JP6729670B2 - 表示ドライバー、電気光学装置及び電子機器 - Google Patents

表示ドライバー、電気光学装置及び電子機器 Download PDF

Info

Publication number
JP6729670B2
JP6729670B2 JP2018231291A JP2018231291A JP6729670B2 JP 6729670 B2 JP6729670 B2 JP 6729670B2 JP 2018231291 A JP2018231291 A JP 2018231291A JP 2018231291 A JP2018231291 A JP 2018231291A JP 6729670 B2 JP6729670 B2 JP 6729670B2
Authority
JP
Japan
Prior art keywords
circuit
node
calibration
resistance
display driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018231291A
Other languages
English (en)
Other versions
JP2020095100A (ja
Inventor
森田 晶
晶 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2018231291A priority Critical patent/JP6729670B2/ja
Priority to US16/708,535 priority patent/US10937382B2/en
Publication of JP2020095100A publication Critical patent/JP2020095100A/ja
Application granted granted Critical
Publication of JP6729670B2 publication Critical patent/JP6729670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/808Simultaneous conversion using weighted impedances using resistors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45151At least one resistor being added at the input of a dif amp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45336Indexing scheme relating to differential amplifiers the AAC comprising one or more resistors as feedback circuit elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45522Indexing scheme relating to differential amplifiers the FBC comprising one or more potentiometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45591Indexing scheme relating to differential amplifiers the IC comprising one or more potentiometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree
    • H03M1/765Simultaneous conversion using switching tree using a single level of switches which are controlled by unary decoded digital signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Analogue/Digital Conversion (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、表示ドライバー、電気光学装置及び電子機器等に関する。
電気光学パネルを駆動する表示ドライバーは、複数の電圧を生成するラダー抵抗回路と、その複数の電圧の中から表示データに対応する階調電圧を選択するD/A変換回路と、その階調電圧を増幅又はバッファリングするアンプ回路と、を含んでいる。このような表示ドライバーの従来技術は、例えば特許文献1に開示されている。特許文献1の図10には、D/A変換回路が抵抗ストリング及びスイッチングアレイにより構成され、そのD/A変換回路の出力がボルテージフォロアに入力され、ボルテージフォロア回路が電気光学パネルのデータ線を駆動する構成が開示されている。
特開2016−138957号公報
近年では電気光学パネルの高精細化や高フレームレート化等によって、表示ドライバーが画素を短い駆動時間内に高速に駆動することが求められている。このため、アンプ回路に用いられる演算増幅器を高ゲイン化することで、アンプ回路がデータ電圧を高速に変化させる。しかしながら、特許文献1のようなボルテージフォロア回路を採用した場合、階調に応じて演算増幅器の差動対のバイアス点が変動する。一般に、バイアス点が変動すると差動対のゲインが変動するため、バイアス点の変動範囲の全体にわたって高いゲインを実現することは困難である。このような差動対のバイアス点の変動を低減するために、例えばアンプ回路として抵抗式の反転増幅回路を用いる手法が考えられる。
抵抗式の反転増幅回路では、入力抵抗とフィードバック抵抗の比によってゲインが決まる。表示ドライバーには複数のアンプ回路が設けられているが、抵抗のプロセスばらつきによってアンプ回路間でゲインがばらつくという課題がある。アンプ回路間でゲインがばらついた場合、同一階調であってもアンプ回路間でデータ電圧にばらつきが生じる。このデータ電圧のばらつきは、例えば画質低下を生じさせるおそれがある。
本発明の一態様は、表示データを階調電圧に変換するD/A変換回路と、入力ノードに前記階調電圧が入力され、データ電圧を出力するアンプ回路と、を含み、前記アンプ回路は、非反転入力ノードに基準電圧が入力される演算増幅器と、前記入力ノードと、第1ノードとの間に設けられる第1抵抗と、第2ノードと、前記演算増幅器の出力ノードとの間に設けられる第2抵抗と、前記第1ノードと前記演算増幅器の反転入力ノードとの間の抵抗値である第1調整用抵抗値、及び前記第2ノードと前記演算増幅器の前記反転入力ノードとの間の抵抗値である第2調整用抵抗値を、調整する調整用抵抗回路と、を有する表示ドライバーに関係する。
表示ドライバーの構成例。 電気光学パネルの構成例。 第1実施形態におけるアンプ回路の構成例。 第2実施形態におけるアンプ回路の構成例。 第3実施形態におけるアンプ回路の構成例。 第4実施形態における表示ドライバー及びアンプ回路の構成例。 キャリブレーションを行う場合の表示ドライバー及びアンプ回路の構成例。 オフセットキャリブレーションの手順を示すフローチャート。 正極性ゲインキャリブレーションの手順を示すフローチャート。 負極性ゲインキャリブレーションの手順を示すフローチャート。 電気光学装置の構成例。 電子機器の構成例。
以下、本開示の好適な実施形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本開示の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本開示の解決手段として必須であるとは限らない。
1.表示ドライバー
図1は、表示ドライバー100の構成例である。図1の表示ドライバー100は、電気光学パネルの画素にデータ電圧を供給することで、電気光学パネルを駆動するものである。電気光学パネルとして、例えばアクティブマトリックス型の液晶表示パネル、或いはEL(Electro Luminescence)表示パネルを想定できる。表示ドライバー100は集積回路装置である。
表示ドライバー100は、第1〜第nのデータ電圧出力端子であるデータ電圧出力端子TD1〜TDnと、アンプ回路AM1〜AMtと、D/A変換回路DAC1〜DACtと、処理回路10と、階調電圧生成回路50と、レジスター60と、を含む。tは3以上の整数である。
処理回路10は、表示データDT1をD/A変換回路DAC1に出力する。同様に、処理回路10は、表示データDT2〜DTtをD/A変換回路DAC2〜DACtに出力する。また処理回路10は表示ドライバー100の各部を制御する。例えば処理回路10は、表示ドライバー100が電気光学パネルを駆動する際のタイミング制御を行う。或いは処理回路10は、レジスター60に記憶されるゲイン調整情報に基づいて、アンプ回路AM1〜AMtに対してゲイン調整データRSD1〜RSDtを出力する。アンプ回路AM1〜AMtのゲインは、ゲイン調整データRSD1〜RSDtによって設定される。処理回路10はロジック回路である。ロジック回路は、ロジック素子と、ロジック素子の間を接続する信号線とを含み、そのロジック素子及び信号線によってロジック回路の機能が実現されている。或いは処理回路10はDSP(Digital Signal Processor)等のプロセッサーであってもよい。この場合、処理回路10の機能が記述されたプログラムをプロセッサーが実行することで、処理回路10の機能が実現される。
D/A変換回路DAC1は、表示データDT1を、表示データDT1に対応する電圧にD/A変換する。具体的には、D/A変換回路DAC1は、階調電圧生成回路50が生成した複数の階調電圧の中から、表示データDT1に対応した階調電圧を選択する。同様に、D/A変換回路DAC2〜DACnは、表示データDT2〜DTnを、表示データDT2〜DTnに対応する電圧にD/A変換する。D/A変換回路DAC1〜DACnの各々は、例えばトランジスタースイッチで構成されたセレクターである。
アンプ回路AM1は、D/A変換回路DAC1から出力される電圧を反転増幅し、その結果をデータ電圧VD1としてデータ電圧出力端子TD1に出力する。同様に、アンプ回路AM2〜AMtは、D/A変換回路DAC2〜DACtから出力される電圧を反転増幅し、その結果をデータ電圧VD2〜VDtとしてデータ電圧出力端子TD2〜TDtに出力する。
データ電圧出力端子TD1〜TDtは、集積回路装置の半導体基板に形成されたパッド、或いは、集積回路装置のパッケージに設けられた端子である。データ電圧出力端子TD1〜TDtは、表示ドライバー100の長辺方向に沿って並ぶ。データ電圧出力端子TD1〜TDtは、回路基板上の配線又はケーブル等を介して電気光学パネルのデータ電圧入力端子に接続される。
図2は、表示ドライバー100に駆動される電気光学パネル200の構成例である。電気光学パネル200は、データ電圧入力端子TI1、TI2と、デマルチプレクサーDML1、DML2と、データ線DL1〜DL8と、複数の画素PXとを含む。図2には、データ電圧入力端子TI1、TI2に接続される部分のみ図示しているが、データ電圧入力端子TI3以降に接続される部分についても同様の構成である。
図1及び図2を用いて、表示ドライバー100及び電気光学パネル200の動作を説明する。ここではデータ電圧VD1に関する表示ドライバー100の動作を例にとって説明するが、データ電圧VD1〜VDtについても表示ドライバー100の動作は同様である。また、表示ドライバー100がマルチ数4のデマルチプレクス駆動を行う場合を例にとって説明するが、マルチ数は2以上であればよい。
処理回路10は、水平走査期間において表示データDT1として第1〜第4表示データを時分割に出力する。すなわち、処理回路10は第1〜第4表示データを時系列に並べて出力する。これによりアンプ回路AM1から、データ電圧VD1として第1〜第4データ電圧が時分割に出力される。第1〜第4データ電圧は、第1〜第4表示データがD/A変換された電圧である。
データ電圧出力端子TD1は、電気光学パネル200のデータ電圧入力端子TI1に接続される。データ電圧入力端子TI1は、デマルチプレクサーDML1を介してデータ線DL1〜DL4に接続される。データ線DL1〜DL4は、電気光学パネル200において水平走査方向に隣り合って並ぶデータ線である。各データ線には画素PXが接続されている。水平走査期間において、デマルチプレクサーDML1は第1〜第4データ線DL1〜DL4を順に選択してデータ電圧入力端子TI1に接続する。即ち、アンプ回路AM1が第1データ電圧を出力しているとき、デマルチプレクサーDML1は第1データ線DL1をデータ電圧入力端子TI1に接続する。これにより、第1データ線DL1は第1データ電圧で駆動される。同様に、第2〜第4データ線DL2〜DL4は、第2〜第4データ電圧で駆動される。なお、水平走査期間における第1〜第4データ線DL1〜DL4の駆動順は、上記に限定されず、任意の順番であってよい。以上のように、演算増幅器AM1は電気光学パネルのデータ線を駆動している。すなわち、演算増幅器AM1は電気光学パネルのデータ線にデータ電圧を供給している。ここで、演算増幅器AM1は、例えば、デマルチプレクサーDML1を介して第1〜第4データ線DL1〜DL4を駆動していたが、演算増幅器AM1が直接第1データ線DL1を駆動してもよい。
表示ドライバー100は極性反転駆動を行う。極性反転駆動は例えばフレーム反転駆動或いはライン反転駆動である。フレーム反転駆動は、1又は複数のフレーム毎にデータ電圧の極性を反転する手法である。フレームは垂直走査期間である。ライン反転駆動は、1又は複数の走査ライン毎にデータ電圧の極性を反転する駆動手法である。正極性駆動のフレーム又はラインにおいて、アンプ回路AM1〜AMtは、コモン電圧よりも高い正極性のデータ電圧を出力する。負極性駆動のフレーム又はラインにおいて、アンプ回路AM1〜AMtは、コモン電圧よりも低い負極性のデータ電圧を出力する。
2.第1実施形態
図3に、第1実施形態におけるアンプ回路AM1の構成例を示す。また図3には、階調電圧生成回路50の詳細な構成例を示す。以下ではアンプ回路AM1を例に説明するが、アンプ回路AM2〜AMtも同様な構成である。また以下では表示データDT1が7ビットである場合を例に説明するが、表示データのビット数は任意である。
階調電圧生成回路50は、ラダー抵抗回路である。具体的には、電源電圧VRHのノードと電源電圧VRLのノードとの間に直列に接続された抵抗素子RV1〜RV129を含む。電源電圧VRHは電源電圧VRLよりも高い。階調電圧生成回路50のタップからは、電圧VP1〜VP64、VM1〜VM64が出力される。タップは、抵抗素子と抵抗素子の間のノードである。例えば、抵抗素子RV2〜RV128は同じ抵抗値を有する。或いは、抵抗素子RV2〜RV65が負極性駆動のガンマ特性に対応した抵抗値を有し、抵抗素子RV66〜RV128が正極性駆動のガンマ特性に対応した抵抗値を有してもよい。
D/A変換回路DAC1は、複数の電圧VP1〜VP64、VM1〜VM64から表示データDT1に対応した電圧を選択し、その選択した電圧を階調電圧VIAとしてアンプ回路AM1の入力ノードNIAに出力する。具体的には、DT1=0000000、0000001、・・・、0111111の場合、各々、負極性駆動用の電圧VM64、VM63、・・・、VM1が階調電圧VIAとして出力される。DT1=1000000、1000001、・・・、1111111の場合、各々、正極性駆動用の電圧VP1、VP2、・・・、VP64が階調電圧VIAとして出力される。なお、ここではDT1を2進数で表した。極性反転駆動において、正極性駆動のとき正極性駆動用の電圧VP1〜VP64が選択され、負極性駆動のとき負極性駆動用の電圧VM1〜VM64が選択される。
アンプ回路AM1は、入力ノードNIAに入力された階調電圧VIAを反転増幅することで、データ電圧VD1を出力ノードNQに出力する。データ電圧VD1は、データ電圧出力端子TD1を介して電気光学パネル200のデータ電圧入力端子TI1に出力される。これにより、電気光学パネル200のデータ線が駆動される。アンプ回路AM1は、基準電圧Vrefを基準として階調電圧VIAを反転増幅する。基準電圧Vrefは基本的にはコモン電圧に等しいが、後述するキャリブレーションによって調整される。コモン電圧は電気光学パネル200のコモン電極に供給される電圧である。ここでは、コモン電圧をVCとしたとき、Vref=VC=VP1であるとする。このとき、入力ノードNIAに入力された負極性駆動用の電圧VM1〜VM64は、反転増幅によりコモン電圧より低い負極性のデータ電圧となる。また入力ノードNIAに入力された正極性駆動用の電圧VP1〜VP64は、反転増幅によりコモン電圧より高い正極性のデータ電圧となる。
アンプ回路AM1は、調整用抵抗回路13と、演算増幅器14と、基準電圧生成回路15と、第1抵抗である抵抗R1と、第2抵抗である抵抗R2と、を含む。
演算増幅器14の非反転入力ノードNIPには基準電圧Vrefが入力される。抵抗R1は、入力ノードNIAと、第1ノードであるノードNA1との間に設けられる。即ち、抵抗R1の一端は入力ノードNIAに接続され、抵抗R1の他端はノードNA1に接続される。抵抗R2は、第2ノードであるノードNA2と、演算増幅器14の出力ノードNQとの間に設けられる。即ち、抵抗R2の一端はノードNA2に接続され、抵抗R2の他端は出力ノードNQに接続される。なお接続とは、電気信号が伝達可能に接続されていることである。電気信号による情報の伝達が可能となる接続が電気的な接続であり、例えば信号線又は受動素子等を介した接続であってもよい。
調整用抵抗回路13は、第1調整用抵抗値及び第2調整用抵抗値を調整する。第1調整用抵抗値は、反転増幅回路の入力抵抗を調整するための抵抗値である。第2調整用抵抗値は、反転増幅回路のフィードバック抵抗を調整するための抵抗値である。具体的には、調整用抵抗回路13は、ノードNA1及びノードNA2、演算増幅器14の反転入力ノードNIMに接続される。第1調整用抵抗値は、ノードNA1と演算増幅器14の反転入力ノードNIMとの間の抵抗値である。第2調整用抵抗値は、ノードNA2と演算増幅器14の反転入力ノードNIMとの間の抵抗値である。
アンプ回路AM1は反転増幅回路であるが、この反転増幅回路の入力抵抗値は、抵抗R1の抵抗値と第1調整用抵抗値が可算されたものとなる。また反転増幅回路のフィードバック抵抗値は、抵抗R2の抵抗値と第2調整用抵抗値が可算されたものである。反転増幅回路のゲインは、入力抵抗値とフィードバック抵抗値の比で決まる。本実施形態によれば、調整用抵抗回路13が第1調整用抵抗値及び第2調整用抵抗値を調整することで、反転増幅回路の入力抵抗及びフィードバック抵抗値を調整できる。これにより、反転増幅回路のゲインを調整できる。例えば、R2/R1の理想値が1であるとき、プロセスばらつきによって実際にはR2/R1≠1だったとする。第1調整用抵抗値をΔr1とし、第2調整用抵抗値をΔr2とすると、(R2+Δr2)/(R1+Δr1)=1となるようにΔr1、Δr2が設定される。これにより、反転増幅回路のゲインが−1に調整される。
調整用抵抗回路13は各アンプ回路に設けられる。即ち、各アンプ回路の調整用抵抗回路13がゲインを調整することで、アンプ回路間におけるゲインばらつきを低減できる。これにより、アンプ回路間におけるデータ電圧にばらつきが低減されるので、画質が向上する。例えば、高階調であるほどゲインばらつきによるデータ電圧誤差が大きくなる。このため、高階調であるほどゲインばらつきの影響が大きいと考えられる。本実施形態によれば、アンプ回路間におけるゲインばらつきを低減できるので、特に高階調において画質が改善される。
図3に示すように、調整用抵抗回路13は、第1抵抗回路である抵抗回路11と、第2抵抗回路である抵抗回路12とを含む。抵抗回路11は、ノードNA1と演算増幅器14の反転入力ノードNIMとの間に設けられ、第1調整用抵抗値を可変に設定する。即ち抵抗回路11は可変抵抗回路である。抵抗回路11の一端はノードNA1に接続され、他端は反転入力ノードNIMに接続される。抵抗回路12は、ノードNA2と演算増幅器14の反転入力ノードNIMとの間に設けられ、第2調整用抵抗値を可変に設定する。即ち抵抗回路12は可変抵抗回路である。抵抗回路12の一端はノードNA2に接続され、他端は反転入力ノードNIMに接続される。
具体的には、抵抗回路11は、第1〜第n抵抗素子である抵抗素子RR1〜RRnと、第1〜第nスイッチ素子であるスイッチ素子SR1〜SRnとを含む。nは2以上の整数である。抵抗素子RR1〜RRnはノードNA1と演算増幅器14の反転入力ノードNIMとの間に直列に接続される。スイッチ素子SRiは、抵抗素子RRiに対して並列に設けられる。即ちスイッチ素子SRiの一端は抵抗素子RRiの一端に接続され、スイッチ素子SRiの他端は抵抗素子RRiの他端に接続される。iは1以上n以下の整数である。スイッチ素子SR1〜SRnは、例えばトランジスターである。
抵抗回路12は、第n+1〜第m抵抗素子である抵抗素子RRn+1〜RRmと、第n+1〜第mスイッチ素子であるスイッチ素子SRn+1〜SRmとを含む。mはn+2以上の整数である。例えばm=2nである。抵抗素子RRn+1〜RRmはノードNA2と演算増幅器14の反転入力ノードNIMとの間に直列に接続される。スイッチ素子SRjは、抵抗素子RRjに対して並列に設けられる。即ちスイッチ素子SRjの一端は抵抗素子RRjの一端に接続され、スイッチ素子SRjの他端は抵抗素子RRjの他端に接続される。jはn+1以上m以下の整数である。スイッチ素子SRn+1〜SRmは、例えばトランジスターである。
図1で説明したゲイン調整データRSD1は、スイッチ素子SR1〜SRmの各々をオン又はオフに制御するデータである。例えばスイッチ素子SR1がオンであるとき、抵抗素子RR1の両端がスイッチ素子SR1によりショートされる。即ち、スイッチ素子SR1がオフであるときよりも、第1調整用抵抗値が下がる。スイッチ素子SR2〜SRnについても同様である。このようにして、第1調整用抵抗値が可変に設定される。同様に、スイッチ素子SRn+1がオンであるとき、スイッチ素子SRn+1がオフであるときよりも、第2調整用抵抗値が下がる。スイッチ素子SRn+2〜SRmについても同様である。このようにして、第2調整用抵抗値が可変に設定される。
反転増幅回路のサミングノードである反転入力ノードNIMに寄生抵抗及び寄生容量が発生した場合、反転増幅回路の周波数応答特性が低下する。この点、第1実施形態では、抵抗値を調整するスイッチ素子SR1〜SRn、SRn+1〜SRmのうち、反転入力ノードNIMに直接に接続されるスイッチ素子はSRn、SRn+1のみである。このため、調整用抵抗回路13を設けたことによる周波数応答特性への影響が小さい構成となっている。
3.第2実施形態
図4に、第2実施形態におけるアンプ回路AM1の構成例を示す。以下ではアンプ回路AM1を例に説明するが、アンプ回路AM2〜AMtも同様な構成である。なお既に説明した構成要素には同一の符号を付し、その構成要素の説明を適宜に省略する。
アンプ回路AM1は、調整用抵抗回路21と、演算増幅器14と、基準電圧生成回路15と、第1抵抗である抵抗R1と、第2抵抗である抵抗R2と、を含む。調整用抵抗回路21は、ラダー抵抗回路22とセレクター23とを含む。
ラダー抵抗回路22は、第1ノードであるノードNA1と、第2ノードであるノードNA2との間に設けられる。具体的には、ラダー抵抗回路22は、第1〜第p抵抗素子である抵抗素子RRB1〜RRBpを含む。pは2以上の整数である。抵抗素子RRB1〜RRBpは、ノードNA1とノードNA2との間に直列に接続される。
セレクター23は、ラダー抵抗回路22の複数のタップのいずれかを演算増幅器14の反転入力ノードNIMに接続する。タップは、抵抗素子と抵抗素子の間のノードである。具体的には、セレクター23は、第1〜第p+1スイッチ素子であるスイッチ素子SRB1〜SRBp+1を含む。スイッチ素子SRB1の一端は抵抗素子RRB1の一端に接続される。同様に、スイッチ素子SRB2〜SRBpの一端は抵抗素子RRB2〜RRBpの一端に接続される。スイッチ素子SRBp+1の一端は抵抗素子RRBpの他端に接続される。スイッチ素子SRB1〜SRBp+1の他端は、演算増幅器14の反転入力ノードNIMに共通接続される。スイッチ素子SRB1〜SRBp+1は、例えばトランジスターである。
図1で説明したゲイン調整データRSD1は、スイッチ素子SRB1〜SRBp+1のうちいずれか1つをオンにすると共に、残りのスイッチ素子をオフにするデータである。第1調整用抵抗値をΔr1とし、第2調整用抵抗値をΔr2とする。また、スイッチ素子のオン抵抗をゼロと仮定する。例えばスイッチ素子SRB1がオンであるとき、Δr1=0、Δr2=RRB1+RRB2+・・・+RRBpである。スイッチ素子SRB2がオンであるとき、Δr1=RRB1、Δr2=RRB2+RRB3+・・・+RRBpである。このように、いずれのスイッチ素子がオンであるかによって、第1調整用抵抗値と第2調整用抵抗値が可変に設定される。
本実施形態によれば、調整用抵抗回路21が第1調整用抵抗値及び第2調整用抵抗値を調整することで、反転増幅回路の入力抵抗及びフィードバック抵抗値を調整できる。これにより、反転増幅回路のゲインを調整できる。また複数のアンプ回路の各々において、調整用抵抗回路13がゲインを調整することで、アンプ回路間におけるゲインばらつきを低減できる。
4.第3実施形態
図5に、第3実施形態におけるアンプ回路AM1の構成例を示す。以下ではアンプ回路AM1を例に説明するが、アンプ回路AM2〜AMtも同様な構成である。なお既に説明した構成要素には同一の符号を付し、その構成要素の説明を適宜に省略する。
アンプ回路AM1は、調整用抵抗回路31と、演算増幅器14と、基準電圧生成回路15と、第1抵抗である抵抗R1と、第2抵抗である抵抗R2と、を含む。
第1抵抗である抵抗R1は、第1ノードであるノードNC1と演算増幅器14の反転入力ノードNIMとの間に設けられる。即ち、抵抗R1の一端はノードNC1に接続され、抵抗R1の他端は反転入力ノードNIMに接続される。第2抵抗である抵抗R2は、演算増幅器14の反転入力ノードNIMと、演算増幅器14の出力ノードNQとの間に設けられる。即ち、抵抗R2の一端は反転入力ノードNIMに接続され、抵抗R2の他端は出力ノードNQに接続される。
調整用抵抗回路31は、入力ノードNIAとノードNC1との間に設けられる。調整用抵抗回路31は、入力ノードNIAとノードNC1との間の抵抗値を調整することで、アンプ回路AM1の入力抵抗を調整する。具体的には、調整用抵抗回路31は、第1〜第q抵抗素子である抵抗素子RRC1〜RRCqと、第1〜第q+1スイッチ素子であるスイッチ素子SRC1〜SRCq+1とを含む。qは2以上の整数である。
抵抗素子RRC1〜RRCqは、入力ノードNIAとノードNVCとの間に直列に接続される。スイッチ素子SRC1〜SRCq+1は、抵抗素子RRC1〜RRCqのタップのいずれかをノードNC1に接続する。タップは、抵抗素子と抵抗素子の間のノードである。具体的には、スイッチ素子SRC1の一端は抵抗素子RRC1の一端に接続される。同様に、スイッチ素子SRC2〜SRCqの一端は抵抗素子RRC2〜RRCqの一端に接続される。スイッチ素子SRCq+1の一端はノードNVCに接続される。スイッチ素子SRC1〜SRCq+1の他端は、演算増幅器14の反転入力ノードNIMに共通接続される。スイッチ素子SRC1〜SRCq+1は、例えばトランジスターである。
図1で説明したゲイン調整データRSD1は、スイッチ素子SRC1〜SRCq+1のうちいずれか1つをオンにすると共に、残りのスイッチ素子をオフにするデータである。調整用抵抗回路31の抵抗値をΔr1とする。また、スイッチ素子のオン抵抗をゼロと仮定する。例えばスイッチ素子SRC1がオンであるとき、Δr1=0である。スイッチ素子SRC2がオンであるとき、Δr1=RRC1である。このように、いずれのスイッチ素子がオンであるかによって、調整用抵抗回路31の抵抗値が可変に設定される。
本実施形態によれば、調整用抵抗回路31の抵抗値が調整されることで、反転増幅回路の入力抵抗値が調整される。これにより、反転増幅回路のゲインを調整できる。また複数のアンプ回路の各々において、調整用抵抗回路31がゲインを調整することで、アンプ回路間におけるゲインばらつきを低減できる。
5.第4実施形態
図6に、第4実施形態における表示ドライバー100及びアンプ回路AM1の構成例を示す。以下ではアンプ回路AM1に関する構成を例に説明するが、アンプ回路AM2〜AMtに関する構成も同様な構成である。なお既に説明した構成要素には同一の符号を付し、その構成要素の説明を適宜に省略する。
第4実施形態では、アンプ回路AM1は、演算増幅器14と、基準電圧生成回路15と、第1抵抗である抵抗R1と、第2抵抗である抵抗R2と、を含む。抵抗R1は、入力ノードNIAと演算増幅器14の反転入力ノードNIMとの間に設けられる。即ち、抵抗R1の一端は入力ノードNIAに接続され、抵抗R1の他端は演算増幅器14の反転入力ノードNIMに接続される。抵抗R2は、演算増幅器14の反転入力ノードNIMと演算増幅器14の出力ノードNQとの間に設けられる。即ち、抵抗R2の一端は演算増幅器14の反転入力ノードNIMに接続され、抵抗R2の他端は演算増幅器14の出力ノードNQに接続される。アンプ回路AM1のゲインは−R2/R1である。
また第4実施形態では、表示ドライバー100は、表示データDT1に対して演算処理する演算回路16を、更に含む。なお演算回路16は処理回路10に含まれてもよい。
演算回路16には、処理回路10から表示データDT1が入力される。演算回路16は、抵抗R1と抵抗R2の比を補正する演算処理を表示データDT1に対して行うことで、出力データDT1Cを出力する。D/A変換回路DAC1は、演算回路16の出力データDT1Cを階調電圧VIAに変換する。例えばR2/R1の理想値をrtとし、プロセスばらつきによって誤差が生じた実際のR2/R1をΔ×rtとする。演算回路16は、DT1C=DT1×(1/Δ)を演算する。これにより、D/A変換回路DAC1が出力する階調電圧VIAが1/Δ倍されるので、VD1=−(Δ×rt)×(VIA×(1/Δ))=−rt×VIAとなる。即ち、実質的に、反転増幅回路のゲインが理想値rtに調整されたことになる。
具体的には、階調電圧生成回路50は、表示データDT1の階調数に対して例えば2倍の階調数を有する。即ち、階調電圧生成回路50は、電源電圧VRHのノードと電源電圧VRLのノードとの間に直列に接続された抵抗素子RV1〜RV257を含む。階調電圧生成回路50のタップからは、電圧VM128〜VM1、VP1〜VP128が出力される。
表示データDT1のビット数を7とする。このとき表示データDT1は、正極性に64階調、負極性に64階調を有する。演算回路16は、7ビットの表示データDT1に対して演算処理することで、8ビットの出力データDT1Cを出力する。出力データDT1Cは、正極性に128階調、負極性に128階調を有する。
D/A変換回路DAC1は、電圧VM128〜VM1、VP1〜VP128から出力データDT1Cに対応した電圧を選択し、その選択した電圧を階調電圧VIAとしてアンプ回路AM1の入力ノードNIAに出力する。電圧VM128〜VM1は、アンプ回路AM1により反転増幅されることで、負極性のデータ電圧となる。電圧VP1〜VP128は、アンプ回路AM1により反転増幅されることで、正極性のデータ電圧となる。
上述したように、演算回路16はDT1×(1/Δ)を演算することで出力データDT1Cを求める。出力データDT1Cは、表示データDT1に対して2倍の階調数なので、出力データDT1Cに対応したデータ電圧の誤差は0.5階調以下となる。このように、抵抗R1と抵抗R2の比を補正する演算処理を表示データDT1に対して行うことで、反転増幅回路のゲインを実質的に調整できる。
6.キャリブレーション回路
図7は、キャリブレーションを行う場合の表示ドライバー100及びアンプ回路AM1の構成例である。以下ではアンプ回路AM1に関する構成を例に説明するが、アンプ回路AM2〜AMtに関する構成も同様な構成である。また図7では階調電圧生成回路50の図示を省略している。なお既に説明した構成要素には同一の符号を付し、その構成要素の説明を適宜に省略する。
ここでは第1実施形態においてキャリブレーションを行う手法を説明するが、後述するように第2〜第4実施形態においても同様なキャリブレーション手法を実施できる。
図7では、表示ドライバー100がスイッチ素子SWCとキャリブレーション回路17とを更に含む。
スイッチ素子SWCの一端はD/A変換回路DAC1の出力ノードNIBに接続され、スイッチ素子SWCの他端はアンプ回路AM1の入力ノードNIAに接続される。スイッチ素子SWCは、後述するオフセットキャリブレーションにおいて入力ノードNIAをハイインピーダンス状態に設定するためのスイッチ素子である。スイッチ素子SWCは例えばトランジスターで構成される。
キャリブレーション回路17は、アンプ回路AM1の第1調整用抵抗値及び第2調整用抵抗値をキャリブレーションすることで、アンプ回路AM1のゲインキャリブレーションを行う。キャリブレーション回路17は、例えば表示ドライバー100に電源が投入された後の初期化期間においてキャリブレーションを実行する。或いはキャリブレーション回路17は、フレーム間のポーチ期間等、表示ドライバー100が電気光学パネルを駆動しない期間においてキャリブレーションを実行してもよい。
キャリブレーション回路17は、コンパレーターCPとキャリブレーション処理回路18とを含む。キャリブレーション処理回路18は処理回路10に含まれてもよい。
コンパレーターCPは、アンプ回路AM1の出力電圧VQと比較用電圧とを比較し、その比較結果を信号CPQとして出力する。比較用電圧は、コモン電圧VC、又は正極性のキャリブレーション電圧CVP、又は負極性のキャリブレーション電圧VCNである。キャリブレーション処理回路18は、信号CPQに基づいて基準電圧Vref、及び第1調整用抵抗値、第2調整用抵抗値をキャリブレーションし、その結果をレジスター60に記憶させる。アンプ回路AM1が電気光学パネルの画素を駆動する際には、レジスター60に記憶された基準電圧Vrefの設定値、及び第1調整用抵抗値、第2調整用抵抗値により基準電圧Vref、及び第1調整用抵抗値、第2調整用抵抗値が設定される。コンパレーターCP及びキャリブレーション処理回路18は、アンプ回路AM1〜AMtの各々に対して1組ずつ設けられてもよい。或いは、アンプ回路AM1〜AMtに対して共通に1組のコンパレーターCP及びキャリブレーション処理回路18が設けられてもよい。この場合、キャリブレーション回路17は、アンプ回路AM1〜AMtのゲインキャリブレーションを時分割に実行する。
本実施形態によれば、キャリブレーション回路17が、第1調整用抵抗値及び第2調整用抵抗値をキャリブレーションすることで、アンプ回路AM1のゲインをキャリブレーションできる。このキャリブレーションはアンプ回路AM1〜AMtの各々に対して行われる。即ち、アンプ回路AM1〜AMtのゲインばらつきが低減するように、キャリブレーションされる。
以下、キャリブレーションの手順を詳細に説明する。キャリブレーション回路17は、オフセットキャリブレーション、正極性ゲインキャリブレーション、負極性ゲインキャリブレーションの順に実行する。なお正極性ゲインキャリブレーションと負極性ゲインキャリブレーションは順序が入れ替わってもよい。
図8は、オフセットキャリブレーションの手順を示すフローチャートである。ステップS1においてキャリブレーション処理回路18はオフセットキャリブレーションを開始する。
次にステップS2においてキャリブレーション処理回路18は入力ノードNIAをハイインピーダンスに設定する。具体的には、キャリブレーション処理回路18はスイッチ素子SWCをオフにする。これによりアンプ回路AM1は、基準電圧Vrefをバッファリングするボルテージフォロア回路となる。
次にステップS3において、キャリブレーション処理回路18は基準電圧生成回路15に基準電圧Vref=VCを出力させる。VCはコモン電圧、即ち階調のセンター電圧である。
次にステップS4において、キャリブレーション処理回路18はアンプ回路AM1の出力電圧VQがVQ>VCであるか否かを判定する。即ち、コンパレーターCPはVQとVCを比較する。コンパレーターCPは、VQ>VCのとき信号CPQ=Hを出力し、VQ<VCのとき信号CPQ=Lを出力する。H、Lはそれぞれハイレベル、ローレベルである。キャリブレーション処理回路18は、信号CPQに基づいてVQ>VCであるか否かを判定する。
キャリブレーション処理回路18は、ステップS4においてVQ>VCと判定したとき、ステップS5において基準電圧Vrefを1段階下げる。基準電圧生成回路15は例えば抵抗分圧等によって複数の電圧を生成し、そのいずれかを基準電圧Vrefとして選択する。キャリブレーション処理回路18は、基準電圧Vrefとして現在選択されている電圧から1段階下の電圧を、基準電圧生成回路15に選択させる。
次にステップS6において、キャリブレーション処理回路18は、基準電圧Vrefが、設定可能な範囲の下限に達したか否かを判定する。キャリブレーション処理回路18は、基準電圧Vrefが下限に達した場合には、ステップS7においてエラーを出力した後にオフセットキャリブレーションを終了する。キャリブレーション処理回路18は、基準電圧Vrefが下限に達していない場合には、ステップS8においてVQ>VCであるか否かを判定する。
キャリブレーション処理回路18は、ステップS8においてVQ>VCと判定したとき、ステップS5を再び実行する。キャリブレーション処理回路18は、ステップS8においてVQ>VCでないと判定したとき、ステップS9においてオフセットキャリブレーションを終了する。このとき、キャリブレーション処理回路18は、基準電圧Vrefの設定値をレジスター60に記憶させる。
キャリブレーション処理回路18は、ステップS4においてVQ>VCでないと判定したとき、ステップS10において基準電圧Vrefを1段階上げる。即ち、キャリブレーション処理回路18は、基準電圧Vrefとして現在選択されている電圧から1段階上の電圧を、基準電圧生成回路15に選択させる。
次にステップS11において、キャリブレーション処理回路18は、基準電圧Vrefが、設定可能な範囲の上限に達したか否かを判定する。キャリブレーション処理回路18は、基準電圧Vrefが上限に達した場合には、ステップS12においてエラーを出力した後にオフセットキャリブレーションを終了する。キャリブレーション処理回路18は、基準電圧Vrefが上限に達していない場合には、ステップS13においてVQ>VCであるか否かを判定する。
キャリブレーション処理回路18は、ステップS13においてVQ>VCと判定したとき、ステップS14においてオフセットキャリブレーションを終了する。このとき、キャリブレーション処理回路18は、基準電圧Vrefの設定値をレジスター60に記憶させる。キャリブレーション処理回路18は、ステップS13においてVQ>VCでないと判定したとき、ステップS10を再び実行する。
以上のオフセットキャリブレーションを各アンプ回路に対して実行する。例えばキャリブレーション回路17がアンプ回路AM1〜AMtのオフセットキャリブレーションを順に行う場合、ステップS7、S9、S12、S14においてオフセットキャリブレーションを終了した後、次のアンプ回路に対するオフセットキャリブレーションを実行する。
図9は、正極性ゲインキャリブレーションの手順を示すフローチャートである。ステップS21においてキャリブレーション処理回路18は正極性ゲインキャリブレーションを開始する。
次にステップS22においてキャリブレーション処理回路18は入力ノードNIAを正極性のキャリブレーション電圧CVPに設定する。具体的には、キャリブレーション処理回路18はスイッチ素子SWCをオンにする。またキャリブレーション処理回路18は、正極性のキャリブレーションデータCADTをD/A変換回路DAC1に出力する。D/A変換回路DAC1は、CADTをD/A変換することでキャリブレーション電圧CVPを出力する。キャリブレーション電圧CVPは、図3で説明した電圧VP1〜VP64のうち中央電圧、又は最小電圧VP64である。
次にステップS23において、キャリブレーション処理回路18はΔr2/Δr1を中央値に設定する。例えばΔr1とΔr2を各々中央値に設定すると共にΔr2/Δr1=1に設定する。Δr1は第1調整用抵抗値、即ち図3における抵抗回路11の抵抗値である。Δr2は第2調整用抵抗値、即ち図3における抵抗回路12の抵抗値である。
次にステップS24において、キャリブレーション処理回路18は、オフセットキャリブレーションで決定された基準電圧Vrefの設定値をレジスター60から読み出し、その設定値により基準電圧Vrefを設定する。
次にステップS25において、キャリブレーション処理回路18はアンプ回路AM1の出力電圧VQがVQ>CVPであるか否かを判定する。即ち、コンパレーターCPはVQとCVPを比較する。コンパレーターCPは、VQ>CVPのとき信号CPQ=Hを出力し、VQ<CVPのとき信号CPQ=Lを出力する。キャリブレーション処理回路18は、信号CPQに基づいてVQ>CVPであるか否かを判定する。
キャリブレーション処理回路18は、ステップS25においてVQ>CVPと判定したとき、ステップS26においてΔr2/Δr1を1段階下げる。即ち、キャリブレーション処理回路18は、Δr1として現在選択されている抵抗値から1段階上の抵抗値を、調整用抵抗回路13に選択させる。またキャリブレーション処理回路18は、Δr2として現在選択されている抵抗値から1段階下の抵抗値を、調整用抵抗回路13に選択させる。
次にステップS27において、キャリブレーション処理回路18は、Δr2/Δr1が、設定可能な範囲の下限に達したか否かを判定する。キャリブレーション処理回路18は、Δr2/Δr1が下限に達した場合には、ステップS28においてエラーを出力した後に正極性ゲインキャリブレーションを終了する。キャリブレーション処理回路18は、Δr2/Δr1が下限に達していない場合には、ステップS29においてVQ>CVPであるか否かを判定する。
キャリブレーション処理回路18は、ステップS29においてVQ>CVPと判定したとき、ステップS26を再び実行する。キャリブレーション処理回路18は、ステップS29においてVQ>CVPでないと判定したとき、ステップS30において正極性ゲインキャリブレーションを終了する。このとき、キャリブレーション処理回路18は、Δr1とΔr2の設定値をレジスター60に記憶させる。
キャリブレーション処理回路18は、ステップS25においてVQ>CVPでないと判定したとき、ステップS31においてΔr2/Δr1を、設定可能な範囲の上限に設定する。
次にステップS32において、キャリブレーション処理回路18はΔr2/Δr1を1段階下げる。即ち、キャリブレーション処理回路18は、Δr1として現在選択されている抵抗値から1段階上の抵抗値を、調整用抵抗回路13に選択させる。またキャリブレーション処理回路18は、Δr2として現在選択されている抵抗値から1段階下の抵抗値を、調整用抵抗回路13に選択させる。
次にステップS33において、キャリブレーション処理回路18は、Δr2/Δr1が中間値に達したか否かを判定する。ここでの中間値は、例えばステップS23における中間値よりも1段階上である。キャリブレーション処理回路18は、Δr2/Δr1が中間値に達した場合には、ステップS34においてエラーを出力した後に正極性ゲインキャリブレーションを終了する。キャリブレーション処理回路18は、Δr2/Δr1が中間値に達していない場合には、ステップS35においてVQ>CVPであるか否かを判定する。
キャリブレーション処理回路18は、ステップS35においてVQ>CVPと判定したとき、ステップS32を再び実行する。キャリブレーション処理回路18は、ステップS35においてVQ>CVPでないと判定したとき、ステップS36において正極性ゲインキャリブレーションを終了する。このとき、キャリブレーション処理回路18は、Δr1とΔr2の設定値をレジスター60に記憶させる。
図10は、負極性ゲインキャリブレーションの手順を示すフローチャートである。ステップS41においてキャリブレーション処理回路18は負極性ゲインキャリブレーションを開始する。
次にステップS42においてキャリブレーション処理回路18は入力ノードNIAを負極性のキャリブレーション電圧CVNに設定する。具体的には、キャリブレーション処理回路18はスイッチ素子SWCをオンにする。またキャリブレーション処理回路18は、負極性のキャリブレーションデータCADTをD/A変換回路DAC1に出力する。D/A変換回路DAC1は、CADTをD/A変換することでキャリブレーション電圧CVNを出力する。キャリブレーション電圧CVNは、図3で説明した電圧VM1〜VM64のうち中央電圧、又は最大電圧VM64である。
次にステップS43において、キャリブレーション処理回路18はΔr2/Δr1を中央値に設定する。例えばΔr1とΔr2を各々中央値に設定すると共にΔr2/Δr1=1に設定する。
次にステップS44において、キャリブレーション処理回路18は、オフセットキャリブレーションで決定された基準電圧Vrefの設定値をレジスター60から読み出し、その設定値により基準電圧Vrefを設定する。
次にステップS45において、キャリブレーション処理回路18はアンプ回路AM1の出力電圧VQがVQ<CVNであるか否かを判定する。即ち、コンパレーターCPはVQとCVNを比較する。コンパレーターCPは、VQ>CVNのとき信号CPQ=Hを出力し、VQ<CVNのとき信号CPQ=Lを出力する。キャリブレーション処理回路18は、信号CPQに基づいてVQ<CVNであるか否かを判定する。
キャリブレーション処理回路18は、ステップS45においてVQ<CVNと判定したとき、ステップS46においてΔr2/Δr1を1段階下げる。即ち、キャリブレーション処理回路18は、Δr1として現在選択されている抵抗値から1段階上の抵抗値を、調整用抵抗回路13に選択させる。またキャリブレーション処理回路18は、Δr2として現在選択されている抵抗値から1段階下の抵抗値を、調整用抵抗回路13に選択させる。
次にステップS47において、キャリブレーション処理回路18は、Δr2/Δr1が、設定可能な範囲の下限に達したか否かを判定する。キャリブレーション処理回路18は、Δr2/Δr1が下限に達した場合には、ステップS48においてエラーを出力した後に負極性ゲインキャリブレーションを終了する。キャリブレーション処理回路18は、Δr2/Δr1が下限に達していない場合には、ステップS49においてVQ<VCNであるか否かを判定する。
キャリブレーション処理回路18は、ステップS49においてVQ<VCNと判定したとき、ステップS46を再び実行する。キャリブレーション処理回路18は、ステップS49においてVQ<VCNでないと判定したとき、ステップS30において負極性ゲインキャリブレーションを終了する。このとき、キャリブレーション処理回路18は、Δr1とΔr2の設定値をレジスター60に記憶させる。
キャリブレーション処理回路18は、ステップS45においてVQ<VCNでないと判定したとき、ステップS31においてΔr2/Δr1を、設定可能な範囲の上限に設定する。
次にステップS32において、キャリブレーション処理回路18はΔr2/Δr1を1段階下げる。即ち、キャリブレーション処理回路18は、Δr1として現在選択されている抵抗値から1段階上の抵抗値を、調整用抵抗回路13に選択させる。またキャリブレーション処理回路18は、Δr2として現在選択されている抵抗値から1段階下の抵抗値を、調整用抵抗回路13に選択させる。
次にステップS33において、キャリブレーション処理回路18は、Δr2/Δr1が中間値に達したか否かを判定する。ここでの中間値は、例えばステップS23における中間値よりも1段階上である。キャリブレーション処理回路18は、Δr2/Δr1が中間値に達した場合には、ステップS34においてエラーを出力した後に負極性ゲインキャリブレーションを終了する。キャリブレーション処理回路18は、Δr2/Δr1が中間値に達していない場合には、ステップS35においてVQ<VCNであるか否かを判定する。
キャリブレーション処理回路18は、ステップS35においてVQ<VCNと判定したとき、ステップS32を再び実行する。キャリブレーション処理回路18は、ステップS35においてVQ<VCNでないと判定したとき、ステップS36において負極性ゲインキャリブレーションを終了する。このとき、キャリブレーション処理回路18は、Δr1とΔr2の設定値をレジスター60に記憶させる。
以上に説明したように、キャリブレーション回路17は、アンプ回路AM1の出力が階調のセンター電圧となるように、演算増幅器14の非反転入力ノードNIPに入力される基準電圧Vrefを調整することで、アンプ回路AM1のオフセットキャリブレーションを行う。そしてキャリブレーション回路17は、入力ノードNIAに所定電圧を入力した状態で、第1調整用抵抗値Δr1及び第2調整用抵抗値Δr2を調整することで、アンプ回路AM1のゲインキャリブレーションを行う。センター電圧はコモン電圧VCである。また所定電圧は、キャリブレーション電圧CVP、CVNである。
このようにすれば、アンプ回路AM1のオフセットがキャリブレーションされた後に、アンプ回路AM1のゲインをキャリブレーションできる。これにより、アンプ回路AM1のゲインが正確にキャリブレーションされる。同様に、アンプ回路AM2〜AMtのゲインが正確にキャリブレーションされる。これにより、複数のアンプ回路におけるゲインばらつきが正確にキャリブレーションされる。
また本実施形態では、キャリブレーション回路17は、入力ノードNIAがハイインピーダンスとなった状態で、アンプ回路AM1の出力がセンター電圧となるように基準電圧Vrefを調整することで、オフセットキャリブレーションを行う。
このようにすれば、入力ノードNIAがハイインピーダンスに設定されることで、アンプ回路AM1がボルテージフォロア回路の構成となる。このとき、アンプ回路AM1の出力は、基準電圧Vrefにオフセット電圧が加算された電圧である。このアンプ回路AM1の出力がセンター電圧となるように基準電圧Vrefが調整されることで、アンプ回路AM1のオフセットがキャンセルされる。
また本実施形態では、キャリブレーション回路17は、正極性駆動用の第1調整用抵抗値Δr1及び第2調整用抵抗値Δr2を決定する正極性ゲインキャリブレーションと、負極性駆動用の第1調整用抵抗値Δr1及び第2調整用抵抗値Δr2を決定する負極性ゲインキャリブレーションと、を行う。
このようにすれば、正極性駆動におけるゲインと、負極性駆動におけるゲインとが、各々正確にキャリブレーションされる。演算増幅器14及び抵抗R1、R2の特性によって、正極性駆動と負極性駆動とでゲイン誤差が異なる可能性があるが、本実施形態では、それらが各々正確にキャリブレーションされる。
また図1で説明したように、表示ドライバー100は、第2D/A変換回路であるD/A変換回路DAC2と、第2アンプ回路であるアンプ回路AM2とを含む。D/A変換回路DAC2は、第2表示データである表示データDT2を、第2階調電圧に変換する。アンプ回路AM2の入力ノードを第2入力ノードとする。第2入力ノードには第2階調電圧が入力され、アンプ回路AM2は、第2データ電圧であるデータ電圧VD2を出力する。
アンプ回路AM2は、図3のアンプ回路AM1と同様な構成である。具体的には、アンプ回路AM2は、第2演算増幅器と第3抵抗と第4抵抗と第2調整用抵抗回路とを含む。第2演算増幅器の非反転入力ノードを第2非反転入力ノードとする。第2非反転入力ノードには第2基準電圧が入力される。第3抵抗は、第2入力ノードと、第3ノードとの間に設けられる。第2演算増幅器の出力ノードを第2出力ノードとする。第4抵抗は、第4ノードと第2出力ノードとの間に設けられる。第2演算増幅器の反転入力ノードを第2反転入力ノードとする。第2調整用抵抗回路は、第3ノードと第2反転入力ノードとの間の第3調整用抵抗値、及び第4ノードと第2反転入力ノードとの間の第4調整用抵抗値を、調整する。
キャリブレーション回路17は、アンプ回路AM1とアンプ回路AM2が同一ゲインとなるように、ゲインキャリブレーションを行う。即ち、アンプ回路AM1とアンプ回路AM2が同一ゲインとなるように、第1〜第4調整用抵抗値を決定する。
このようにすれば、プロセスばらつきによってアンプ回路AM1とアンプ回路AM2のゲインが異なる場合であっても、それらが同一ゲインとなるようにゲインキャリブレーションされる。これにより、アンプ回路AM1が出力するデータ電圧と、アンプ回路AM2が出力するデータ電圧との間の誤差が、低減される。
なお、ここではアンプ回路AM1、AM2間のゲインキャリブレーションを例に説明したが、キャリブレーション回路17はアンプ回路AM1〜AMtのうち任意の2つのアンプ回路が同一ゲインとなるように、ゲインキャリブレーションを行う。より具体的には、キャリブレーション回路17は、アンプ回路AM1〜AMtが同一ゲインとなるように、ゲインキャリブレーションを行う。
以上では第1実施形態にキャリブレーションを適用した場合を説明したが、第2〜第4実施形態にも同様のキャリブレーション手法を適用できる。以下、第1実施形態にキャリブレーションを適用した場合と異なる部分を主に説明する。
第2実施形態にキャリブレーション手法を適用した場合、キャリブレーション回路17は、図4で説明した調整用抵抗回路21の第1調整用抵抗値Δr1及び第2調整用抵抗値Δr2を調整することで、ゲインキャリブレーションを行う。
即ち、図9のステップS26、S32と図10のステップS46、S52において、キャリブレーション回路17は、選択されているスイッチ素子を1つ移動させることで、Δr2/Δr1を1段階下げる。例えばスイッチ素子SRB1〜SRBp+1のうちSRB2が選択されているとき、キャリブレーション回路17は、調整用抵抗回路21にSRB3を選択させる。これにより、Δr1がRRB1からRRB1+RRB2に増加し、Δr2がRRB2+・・・+RRBp+1からRRB3+・・・+RRBp+1に減少する。即ち、Δr2/Δr1が減少する。
第3実施形態にキャリブレーション手法を適用した場合、キャリブレーション回路17は、図5で説明した調整用抵抗回路31の抵抗値を調整することで、ゲインキャリブレーションを行う。
即ち、図9のステップS23と図10のステップS43において、キャリブレーション回路17は、調整用抵抗回路31の抵抗値を中央値に設定する。また図9のS31と図10のS51において、キャリブレーション回路17は、調整用抵抗回路31の抵抗値を、設定可能な範囲の下限に設定する。また図9のステップS26、S32と図10のステップS46、S52において、キャリブレーション回路17は、選択されているスイッチ素子を1つ移動させることで、調整用抵抗回路31の抵抗値を1段階上げる。例えばスイッチ素子SRC1〜SRCq+1のうちSRC2が選択されているとき、キャリブレーション回路17は、調整用抵抗回路31にSRC3を選択させる。これにより、調整用抵抗回路31の抵抗値がRRC1からRRC1+RRC2に増加する。
第4実施形態にキャリブレーション手法を適用した場合、キャリブレーション回路17は、図6で説明した演算回路16が行う演算処理を決定することで、アンプ回路AM1のゲインキャリブレーションを行う。このとき、キャリブレーション回路17は、抵抗R1と抵抗R2の比がキャリブレーションされるように、演算処理を決定する。
上述したように、プロセスばらつきによって誤差が生じた実際のR2/R1をΔ×rtとしたとき、演算回路16は、DT1C=DT1×(1/Δ)を演算する。即ち、1/Δが決定されることで、演算処理が決定されることになる。図9のステップS23と図10のステップS43において、キャリブレーション回路17は、1/Δを中央値に設定する。例えば1/Δ=1に設定する。また図9のS31と図10のS51において、キャリブレーション回路17は、1/Δを、設定可能な範囲の上限に設定する。また図9のステップS26、S32と図10のステップS46、S52において、キャリブレーション回路17は、1/Δを1段階下げる。例えば演算回路16は1/Δを離散的な複数の値に設定可能である。このとき、キャリブレーション回路17は、1/Δとして現在選択されている値から1つ下の値を、演算回路16に選択させる。
7.電気光学装置、電子機器
図11は、表示ドライバー100を含む電気光学装置350の構成例である。電気光学装置350は、表示ドライバー100、電気光学パネル200を含む。
電気光学パネル200は、例えばアクティブマトリックス型の液晶表示パネルである。例えば表示ドライバー100はフレキシブル基板に実装され、そのフレキシブル基板が電気光学パネル200に接続され、フレキシブル基板に形成された配線によって表示ドライバー100のデータ電圧出力端子と電気光学パネル200のデータ電圧入力端子とが接続される。或いは、表示ドライバー100はリジッド基板に実装され、リジッド基板と電気光学パネル200とがフレキシブル基板により接続され、リジッド基板及びフレキシブル基板に形成された配線によって表示ドライバー100のデータ電圧出力端子と電気光学パネル200のデータ電圧入力端子とが接続されてもよい。
図12は、表示ドライバー100を含む電子機器300の構成例である。電子機器300は、処理装置310、表示コントローラー320、表示ドライバー100、電気光学パネル200、記憶部330、通信部340、操作部360を含む。記憶部330は記憶装置又はメモリーとも呼ぶ。通信部340は通信回路又は通信装置とも呼ぶ。操作部360は操作装置とも呼ぶ。電子機器300の具体例としては、例えばプロジェクターやヘッドマウントディスプレイ、携帯情報端末、車載装置、携帯型ゲーム端末、情報処理装置等の、表示装置を搭載する種々の電子機器を想定できる。車載装置は、例えばメーターパネル、カーナビゲーションシステム等である。
操作部360は、ユーザーからの種々の操作を受け付けるユーザーインターフェースである。例えば、ボタンやマウスやキーボード、電気光学パネル200に装着されたタッチパネル等である。通信部340は、画像データや制御データの入出力を行うデータインターフェースである。通信部340は、例えば無線LANや近距離無線通信等の無線通信インターフェース、或いは有線LANやUSB等の有線通信インターフェースである。記憶部330は、例えば通信部340から入力されたデータを記憶したり、或いは、処理装置310のワーキングメモリーとして機能したりする。記憶部330は、例えばRAMやROM等のメモリー、或いはHDD等の磁気記憶装置、或いはCDドライブ、DVDドライブ等の光学記憶装置等である。表示コントローラー320は、通信部340から入力された或いは記憶部330に記憶された画像データを処理して表示ドライバー100に転送する。表示ドライバー100は、表示コントローラー320から転送された画像データに基づいて電気光学パネル200に画像を表示させる。処理装置310は、電子機器300の制御処理及び、種々の信号処理等を行う。処理装置310は、例えばCPUやMPU等のプロセッサー、或いはASIC等である。
例えば電子機器300がプロジェクターである場合、電子機器300は更に光源と光学系とを含む。光学系は、例えばレンズ、プリズム、ミラー等である。電気光学パネル200が透過型である場合、光学装置が光源からの光を電気光学パネル200に入射させ、電気光学パネル200を透過した光をスクリーンに投影させる。電気光学パネル200が反射型である場合、光学装置が光源からの光を電気光学パネル200に入射させ、電気光学パネル200から反射された光をスクリーンに投影させる。
以上の実施形態で説明した表示ドライバーは、表示データを階調電圧に変換するD/A変換回路と、アンプ回路とを含む。アンプ回路の入力ノードに階調電圧が入力され、アンプ回路はデータ電圧を出力する。アンプ回路は、演算増幅器と、第1抵抗と、第2抵抗と、調整用抵抗回路とを有する。演算増幅器の非反転入力ノードに基準電圧が入力される。第1抵抗は、入力ノードと、第1ノードとの間に設けられる。第2抵抗は、第2ノードと、演算増幅器の出力ノードとの間に設けられる。調整用抵抗回路は、第1ノードと演算増幅器の反転入力ノードとの間の抵抗値である第1調整用抵抗値、及び第2ノードと演算増幅器の反転入力ノードとの間の抵抗値である第2調整用抵抗値を、調整する。
このようにすれば、調整用抵抗回路が第1調整用抵抗値及び第2調整用抵抗値を調整することで、反転増幅回路であるアンプ回路の入力抵抗及びフィードバック抵抗値を、調整できる。これにより、アンプ回路のゲインを調整できる。そして、このゲイン調整が複数のアンプ回路の各々において行われることで、アンプ回路間のゲインばらつきが低減される。
また本実施形態では、調整用抵抗回路は、第1抵抗回路と第2抵抗回路とを有してもよい。第1抵抗回路は、第1ノードと演算増幅器の反転入力ノードとの間に設けられ、第1調整用抵抗値を可変に設定してもよい。第2抵抗回路は、第2ノードと演算増幅器の反転入力ノードとの間に設けられ、第2調整用抵抗値を可変に設定してもよい。
このようにすれば、第1抵抗回路の抵抗値である第1調整用抵抗値と、第2抵抗回路の抵抗値である第2調整用抵抗値とが、可変に設定可能となる。これにより、第1調整用抵抗値及び第2調整用抵抗値が調整可能となるので、アンプ回路のゲインが調整できるようになる。
また本実施形態では、第1抵抗回路は、第1〜第n抵抗素子(nは2以上の整数)と、第1〜第nスイッチ素子と、を有してもよい。第1〜第n抵抗素子は、第1ノードと演算増幅器の反転入力ノードとの間に直列に接続されてもよい。第1〜第nスイッチ素子の第iスイッチ素子(iは1以上n以下の整数)は、第1〜第n抵抗素子の第i抵抗素子に対して並列に設けられてもよい。第2抵抗回路は、第n+1〜第mの抵抗素子(mはn+2以上の整数)と、第n+1〜第mスイッチ素子と、を有してもよい。第n+1〜第mの抵抗素子は、第2ノードと演算増幅器の反転入力ノードとの間に直列に接続されてもよい。第n+1〜第mスイッチ素子の第jスイッチ素子(jはn+1以上m以下の整数)は、第n+1〜第m抵抗素子の第j抵抗素子に対して並列に設けられてもよい。
このようにすれば、第1〜第nスイッチ素子の各々がオン又はオフに制御されることで、第1抵抗回路の抵抗値である第1調整用抵抗値が可変に設定される。また第n+1〜第mスイッチ素子の各々がオン又はオフに制御されることで、第2抵抗回路の抵抗値である第2調整用抵抗値が可変に設定される。
また本実施形態では、調整用抵抗回路は、第1ノードと第2ノードとの間に設けられたラダー抵抗回路と、ラダー抵抗回路の複数のタップのいずれかを演算増幅器の反転入力ノードに接続するセレクターと、を有してもよい。
このようにすれば、セレクターが、ラダー抵抗回路の複数のタップのいずれかを演算増幅器の反転入力ノードに接続することで、第1調整用抵抗値及び第2調整用抵抗値を可変に設定できる。
また本実施形態では、表示ドライバーはキャリブレーション回路を含んでもよい。キャリブレーション回路は、第1調整用抵抗値及び第2調整用抵抗値をキャリブレーションすることで、アンプ回路のゲインキャリブレーションを行ってもよい。
このようにすれば、キャリブレーション回路が第1調整用抵抗値及び第2調整用抵抗値をキャリブレーションすることで、アンプ回路のゲインをキャリブレーションできる。そして、このキャリブレーションが各アンプ回路で行われることで、アンプ回路間のゲインばらつきが低減される。
また本実施形態では、キャリブレーション回路は、アンプ回路の出力が階調のセンター電圧となるように、演算増幅器の非反転入力ノードに入力される基準電圧を調整することで、アンプ回路のオフセットキャリブレーションを行ってもよい。そしてキャリブレーション回路は、入力ノードに所定電圧を入力した状態で、第1調整用抵抗値及び第2調整用抵抗値を調整することで、ゲインキャリブレーションを行ってもよい。
このようにすれば、アンプ回路のオフセットがキャリブレーションされた後に、アンプ回路のゲインがキャリブレーションされる。これにより、アンプ回路のゲインが正確にキャリブレーションされる。このオフセットキャリブレーション及びゲインキャリブレーションが各アンプ回路で行われることで、アンプ回路間のゲインばらつきが正確にキャリブレーションされる。
また本実施形態では、キャリブレーション回路は、入力ノードがハイインピーダンスとなった状態で、アンプ回路の出力がセンター電圧となるように基準電圧を調整することで、オフセットキャリブレーションを行ってもよい。
入力ノードがハイインピーダンスに設定されることで、アンプ回路がボルテージフォロア回路の構成となる。このとき、アンプ回路の出力がセンター電圧となるように基準電圧が調整されることで、アンプ回路のオフセットがキャンセルされる。
また本実施形態では、キャリブレーション回路は、正極性駆動用の第1調整用抵抗値及び第2調整用抵抗値を決定する正極性ゲインキャリブレーションと、負極性駆動用の第1調整用抵抗値及び第2調整用抵抗値を決定する負極性ゲインキャリブレーションと、を行ってもよい。
このようにすれば、正極性駆動におけるゲインと、負極性駆動におけるゲインとが、各々正確にキャリブレーションされる。演算増幅器及び第1抵抗、第2抵抗の特性によって、正極性駆動と負極性駆動とでゲイン誤差が異なる可能性があるが、本実施形態では、それらが各々正確にキャリブレーションされる。
また本実施形態では、表示ドライバーは、第2D/A変換回路と第2アンプ回路とを含んでもよい。第2D/A変換回路は、第2表示データを第2階調電圧に変換してもよい。第2アンプ回路は、第2入力ノードに第2階調電圧が入力され、第2データ電圧を出力してもよい。第2アンプ回路は、第2演算増幅器と第3抵抗と第4抵抗と第2調整用抵抗回路とを有してもよい。第2演算増幅器の第2非反転入力ノードに第2基準電圧が入力されてもよい。第3抵抗は、第2入力ノードと、第3ノードとの間に設けられてもよい。第4抵抗は、第4ノードと、第2演算増幅器の第2出力ノードとの間に設けられてもよい。第3調整用抵抗回路は、第3ノードと第2演算増幅器の第2反転入力ノードとの間の第3調整用抵抗値、及び第4ノードと第2演算増幅器の第2反転入力ノードとの間の第4調整用抵抗値を、調整してもよい。キャリブレーション回路は、アンプ回路と第2アンプ回路が同一ゲインとなるようにゲインキャリブレーションを行ってもよい。
このようにすれば、プロセスばらつきによってアンプ回路と第2アンプ回路のゲインが異なる場合であっても、それらが同一ゲインとなるようにゲインキャリブレーションされる。これにより、アンプ回路が出力するデータ電圧と、第2アンプ回路が出力するデータ電圧との間の誤差が、低減される。
また以上の実施形態で説明した表示ドライバーは、D/A変換回路とアンプ回路とを含む。D/A変換回路は、表示データを階調電圧に変換する。アンプ回路の入力ノードに階調電圧が入力され、アンプ回路はデータ電圧を出力する。アンプ回路は、演算増幅器と第1抵抗と第2抵抗と調整用抵抗回路とを有する。演算増幅器の非反転入力ノードに基準電圧が入力される。第1抵抗は、第1ノードと演算増幅器の反転入力ノードとの間に設けられる。第2抵抗は、演算増幅器の反転入力ノードと演算増幅器の出力ノードとの間に設けられる。調整用抵抗回路は、入力ノードと第1ノードとの間に設けられ、入力ノードと第1ノードとの間の抵抗値を調整する。
このようにすれば、調整用抵抗回路が入力ノードと第1ノードとの間の抵抗値を調整することで、反転増幅回路であるアンプ回路の入力抵抗値を、調整できる。これにより、アンプ回路のゲインが調整される。そして、このゲイン調整が複数のアンプ回路の各々において行われることで、アンプ回路間のゲインばらつきが低減される。
また本実施形態では、表示ドライバーはキャリブレーション回路を含んでもよい。キャリブレーション回路は、調整用抵抗回路の抵抗値をキャリブレーションすることで、アンプ回路のゲインキャリブレーションを行ってもよい。
このようにすれば、キャリブレーション回路が調整用抵抗回路の抵抗値をキャリブレーションすることで、アンプ回路のゲインをキャリブレーションできる。そして、このキャリブレーションが各アンプ回路で行われることで、アンプ回路間のゲインばらつきが低減される。
また本実施形態では、キャリブレーション回路は、正極性駆動における調整用抵抗回路の抵抗値を決定する正極性ゲインキャリブレーションと、負極性駆動における調整用抵抗回路の抵抗値を決定する負極性ゲインキャリブレーションと、を行ってもよい。
このようにすれば、正極性駆動におけるゲインと、負極性駆動におけるゲインとが、各々正確にキャリブレーションされる。演算増幅器及び第1抵抗、第2抵抗の特性によって、正極性駆動と負極性駆動とでゲイン誤差が異なる可能性があるが、本実施形態では、それらが各々正確にキャリブレーションされる。
また以上の実施形態で説明した表示ドライバーは、演算回路とD/A変換回路とアンプ回路とを含む。演算回路は、表示データに対して演算処理する。D/A変換回路は、演算回路の出力データを階調電圧に変換する。アンプ回路の入力ノードに階調電圧が入力され、アンプ回路はデータ電圧を出力する。アンプ回路は、演算増幅器と第1抵抗と第2抵抗とを有する。演算増幅器の非反転入力ノードに基準電圧が入力される。第1抵抗は、入力ノードと演算増幅器の反転入力ノードとの間に設けられる。第2抵抗は、演算増幅器の反転入力ノードと演算増幅器の出力ノードとの間に設けられる。
このようにすれば、第1抵抗と第2抵抗の比を補正する演算処理が表示データDT1に対して行われることで、反転増幅回路のゲインが実質的に調整される。そして、このゲイン調整が複数のアンプ回路の各々において行われることで、アンプ回路間のゲインばらつきが低減される。
また本実施形態では、表示ドライバーはキャリブレーション回路を含んでもよい。キャリブレーション回路は、第1抵抗と第2抵抗の比がキャリブレーションされるように演算処理を決定することで、アンプ回路のゲインキャリブレーションを行ってもよい。
このようにすれば、キャリブレーション回路が、第1抵抗と第2抵抗の比がキャリブレーションされるように演算処理を決定することで、アンプ回路のゲインが実質的にキャリブレーションされる。そして、このキャリブレーションが各アンプ回路で行われることで、アンプ回路間のゲインばらつきが低減される。
また本実施形態では、キャリブレーション回路は、正極性駆動における演算処理を決定する正極性ゲインキャリブレーションと、負極性駆動における演算処理を決定する負極性ゲインキャリブレーションと、を行ってもよい。
このようにすれば、正極性駆動におけるゲインと、負極性駆動におけるゲインとが、各々正確にキャリブレーションされる。演算増幅器及び第1抵抗、第2抵抗の特性によって、正極性駆動と負極性駆動とでゲイン誤差が異なる可能性があるが、本実施形態では、それらが各々正確にキャリブレーションされる。
また以上の実施形態で説明した電気光学装置は、電気光学パネルと、上記に記載された表示ドライバーとを含む。表示ドライバーは、電気光学パネルを駆動する。
また以上の実施形態で説明した電子機器は、上記に記載された表示ドライバーを含む。
なお、上記のように本実施形態について詳細に説明したが、本開示の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本開示の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本開示の範囲に含まれる。また表示ドライバー、電気光学パネル、電気光学装置及び電子機器等の構成及び動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。
10…処理回路、11,12…抵抗回路、13…調整用抵抗回路、14…演算増幅器、15…基準電圧生成回路、16…演算回路、17…キャリブレーション回路、18…キャリブレーション処理回路、21…調整用抵抗回路、22…ラダー抵抗回路、23…セレクター、31…調整用抵抗回路、50…階調電圧生成回路、60…レジスター、100…表示ドライバー、200…電気光学パネル、300…電子機器、310…処理装置、320…表示コントローラー、330…記憶部、340…通信部、350…電気光学装置、360…操作部、AM1〜AMt、DAC1〜DACt、DT1〜DTt…表示データ、NIA…入力ノード、NIM…反転入力ノード、NIP…非反転入力ノード、NQ…出力ノード、R1,R2…抵抗、TD1〜TDt…データ電圧出力端子、VD1〜VDt…データ電圧、VIA…階調電圧、Vref…基準電圧

Claims (17)

  1. 表示データを階調電圧に変換するD/A変換回路と、
    入力ノードに前記階調電圧が入力され、データ電圧を出力するアンプ回路と、
    を含み、
    前記アンプ回路は、
    非反転入力ノードに基準電圧が入力される演算増幅器と、
    前記入力ノードと、第1ノードとの間に設けられる第1抵抗と、
    第2ノードと、前記演算増幅器の出力ノードとの間に設けられる第2抵抗と、
    前記第1ノードと前記演算増幅器の反転入力ノードとの間の抵抗値である第1調整用抵抗値、及び前記第2ノードと前記演算増幅器の前記反転入力ノードとの間の抵抗値である第2調整用抵抗値を、調整する調整用抵抗回路と、
    を有することを特徴とする表示ドライバー。
  2. 請求項1に記載の表示ドライバーにおいて、
    前記調整用抵抗回路は、
    前記第1ノードと前記演算増幅器の前記反転入力ノードとの間に設けられ、前記第1調整用抵抗値を可変に設定する第1抵抗回路と、
    前記第2ノードと前記演算増幅器の前記反転入力ノードとの間に設けられ、前記第2調整用抵抗値を可変に設定する第2抵抗回路と、
    を有することを特徴とする表示ドライバー。
  3. 請求項2に記載の表示ドライバーにおいて、
    前記第1抵抗回路は、
    前記第1ノードと前記演算増幅器の前記反転入力ノードとの間に直列に接続される第1〜第n抵抗素子(nは2以上の整数)と、
    第iスイッチ素子(iは1以上n以下の整数)が、前記第1〜第n抵抗素子の第i抵抗素子に対して並列に設けられる第1〜第nスイッチ素子と、
    を有し、
    第2抵抗回路は、
    前記第2ノードと前記演算増幅器の前記反転入力ノードとの間に直列に接続される第n+1〜第mの抵抗素子(mはn+2以上の整数)と、
    第jスイッチ素子(jはn+1以上m以下の整数)が、第n+1〜第m抵抗素子の第j抵抗素子に対して並列に設けられる第n+1〜第mスイッチ素子と、
    を有することを特徴とする表示ドライバー。
  4. 請求項1に記載の表示ドライバーにおいて、
    前記調整用抵抗回路は、
    前記第1ノードと前記第2ノードとの間に設けられたラダー抵抗回路と、
    前記ラダー抵抗回路の複数のタップのいずれかを前記演算増幅器の前記反転入力ノードに接続するセレクターと、
    を有することを特徴とする表示ドライバー。
  5. 請求項1乃至4のいずれか一項に記載の表示ドライバーにおいて、
    前記第1調整用抵抗値及び前記第2調整用抵抗値をキャリブレーションすることで、前記アンプ回路のゲインキャリブレーションを行うキャリブレーション回路を含むことを特徴とする表示ドライバー。
  6. 請求項5に記載の表示ドライバーにおいて、
    前記キャリブレーション回路は、
    前記アンプ回路の出力が階調のセンター電圧となるように、前記演算増幅器の前記非反転入力ノードに入力される前記基準電圧を調整することで、前記アンプ回路のオフセットキャリブレーションを行い、
    前記入力ノードに所定電圧を入力した状態で、前記第1調整用抵抗値及び前記第2調整用抵抗値を調整することで、前記ゲインキャリブレーションを行うことを特徴とする表示ドライバー。
  7. 請求項6に記載の表示ドライバーにおいて、
    前記キャリブレーション回路は、
    前記入力ノードがハイインピーダンスとなった状態で、前記アンプ回路の出力が前記センター電圧となるように前記基準電圧を調整することで、前記オフセットキャリブレーションを行うことを特徴とする表示ドライバー。
  8. 請求項5乃至7のいずれか一項に記載の表示ドライバーにおいて、
    前記キャリブレーション回路は、
    正極性駆動用の前記第1調整用抵抗値及び前記第2調整用抵抗値を決定する正極性ゲインキャリブレーションと、負極性駆動用の前記第1調整用抵抗値及び前記第2調整用抵抗値を決定する負極性ゲインキャリブレーションと、を行うことを特徴とする表示ドライバー。
  9. 請求項5乃至8のいずれか一項に記載の表示ドライバーにおいて、
    第2表示データを第2階調電圧に変換する第2D/A変換回路と、
    第2入力ノードに前記第2階調電圧が入力され、第2データ電圧を出力する第2アンプ回路と、
    を含み、
    前記第2アンプ回路は、
    第2非反転入力ノードに第2基準電圧が入力される第2演算増幅器と、
    前記第2入力ノードと、第3ノードとの間に設けられる第3抵抗と、
    第4ノードと、前記第2演算増幅器の第2出力ノードとの間に設けられる第4抵抗と、
    前記第3ノードと前記第2演算増幅器の第2反転入力ノードとの間の第3調整用抵抗値、及び前記第4ノードと前記第2演算増幅器の前記第2反転入力ノードとの間の第4調整用抵抗値を、調整する第2調整用抵抗回路と、
    を有し、
    前記キャリブレーション回路は、前記アンプ回路と前記第2アンプ回路が同一ゲインとなるように前記ゲインキャリブレーションを行うことを特徴とする表示ドライバー。
  10. 表示データを階調電圧に変換するD/A変換回路と、
    入力ノードに前記階調電圧が入力され、データ電圧を出力するアンプ回路と、
    を含み、
    前記アンプ回路は、
    非反転入力ノードに基準電圧が入力される演算増幅器と、
    第1ノードと前記演算増幅器の反転入力ノードとの間に設けられる第1抵抗と、
    前記演算増幅器の前記反転入力ノードと前記演算増幅器の出力ノードとの間に設けられる第2抵抗と、
    前記入力ノードと前記第1ノードとの間に設けられ、前記入力ノードと前記第1ノードとの間の抵抗値を調整する調整用抵抗回路と、
    を含むことを特徴とする表示ドライバー。
  11. 請求項10に記載の表示ドライバーにおいて、
    前記調整用抵抗回路の前記抵抗値をキャリブレーションすることで、前記アンプ回路のゲインキャリブレーションを行うキャリブレーション回路を含むことを特徴とする表示ドライバー。
  12. 請求項11に記載の表示ドライバーにおいて、
    前記キャリブレーション回路は、
    正極性駆動における前記調整用抵抗回路の前記抵抗値を決定する正極性ゲインキャリブレーションと、負極性駆動における前記調整用抵抗回路の前記抵抗値を決定する負極性ゲインキャリブレーションと、を行うことを特徴とする表示ドライバー。
  13. 表示データに対して演算処理する演算回路と、
    前記演算回路の出力データを階調電圧に変換するD/A変換回路と、
    入力ノードに前記階調電圧が入力され、データ電圧を出力するアンプ回路と、
    を含み、
    前記アンプ回路は、
    非反転入力ノードに基準電圧が入力される演算増幅器と、
    前記入力ノードと前記演算増幅器の反転入力ノードとの間に設けられる第1抵抗と、
    前記演算増幅器の前記反転入力ノードと前記演算増幅器の出力ノードとの間に設けられる第2抵抗と、
    を有し、
    前記演算回路は、
    前記第1抵抗と前記第2抵抗の比を補正する前記演算処理を前記表示データに対して行うことで、前記出力データを出力することを特徴とする表示ドライバー。
  14. 請求項13に記載の表示ドライバーにおいて、
    前記第1抵抗と前記第2抵抗の前記比がキャリブレーションされるように前記演算処理を決定することで、前記アンプ回路のゲインキャリブレーションを行うキャリブレーション回路を含むことを特徴とする表示ドライバー。
  15. 請求項14に記載の表示ドライバーにおいて、
    前記キャリブレーション回路は、
    正極性駆動における前記演算処理を決定する正極性ゲインキャリブレーションと、負極性駆動における前記演算処理を決定する負極性ゲインキャリブレーションと、を行うことを特徴とする表示ドライバー。
  16. 電気光学パネルと、
    請求項1乃至15のいずれか一項に記載され、前記電気光学パネルを駆動する表示ドライバーと、
    を含むことを特徴とする電気光学装置。
  17. 請求項1乃至15のいずれか一項に記載の表示ドライバーを含むことを特徴とする電子機器。
JP2018231291A 2018-12-11 2018-12-11 表示ドライバー、電気光学装置及び電子機器 Active JP6729670B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018231291A JP6729670B2 (ja) 2018-12-11 2018-12-11 表示ドライバー、電気光学装置及び電子機器
US16/708,535 US10937382B2 (en) 2018-12-11 2019-12-10 Display driver, electro-optical device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231291A JP6729670B2 (ja) 2018-12-11 2018-12-11 表示ドライバー、電気光学装置及び電子機器

Publications (2)

Publication Number Publication Date
JP2020095100A JP2020095100A (ja) 2020-06-18
JP6729670B2 true JP6729670B2 (ja) 2020-07-22

Family

ID=70971831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231291A Active JP6729670B2 (ja) 2018-12-11 2018-12-11 表示ドライバー、電気光学装置及び電子機器

Country Status (2)

Country Link
US (1) US10937382B2 (ja)
JP (1) JP6729670B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11012079B1 (en) * 2019-12-19 2021-05-18 Bae Systems Information And Electronic Systems Integration Inc. Continuous tuning of digitally switched voltage-controlled oscillator frequency bands
JP2023034746A (ja) * 2021-08-31 2023-03-13 セイコーエプソン株式会社 表示ドライバー及び表示モジュール

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739805A (en) * 1994-12-15 1998-04-14 David Sarnoff Research Center, Inc. Matrix addressed LCD display having LCD age indication, and autocalibrated amplification driver, and a cascaded column driver with capacitor-DAC operating on split groups of data bits
JP3367808B2 (ja) * 1995-06-19 2003-01-20 シャープ株式会社 表示パネルの駆動方法および装置
US6452526B2 (en) * 1997-06-30 2002-09-17 Seiko Epson Corporation Video signal processing circuit, video display and electronic equipment both using the circuit, and method of adjusting output of digital-analog converters
JPH11175027A (ja) * 1997-12-08 1999-07-02 Hitachi Ltd 液晶駆動回路および液晶表示装置
JP3813463B2 (ja) * 2000-07-24 2006-08-23 シャープ株式会社 液晶表示装置の駆動回路及びそれを用いた液晶表示装置並びにその液晶表示装置を用いた電子機器
JP4766760B2 (ja) * 2001-03-06 2011-09-07 ルネサスエレクトロニクス株式会社 液晶駆動装置
JP3661651B2 (ja) * 2002-02-08 2005-06-15 セイコーエプソン株式会社 基準電圧発生回路、表示駆動回路及び表示装置
TWI235988B (en) * 2004-03-29 2005-07-11 Novatek Microelectronics Corp Driving circuit of liquid crystal display
TW200601259A (en) * 2004-06-28 2006-01-01 Rohm Co Ltd Color display device and semiconductor device for the same
KR100674924B1 (ko) * 2004-12-03 2007-01-26 삼성전자주식회사 커패시터 dac를 이용하여 비선형 감마 특성을 구현하는감마 보정 장치 및 그 감마 보정 방법
US10013907B2 (en) * 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
JP4442455B2 (ja) * 2005-02-17 2010-03-31 セイコーエプソン株式会社 基準電圧選択回路、基準電圧発生回路、表示ドライバ、電気光学装置及び電子機器
JP2006227272A (ja) * 2005-02-17 2006-08-31 Seiko Epson Corp 基準電圧発生回路、表示ドライバ、電気光学装置及び電子機器
JP4645258B2 (ja) * 2005-03-25 2011-03-09 日本電気株式会社 デジタルアナログ変換回路及び表示装置
US7280063B2 (en) * 2005-04-29 2007-10-09 Georgia Tech Research Corporation Programmable voltage-output floating-gate digital to analog converter and tunable resistors
KR100770723B1 (ko) * 2006-03-16 2007-10-30 삼성전자주식회사 평판 표시 장치의 소스 드라이버의 디지털/아날로그변환장치 및 디지털/아날로그 변환방법.
JP2007279186A (ja) 2006-04-04 2007-10-25 Nec Electronics Corp 増幅回路、及び駆動回路
US8242944B2 (en) * 2007-04-26 2012-08-14 Renesas Electronics Corporation Digital-to-analog converter circuit including adder drive circuit and display
JP2010044686A (ja) * 2008-08-18 2010-02-25 Oki Semiconductor Co Ltd バイアス電圧生成回路及びドライバ集積回路
KR101534150B1 (ko) * 2009-02-13 2015-07-07 삼성전자주식회사 하이브리드 디지털/아날로그 컨버터, 소스 드라이버 및 액정 표시 장치
CN104021771B (zh) * 2014-06-17 2017-02-15 深圳市华星光电技术有限公司 一种可编程伽玛校正缓冲电路芯片及产生伽马电压的方法
KR102320300B1 (ko) * 2014-12-01 2021-11-03 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6540043B2 (ja) 2015-01-27 2019-07-10 セイコーエプソン株式会社 ドライバー、電気光学装置及び電子機器

Also Published As

Publication number Publication date
JP2020095100A (ja) 2020-06-18
US20200184916A1 (en) 2020-06-11
US10937382B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
JP4193771B2 (ja) 階調電圧発生回路及び駆動回路
JP4201193B2 (ja) ガンマ補正回路及びそれを備える表示装置
US10573219B2 (en) Display driver, electro-optical device, and electronic apparatus
JP6058289B2 (ja) 表示装置、撮像装置及び階調電圧生成回路
JP2019056799A (ja) 表示ドライバー、電気光学装置及び電子機器
JP6729670B2 (ja) 表示ドライバー、電気光学装置及び電子機器
WO2018010429A1 (zh) 源极驱动电路、方法及显示装置
JP2006313306A (ja) ガンマ基準電圧発生回路,及びそれを備える平板表示装置
JP2008122960A (ja) 表示装置及びその駆動装置
JP4266808B2 (ja) 液晶表示装置の基準電圧発生回路
CN110322821B (zh) 源极驱动器和包括源极驱动器的显示驱动器
JP6149596B2 (ja) データ線ドライバー、半導体集積回路装置、及び、電子機器
US10713992B2 (en) Display driver, electro-optical device, and electronic apparatus
JP4976842B2 (ja) 液晶表示装置の基準電圧調整方法
CN112216239A (zh) 源极驱动器和显示装置
JP2019045809A (ja) 表示ドライバー、電気光学装置及び電子機器
JP5633609B2 (ja) ソースドライバ、電気光学装置、投写型表示装置及び電子機器
JP6729669B2 (ja) 表示ドライバー、電気光学装置及び電子機器
JP6414275B2 (ja) 階調電圧生成回路、データ線ドライバー、半導体集積回路装置、及び、電子機器
JP2009008958A (ja) 液晶表示駆動回路
JP6737323B2 (ja) 表示ドライバー、電気光学装置及び電子機器
JP6737256B2 (ja) 表示ドライバー、電気光学装置及び電子機器
JP2010134107A (ja) 集積回路装置、電気光学装置、及び電子機器
JP2009168842A (ja) 基準電圧生成回路、ドライバ、電気光学装置及び電子機器
JP2005316146A (ja) 液晶表示装置及びその処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6729670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150