカクの2つの群を評価した。159週間感染しており、循環CD4+ T細
胞の類似したおよび有意な減少を続けた2匹の臨床的に無症状の動物(DBZ3およびD
C99A)からなる第一の群(表17)。進行中のSHIV感染を治療するための治療法
は、101074と3BNC117の10mg/kg用量での併用投与であった。mAb
投与時、マカクDBZ3およびDC99Aにおける血漿ウイルス負荷量は、それぞれ1.
08×104および7.6×103RNAコピー/mLであった。両方のサルは、併用抗
HIV−1 mAb治療に応答し、血漿ウイルス血症が直ぐにおよび急速に低減されて7
から10日以内に検出不能レベルになった。2つのmAbの単回投与後の、マカクDBZ
3およびDC99Aの血漿中の測定可能なSHIVAD8EOの抑制は、それぞれ、27
および41日続いた。各場合において、血漿ウイルス血症は、治療前のレベルに逆戻りし
た。
各々が同じく3年より長くSHIVAD8EOに感染しており、ならびに間欠性下痢お
よびまたは食欲低下の臨床な症状があった3匹の動物(DBX3、DCF1およびDCM
8)の第二の群を、2つの中和抗体で治療した(表17)。mAb投与時、マカクDCM
8における循環CD4+ T細胞のレベルは、43細胞/μLしかなく、動物DCF1(
105細胞/μL)およびDBXE(158細胞/μL)でのほうが多少高かった。血漿
ウイルス負荷量は、動物DBXEおよびDCF1では105RNAコピー/mLを超えて
おり、サルDCM8では有意に、より低かった(1.59×103 RNAコピー/mL
)。2つのmAbのサルDBXEへの投与は、第0日での2.0×105 RNAコピー
から第20日での検出不能な血漿中レベルへの二相性の低下をもたらした。この後、数日
以内に、DBXEでは高い循環ウイルスレベルが復活した。より少量の血漿ウイルス負荷
量および非常に少ない循環CD4+ T細胞数を有するマカクDCM8は、mAb処置開
始後第6日と第20日の間にウイルス血症の検出不能なレベルへの急速な低下を経験した
。最後に、広域反応性抗HIV−1 NAbを産生することが以前に報告されている動物
DCF1は、併用mAb療法に応答して第6日までに血漿ウイルス血症の一時的および比
較的ささやかな27倍の低下を呈示した後、ウイルス負荷量が、高い治療前レベルに戻っ
た。
PBMC随伴性ウイルスRNAおよびDNAレベルも抗体投与前および後に決定した(
表18)。各動物について、mAb治療は、血漿ウイルス負荷量測定値とよく相関して細
胞随伴性ウイルスRNAレベルの低下をもたらした。抗体治療の結果として細胞随伴性ウ
イルスDNAレベルについて一貫したパターンは観察されなかった。慢性SHIVAD8
EO感染サルへの中和mAbの投与も、特に、非常に高いウイルス負荷量を有する動物で
は、循環CD4+ T細胞レベルに有益な効果を及ぼした。マカクDBXEおよびDCF
1におけるCD4+ T細胞数は、mAb媒介ウイルス抑制期間には2から3倍増加した
が、ウイルス血症が再び検出可能になるにつれて治療前のレベルに徐々に減少した。
各mAbの血漿濃度を、一方または他方に感受性だが両方の抗体には感受性でない選択
HIV−1シュードウイルス株に対する血漿中和活性を測定することによって決定した(
図13A)。すべての治療動物において、SHIVAD8EOウイルス血症の抑制が、お
およそ1から3μg/mLの閾血漿mAb濃度に達するまで維持された(図13Bおよび
13C)。これは、血漿ウイルスRNAレベルのささやかな一時的低下が観察されたマカ
クDCF1にも当てはまった。興味深いことに、臨床症状のあるマカクDCM8およびD
CF1に投与されたmAbは、半減期を短縮したか、または検出不能であった。前に述べ
たように、マカクDCM8は、極度に低いCD4+ T細胞レベル(43細胞/μL血漿
))を有し、マカクDCF1は、その悪化する臨床状態のため、治療開始後第56日に安
楽死させなければならなかった。DCF1の剖検は、播種性胃腸クリプトスポリジウム症
、膵炎および胆管炎を特徴とする、重度の腸症を明らかにした。
SGA分析を用いて、アミノ酸置換が、10−1074または3BNC117 mAb
に対する感受性に影響を及ぼすと以前に示されたgp120領域において起こったかどう
かを判定した。各場合、免疫治療後に血漿中に存在するリバウンドウイルスは不変であっ
た。再出現ウイルスの感受性をさらに試験するために、10−1074と3BNC117
の併用療法(各々の10mg/kg)を2匹の臨床的に無症状のサル(DBZ3およびD
C99A)に再び投与した。各動物のウイルス負荷量は、再び急速に降下し、第二免疫治
療サイクルの第7日の時点で検出不能になった。ウイルス血症は、マカクDBZ3におい
て7日間、およびサルDC99Aにおいて21日より長く抑制された。考え合わせると、
これらの結果は、これらの2匹の動物における第一処置サイクル後のウイルスの再出現は
、抗体選択ウイルス耐性ではなくインビボでの不十分なmAbレベルを表したことを示唆
する。
好ましい実施形態の上述の実施例および説明は、クレームによって定義される本発明を
制限するものではなく、例証するものと考えるべきである。容易に理解されるように、上
記の特徴の非常に多くの変形形態および組み合わせを、クレームに記載の本発明から逸脱
することなく用いることができる。かかる変形形態は、本発明の範囲からの逸脱とはみな
されず、すべてのかかる変形形態は、後続のクレームの範囲内に含まれると解釈される。
本明細書において引用するすべての参考文献は、それら全体が参照により本明細書に援用
されている。

Claims (5)

  1. (i)相補性決定領域(CDR)H1、CDRH2、CDRH3、CDRL1、CDRL2、およびCDRL3が、配列番号69〜74のアミノ酸配列、配列番号39〜44のアミノ酸配列、配列番号51〜56のアミノ酸配列、配列番号57〜62のアミノ酸配列、配列番号63〜68のアミノ酸配列、配列番号75〜80のアミノ酸配列、配列番号81〜86のアミノ酸配列、配列番号87〜92のアミノ酸配列、配列番号93〜98のアミノ酸配列、配列番号99〜104のアミノ酸配列、および配列番号131〜136のアミノ酸配列から成る群より選択されるCDRセットのそれぞれの配列を含む、単離された抗HIV抗体、またはその抗原結合部分、および
    (ii)前記抗HIV抗体に特異的に結合する1つ以上の検出試薬を含む、被検体におけるHIV感染の診断、予後診断または治療モニタリングのためのキット。
  2. PCRを行うための試薬をさらに含む、請求項1に記載のキット。
  3. 質量分析を行うための試薬をさらに含む、請求項1または2に記載のキット。
  4. 前記抗体の重鎖および軽鎖が、配列番号13〜14のアミノ酸配列、配列番号3〜4のアミノ酸配列、配列番号7〜8のアミノ酸配列、配列番号9〜10のアミノ酸配列、配列番号11〜12のアミノ酸配列、配列番号15〜16のアミノ酸配列、配列番号17〜18のアミノ酸配列、配列番号19〜20のアミノ酸配列、配列番号21〜22のアミノ酸配列、配列番号23〜24のアミノ酸配列、および配列番号129〜130のアミノ酸配列のそれぞれの配列を含む、請求項1〜3のいずれか1項に記載のキット。
  5. 前記抗体が、ヒト抗体、ヒト化抗体またはキメラ抗体である、請求項1〜4のいずれか1項に記載のキット。
JP2018243618A 2012-10-18 2018-12-26 広域中和抗hiv抗体 Active JP6732872B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261715642P 2012-10-18 2012-10-18
US61/715,642 2012-10-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015538060A Division JP6461804B2 (ja) 2012-10-18 2013-10-18 広域中和抗hiv抗体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020117726A Division JP7076722B2 (ja) 2012-10-18 2020-07-08 広域中和抗hiv抗体

Publications (2)

Publication Number Publication Date
JP2019071888A JP2019071888A (ja) 2019-05-16
JP6732872B2 true JP6732872B2 (ja) 2020-07-29

Family

ID=50488789

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2015538060A Active JP6461804B2 (ja) 2012-10-18 2013-10-18 広域中和抗hiv抗体
JP2018243618A Active JP6732872B2 (ja) 2012-10-18 2018-12-26 広域中和抗hiv抗体
JP2020117726A Active JP7076722B2 (ja) 2012-10-18 2020-07-08 広域中和抗hiv抗体
JP2022075767A Active JP7376898B2 (ja) 2012-10-18 2022-05-02 広域中和抗hiv抗体
JP2023180055A Pending JP2024010023A (ja) 2012-10-18 2023-10-19 広域中和抗hiv抗体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015538060A Active JP6461804B2 (ja) 2012-10-18 2013-10-18 広域中和抗hiv抗体

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020117726A Active JP7076722B2 (ja) 2012-10-18 2020-07-08 広域中和抗hiv抗体
JP2022075767A Active JP7376898B2 (ja) 2012-10-18 2022-05-02 広域中和抗hiv抗体
JP2023180055A Pending JP2024010023A (ja) 2012-10-18 2023-10-19 広域中和抗hiv抗体

Country Status (21)

Country Link
US (5) US10047146B2 (ja)
EP (2) EP3783018A1 (ja)
JP (5) JP6461804B2 (ja)
CN (1) CN104918658B (ja)
AU (4) AU2013331049B2 (ja)
BR (1) BR112015008635B1 (ja)
CA (2) CA3236192A1 (ja)
CY (1) CY1124405T1 (ja)
DK (1) DK2908912T3 (ja)
EA (2) EA035012B1 (ja)
ES (1) ES2822135T3 (ja)
HK (1) HK1212935A1 (ja)
HR (1) HRP20201505T1 (ja)
HU (1) HUE051577T2 (ja)
IL (4) IL285049B (ja)
LT (1) LT2908912T (ja)
MX (2) MX2015004924A (ja)
PL (1) PL2908912T3 (ja)
PT (1) PT2908912T (ja)
SI (1) SI2908912T1 (ja)
WO (1) WO2014063059A1 (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272134B (zh) 2008-12-09 2013-10-16 吉里德科学公司 Toll样受体调节剂
WO2012019168A2 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
DE19177059T1 (de) 2010-10-01 2021-10-07 Modernatx, Inc. N1-methyl-pseudouracile enthältendes ribonucleinsäuren sowie ihre verwendungen
DE12722942T1 (de) 2011-03-31 2021-09-30 Modernatx, Inc. Freisetzung und formulierung von manipulierten nukleinsäuren
PT2710033T (pt) 2011-05-17 2021-03-11 Univ Rockefeller Anticorpos neutralizantes do vírus da imunodeficiência humana e métodos de utilização destes
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
JP6113737B2 (ja) 2011-10-03 2017-04-12 モデルナティエックス インコーポレイテッドModernaTX,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
MX2014007233A (es) 2011-12-16 2015-02-04 Moderna Therapeutics Inc Composiciones de nucleosidos, nucleotidos y acidos nucleicos modificados.
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
EP2834259A4 (en) 2012-04-02 2016-08-24 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
CA2892529C (en) 2012-11-26 2023-04-25 Moderna Therapeutics, Inc. Terminally modified rna
AU2014224049B2 (en) * 2013-02-28 2018-11-29 Therabiol, Inc. HIV antigens and antibodies
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
CA2926218A1 (en) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
US10093720B2 (en) 2014-06-11 2018-10-09 International Aids Vaccine Initiative Broadly neutralizing antibody and uses thereof
AU2015287773B2 (en) * 2014-07-11 2018-03-29 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of HIV
CN106715431A (zh) 2014-09-16 2017-05-24 吉利德科学公司 Toll样受体调节剂的固体形式
US20170267784A1 (en) 2014-10-23 2017-09-21 Singh Molecular Medicine, Llc Single domain antibodies directed against intracellular antigens
WO2016149698A2 (en) 2015-03-19 2016-09-22 Duke University Hiv-1 neutralizing antibodies and uses thereof (v3 antibodies)
ES2768957T3 (es) 2015-09-24 2020-06-24 Abvitro Llc Composiciones de anticuerpos contra el VIH y métodos de uso
TWI746473B (zh) * 2015-11-02 2021-11-21 美商辛分子醫藥有限公司 針對細胞內抗原之單域抗體
TW201811376A (zh) 2016-07-01 2018-04-01 英商葛蘭素史密斯克藍智慧財產權有限公司 抗體-藥物結合物及使用其之治療方法
WO2018075564A1 (en) 2016-10-17 2018-04-26 University Of Maryland, College Park Multispecific antibodies targeting human immunodeficiency virus and methods of using the same
AU2017345791B2 (en) 2016-10-21 2020-10-22 Altor Bioscience Corporation Multimeric IL-15-based molecules
WO2018125813A1 (en) 2016-12-27 2018-07-05 The Rockefeller University Broadly neutralizing anti-hiv-1 antibodies and methods of use thereof
SG11202005557TA (en) 2017-12-12 2020-07-29 Macrogenics Inc Bispecific cd 16-binding molecules and their use in the treatment of disease
AU2019226034A1 (en) * 2018-02-21 2020-10-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to HIV-1 Env and their use
MX2020013621A (es) 2018-06-19 2021-03-25 Nantcell Inc Composiciones y metodos de tratamiento de vih.
EP3817819A1 (en) 2018-07-03 2021-05-12 Gilead Sciences, Inc. Antibodies that target hiv gp120 and methods of use
WO2020023827A1 (en) * 2018-07-27 2020-01-30 International Aids Vaccine Initiative Engineered antibodies to hiv env
EP3849612A4 (en) * 2018-09-14 2022-07-06 The Rockefeller University ANTI-HIV 10-1074 ANTIBODY VARIANTS
WO2020206232A1 (en) * 2019-04-04 2020-10-08 Vanderbilt University Hiv/hcv cross-reactive antibodies and uses thereof
TW202231277A (zh) 2019-05-21 2022-08-16 美商基利科學股份有限公司 鑑別對使用gp120 v3聚醣導向之抗體的治療敏感之hiv病患的方法
BR112021026376A2 (pt) 2019-06-25 2022-05-10 Gilead Sciences Inc Proteínas de fusão flt3l-fc e métodos de uso
CA3145791A1 (en) 2019-07-16 2021-01-21 Gilead Sciences, Inc. Hiv vaccines and methods of making and using
US20220257619A1 (en) 2019-07-18 2022-08-18 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
CN112759651B (zh) * 2019-11-01 2022-09-20 北京华夏清医治疗科技有限公司 一种包含嵌合抗原受体修饰的t细胞及其应用
AU2020412875A1 (en) 2019-12-24 2022-06-23 Carna Biosciences, Inc. Diacylglycerol kinase modulating compounds
KR20220156884A (ko) 2020-03-20 2022-11-28 길리애드 사이언시즈, 인코포레이티드 4'-c-치환된-2-할로-2'-데옥시아데노신 뉴클레오시드의 프로드러그 및 이의 제조 및 사용 방법
WO2021236944A1 (en) 2020-05-21 2021-11-25 Gilead Sciences, Inc. Pharmaceutical compositions comprising bictegravir
AU2021320236A1 (en) 2020-08-07 2023-04-13 Gilead Sciences, Inc. Prodrugs of phosphonamide nucleotide analogues and their pharmaceutical use
AU2021333577A1 (en) 2020-08-25 2023-03-30 Gilead Sciences, Inc. Multi-specific antigen binding molecules targeting HIV and methods of use
TWI815194B (zh) 2020-10-22 2023-09-11 美商基利科學股份有限公司 介白素2-Fc融合蛋白及使用方法
CA3195799A1 (en) 2020-11-11 2022-05-19 Stephen R. Martin Methods of identifying hiv patients sensitive to therapy with gp120 cd4 binding site-directed antibodies
EP4359411A1 (en) 2021-06-23 2024-05-01 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
EP4359389A1 (en) 2021-06-23 2024-05-01 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
CN117355531A (zh) 2021-06-23 2024-01-05 吉利德科学公司 二酰基甘油激酶调节化合物
CN117396478A (zh) 2021-06-23 2024-01-12 吉利德科学公司 二酰基甘油激酶调节化合物
US20230212148A1 (en) 2021-12-03 2023-07-06 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
AU2022399845A1 (en) 2021-12-03 2024-05-23 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
CA3235937A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023114951A1 (en) 2021-12-17 2023-06-22 Viiv Healthcare Company Combination therapies for hiv infections and uses thereof
TW202400172A (zh) 2022-04-06 2024-01-01 美商基利科學股份有限公司 橋聯三環胺甲醯基吡啶酮化合物及其用途
WO2024006982A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Therapeutic compounds useful for the prophylactic or therapeutic treatment of an hiv virus infection
WO2024015741A1 (en) 2022-07-12 2024-01-18 Gilead Sciences, Inc. Hiv immunogenic polypeptides and vaccines and uses thereof
US20240083984A1 (en) 2022-08-26 2024-03-14 Gilead Sciences, Inc. Dosing and scheduling regimen for broadly neutralizing antibodies
WO2024076915A1 (en) 2022-10-04 2024-04-11 Gilead Sciences, Inc. 4'-thionucleoside analogues and their pharmaceutical use

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US81A (en) 1836-11-15 Erawijjg
US6593A (en) 1849-07-17 Cutting
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
JP2919890B2 (ja) 1988-11-11 1999-07-19 メディカル リサーチ カウンスル 単一ドメインリガンド、そのリガンドからなる受容体、その製造方法、ならびにそのリガンドおよび受容体の使用
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
GB9206318D0 (en) 1992-03-24 1992-05-06 Cambridge Antibody Tech Binding substances
EP0814159B1 (en) 1990-08-29 2005-07-27 GenPharm International, Inc. Transgenic mice capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5962255A (en) 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
US6225447B1 (en) 1991-05-15 2001-05-01 Cambridge Antibody Technology Ltd. Methods for producing members of specific binding pairs
US5871907A (en) 1991-05-15 1999-02-16 Medical Research Council Methods for producing members of specific binding pairs
US6492160B1 (en) 1991-05-15 2002-12-10 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
CA2103059C (en) 1991-06-14 2005-03-22 Paul J. Carter Method for making humanized antibodies
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
PT1024191E (pt) 1991-12-02 2008-12-22 Medical Res Council Produção de auto-anticorpos a partir de reportórios de segmentos de anticorpo e exibidos em fagos
US5872215A (en) 1991-12-02 1999-02-16 Medical Research Council Specific binding members, materials and methods
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6838254B1 (en) 1993-04-29 2005-01-04 Conopco, Inc. Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of camelidae
EP0794792A1 (en) 1994-12-02 1997-09-17 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5837234A (en) 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
DE19544393A1 (de) 1995-11-15 1997-05-22 Hoechst Schering Agrevo Gmbh Synergistische herbizide Mischungen
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
CA2521048A1 (en) * 2003-04-14 2004-10-21 Children's National Medical Center Anti-retroviral analysis by mass spectrometry
US8268982B2 (en) 2004-01-07 2012-09-18 Hitachi Chemical Co., Ltd. Primers and probes for the detection of HIV
JP4895727B2 (ja) * 2006-08-28 2012-03-14 シスメックス株式会社 抗hiv抗体検出試薬、試薬キット、試薬の製造方法、及び抗hiv抗体の検出方法
WO2008140579A2 (en) * 2006-11-17 2008-11-20 New York University Induction of broadly reactive neutralizing antibodies by focusing the immune response on v3 epitopes of the hiv-1 gp120 envelope
WO2009015247A2 (en) * 2007-07-23 2009-01-29 Maxygen, Inc. Chimeric hiv antigens
CA2746098A1 (en) * 2008-12-19 2010-07-15 Abbott Laboratories Molecular assay for diagnosis of hiv tropism
WO2011092593A2 (en) * 2010-01-20 2011-08-04 Institute For Research In Biomedicine Hiv-1 neutralizing antibodies and uses thereof
WO2012030904A2 (en) * 2010-08-31 2012-03-08 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv)-neutralizing antibodies
WO2012074863A2 (en) * 2010-12-01 2012-06-07 Albert Einstein College Of Medicine Of Yeshiva University Constructs and methods to identify antibodies that target glycans

Also Published As

Publication number Publication date
JP6461804B2 (ja) 2019-01-30
CY1124405T1 (el) 2022-03-24
EP2908912A4 (en) 2016-05-25
JP2021003104A (ja) 2021-01-14
CN104918658B (zh) 2021-02-19
AU2023201926A1 (en) 2023-05-04
AU2020244391A1 (en) 2020-10-29
US20230279082A1 (en) 2023-09-07
US11142564B2 (en) 2021-10-12
JP2022115946A (ja) 2022-08-09
IL293362A (en) 2022-07-01
IL293362B1 (en) 2023-04-01
EA201590741A1 (ru) 2015-09-30
WO2014063059A1 (en) 2014-04-24
MX2020011669A (es) 2021-02-15
DK2908912T3 (da) 2020-10-26
AU2019201039A1 (en) 2019-03-07
US11649276B2 (en) 2023-05-16
CN104918658A (zh) 2015-09-16
IL301018A (en) 2023-05-01
EA035012B1 (ru) 2020-04-17
HRP20201505T1 (hr) 2020-12-11
AU2013331049A1 (en) 2015-04-16
US20150274813A1 (en) 2015-10-01
IL285049B (en) 2022-07-01
EP2908912A1 (en) 2015-08-26
PT2908912T (pt) 2020-09-04
IL238320B (en) 2021-08-31
SI2908912T1 (sl) 2021-03-31
CA2888659A1 (en) 2014-04-24
JP7076722B2 (ja) 2022-05-30
HUE051577T2 (hu) 2021-03-01
JP7376898B2 (ja) 2023-11-09
IL238320A0 (en) 2015-06-30
US20180282400A1 (en) 2018-10-04
JP2019071888A (ja) 2019-05-16
CN112920269A (zh) 2021-06-08
EP2908912B1 (en) 2020-08-05
EA201992107A1 (ru) 2020-04-30
AU2019201039B2 (en) 2020-08-27
US10047146B2 (en) 2018-08-14
JP2015534982A (ja) 2015-12-07
HK1212935A1 (zh) 2016-06-24
JP2024010023A (ja) 2024-01-23
IL285049A (en) 2021-08-31
MX2015004924A (es) 2015-10-29
AU2020244391B2 (en) 2023-02-16
PL2908912T3 (pl) 2021-05-17
IL293362B2 (en) 2023-08-01
ES2822135T3 (es) 2021-04-29
CA3236192A1 (en) 2014-04-24
US20190345233A1 (en) 2019-11-14
US20220002390A1 (en) 2022-01-06
BR112015008635B1 (pt) 2023-10-31
US10392433B2 (en) 2019-08-27
EP3783018A1 (en) 2021-02-24
AU2013331049B2 (en) 2018-11-15
LT2908912T (lt) 2020-09-25
BR112015008635A2 (pt) 2018-09-04

Similar Documents

Publication Publication Date Title
JP6732872B2 (ja) 広域中和抗hiv抗体
AU2020201993B2 (en) Human immunodeficiency virus neutralising antibodies and methods of use thereof
CA2809837C (en) Human immunodeficiency virus (hiv)-neutralizing antibodies
US11572403B2 (en) Broadly neutralizing anti-HIV-1 antibodies that bind to an N-glycan epitope on the envelope
CN112920269B (zh) 广泛中和性抗hiv抗体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6732872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250