JP6723325B2 - 車載電子制御装置 - Google Patents

車載電子制御装置 Download PDF

Info

Publication number
JP6723325B2
JP6723325B2 JP2018217042A JP2018217042A JP6723325B2 JP 6723325 B2 JP6723325 B2 JP 6723325B2 JP 2018217042 A JP2018217042 A JP 2018217042A JP 2018217042 A JP2018217042 A JP 2018217042A JP 6723325 B2 JP6723325 B2 JP 6723325B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
switching element
current
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018217042A
Other languages
English (en)
Other versions
JP2020088963A (ja
Inventor
充孝 西田
充孝 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018217042A priority Critical patent/JP6723325B2/ja
Publication of JP2020088963A publication Critical patent/JP2020088963A/ja
Application granted granted Critical
Publication of JP6723325B2 publication Critical patent/JP6723325B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本願は、車載バッテリから昇圧された高圧電圧を発生する昇圧回路ユニットを備えた車載電子制御装置に関するものである。
例えば、内燃機関の燃料噴射用電磁弁を高速駆動するために、車載バッテリから昇圧された高圧電圧を電磁弁駆動用の電磁コイルに瞬時給電し、その後は車載バッテリの電圧によって所定期間の開弁保持制御を行なう動作を繰り返すようにした車載エンジン制御装置などにおいて、電気負荷を高電圧駆動するために必要とされる高圧電圧を得るためには、誘導素子の励磁電流を開閉制御素子によって高頻度に断続制御して、この励磁電流を遮断したときの誘導電圧によって充電される高圧コンデンサを備えている。
燃料噴射制御の場合であれば、この高圧コンデンサはDC12V系の車載バッテリから昇圧充電され、初期充電によって例えばDC75Vに充電された後は、1回の燃料噴射を行う都度にDC70Vまで減少し、数十回以上の断続動作によって再びDC75Vに回復するようになっている。
従って、誘導素子の開閉制御素子は、例えば数10μsecの周期で、10A前後の大電流を断続する必要があり、その消費電力を低減して温度上昇を抑制することが肝要である。
なお、この開閉制御素子に発生する消費電力は2種類に分類され、その一つは、素子内における閉路時の内部抵抗による閉路通電損失であり、他の一つは高電圧が印加されている状態における励磁電流の断続動作に伴う開閉過渡損失である。
なお、この開閉過渡損失は、後述のとおり開閉素子自体のもつ特性である電流増減率(スルーレート)に反比例しているので、電流増減率の大きな開閉素子を用いることは開閉過渡損失の抑制のために有効な手段ではあるが、電流増減率の大きな開閉素子は一般には閉路抵抗が大きくなって閉路通電損失が大きくなる問題点がある。
また、誘導素子が発生する誘導エネルギーはその励磁電流の二乗に比例するので、一定期間内に高圧コンデンサの充電電圧を回復するために誘導素子の励磁電流を大きくすることは極めて有益であるが、これに伴って開閉制御素子の閉路通電損失が増加する。
一方、開閉制御素子の開閉過渡損失は励磁電流に比例して増加するけれども、励磁電流を増加すれば開閉制御素子の開閉頻度を抑制することができることになる。
しかし、同じ励磁電流で開閉制御素子の開閉頻度を高めると、短時間に高圧コンデンサの充電電圧を回復することができるが、これに伴って開閉制御素子の開閉過渡損失の発生頻度が高くなる。
従って、この合計損失を最小化するための励磁電流の値と開閉頻度は、適用する開閉制御素子の閉路時の内部抵抗と開閉過渡期間における電流増減率を勘案して決定されなければならない。
例えば、下記の特許文献1によれば、負荷(本願でいう昇圧用の誘導素子に相当)に給電するために並列接続されたトランジスタは、一方が先行閉路して遅延開路することによって開閉過渡損失を負担し、他方は遅延閉路して先行開路することによって開閉過渡損失の負担を免れ、その分担を交互に交替して機会均等に開閉過渡損失を分担しようとするものである。
しかし、トランジスタの電流増減率に差異があると、分担する開閉過渡損失は異なったものとなる一方で、両方が閉路している期間においては、同時期に閉路通電損失を分担するようになっているので、閉路抵抗のばらつきによる差異によって閉路通電損失を均等に分担することはできないようになっている。
但し、この特許文献1はトランジスタのPWM制御によって、負荷に可変の一定電圧を供給するためのものであって、トランジスタの開路時には転流ダイオードによってサージ電圧が発生しないようになっているとともに、時差制御を行う交互セレクタについては具体的には記載されていない。
特開平06−090151号公報
特許文献1による並列トランジスタ回路においては、トランジスタの電流増減率と閉路抵抗については論究されておらず、従って各トランジスタは共通規格のものであって、製品ばらつきの範囲で相互の特性が異なっているものと想定される。
そして、トランジスタはいずれにも開閉過渡損失と閉路通電損失が発生し、その特性ばらつきによって損失分担率が異なったものとなり、トランジスタの発生熱を均等化する制御を行うことはできない構成となっている。
従って、2個のトランジスタを用いていても、その性能を最大限に発揮することができない仕組みとなっている。
本願は、誘導素子を開閉制御素子によって断続通電して高圧コンデンサを充電する昇圧回路ユニットにおいて、複数の開閉制御素子を有効に用いて、昇圧制御性能と効率を向上することができる車載電子制御装置を提供することを目的とする。
本願に開示される車載電子制御装置は、車載バッテリから電源電圧が給電される誘導素子の励磁電流を断続制御して、電源電圧よりも高い高圧電圧を得て、車載電気負荷に給電する昇圧回路ユニットと、車載電気負荷を駆動制御する演算制御回路部とを有する車載電子制御装置であって、昇圧回路ユニットは、誘導素子に対して直列接続されて、誘導素子に対する励磁電流を断続制御する開閉制御素子と、開閉制御素子が開路したときに充電ダイオードを介して誘導素子が発生する誘導電圧によって充電される高圧コンデンサと、開閉制御素子に対して駆動信号電圧を発生する駆動信号発生部と、駆動信号電圧の論理レベルに応動して、開閉制御素子に対して第一ゲート信号と第二ゲート信号を発生する時差制御部とを備え、開閉制御素子は、第一の昇圧用開閉素子及び第二の昇圧用開閉素子の並列回路によって構成されていて、一方の開閉素子である第一の昇圧用開閉素子は、他方の開閉素子である第二の昇圧用開閉素子に比べてスルーレートが大きな電流増減率を有するとともに、他方の開閉素子は一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有している。
そして、駆動信号発生部は、高圧コンデンサの充電電圧が予め定められた電圧下限値以下のときに、充電電圧が予め定められた電圧上限値を超過するまでの期間において駆動信号電圧の発生を許可するとともに、駆動信号電圧の発生に伴って開閉制御素子が閉路駆動されて、誘導素子の励磁電流が予め定められた電流上限値を超過すると、励磁電流が予め定められた電流下限値以下になるか、又は予め定められた遮断時間を経過するまでは駆動信号電圧の発生を停止する駆動信号出力手段又は駆動信号出力回路によって構成され、時差制御部は、駆動信号電圧が発生すると、まず第一の昇圧用開閉素子を閉路するための第一ゲート信号を発生し、続いて予め定められた第二閉路遅延時間を置いて第二の昇圧用開閉素子を閉路するための第二ゲート信号を発生する第二時差設定部を備えるとともに、駆動信号電圧が停止すると、まず第二ゲート信号を停止し、続いて予め定められた第一開路遅延時間を置いて第一ゲート信号を停止する第一時差設定部を備えている。
また、第一の昇圧用開閉素子及び第二の昇圧用開閉素子、及び第二の昇圧用開閉素子と並列接続されることがある並列開閉素子は、いずれも電界効果型のトランジスタであって、それぞれにゲート端子とソース端子との間に内部寄生コンデンサを有するとともに、並列開閉素子は、第二の昇圧用開閉素子と同様に、第一の昇圧用開閉素子に比べて内部抵抗が小さい高導電率を有しているとともに、内部抵抗は共に正の温度係数を有しており、並列開閉素子と第二の昇圧用開閉素子とは、共通の第二ゲート信号によって断続制御される。
更に、時差制御部を構成する時差制御回路は、第一時差設定部となる第一時差設定回路と、第二時差設定部となる第二時差設定回路を備え、第一時差設定回路は、駆動信号電圧によって第一急速閉路用ダイオードと低抵抗の充電抵抗を介して急速充電される第一時差設定コンデンサと、第一時差設定コンデンサの充電電荷を緩速放電する高抵抗の第一遅延開路抵抗によって構成され、第一時差設定回路は、駆動信号電圧の論理レベルがハイレベルとなったときに、第一急速閉路用ダイオードと充電抵抗を介して第一時差設定コンデンサが急速充電される一方で、第一急速閉路用ダイオードと低抵抗の第一急速閉路用抵抗と、比較器である波形整形素子を介し第一の昇圧用開閉素子の内部寄生コンデンサを急速充電する第一ゲート信号を発生して、第一の昇圧用開閉素子が急速閉路駆動され、第一時差設定回路はまた、駆動信号電圧の論理レベルがローレベルとなったとき第一時差設定コンデンサの充電電荷が第一遅延開路抵抗を介して緩速放電し、第一時差設定コンデンサの残留電圧が波形整形素子の負側入力端子に接続された比較基準電圧未満になると、波形整形素子の比較出力によって第一ゲート信号を急速減衰させて第一の昇圧用開閉素子が急速開路される。
本願に開示される車載電子制御装置によれば、開閉制御素子によって誘導素子に電源電圧を断続印加して、開閉制御素子の開路時に発生する誘導電圧によって高圧コンデンサを充電して高圧電圧を得る昇圧回路ユニットを備え、開閉制御素子は高速開閉に適した第一の昇圧用開閉素子と、閉路抵抗が小さい第二の昇圧用開閉素子を並列接続して構成されるとともに、駆動信号発生部が発生する駆動信号電圧を分配して、第一の昇圧用開閉素子を閉路駆動する第一ゲート信号と、第二の昇圧用開閉素子を閉路駆動する第二ゲート信号を生成する時差制御部を備え、時差制御部は、駆動信号電圧が発生すると第二ゲート信号を第一ゲート信号よりも遅延発生し、駆動信号電圧が停止すると第一ゲート信号を第二ゲート信号よりも遅延停止するようになっている。
従って、誘導素子の励磁電流を断続する過渡期間における過大損失の発生を短時間に終息させることによって開閉過渡損失を低減するとともに、励磁電流の通電中においては閉路抵抗を小さくして閉路通電損失の発生を抑制して、全体として昇圧制御効率を向上し、開閉制御素子の発生熱を抑制して放熱構造の小型、簡略化を図ることができる効果がある。また、第一の昇圧用開閉素子は閉路通電損失の分担が少ないので開閉頻度を高めることができるとともに、第二の昇圧用開閉素子は開閉過渡損失を分担しないので励磁電流を大きくすることができ、相互の発熱が均等化されるように励磁電流と開閉頻度のバランスを考慮することによって、昇圧性能と効率を最大限に向上することができる効果がある。なお、第二の昇圧用開閉素子は第一の昇圧用開閉素子に比べて電流増減率が圧倒的に小さいので、第二閉路遅延時間は実質的にはゼロに近くなってもよいものである。
実施の形態1による車載電子制御装置の全体回路ブロック図である。 図1のものの時差制御回路と並列開閉素子の詳細回路図である。 図1のものの高圧コンデンサの充電特性と誘導素子電流のタイムチャートである。 図2における開閉制御素子の駆動信号のタイムチャートである。 図4における開閉制御素子の駆動信号の詳細タイムチャートである。 図1のものにおける損失電力とその他の態様における損失電力の一覧表を示す図である。 実施の形態2による車載電子制御装置の全体回路ブロック図である。 図7におけるインジェクタ駆動回路の簡略回路図である。 図7のものの動作説明用フローチャートである。 実施の形態3による車載電子制御装置の全体回路ブロック図である。 図10のものの時差制御回路と並列開閉素子の詳細回路図である。 実施の形態4による車載電子制御装置の全体回路ブロック図である。 図12のものの駆動信号出力手段と図12のものの時差制御回路に代わる変形態様となる時差制御手段の動作説明用フローチャートである。
実施の形態1.
先ず、実施の形態1による車載電子制御装置の全体回路ブロック図である図1と、図1のものの時差制御回路と並列開閉素子の詳細回路図である図2について、その構成を詳細に説明する。
図1において、車載電子制御装置100Aは、制御電圧Vccを発生する安定化電源110と、マイクロプロセッサ(CPU)123を含む演算制御回路部120Aと、昇圧回路ユニット130Aと、例えばインジェクタ駆動回路である電気負荷駆動回路150を主体として構成されている。なお、図2に示された時差制御回路と並列開閉素子は、後述する図7に示された実施の形態2においても適用されるものである。
そして、車載電子制御装置100Aの外部に接続されているものとして、DC12V系の車載バッテリ101が図示しない電源スイッチによって付勢される電源リレーの出力接点である負荷電源スイッチ102を介して接続されて、車載電子制御装置100Aに対してその電源電圧Vbbを供給するようになっている。
また、車載電子制御装置100Aには、各種の入力センサと電源スイッチを含む入力センサ103が接続されるとともに、車載電子制御装置100Aによって駆動される電流リレーを含む出力負荷104は、その一部として例えば複数の電磁コイル(INJ)501〜504を有する燃料噴射用電磁弁である車載電気負荷105を含んでいる。
車載電子制御装置100Aの内部構成として、昇圧回路ユニット130Aは電源電圧Vbbによって給電される誘導素子131と充電ダイオード132と高圧コンデンサ133の直列回路を備え、充電ダイオード132と高圧コンデンサ133との直列回路には、開閉制御素子134と電流検出抵抗135gとの直列回路が並列接続されて、車載バッテリ101の負極端子に接続されたグランドラインに接続されている。
なお、開閉制御素子134は、電界効果型トランジスタである第一の昇圧用開閉素子134a及び第二の昇圧用開閉素子134bの並列回路によって構成されていて、第一の昇圧用開閉素子134aは、第二の昇圧用開閉素子134bに比べてスルーレートが大きな電流増減率を有するとともに、第二の昇圧用開閉素子134bは第一の昇圧用開閉素子134aに比べて閉路時の内部抵抗が小さい高導電率のものが使用されている。
そして、図2で後述する時差制御回路140は、駆動信号出力回路138が発生する駆動信号電圧GT0を分配し、第一ゲート信号GT1と第二ゲート信号GT2を生成して、これが第一の昇圧用開閉素子134a及び第二の昇圧用開閉素子134bのそれぞれに対する駆動信号となっている。
駆動信号出力回路138は電流判定回路と電圧判定回路とによって駆動信号発生回路を構成し、電流判定回路は、開閉制御素子134の下流端に直列接続された電流検出抵抗135gの両端電圧である全体電流検出電圧Vsの値と、誘導素子131に対する励磁電流の目標上限電流に比例した比較電圧である電流上限値Vref12を比較して、この目標上限電流を超過する励磁電流に到達するとタイマ回路136cを介して第一の駆動禁止信号GT01を発生する第一の比較器136aとを備えている。
なお、このタイマ回路136cは、誘導素子131の励磁電流が目標上限電流に到達してから目標下限電流に低下する減衰所要期間において第一の駆動禁止信号GT01の発生を持続するパルス発生回路となっている。
また、電圧判定回路は、高圧コンデンサ133の両端電圧を分圧抵抗137c、137dで分圧して得られる監視電圧が、目標とする監視電圧に対する電圧上限値Vref22を超過したことによって、第二の駆動禁止信号GT02を発生する第二の比較器137aとを備えている。
この第二の比較器137aには、正帰還抵抗137eが監視入力端子と比較出力端子間に接続されていて、第二の駆動禁止信号GT02が発生した後に、高圧コンデンサ133の充電電荷が車載電気負荷105に放電することによって、監視電圧が予め定められた下限電圧値Vref21以下となったことによって第二の駆動禁止信号GT02が停止するようになっている。
そして、駆動信号出力回路138は、第一の駆動禁止信号GT01と第二の駆動禁止信号GT02が共に発生していない論理状態において駆動信号電圧GT0を発生するようになっている。
演算制御回路部120Aは、不揮発性のプログラムメモリ(PMEM)及びデータメモリ(DMEM)と揮発性のRAMメモリ(RMEM)含むメモリ(MEM)121と、多チャンネルAD変換器(ADC)122を含むマイクロプロセッサ(CPU)123によって構成されていて、このマイクロプロセッサ(CPU)123はインジェクタ駆動回路である電気負荷駆動回路150に対して燃料噴射指令INJiを発生するとともに、メモリ(MEM)121に格納されている電流上限値Vref12の値を昇圧回路ユニット120A内の第一レジスタ136bに転送することができるようになっている。
なお、この実施例では電圧上限値Vref22を格納する第二レジスタ137bは、制御電圧Vccに対する分圧抵抗によって固定値に設定され、タイマ回路136cの設定値も固定値に設定されている。
図2において、時差制御回路140によって第一ゲート信号GT1と第二ゲート信号GT2が印加される開閉制御素子134には、並列接続された一対の第一の昇圧用開閉素子14aと第二の昇圧用開閉素子134bに加えて、閉路抵抗が小さい電界効果型の並列開閉素子134bbが付加されている例が点線表示されており、この並列開閉素子134bbにも第二ゲート信号GT2が印加されるようになっているとともに、各開閉素子に含まれる内部寄生コンデンサ139a、139b、139bbが図示されている。
また、第二の昇圧用開閉素子134bのゲート端子とソース端子との間には、必要に応じて第二時差設定コンデンサ41bが追加接続され、第一の昇圧用開閉素子134aの内部寄生コンデンサ139aには、必要に応じて平滑コンデンサ48aと平滑抵抗49aが接続されて入力フィルタ回路を構成している。
但し、このフィルタ回路を付加したことに伴って低下する第一の昇圧用開閉素子134aの電流増減率の値は、第二の昇圧用開閉素子134b及び並列開閉素子134bb側の電流増減率よりも大きな値となっている。
また、第二時差設定コンデンサ41bを追加接続した場合は、第二急速開路用ダイオード43bは不要となって短絡され、これに伴って第二遅延閉路抵抗45bも不要となって遮断されている。
時差制御回路140は、駆動信号電圧GT0の論理レベルがハイレベルとなったときに、第一急速閉路用ダイオード43aと充電抵抗42を介して第一時差設定コンデンサ41aを急速充電する一方で、第一急速閉路用ダイオード43aと低抵抗の第一急速閉路用抵抗44aと、比較器である波形整形素子46を介し第一の昇圧用開閉素子134aの内部寄生コンデンサ139aを急速充電する第一ゲート信号GT1を発生して、第一の昇圧用開閉素子134aを急速閉路駆動するとともに、第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbには、第二遅延閉路抵抗45bを介して内部寄生コンデンサ139b、139bbと第二時差設定コンデンサ41bが充電されることによって第二ゲート信号GT2が遅れて上昇して、それぞれの開閉素子は遅延閉路駆動されるようになっている。
時差制御回路140はまた、駆動信号電圧GT0の論理レベルがローレベル「L」となったときに、第二急速開路用ダイオード43bと低抵抗の第二急速開路用抵抗44bを介して、第二の昇圧用開閉素子134b、又は第二の昇圧用開閉素子134bと並列開閉素子134bbの内部寄生コンデンサ139b、139bbと第二時差設定コンデンサ41bの充電電荷を急速放電して第二ゲート信号GT2を急速低下させ、第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbを急速開路するとともに、第一時差設定コンデンサ41aの充電電荷は第一遅延開路抵抗45aを介して緩速放電し、その残留電圧が波形整形素子46の負側入力端子に接続された比較基準電圧47未満になると、波形整形素子46の比較出力によって第一ゲート信号を急速減衰させて第一の昇圧用開閉素子134aを遅延してから急速開路するようになっている。
以下、図1、図2のとおり構成された実施の形態1による車載電子制御装置100Aについて、図1のものの高圧コンデンサの充電特性と誘導素子電流のタイムチャートである図3と、図2における開閉制御素子の駆動信号のタイムチャートである図4と、図4における開閉制御素子の駆動信号の詳細タイムチャートである図5によってその作用動作を詳細に説明する。なお、図3〜図5に示された各タイムチャートは、後述する図7に示された実施の形態2、図10に示された実施の形態3、図12に示された実施の形態4においても適用されるものである。
まず、図1において、図示しない電源スイッチが閉路されると、電源リレーの出力接点である負荷電源スイッチ102が閉路して、車載電子制御装置100Aに電源電圧Vbbが印加される。
その結果、安定化電源110が例えばDC5Vの安定化された制御電圧Vccを発生して、マイクロプロセッサ(CPU)123が制御動作を開始する。
マイクロプロセッサ(CPU)123は入力センサ103の動作状態と、メモリ(MEM)121の一部である不揮発性のプログラムメモリ(PGM)に格納された制御プログラムの内容に応動して、出力負荷104に対する負荷駆動指令信号を発生し、出力負荷104の中の特定の車載電気負荷105である燃料噴射用電磁弁に対しては、燃料噴射指令INJiを発生して、電気負荷駆動回路150であるインジェクタ駆動回路を介して気筒別の各電磁コイル(INJ)501〜504を駆動し、これに先立って昇圧回路ユニット130Aが作動して高圧コンデンサ133が高圧充電されるようになっている。
次に、図1のものの高圧コンデンサの充電特性と誘導素子電流のタイムチャートである図3(A)と図3(B)について説明する。
図3(A)において、横軸は時間軸、縦軸は高圧コンデンサ133の充電電圧を示し、電源スイッチが閉路された直後の例えば100msecの期間(図では時間軸を圧縮して記載されている)は、点線で図示されるように高圧コンデンサ133の初期充電が行われて電圧下限値Vref21に到達する。
その後の充電期間では、高圧コンデンサ133の充電電圧が上昇して電圧上限値Vref22で安定する。
ここで燃料噴射用の電磁コイル(INJ)501〜504に急速給電が行われることによって、高圧コンデンサ133の放電が行われ、放電後の充電電圧は電圧下限値Vref21未満に低下することはないようになっている。
しかし、一旦電圧上限値Vref22に到達した後に、複数回(例えば2度目)の燃料噴射が行われて、高圧コンデンサ133の残留充電電圧が電圧下限値Vref21未満に低下すると、この時点で駆動信号電圧GT0が発生して、再び高圧コンデンサ133に対する充電動作が開始することになる。
そして、充放電周期T20は、例えば4気筒4サイクルエンジンが6000RPMで回転している場合であればT20=5msecとなる。
図3(B)において、上段部は駆動信号出力回路138が発生する駆動信号電圧GT0の波形を示しており、下段部は誘導素子131に流れる励磁電流の波形を示している。
駆動信号電圧GT0の論理レベルがハイレベル「H」になると開閉制御素子134が閉路して励磁電流が上昇し、これが第二電流I2による全体電流検出電圧Vsに対応した電流上限値Vref12に到達すると、第一の比較器136aの比較出力によってタイマ回路136cが起動されて、予め定められた遮断時間ΔTの期間中では論理レベルがハイレベル「H」のパルス信号を発生する。
そして、タイマ回路136cが論理レベルとしてハイレベル「H」のパルスを発生している期間は、駆動信号出力回路138の出力である駆動信号電圧GT0の論理レベルはローレベル「L」に変化するが、やがて、タイマ回路136cによる遮断時間ΔTが経過すると、再び駆動信号電圧GT0の論理レベルがハイレベル「H」に復帰する。
しかし、高圧コンデンサ133の分圧電圧が電圧上限値Vref22を超過すると、これが電圧下限値Vref21未満に低下するまでは第二の比較器137aの出力論理がハイレベル「H」となって、駆動信号出力回路138の出力である駆動信号電圧GT0の論理レベルはローレベル「L」を持続して、励磁電流はゼロまで低下することになる。
なお、遮断時間ΔTを経過したときの第一電流I1に対応して電流下限値Vref11が記載されているが、図1で示された電流検出抵抗135gでは、誘導素子131の放電電流は測定できないので、これに代わるものとしてタイマ回路136cが使用されている。
一方、高圧コンデンサ133の充電電圧が電圧下限値Vref21以下になると、再びで電圧上限値Vref22以上となるまでの期間では、第二の駆動禁止信号GT02は停止して、第一の比較器136aの出力論理に応動して駆動信号電圧GT0の論理レベルは交互に反転して、開閉制御素子134が断続駆動されるようになっており、その断続周期は例えばT10=10〜25μsecとなっている。
ここで、誘導素子131の素子抵抗R、インダクタンスL、誘導時定数τ=R/Lとすると、Ton<<τであるときに以下の算式が成立する。
まず、誘導素子131の励磁電流が第一電流I1から第二電流I2まで上昇する開閉制御素子134の閉路時間Tonと、第二電流I2から第一電流I1に減少するまでの遮断時間ΔTには算式(1a)(1b)(1c)の関係がある。
L×(I2−I1)/Ton=Vbb ・・・・(1a)
L×(I2−I1)/ΔT=Vh−Vbb ・・・・(1b)
∴ΔT=Ton×Vbb/(Vh−Vbb) ・・・・(1c)
但し、Vhは高圧コンデンサ133の充電電圧であり、Vbbは電源電圧である。
例えば、Vbb=14V、Vh=75Vとし、電流比γ=I1/I2とすればΔT=0.233Tonとなり、断続周期T10は算式(2)で示される。
T10=Ton+ΔT=1.23Ton
=1.23L×I2(1−γ)/Vbb ・・・(2)
一例として、R=0.1Ω、L=25μH、τ=L/R=250μsec、I2=14A、I1=6Aとすると、算式(1a)によってTon=14.3μsec<<τとなり、算式(1b)によってΔT=3.3μsecとなり、算式(2)によってT10=17.6μsecとなる。
また、電流上昇率としては(14−6)/14.3=0.56A/μsecとなり、この値は開閉制御素子134におけるスルーレート(電流増減率A/μsec)に比べて圧倒的に緩慢な変化となっている。
次に、図2における開閉制御素子の駆動信号のタイムチャートである図4(A)から図4(E)について説明する。
図4(A)において、駆動信号電圧GT0は例えば17.6μsecの断続周期T10で開閉制御素子134を断続制御する信号電圧であり、これが論理レベルがハイレベル「H」であると開閉制御素子134は閉路し、論理レベルがローレベル「L」であると開閉制御素子134は開路する。
ただし、駆動信号電圧GT0は図2で前述した時差制御回路140によって第一ゲート信号GT1と第二ゲート信号GT2に分配されていて、図4(B)は第一ゲート信号GT1の波形を示し、図4(D)は第二ゲート信号GT2の波形を示している。
図4(C)において、この図は第一時差設定コンデンサ41aによる第一コンデンサ電圧Vc1の増減波形を示しており、駆動信号電圧GT0が発生すると、低抵抗の充電抵抗42を介して第一時差設定コンデンサ41aが急速充電されて、第一閉路遅延時間tdonを置いて第一ゲート信号GT1が発生し、第一の昇圧用開閉素子134aが急速閉路することを示している。駆動信号電圧GT0が停止すると、第一時差設定コンデンサ41aの充電電荷が第一遅延開路抵抗45aを介して緩速放電し、第一開路遅延時間Tdoffをおいて第一の昇圧用開閉素子134aが遅延開路することを示している。
図4(E)において、この図は第二時差設定コンデンサ41bによる第二コンデンサ電圧Vc2の増減波形を示しており、駆動信号電圧GT0が発生すると、高抵抗の第二遅延閉路抵抗45bを介して第二時差設定コンデンサ41bが緩速充電されて、第二閉路遅延時間Tdonを置いて第二ゲート信号GT2が発生し、第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbとが遅延閉路することを示している。
そして、第二閉路遅延時間Tdon≧第一閉路遅延時間tdonの関係となっていて、第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbは、第一の昇圧用開閉素子134aよりも遅れて閉路するようになっている。
但し、第二の昇圧用開閉素子134b、並列開閉素子134bbは第一の昇圧用開閉素子に比べて電流増減率が圧倒的に小さいので、第二閉路遅延時間Tdon≒第一閉路遅延時間tdonであってもよいものである。
駆動信号電圧GT0が停止すると、内部寄生コンデンサ139b・139bbと第二時差設定コンデンサ41bは第二急速開路用ダイオード43bと第二急速開路用抵抗44bを介して急速放電し、第二開路遅延時間tdoffをおいて第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbが急速開路することを示している。
そして、第一開路遅延時間Tdoff≧第二開路遅延時間tdoffの関係となっていて、第一の昇圧用開閉素子134aは第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbよりも、遅れて開路するようになっている。
なお、点線で示された第二時差設定コンデンサ41bが設けられていない場合には、第二の昇圧用開閉素子134b、並列開閉素子134bbの内部寄生コンデンサ139b・139bbの特性ばらつきによって開閉遅延時間に誤差が発生し、この場合には、第一の昇圧用開閉素子134aの単独閉路期間が長くなってその閉路通電損失が大きくなるので、安定した開閉遅延時間を得るためには第二時差設定コンデンサ41bを設けておくことが望ましい。
そして、第二時差設定コンデンサ41bを設けた場合であれば、第二の昇圧用開閉素子134b、並列開閉素子134bbの第二閉路遅延時間Tdonと第二開路遅延時間tdoffとは同一時間設定であってもよく、第二急速開路用ダイオード43bは短絡して削除し、第二遅延閉路抵抗45bは遮断して削除しておくことができる。
次に、図4における開閉制御素子の駆動信号の詳細タイムチャートである図5(A)から図5(D)について説明する。
なお、図5(A)、図5(B)、図5(C)は、図4(A)、図4(B)、図4(D)に対応したものであるが、図4(B)と図4(D)における第一閉路遅延時間tdonと第二開路遅延時間tdoffとは省略されて簡潔表現したものとなっている。
図5(D)において、第一素子間電圧501aは、第一の昇圧用開閉素子134aの閉路動作中の素子間電圧を示し、この素子間電圧は第一ゲート信号GT1が発生した時点においては高圧コンデンサ133の現在電圧である第一電圧Vh1となっており、閉路時間t1が経過した時点では第一の昇圧用開閉素子134aの内部抵抗に基づく第一素子間電圧(閉路電圧)Von1に減衰する。
開閉素子間電圧v1は時刻t=0においてVh1、時刻t1においてVon1≒0となるので、算式(3a)で成立する。
v1=Vh1×(1−t/t1) ・・・・(3a)
なお、第二素子間電圧501bは、閉路後の第一素子間電圧(第一閉路電圧)Von1よりも小さな値となる第二素子間電圧(第二閉路電圧)Von2で示されている。
同様に開閉素子電流502は、時刻t=0においてi1=0であり、時刻t1においては誘導素子131から高圧コンデンサ133に放電していた第一電流I1となるので、開閉素子のスルーレートをα=I1/t1とすると算式(4a)が成立する。
i1=I1×t/t1 =αt ・・・・・(4a)
なお、誘導素子電流503は第一電流I1と第二電流I2との間で増減していて、第一の昇圧用開閉素子134a及び第二の昇圧用開閉素子134bが開路してその電流がゼロとなっていても、誘導素子131の電流は高圧コンデンサ133への充電電流として継続して流れている。
また、高速型の第一の昇圧用開閉素子134aのスルーレートは一例としてα1=200A/μsecであるのに対し、低速型の第二の昇圧用開閉素子134bの場合であれば、例えばα2=10A/μsecとなっている。
従って、第一の昇圧用開閉素子134aの閉路時の過渡損失エネルギーEonは算式(5a)の時刻t=0から時刻t=t1までの積分値となる。
Eon=∫V1×I1 dt(t=0〜t1)
=Vh1×I1/6α ・・・・・・(5a)
但し、t1=I1/αである。
同様に、第一ゲート信号GT1が停止した時点における第一素子間電圧501aは、新時刻t=0おいてはv2=Von1≒0となり、新時刻t=t2ではv2=Vh2であるとともに、開閉素子電流502は新時刻t=0においてi2=第二電流I2、新時刻t2ではi2=0となるので(3b)〜(5b)が成立する。
但し第二電圧Vh2は、今回の充電にともなう高圧コンデンサ133の現在電圧である。
v2=Vh2×t/t2 ・・・・・・・(3b)
i2=I2(1−t/t2) ・・・・・・(4b)
Eoff=∫v2×i2 dt (t=0〜t2)
=Vh2×I2/6α ・・・・・(5b)
但し、t2=I2/αである。
従って、断続周期T10で誘導素子131を断続制御して、その励磁電流を第一電流I1と第二電流I2の間で増減させるときの開閉制御素子134に発生する開閉過渡損失Pocは算式(6)で示される。
Poc=(Eon+Eoff)/T10
=Vh×(I1+I2)/(6α×T10) ・・・(6)
但し、一回の充電による充電電圧の増加分は微小であるためVh1≒Vh2であり、高圧コンデンサ133の充放電前後の電圧変動も例えばDC70V〜DC75Vであって僅少であるため、Vh1≒Vh2≒Vhとなっている。
次に、開閉制御素子134の閉路期間において、開閉制御素子134の閉路時の内部抵抗によって発生する閉路通電損失の計算を行う。
図5(D)において、開閉制御素子134が閉路して、誘導素子131に流れていた励磁電流が第一電流I1に到達した時刻をt=0として、時刻t=Tonにおいて第二電流I2に増加する励磁電流iは算式(7a)によって示される。
i=I1+βt ・・・・・・・・・・・・(7a)
但し、電流上昇率βは算式(7b)に示すとおりである。
β=(I2−I1)/Ton ・・・・・・(7b)
従って、開閉制御素子134の内部抵抗Rsによる、閉路時間Ton期間における閉路通電損失Ponは、積分時間をt=0〜Tonとした場合の算式(8a)によって算出される。
Pon=∫(I1+βt)×Rsdt/Ton
=I2[γ+(1−γ)/3]Rs ・・・(8a)
但し、γ=I1/I2 であり、閉路時間Tonを断続周期T10に置きなおすと、算式(8a)は算式(8b)に換算されることになる。
Pon=I2[γ+(1−γ)/3]Rs×(Ton/T10) ・・・(8b)
なお、励磁電流が第二電流I2から第一電流I1に減衰するときには、この電流は高圧コンデンサ133に対する充電電流となっていて、開閉制御素子134の通電電流はゼロとなる。
ここで、例えば、γ=6/14=0.43とすると、算式(8b)と算式(2)から算式(9)が得られる。
Pon=0.54×I2×Rs×(Ton/T10)
=0.44×I2×Rs ・・・・・・・・・・・(9)
但し、並列接続されている第一の昇圧用開閉素子134aと第二の昇圧用開閉素子134bの内部抵抗を夫々内部抵抗Ra、内部抵抗Rbとした場合、合計電流がI2であるときの各開閉素子の閉路通電損失Pa、Pbと、これらの合計の閉路通電損失Pは算式(10a)〜(10c)で示される。
Pa=0.44×I2×Ra×[Rb/(Ra+Rb)] ・・・・(10a)
Pb=0.44×I2×Rb×[Ra/(Ra+Rb)] ・・・・(10b)
P=Pa+Pb=0.44×I2×Ra×Rb/(Ra+Rb) ・・(10c)
次に、図1のものにおける損失電力とその他の態様における損失電力の一覧表を示す図である図6について詳細に説明する。なお、図6に示された一覧表は、後述する図7に示された実施の形態2、図10に示された実施の形態3、図12に示された実施の形態4においても適用されるものである。
図6において、最左列の形態区分は次のとおり5種の形態をそれぞれ最上段から最下段で示している。
最上段の第一形態は、電流増減率が大きく、閉路時の内部抵抗も大きな高速高抵抗の第一素子と低速低抵抗の第二素子を並列使用した図1、図7の形態を示している。
二段目の第二形態は、高速高抵抗の第一素子のみを並列使用し、その特性が完全一致していて、時差制御を行わないで両者が均等動作すると仮定した場合のものである。
三段目の第三形態は、低速低抵抗の第二素子のみを並列使用し、その特性が完全一致していて、時差制御を行わないで両者が均等動作すると仮定した場合のものである。
四段目の変形形態は、図2で示した内容のものであり、高速高抵抗の第一素子は平滑コンデンサ48a、49aによって減速動作し、低速低抵抗の第二素子には同じ型式の第二素子が並列接続されている。
但し、その内部抵抗は±13%で大小にばらついているものとしている。
最下段の基準形態は、高速型の第一素子と低速型の第二素子の電流増減率αと内部抵抗Rsの格差は4倍以上であって、第一素子の内部抵抗Rsは誘導素子131の抵抗値より大きく、第二素子の内部抵抗Rsは誘導素子131の抵抗値より小さいとした基準形態の場合を示している。
これ等の形態区分において、左列から右列にかけて、電流増減率αとこれに伴う開閉過渡損失Pocが示され、続いて内部抵抗とこれに伴う閉路通電損失Ponが示され、更には開閉過渡損失と閉路通電損失の合計値が記載されている。
また、右列の分担電流は誘導素子131の励磁電流が第一電流I1=6Aから第二電流I2=14Aに増減するとした場合の並列開閉素子の分担電流が示され、最右列では各形態における開閉過渡損失Pocの合計値と閉路通電損失Ponの合計値との比率が示されている。
この一覧表を示す図で明らかなとおり、図1又は図2で示された最上段の第一形態と四段目の変形形態においては、損失比率Poc/Ponが比較的1に近く、第二形態、第三形態ではこの比率が大きく変動していると共に、開閉過渡損失Pocと閉路通電損失Ponの合計値も著しく大きな値となっている。なお、開閉過渡損失Pocは算式(6)、閉路通電損失Ponは算式(9)で得られる。また、Vo=75V、I1=6A、I2=14A、T10=17.6μsecとしている。
従って、高速高抵抗の開閉素子と低速低抵抗の開閉素子を併用して、時差開閉制御を行うことによって全損失を著しく低減して、昇圧制御の効率を高めることができることが明らかである。
実施の形態1は、車載バッテリ101から電源電圧Vbbが給電される誘導素子131の励磁電流を断続制御して、この電源電圧Vbbよりも高い高圧電圧Vhを得て、車載電気負荷105に給電する昇圧回路ユニット130Aと、この車載電気負荷105を駆動制御する演算制御回路部120Aとを有する車載電子制御装置100Aであって、昇圧回路ユニット130Aは、誘導素子131に対して直列接続されて、この誘導素子131に対する励磁動電流を断続制御する開閉制御素子134と、この開閉制御素子134が開路したときに充電ダイオード132を介して誘導素子131が発生する誘導電圧によって充電される高圧コンデンサ133と、開閉制御素子134に対して駆動信号電圧GT0を発生する駆動信号発生部と、駆動信号電圧GT0の論理レベルに応動して、開閉制御素子134に対して第一ゲート信号GT1と第二ゲート信号GT2を発生する時差制御回路140とを備え、開閉制御素子134は、第一及び第二の昇圧用開閉素子134a、134bの並列回路によって構成されていて、一方の開閉素子である第一の昇圧用開閉素子134aは、他方の開閉素子である第二の昇圧用開閉素子134bに比べてスルーレートが大きな電流増減率を有するとともに、他方の開閉素子は一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有している。
そして、駆動信号発生部は、高圧コンデンサ133の充電電圧が予め定められた電圧下限値以下のときに、これが予め定められた電圧上限電値を超過するまでの期間において駆動信号電圧GT0の発生を許可するとともに、駆動信号電圧GT0の発生に伴って開閉制御素子134が閉路駆動されて、誘導素子131の励磁電流が予め定められた電流上限値を超過すると、予め定められた遮断時間ΔTを経過するまでは駆動信号電圧GT0の発生を停止する駆動信号出力回路138によって構成され、時差制御回路140は、駆動信号電圧GT0が発生すると、まず第一の昇圧用開閉素子134aを閉路するための第一ゲート信号GT1を発生し、続いて予め定められた第二閉路遅延時間Tdonを置いて第二の昇圧用開閉素子134bを閉路するための第二ゲート信号GT2を発生する第二時差設定部を備えるとともに、駆動信号電圧GT0が停止すると、まず第二ゲート信号GT2を停止し、続いて予め定められた第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止する第一時差設定部を備えている。
第一の昇圧用開閉素子134a及び第二の昇圧用開閉素子134、及び第二の昇圧用開閉素子134と並列接続されることがある並列開閉素子134bbは、いずれも電界効果型のトランジスタであって、それぞれにゲート端子とソース端子との間に内部寄生コンデンサ139a・139b・139bbを有するとともに、並列開閉素子134bbは、第二の昇圧用開閉素子134bと同様に、第一の昇圧用開閉素子134aに比べて内部抵抗が小さい高導電率を有しているとともに、その内部抵抗は共に正の温度係数を有しており、並列開閉素子134bbと第二の昇圧用開閉素子134bとは、共通の第二ゲート信号GT2によって断続制御されるようになっている。
以上のとおり、この実施の形態1では、第二の昇圧用開閉素子にはこれと同様の内部抵抗を有する並列開閉素子が並列接続されることがあり、それぞれが正の温度係数を有するとともに、同じ第二ゲート信号GT2によって断続制御されるようになっている。
従って、大電流負荷の断続制御を行う場合に、閉路通電損失による発熱を複数の開閉素子で分担して、効率よく熱放散を行うことができるとともに、内部抵抗のばらつきによって、どちらか一方の負荷電流が他方より大きくなった場合には、一方の開閉素子の温度上昇が他方より大きくなることによってその内部抵抗が増大し、均等電流が流れる傾向の自己補正が作用して、過度な温度差が発生しない特徴がある。
これは、実施の形態2から4についても同様である。
また、駆動信号発生部は、電流判定回路と電圧判定回路と駆動信号出力回路138とによって構成された駆動信号発生回路であり、電流判定回路は、開閉制御素子134の下流端に直列接続された電流検出抵抗135gの両端電圧である全体電流検出電圧Vsの値と、誘導素子131に対する励磁電流の目標上限電流に比例した比較電圧である電流上限値Vref12を比較して、この目標上限電流を超過する励磁電流に到達するとタイマ回路136cを介して第一の駆動禁止信号GT01を発生する第一の比較器136aを備え、タイマ回路136cは、励磁電流が目標上限電流に到達してから目標下限電流に低下する減衰所要期間において第一の駆動禁止信号GT01の発生を持続するパルス発生回路であり、電圧判定回路は、高圧コンデンサ133の両端電圧を分圧抵抗137c、137dで分圧して得られる監視電圧が、目標とする監視電圧に対する電圧上限値Vref22を超過したことによって、第二の駆動禁止信号GT02を発生する第二の比較器137aを備え、第二の比較器137aには、正帰還抵抗137eが監視入力端子と比較出力端子間に接続ており、第二の駆動禁止信号GT02が発生した後に、高圧コンデンサ133の充電電荷が車載電気負荷105に放電することによって、監視電圧が予め定められた下限電圧値Vref21以下となったことによって第二の駆動禁止信号GT02が停止し、駆動信号出力回路138は、第一の駆動禁止信号GT01と第二の駆動禁止信号GT02が共に発生していない論理状態において駆動信号電圧GT0を発生するようになっている。
以上のとおり、この実施の形態1では、開閉制御素子に流れる誘導素子の励磁電流が予め定められた上限値を超過すると、これが予め定められた下限値以下となる遮断時間ΔTを経過するまで第一の駆動禁止信号GT01を発生する電流判定回路と、高圧コンデンサの監視電圧が予め定められた電圧上限値Vref22を超過すると、この監視電圧が予め定められた電圧下限値Vref21以下となるまで第二の駆動禁止信号GT02を発生する電圧判定回路を備え、駆動信号出力回路は、第一の駆動禁止信号GT01と第二の駆動禁止信号GT02が共に発生していない論理状態において駆動信号電圧GT0を発生するようになっている。
従って、駆動信号電圧GT0がハードウエアを主体として生成され、開閉制御素子を開路した後に誘導素子の減衰電流を測定する必要がないので電流検出回路も簡略化される特徴がある。
時差制御部を構成する時差制御回路140は、第一時差設定部となる第一時差設定回路と、第二時差設定部となる第二時差設定回路を備え、第一時差設定回路は、駆動信号電圧GT0によって第一急速閉路用ダイオード43aと低抵抗の充電抵抗42を介して急速充電される第一時差設定コンデンサ41aと、この第一時差設定コンデンサ41aの充電電荷を緩速放電する高抵抗の第一遅延開路抵抗45aによって構成され、第一時差設定回路は、駆動信号電圧GT0の論理レベルがハイレベル「H」となったときに、第一急速閉路用ダイオード43aと充電抵抗42を介して第一時差設定コンデンサ41aが急速充電される一方で、第一急速閉路用ダイオード43aと低抵抗の第一急速閉路用抵抗44aと、比較器である波形整形素子46を介し第一の昇圧用開閉素子134aの内部寄生コンデンサ139aを急速充電する第一ゲート信号GT1を発生して、第一の昇圧用開閉素子134aが急速閉路駆動され、第一時差設定回路はまた、駆動信号電圧GT0の論理レベルがローレベル「L」となったとき第一時差設定コンデンサ41aの充電電荷が第一遅延開路抵抗45aを介して緩速放電し、第一時差設定コンデンサの残留電圧が波形整形素子46の負側入力端子に接続された比較基準電圧47未満になると、波形整形素子46の比較出力によって第一ゲート信号GT1を急速減衰させて第一の昇圧用開閉素子134aが急速開路されるようになっている。
以上のとおり、この実施の形態1では、波形整形素子を介して第一ゲート信号GT1が印加される第一の昇圧用開閉素子側の第一時差設定コンデンサは、駆動信号電圧GT0の論理レベルに応動して低抵抗の充電抵抗による急速充電又は第一遅延開路抵抗による緩速放電が行われ、波形整形素子は、駆動信号電圧GT0又は第一時差設定コンデンサの充電電圧と比較基準電圧との比較によって第一ゲート信号GT1を発生して、第一の昇圧用開閉素子の急速閉路動作と遅延開路動作を行うようになっている。
従って、第一の昇圧用開閉素子の開閉動作時のゲート電圧は、駆動信号電圧GT0の有無によって即時に急増又は遅延して急減し、第一の昇圧用開閉素子の電流増減率の低下を抑制して、開閉動作に伴う過渡損失の発生を抑制することができる特徴がある。これは、実施の形態2についても同様である。
第一の昇圧用開閉素子134aのゲート端子には、平滑コンデンサ48aが接続され、この平滑コンデンサ48aと波形整形素子46の出力端子との間には平滑抵抗49aが接続されてフィルタ回路を構成し、フィルタ回路を付加したことに伴って低下する第一の昇圧用開閉素子134aの電流増減率の値は、第二の昇圧用開閉素子134b及び並列開閉素子134bb側の電流増減率よりも大きな値となっている。
以上のとおり、この実施の形態1では、第一の昇圧用開閉素子のゲート端子と、第一の昇圧用開閉素子を開閉駆動する波形整形素子の出力端子との間には平滑コンデンサと平滑抵抗によるフィルタ回路が設けられている。
従って、第一の昇圧用開閉素子を過度に急速開閉することによって発生するノイズを抑制しながら、第一の昇圧用開閉素子の急速開閉動作を行って、開閉動作中に発生する開閉過渡損失を抑制することができる特徴がある。これは、実施の形態2についても同様である。
第二時差設定回路は、内部寄生コンデンサ139b、139bbと第二の昇圧用開閉素子134bのゲート端子に接続された第二時差設定コンデンサ41bの一部又は全部と、このコンデンサを緩速充電する第二遅延閉路抵抗45bとを備え、第二時差制御回路は、駆動信号電圧GT0の論理レベルがハイレベル「H」となったときに、第二遅延閉路抵抗45bを介して内部寄生コンデンサ139b、139bbと第二時差設定コンデンサ41bが充電されることによって第二ゲート信号GT2が遅れて上昇して、第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbが遅延閉路駆動され、第二時差制御回路はまた、駆動信号電圧GT0の論理レベルがローレベル「L」となったときに、第二急速開路用ダイオード43bと低抵抗の第二急速開路用抵抗44bを介して、内部寄生コンデンサ139b、139bbと第二時差設定コンデンサ41bの充電電荷を急速放電して第二ゲート信号GT2を急速低下させることによって、第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbが急速開路され、第二時差設定コンデンサ41bを接続した場合には第二急速開路用ダイオード43bは短絡して削除されている。
以上のとおり、この実施の形態1では、第二ゲート信号GT2が印加される第二の昇圧用開閉素子側の内部寄生コンデンサ又は第二時差設定コンデンサは、駆動信号電圧GT0の論理レベルに応動して第二遅延閉路抵抗による緩速充電又は第二急速開路用抵抗による急速放電が行われて遅延閉路動作又は急速開路動作を行うようになっている。
従って、第二の昇圧用開閉素子の遅延閉路時間は、その内部寄生コンデンサの静電容量のばらつきによって変動するが、第二時差設定コンデンサを設けて合成容量を大きくし、これに応じて第二遅延閉路抵抗の抵抗値を小さくしておけば、安定した遅延閉路時間を得ることができるようになっていて、この第二時差設定コンデンサを設ける場合には第二急速開路用ダイオードを省略して短絡しておくとともに、第二遅延閉路抵抗は開放削除しておいてもよいことになる。
これは、実施の形態2についても同様である。
第一の昇圧用開閉素子134aの開閉動作時における電流増減率α1は、第二の昇圧用開閉素子134b及び並列開閉素子134bbの電流増減率α2に対して4倍以上の高速動作を行うものであるとともに、第二の昇圧用開閉素子134b及び並列開閉素子134bbの閉路動作時における内部抵抗Rs2は、第一の昇圧用開閉素子134aの内部抵抗Rs1に対して1/4以下の低抵抗となっている。
以上のとおり、この実施の形態1では、高速、高抵抗の第一の昇圧用開閉素子と、低速、低抵抗の第二の昇圧用開閉素子及び並列開閉素子の電流増減率と内部抵抗は相互に4倍以上の格差が設けられている。
従って、開閉過渡損失は第一の昇圧用開閉素子が全てを吸収するのに対し、閉路時の閉路通電損失は内部抵抗に逆比例して分担されるので、全体損失の分担を定量的に配分することができる特徴がある。
これは、実施の形態1〜4についても同様である。
実施の形態2.
次に、実施の形態2による車載電子制御装置の全体回路ブロック図である図7と、図7のもののインジェクタ駆動回路の簡略回路図である図8について、その構成を詳細に説明する。なお、図8に示されたインジェクタ駆動回路は、図1に示された実施の形態1、後述する図10に示された実施の形態3、図12に示された実施の形態4においても適用されるものである。
図7において、車載電子制御装置100Bは、図1における車載電子制御装置100Aと同様に、制御電圧Vccを発生する安定化電源110と、マイクロプロセッサ(CPU)123を含む演算制御回路部120Bと、昇圧回路ユニット130Bと、インジェクタ駆動回路である電気負荷駆動回路150を主体として構成されている。
そして、車載電子制御装置100Bの外部に接続されているものとして、DC12V系の車載バッテリ101が図示しない電源スイッチによって付勢される電源リレーの出力接点である負荷電源スイッチ102を介して接続されて、車載電子制御装置100Bに対してその電源電圧Vbbを供給するようになっている。
また、車載電子制御装置100Bには、各種の入力センサと電源スイッチを含む入力センサ103が接続されるとともに、車載電子制御装置100Bよって駆動される出力負荷104は、その一部として例えば複数の電磁コイル(INJ)501〜504を有する燃料噴射用電磁弁である車載電気負荷105を含んでいる。
車載電子制御装置100Bの内部構成として、昇圧回路ユニット130Bは電源電圧Vbbによって給電される誘導素子131と充電ダイオード132と高圧コンデンサ133の直列回路を備え、充電ダイオード132と高圧コンデンサ133との直列回路には、開閉制御素子134が並列接続されて、車載バッテリ101の負極端子に接続されたグランドラインに接続されている。
また、電流検出抵抗135uは、誘導素子131と高圧コンデンサ133との直列回路にあって、開閉制御素子134の開閉に関わらず誘導素子131に流れる電流が測定できるようになっている。
また、演算制御回路部120Bは、不揮発性のプログラムメモリ(PMEM)及びデータメモリ(DMEM)と揮発性のRAMメモリ(RMEM)を含むメモリ(MEM)121と、多チャンネルAD変換器(ADC)122を含むマイクロプロセッサ(CPU)123によって構成されていて、このマイクロプロセッサ(CPU)123はインジェクタ駆動回路である電気負荷駆動回路150に対して燃料噴射指令INJiを発生するようになっている。
なお、開閉制御素子134は、図1のものと同様の電界効果型トランジスタである第一及び第二の昇圧用開閉素子134a、134bの並列回路によって構成されていて、第一の昇圧用開閉素子134aは、第二の昇圧用開閉素子134bに比べてスルーレートが大きな電流増減率を有するとともに、第二の昇圧用開閉素子134bは第一の昇圧用開閉素子134aに比べて閉路抵抗が小さい高導電率のものが使用されている。
そして、図2で前述した時差制御回路140は、マイクロプロセッサ(CPU)123が駆動信号出力手段によって発生する駆動信号電圧GT0を分配し、第一ゲート信号GT1と第二ゲート信号GT2を生成して、これが第一の昇圧用開閉素子134a及び第二の昇圧用開閉素子134bのそれぞれに対する駆動信号電圧となっている。
駆動信号発生手段は、演算制御回路部120Bの主体となるマイクロプロセッサ(CPU)123と、電流検出信号電圧IN1の生成回路部と電圧検出信号電圧IN2の生成回路部とによって構成されており、マイクロプロセッサ(CPU)123と協働するプログラムメモリ(PMEM)は、車載電気負荷105を駆動制御するための入出力制御手段に加えて、電流判定手段と電圧判定手段となる制御プログラムを包含するとともに、データメモリには、電流上限値Vref12、電流下限値Vref11、電圧上限値Vref22、電圧下限値Vref21に対応した数値データが格納されている。
多チャンネルAD変換器(ADC)122には、誘導素子131に直列接続された電流検出抵抗135uの両端電圧を増幅する差動増幅器136aaの出力電圧である電流検出信号電圧IN1と、高圧コンデンサ133の両端電圧を分圧抵抗137c、137dによって分圧して得られる電圧検出信号電圧IN2が入力されている。
そして、マイクロプロセッサ(CPU)123は、図9で後述するとおり、電圧検出信号電圧IN2が電圧下限値Vref21以下であるか、これが超過していても電圧上限値Vref22に到達するまでの期間と、電流検出信号電圧IN1が電流下限値Vref11以下であるか、これが超過していても電流上限値Vref12に到達するまでの期間において、駆動信号電圧GT0を発生する駆動信号発生手段となる工程S905を備えるとともに、電圧検出信号電圧IN2が電圧上限値Vref22を超過するか、又は、電流検出信号電圧IN1が電流上限値Vref12を超過したときに、駆動信号電圧GT0を停止する駆動信号停止手段となる工程S906を備えていて、駆動信号発生手段となる工程S905と駆動信号停止手段となる工程S906によって駆動信号出力手段となる工程S938が構成されている。
図8において、車載電気負荷105は、交互に燃料噴射が行われる奇数番号と偶数番号の複数の燃料噴射用電磁弁を駆動する電磁コイル(INJ)501〜504を備えるとともに、演算制御回路部120Bは、各気筒に対する燃料噴射指令INJi(i=1、2・・)を発生して、指令分配回路59(59a、59b)と電気負荷駆動回路150である奇数気筒群用のインジェクタ駆動回路150aと偶数気筒群用のインジェクタ駆動回路150bを介して電磁コイル(INJ)501〜504を順次給電駆動するようになっている。
電気負荷駆動回路150であるインジェクタ駆動回路150a、150bは、奇数気筒群と偶数気筒群別に設けられた急速給電素子51aと開弁保持素子52aと、各気筒別に設けられた通電選択素子53a、54aを備えている。
急速給電素子51aは、高圧コンデンサ133の充電電圧である高圧電圧Vhによって電磁コイル(INJ)501〜504を順次急速駆動し、開弁保持素子52aは、急速給電素子51aを開路した後の電磁弁の開弁期間において、逆流防止素子55aを介して電源電圧Vbbによって開弁保持動作を行うようになっている。
通電選択素子53a、54aは、電磁コイル(INJ)501〜504の通電期間において閉路駆動されており、通電選択素子53a、54aが開路されたときには、回生放電素子57a、58aを介して高圧コンデンサ133に回生放電するようになっている。
インジェクタ駆動回路150bもインジェクタ駆動回路150aと同様に構成され、同様の動作を行う。
なお、電気負荷駆動回路150については、実施の形態1及び実施の形態3、4の場合も同様である。
以下、図7、図8のとおり構成された実施の形態2による車載電子制御装置100Bについて、図1のものとの相違点を中心にしてその作用・動作を詳細に説明する。
なお、図3による高圧コンデンサの充電特性と誘導素子電流のタイムチャートと、図4における開閉制御素子の駆動信号のタイムチャートと、図5における開閉制御素子の駆動信号の詳細タイムチャートについては実施の形態1において前述したとおりである。
まず、図7において、図示しない電源スイッチが閉路されると、電源リレーの出力接点である負荷電源スイッチ102が閉路して、車載電子制御装置100Bに電源電圧Vbbが印加される。
その結果、安定化電源110が例えばDC5Vの安定化された制御電圧Vccを発生して、マイクロプロセッサ(CPU)123が制御動作を開始する。
マイクロプロセッサ(CPU)123は入力センサ103の動作状態と、メモリ(MEM)121の一部である不揮発性のプログラムメモリ(PGM)に格納された制御プログラムの内容に応動して、出力負荷104に対する負荷駆動指令信号を発生し、出力負荷104の中の特定の車載電気負荷105である燃料噴射用電磁弁に対しては、燃料噴射指令INJiを発生して、電気負荷駆動回路150であるインジェクタ駆動回路を介して気筒別の各電磁コイル(INJ)501〜504を駆動し、これに先立って昇圧回路ユニット130Bが作動して高圧コンデンサ133が高圧充電されるようになっている。
次に、図7のものの動作説明用フローチャートである図9について説明する。
図9において、工程S900はマイクロプロセッサ(CPU)123が昇圧制御を開始する動作開始ステップである。
工程S901は、電圧検出信号電圧IN2のデジタル変換値が、データメモリに格納されている電圧下限値Vref21以下であるかどうかを判定し、以下であれば「YES」の判定を行って工程S903へ移行し、超過しておれば「NO」の判定を行って工程S902へ移行する下限電圧判定ステップである。
工程S902は、電圧検出信号電圧IN2デジタル変換値が、データメモリに格納されている電圧上限値Vref22に到達したかどうかを判定し、到達すれば「YES」の判定を行って工程S906へ移行し、未達であれば「NO」の判定を行って工程S903へ移行する上限電圧判定ステップである。
工程S903は、電流検出信号電圧IN1のデジタル変換値が、データメモリに格納されている電流下限値Vref11以下であるかどうかを判定し、以下であれば「YES」の判定を行って工程S905へ移行し、超過であれば「NO」の判定を行って工程S904へ移行する下限電流判定ステップである。
工程S904は、電流検出信号電圧IN1のデジタル変換値が、データメモリに格納されている電流上限値Vref12に到達したかどうかを判定し、到達であれば「YES」の判定を行って工程S906へ移行し、未達であれば「NO」の判定を行って工程S905へ移行する上限電流判定ステップである。
工程S905は、駆動信号電圧GT0を発生して、その論理レベルをハイレベル「H」にして工程S910へ移行する駆動信号発生手段となるステップである。工程S906は、駆動信号電圧GT0を停止して、その論理レベルをローレベル「L」にして工程S910へ移行する駆動信号停止手段となるステップである。
工程S910は、その他の制御プログラムを実行してから、予め定められた時間内に動作開始ステップである工程S900へ復帰して、以降のステップを反復実行する動作終了ステップである。なお、工程S905と工程S906によって構成された工程ブロックS938は駆動信号出力手段となるものである。
以上の説明で明らかなとおり、実施の形態2の場合には電流下限値Vref11、電流上限値Vref12、電圧下限値Vref21、電圧上限値Vref22の値は演算制御回路部120B内のデータメモリに書込みされているので、その設定変更が容易である。
また、実施の形態1の場合であっても、少なくとも電流上限値Vref12の値は演算制御回路部120A内のデータメモリに書き込まれているのでその設定変更は容易に行うことができる。
一方、前述の算式(2)で示すとおり断続周期T10の内の約80%(Ton=T10/1.23)を占める開閉制御素子134の閉路時間Tonにおいて、誘導素子131の励磁電流が第一電流I1から第二電流I2に増加したことによって、誘導素子131に蓄積されて、開路時間Toffの期間に高圧コンデンサ133に放出される電磁エネルギーは、算式(11)で示される。
E=L×(I2−I1)/2
=L×(I2−I1)×(I2+I1)/2 ・・・・・・(11)
これに算式(1a)及び算式(2)を併合すると算式(11a)が得られる。
E=Vbb×Ton×I2(1+γ)/2
=Vbb×T10×I2(1+γ)/2.466 ・・・・・(11a)
また、断続周期T10の期間に誘導素子131が発生する誘導電力Pcは算式(12a)で示される。
Pc=E/T10=Vbb×I2×(1+γ)/2.466 ・・・(12a)
従って、目標とする誘導電力Pcの値をマイクロプロセッサ(CPU)123側から可変設定するためには、第一電流I1と第二電流I2を個別に設定するか、第二電流I2を主体として可変設定して、電流比γ=I1/I2は固定値又は複数段階の選択設定を行うこともできるものである。
また、電流比γ=I1/I2の選択設定を行う代わりに、電流差ΔI=I2−I1の選択設定を行うようにすることも可能となるものである。
実施の形態2は、車載バッテリ101から電源電圧Vbbが給電される誘導素子131の励磁電流を断続制御して、この電源電圧Vbbよりも高い高圧電圧Vhを得て、車載電気負荷105に給電する昇圧回路ユニット130Bと、この車載電気負荷105を駆動制御する演算制御回路部120Bとを有する車載電子制御装置100Bであって、昇圧回路ユニット130Bは、誘導素子131に対して直列接続されて、この誘導素子131に対する励磁電流を断続制御する開閉制御素子134と、この開閉制御素子134が開路したときに充電ダイオード132を介して誘導素子131が発生する誘導電圧によって充電される高圧コンデンサ133と、開閉制御素子134に対して駆動信号電圧GT0を発生する駆動信号発生部と、駆動信号電圧GT0の論理レベルに応動して、開閉制御素子134に対して第一ゲート信号GT1と第二ゲート信号GT2を発生する時差制御回路140とを備え、開閉制御素子134は、第一及び第二の昇圧用開閉素子134b、134bの並列回路によって構成されていて、一方の開閉素子である第一の昇圧用開閉素子134aは、他方の開閉素子である第二の昇圧用開閉素子134bに比べてスルーレートが大きな電流増減率を有するとともに、他方の開閉素子は一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有している。
そして、駆動信号発生部は、高圧コンデンサ133の充電電圧が予め定められた電圧下限値以下のときに、これが予め定められた電圧上限電値を超過するまでの期間において駆動信号電圧GT0の発生を許可するとともに、駆動信号電圧GT0の発生に伴って開閉制御素子134が閉路駆動されて、誘導素子131の励磁電流が予め定められた電流上限値を超過すると、この励磁電流が予め定められた電流下限値以下になるまでは駆動信号電圧GT0の発生を停止する駆動信号出力手段によって構成され、時差制御回路140は、駆動信号電圧GT0が発生すると、まず第一の昇圧用開閉素子134aを閉路するための第一ゲート信号GT1を発生し、続いて予め定められた第二閉路遅延時間Tdonを置いて第二の昇圧用開閉素子134bを閉路するための第二ゲート信号GT2を発生する第二時差設定部を備えるとともに、駆動信号電圧GT0が停止すると、まず第二ゲート信号GT2を停止し、続いて予め定められた第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止する第一時差設定部を備えている。
駆動信号発生部は、不揮発性のプログラムメモリ(PMEM)及びデータメモリ(DMEM)と揮発性のRAMメモリ(RMEM)を含むメモリ(MEM)121と、多チャンネルAD変換器(ADC)122を含むマイクロプロセッサ(CPU)によって構成された演算制御回路部120Bと、電流検出信号電圧IN1の生成回路部と電圧検出信号電圧IN2の生成回路部とによって構成され、プログラムメモリは、車載電気負荷105を駆動制御するための入出力制御手段に加えて、電流判定手段と電圧判定手段と駆動信号出力手段となる工程ブロックS938によって構成された駆動信号発生手段となる制御プログラムを包含するとともに、データメモリには、電流上限値Vref12、電流下限値Vref11、電圧上限値Vref22、電圧下限値Vref21に対応した数値データが格納されており、多チャンネルAD変換器には、誘導素子131に直列接続された電流検出抵抗135uの両端電圧を増幅して得られる電流検出信号電圧IN1と、高圧コンデンサ133の両端電圧を分圧抵抗137c、137dによって分圧して得られる電圧検出信号電圧IN2が入力されており、駆動信号出力手段は、電圧検出信号電圧IN2が電圧下限値Vref21以下であるか、これが超過していても電圧上限値Vref22に未達であるとき、及び、電流検出信号電圧IN1が電流下限値Vref11以下であるか、これが超過していても電流上限値Vref12に未達であるときに駆動信号電圧GT0を発生するとともに、電圧検出信号電圧IN2が電圧上限値Vref22を超過するか、又は、電流検出信号電圧IN1が電流上限値Vref12を超過したときに、駆動信号電圧GT0を停止するようになっている。
以上のとおり、この実施の形態2では、駆動信号発生回路は、誘導素子の励磁電流が予め定められた下限値以下であると、これが予め定められた上限値を超過するまで駆動信号電圧GT0を発生し、高圧コンデンサの監視電圧が予め定められた電圧上限値を超過すると、この監視電圧が予め定められた電圧下限値以下となるまで駆動信号電圧GT0を停止する駆動信号出力手段を備えていて、電圧、電流の大小判定はデータメモリに格納されている制御定数に基づいてマイクロプロセッサによって実行されるようになっている。
従って、駆動信号電圧の発生と停止を、電気負荷の駆動制御用の演算制御回路部に設けられたマイクロプロセッサによって行うことによって、昇圧回路ユニットのハードウエア構成を簡略化することができる特徴がある。
車載電気負荷105は、交互に燃料噴射が行われる奇数番号と偶数番号の複数の燃料噴射用電磁弁を駆動する電磁コイル(INJ)501〜504を備えるとともに、演算制御回路部120Bは、各気筒に対する燃料噴射指令INJi(i=1、2・・)を発生して、指令分配回路59と電気負荷駆動回路150であるインジェクタ駆動回路を介して電磁コイル(INJ)501〜504を順次給電駆動し、当該インジェクタ駆動回路は、奇数気筒群と偶数気筒群別に設けられた急速給電素子51aと開弁保持素子52aと、各気筒別に設けられた通電選択素子53a、54aを備え、急速給電素子51aは、高圧コンデンサ133の充電電圧である高圧電圧Vhによって電磁コイル(INJ)501〜504を順次急速駆動し、開弁保持素子52aは、急速給電素子51aを開路した後の電磁弁の開弁期間において、電源電圧Vbbによって開弁保持動作を行い、通電選択素子53a、54aは、電磁コイル(INJ)501〜504の通電期間において閉路駆動されており、演算制御回路部120Bは、少なくとも、誘導素子131に対する電流上限値Vref12の値を、燃料噴射頻度に応動して増減調整し、高圧コンデンサ133の放電頻度が決められた放電頻度よりも低い低速回転時の場合においては、電流上限値Vref12を決められた電流上限値よりも小さく設定する可変制御手段を備えているとともに、高圧コンデンサ133が電磁コイル(INJ)501〜504の一つに対する一回の急速給電を行うために、開閉制御素子134は複数回の断続動作を行って放出エネルギーの補充を行うようになっている。
以上のとおり、この実施の形態2では、車載電気負荷の一部である燃料噴射用電磁弁は、気筒群別の急速給電素子と開弁保持素子、及び気筒別の通電選択素子を備え、高圧コンデンサによる高圧電圧Vhは演算制御回路部が発生する燃料噴射指令INJiとその指令分配回路によって選択された気筒別の電磁コイルに順次給電されて、電磁弁の急速開弁を行うようになっており、高圧コンデンサを充電する誘導素子は、一回の燃料噴射に対して複数回の断続動作が行われるようになっている。
従って、高速回転で燃料噴射頻度が多くなると、開閉制御素子は高頻度に誘導素子に対する断続制御を行う必要があり、この断続動作に伴って発生する開閉制御素子内の開閉過渡損失の低減によってその発熱を抑制することができるものである。
これは、実施の形態1と実施の形態3と4についても同様である。
実施の形態3.
以下、実施の形態3による車載電子制御装置の全体回路ブロック図である図10と、図10のものの時差制御回路と並列開閉素子の詳細回路図である図11について、図1、図2のものとの相違点を中心にしてその構成を詳細に説明する。なお、図11に示された時差制御回路と並列開閉素子は、後述する図12に示された実施の形態4においても適用されるものである。
なお、その相違点としては、図1における時差制御回路140に代わって、図10では時差制御回路240が使用されていて、この時差制御回路240には第一電流検出電圧Vssが入力されており、第一の昇圧用開閉素子134aのソース回路には切換電流検出抵抗235gが直列接続され、その上流側電位が第一電流検出電圧Vssとして利用されている。
図10において、車載電子制御装置100Cは、制御電圧Vccを発生する安定化電源110と、マイクロプロセッサ(CPU)123を含む演算制御回路部120Cと、昇圧回路ユニット130Cと、例えばインジェクタ駆動回路である電気負荷駆動回路150を主体として構成されている。
また、車載電子制御装置100Cの外部に接続されているものは、図1のものと同様の、車載バッテリ101、電源リレーの出力接点である負荷電源スイッチ102、入力センサ103、出力負荷104、車載電気負荷105を含んでいる。
そして、車載電子制御装置100Cの内部構成としては、時差制御回路240と切換電流検出抵抗235gを除いて図1における車載電子制御装置100Aと同一の構成となっている。
図11において、時差制御回路240によって第一ゲート信号GT1と第二ゲート信号GT2が印加される開閉制御素子134には、図2の場合と同様に一対の第一の昇圧用開閉素子134aと第二の昇圧用開閉素子134bが並列接続されているとともに、第一の昇圧用開閉素子134aに比べて閉路時の内部抵抗が小さい電界効果型の並列開閉素子134bbが付加されている例が点線表示されており、この並列開閉素子134bbにも第二ゲート信号GT2が印加され、各開閉素子に含まれる内部寄生コンデンサ139a、139b、139bbが図示されている。
時差制御部を構成する時差制御回路240は、第一時差設定部となる第一時差設定回路と、第二時差設定部となる第二時差設定回路を備え、この第一時差設定回路は、第一電流比較回路241aと中間論理積素子244と一時記憶回路242と論理和素子243aによって構成されている。
第一電流比較回路241aは、第一電流検出電圧Vssの値が電流下限値である第一電流I1(図5(D)参照)に接近した予め定められた第一電圧CMP11以上であって、駆動信号電圧GT0が発生していることによって、中間論理積素子244を介して一時記憶回路242をセット駆動するようになっている。
これに伴い、論理和素子243aは、駆動信号電圧GT0が発生すると直ちに第一ゲート信号GT1を発生し、一時記憶回路242がセット信号を発生している期間は第一ゲート信号GT1の発生を持続し、駆動信号電圧GT0が停止すると一時記憶回路242がリセットされるまでの第一開路遅延時間Tdoff(図4(B)参照)を置いて第一ゲート信号GT1を停止するようになっている。第二時差設定回路は、第二電流比較回路241bと一時記憶回路242と論理積素子243bによって構成され、この第二電流比較回路241bは、第一電流検出電圧Vssの値が電流上限値である第二電流I2(図5(D)参照)に接近した第二電圧CMP12以上であることによって一時記憶回路242をリセット駆動するようになっている。
これに伴い、論理積素子243bは、駆動信号電圧GT0が発生した後に、一時記憶回路242がセット駆動されるまでの第二閉路遅延時間Tdon(図4(D)参照)をおいて第二ゲート信号GT2を発生するとともに、駆動信号電圧GT0が停止すると直ちに第二ゲート信号GT2を停止するようになっている。
なお、第一の昇圧用開閉素子134aのゲート端子には、平滑コンデンサ148aと平滑抵抗149aによるフィルタ回路が設けられていて、第一の昇圧用開閉素子134aの急峻な開閉動作に伴うノイズ発生を抑制するようになっている。
但し、このフィルタ回路を付加したことに伴って低下する第一の昇圧用開閉素子134aの電流増減率の値は、第二の昇圧用開閉素子134b及び並列開閉素子134bb側の電流増減率よりも大きな値となっている。
また、第二の昇圧用開閉素子134bのゲート端子には、安定化コンデンサ148bと安定化抵抗149bとによる安定化回路が設けられていて、これによって第二の昇圧用開閉素子134b又は第二の昇圧用開閉素子134bと並列開閉素子134bbの内部寄生コンデンサ139b、139bbによる過度な開路遅延動作を抑制し、適度な開閉遅延動作を行うようになっている。
以下、図10、図11のとおり構成された実施の形態3による車載電子制御装置100Cについて、図1、図2のものとの相違点を中心にしてその作用・動作を詳細に説明する。
なお、図3による高圧コンデンサの充電特性と誘導素子電流のタイムチャートと、図4における開閉制御素子の駆動信号のタイムチャートと、図5における開閉制御素子の駆動信号の詳細タイムチャートについては実施の形態1において前述したとおりである。
まず、図10において、図示しない電源スイッチが閉路されると、電源リレーの出力接点である負荷電源スイッチ102が閉路して、車載電子制御装置100Cに電源電圧Vbbが印加される。
その結果、安定化電源110が例えばDC5Vの安定化された制御電圧Vccを発生して、マイクロプロセッサ(CPU)123が制御動作を開始する。
マイクロプロセッサ(CPU)123は入力センサ103の動作状態と、メモリ(MEM)121の一部である不揮発性のプログラムメモリ(PGM)に格納された制御プログラムの内容に応動して、出力負荷104に対する負荷駆動指令信号を発生し、出力負荷104の中の特定の電気負荷である車載電気負荷105である燃料噴射用電磁弁に対しては、燃料噴射指令INJiを発生して、電気負荷駆動回路150であるインジェクタ駆動回路を介して気筒別の各電磁コイル(INJ)501〜504を駆動し、これに先立って昇圧回路ユニット130Cが作動して高圧コンデンサ133が高圧充電されるようになっている。
図11で示された時差制御回路240は、図2で示された時差制御回路140と等価な動作を行うものであって、そのどちらも駆動信号出力回路138が発生する駆動信号電圧GT0を信号源として作用して、これを第一ゲート信号GT1と第二ゲート信号GT2に分配するようになっている。
その分配内容は図4のタイムチャートで示したとおりであるが、図4における第一閉路遅延時間tdon、第二閉路遅延時間Tdon、第二開路遅延時間tdoff、第一開路遅延時間Tdoffを生成するために、図2の場合にはコンデンサと抵抗を組合わせたタイマ回路が使用されているのに対し、図11のものでは第一電流検出電圧Vssと、第一電圧CMP11と第二電圧CMP12との比較信号に基づく論理回路によって構成されている。
即ち、時差制御回路240は、駆動信号電圧GT0が発生すると、論理和素子243aを介してまずは第一の昇圧用開閉素子134aを閉路するための第一ゲート信号GT1を発生し、続いて第一電流検出電圧Vssの値が電流下限値である第一電流I1に接近した予め定められた第一電圧CMP11以上となる予め定められた第二閉路遅延時間Tdonを置いて第二ゲート信号GT2を発生して、第二の昇圧用開閉素子134bと並列開閉素子134bbを閉路駆動するようになっている。
また、時差制御回路240は、駆動信号電圧GT0が停止すると、論理積素子243bを介してまずは第二ゲート信号GT2を停止して第二の昇圧用開閉素子134bと並列開閉素子134bbを開路し、続いて第一電流検出電圧Vssの値が電流上限値である第二電流I2に接近した第二電圧CMP12以上となる第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止して、第一の昇圧用開閉素子134aを開路するようになっている。
従って、平滑コンデンサ148aと平滑抵抗149aは、図4における第一閉路遅延時間tdonを生成し、フリップフロップ回路である一時記憶回路242は、第一電流I1の上昇を待ってから第二ゲート信号GT2を発生する第二閉路遅延時間Tdonを生成していることになる。
また、安定化コンデンサ148bと安定化抵抗149bは、図4における第二開路遅延時間tdoffを生成し、一時記憶回路242は今まで第二の昇圧用開閉素子134bと並列開閉素子134bbに流れていた電流が、第一の昇圧用開閉素子134a側に移行するのを待ってから第一ゲート信号GT1を停止する第一開路遅延時間Tdoffを生成していることになる。
実施の形態3は、車載バッテリ101から電源電圧Vbbが給電される誘導素子131の励磁電流を断続制御して、この電源電圧Vbbよりも高い高圧電圧Vhを得て、車載電気負荷105に給電する昇圧回路ユニット130Cと、この車載電気負荷105を駆動制御する演算制御回路部120Cとを有する車載電子制御装置100Cであって、昇圧回路ユニット130Cは、誘導素子131に対して直列接続されて、この誘導素子131に対する励磁電流を断続制御する開閉制御素子134と、この開閉制御素子134が開路したときに充電ダイオード132を介して誘導素子131が発生する誘導電圧によって充電される高圧コンデンサ133と、開閉制御素子134に対して駆動信号電圧GT0を発生する駆動信号発生部と、駆動信号電圧GT0の論理レベルに応動して、開閉制御素子134に対して第一ゲート信号GT1と第二ゲート信号GT2を発生する時差制御回路240とを備えている。
そして、開閉制御素子134は、第一及び第二の昇圧用開閉素子134b、134bの並列回路によって構成されていて、一方の開閉素子である第一の昇圧用開閉素子134aは、他方の開閉素子である第二の昇圧用開閉素子134bに比べてスルーレートが大きな電流増減率を有するとともに、他方の開閉素子は一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有しており、駆動信号発生部は、高圧コンデンサ133の充電電圧が予め定められた電圧下限値以下のときに、これが予め定められた電圧上限電値を超過するまでの期間において駆動信号電圧GT0の発生を許可するとともに、駆動信号電圧GT0の発生に伴って開閉制御素子134が閉路駆動されて、誘導素子131の励磁電流が予め定められた電流上限値を超過すると、予め定められた遮断時間ΔTを経過するまでは駆動信号電圧GT0の発生を停止する駆動信号出力回路138によって構成され、時差制御回路240は、駆動信号電圧GT0が発生すると、まず第一の昇圧用開閉素子134aを閉路するための第一ゲート信号GT1を発生し、続いて予め定められた第二閉路遅延時間Tdonを置いて第二の昇圧用開閉素子134bを閉路するための第二ゲート信号GT2を発生する第二時差設定部を備えるとともに、駆動信号電圧GT0が停止すると、まず第二ゲート信号GT2を停止し、続いて予め定められた第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止する第一時差設定部を備えている。
駆動信号発生部は、電流判定回路と電圧判定回路と駆動信号出力回路138とによって構成された駆動信号発生回路であり、電流判定回路は、開閉制御素子134の下流端に直列接続された電流検出抵抗135gの両端電圧である全体電流検出電圧Vsの値と、誘導素子131に対する励磁電流の目標上限電流に比例した比較電圧である電流上限値Vref12を比較して、この目標上限電流を超過する励磁電流に到達するとタイマ回路136cを介して第一の駆動禁止信号GT01を発生する第一の比較器136aを備え、タイマ回路136cは、励磁電流が目標上限電流に到達してから目標下限電流に低下する減衰所要期間において第一の駆動禁止信号GT01の発生を持続するパルス発生回路であり、電圧判定回路は、高圧コンデンサ133の両端電圧を分圧抵抗137c、137dで分圧して得られる監視電圧が、目標とする監視電圧に対する電圧上限値Vref22を超過したことによって、第二の駆動禁止信号GT02を発生する第二の比較器137aを備え、第二の比較器137aには、正帰還抵抗137eが監視入力端子と比較出力端子間に接続ており、第二の駆動禁止信号GT02が発生した後に、高圧コンデンサ133の充電電荷が車載電気負荷105に放電することによって、監視電圧が予め定められた下限電圧値Vref21以下となったことによって第二の駆動禁止信号GT02が停止し、駆動信号出力回路138は、第一の駆動禁止信号GT01と第二の駆動禁止信号GT02が共に発生していない論理状態において駆動信号電圧GT0を発生するようになっている。
以上のとおり、この実施の形態3では、開閉制御素子に流れる誘導素子の励磁電流が予め定められた上限値を超過すると、これが予め定められた下限値以下となる遮断時間ΔTを経過するまで第一の駆動禁止信号GT01を発生する電流判定回路と、高圧コンデンサの監視電圧が予め定められた電圧上限値Vref22を超過すると、この監視電圧が予め定められた電圧下限値Vref21以下となるまで第二の駆動禁止信号GT02を発生する電圧判定回路を備え、駆動信号出力回路は、第一の駆動禁止信号GT01と第二の駆動禁止信号GT02が共に発生していない論理状態において駆動信号電圧GT0を発生するようになっている。
従って、駆動信号電圧GT0がハードウエアを主体として生成され、開閉制御素子を開路した後に誘導素子の減衰電流を測定する必要がないので電流検出回路も簡略化される特徴がある。
これは、実施の形態1の場合と同様である。
時差制御部を構成する時差制御回路240は、第一時差設定部となる第一時差設定回路と、第二時差設定部となる第二時差設定回路を備え、第一の昇圧用開閉素子134aは、個別に直列接続された切換電流検出抵抗235gの上流端電位である第一電流検出電圧Vssを発生し、第一時差設定回路は、第一電流比較回路241aと中間論理積素子244と一時記憶回路242と論理和素子243aによって構成され、第一電流比較回路241aは、第一電流検出電圧Vssの値が電流下限値である第一電流I1に接近した予め定められた第一電圧CMP11以上であって、駆動信号電圧GT0が発生していることによって、中間論理積素子244を介して一時記憶回路242をセット駆動するようになっている。
そして、論理和素子243aは、駆動信号電圧GT0が発生すると直ちに第一ゲート信号GT1を発生し、一時記憶回路242がセット信号を発生している期間は第一ゲート信号GT1の発生を持続し、駆動信号電圧GT0が停止すると一時記憶回路242がリセットされるまでの第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止し、第二時差設定回路は、第二電流比較回路241bと一時記憶回路242と論理積素子243bによって構成され、第二電流比較回路241bは、第一電流検出電圧Vssの値が電流上限値である第二電流I2に接近した第二電圧CMP12以上であることによって一時記憶回路242をリセット駆動し、論理積素子243bは、駆動信号電圧GT0が発生した後に、一時記憶回路242がセット駆動されるまでの第二閉路遅延時間Tdonをおいて第二ゲート信号GT2を発生するとともに、駆動信号電圧GT0が停止すると直ちに第二ゲート信号GT2を停止するようになっている。
以上のとおり、この実施の形態3では、第一の昇圧用開閉素子は第一電流検出電圧Vssを発生するための電流検出抵抗を備えるとともに、時差制御回路には駆動信号電圧GT0と第一電流の増加判定と、第二電流が第一の昇圧用開閉素子側に移行したかどうか判定する比較基準信号が入力されており、時差制御回路に駆動信号電圧GT0が入力されると、第一ゲート信号GT1は直ちに発生するが、第二ゲート信号GT2は第一電流検出電圧Vssが予め定められた値以上に増加した時点で発生するとともに、駆動信号電圧GT0が停止されると第二ゲート信号GT2は直ちに発生するが、第一ゲート信号GT1は第一電流検出電圧Vssが予め定められた値以上に増加して、第二電流が第一の昇圧用開閉素子側に移行した時点で停止するようになっている。従って、第二の昇圧用開閉素子は第一の昇圧用開閉素子が閉路している期間内に開閉動作が行われることによって開閉過渡損失の発生が防止され、第二の昇圧用開閉素子の閉路期間においては第一の昇圧用開閉素子の閉路通電損失が削減され、相互に発生損失を分担することができるとともに、第一ゲート信号GT1と第二ゲート信号GT2の発生と停止のタイミングは、タイマ回路に依存することなく、第一電流検出電圧Vssと一対の比較基準電圧である第一電圧CMP11と第二電圧CMP12との比較を行うことによって正確、迅速に決定することができる特徴がある。
時差制御回路240は、論理和素子243aの出力回路に接続された平滑抵抗149aと、平滑コンデンサ148aとによるフィルタ回路を備えるとともに、論理積素子243bの出力回路に接続された安定化抵抗149bと安定化コンデンサ148bとによる安定化回路を備え、フィルタ回路は、第一ゲート信号GT1の急峻な変化を抑制して、第一の昇圧用開閉素子134aの急峻な開閉動作にともなうノイズ発生を抑制するもので有るのに対し、安定化回路は、第二の昇圧用開閉素子134b又は並列開閉素子134bbの内部寄生コンデンサ139b、139bbのばらつき変動による開閉過渡時間の変動を抑制して、第二ゲート信号GT2によるゲート電圧の増減特性を安定化するためのものとなっている。
以上のとおり、この実施の形態3では、第一の昇圧用開閉素子のゲート端子と、第二の昇圧用開閉素子及び並列開閉素子のゲート端子には、それぞれフィルタ回路と安定化回路が設けられている。
従って、第一の昇圧用開閉素子を過度に急速開閉することによって発生するノイズを抑制しながら、第一の昇圧用開閉素子の急速開閉動作を行って、開閉動作中に発生する過渡損失を抑制することができるとともに、第二の昇圧用開閉素子及び並列開閉素子の開閉動作時間の変動による第一の昇圧用開閉素子の閉路通電損失の増大を抑制することができる特徴がある。
実施の形態4.
次に、実施の形態4による車載電子制御装置の全体回路ブロック図である図12について、図7のものとの相違点を中心にしてその構成と作用動作を詳細に説明する。
なお、その相違点としては、図7における時差制御回路140に代わって、図12では時差制御回路240が使用されていて、この時差制御回路240には第一電流検出電圧Vssが入力されており、第一の昇圧用開閉素子134aのソース回路には切換電流検出抵抗235gが直列接続され、その上流側電位が第一電流検出電圧Vssとして利用されている。
但し、図12において一点鎖線で示された第一電流検出電圧Vssと一対のフィルタ回路は、変形形態として別途後述するものの一部となっている。
図12において、車載電子制御装置100Dは、制御電圧Vccを発生する安定化電源110と、マイクロプロセッサ(CPU)123を含む演算制御回路部120Dと、昇圧回路ユニット130Dと、例えばインジェクタ駆動回路である電気負荷駆動回路150を主体として構成されている。
また、車載電子制御装置100Dの外部に接続されているものは、図7のものと同様の、車載バッテリ101、電源リレーの出力接点である負荷電源スイッチ102、入力センサ103、出力負荷104、車載電気負荷105を含んでいる。
そして、車載電子制御装置100Dの内部構成としては、時差制御回路240と切換電流検出抵抗235gを除いて図7における車載電子制御装置100Bと同一の構成となっている。
従って、演算制御回路部120Dには、電流検出信号電圧IN1と電圧検出信号電圧IN2とが入力されて、データメモリに格納されている電流上限値Vref12、電流下限値Vref11、電圧上限値Vref22、電圧下限値Vref21を参照して、駆動信号出力手段によって駆動信号電圧GT0を発生するようになっている。
その作用動作については図9において説明したとおりであり、駆動信号電圧GT0に応動して第一ゲート信号GT1と第二ゲート信号GT2を生成する時差制御回路240については図11において詳述したとおりである。
次に、図12のものの変形形態として、時差制御回路240を廃止して、演算制御回路部120D自体が第一ゲート信号GT1と第二ゲート信号GT2を直接に生成する時差制御手段を有するものである場合の動作説明用フローチャートである図13について詳細に説明する。即ち、図13は、図12のものの駆動信号出力手段と図12のものの時差制御回路に代わる変形態様となる時差制御手段の動作説明用フローチャートである。
図13において、工程S900から工程S906に至る一連の工程は、図9の場合と同様に工程S905が該当する駆動信号発生手段と工程S906が該当する駆動信号停止手段によって構成された工程ブロックS938が該当する駆動信号出力手段を構成している。
但し、この変形形態においては、駆動信号出力手段による駆動信号電圧GT0は演算制御回路部120Dの外部に出力されることはなく、工程S905に続く工程S907aでは第一ゲート信号GT1を発生し、工程S906に続く工程S907bでは第二ゲート信号GT2を停止するようになっている。
工程S907aに続く工程S908aは、工程S907aによって第一の昇圧用開閉素子134aが閉路駆動されたことに伴って、第一電流検出電圧Vssが図5(D)おける第一電流I1に接近した値に相当する比較電圧である第一電圧CMP11以上となったかどうかを判定し、以上となれば「YES」の判定を行って続く工程S909aによって第二ゲート信号GT2を発生し、以後は工程S907bによって記憶消去されるまでは第二ゲート信号GT2の発生状態を維持して工程S910へ移行し、第一電流I1に未達であるときには「NO」の判定を行って工程S910へ移行する判定ステップである。
動作終了工程である工程S910では、その他の制御プログラムが実行されて、予め定められた制限時間以内に動作開始の工程S900へ復帰して以下の制御フローを反復実行するようになっている。
従って、工程S908aが「NO」の判定を行ったときには、以上の制御動作が反復実行され、図4(D)における第二閉路遅延時間Tdonの経過にともなって工程S908aは「YES」の判定を行うようになっている。
一方、反復実行過程で工程S906による駆動信号電圧GT0の停止指令が発生すると、続く工程S907bでは工程S909aで実行された第二ゲート信号GT2の発生記憶を消去してから第二ゲート信号GT2を停止する。
工程S907bに続く工程S908bは、工程S907bによって第二の昇圧用開閉素子134bと並列開閉素子134bbとが開路されたことに伴って、第一電流検出電圧Vssが図5(D)おける第二電流I2に接近した値に相当する比較電圧である第二電圧CMP12以上となったかどうかを判定し、以上となれば「YES」の判定を行って、続く工程S909bによって第一ゲート信号GT1を停止して工程S910へ移行し、第二電流I2に未達であるときには「NO」の判定を行って工程S910へ移行する判定ステップである。
これにより、工程S907aで発生した第一ゲート信号GT1は、工程S909bによって停止されることになるが、工程S908bが「NO」の判定を行ったときには、以上の制御動作が反復実行され、図4(B)における第一開路遅延時間Tdoffの経過に伴って工程S908bは「YES」の判定を行うようになっている。
なお、第一電流検出電圧Vssと比較される第一電圧CMP11は、例えば図5(D)における第一電流I1の90%以上の電流が流れたかどうかを判定して、先行閉路していた第一の昇圧用開閉素子134aの役割を終えたとして第二の昇圧用開閉素子134bと並列開閉素子134bbの閉路駆動を行うようになっている。
同様に、第一電流検出電圧Vssと比較される第二電圧CMP12は、今まで第二の昇圧用開閉素子134bと並列開閉素子134bbに流れていた図5(D)における第二電流I2の例えば90%の電流が、持続閉路している第一の昇圧用開閉素子134a側に移行したことを確認してから第一の昇圧用開閉素子134aを開路するようになっていて、工程S907aから工程S909bに至る一連の工程ブロックS940は時差制御手段となっている。
以上の説明で明らかなとおり、実施の形態4の変形形態においては、駆動信号出力手段(工程ブロックS938が相当する)と時差制御手段(工程ブロックS940が相当する)とが演算制御回路部120D内の制御プログラムによって実行されている。従って、実施の形態4における時差制御回路240は不要となっている。
但し、図11の時差制御回路240で示した平滑コンデンサ148aと平滑抵抗149aによる平滑回路と、安定化コンデンサ148bと安定化抵抗149bによる安定化回路はハードウエアとして各開閉素子のゲート端子に接続されている。
実施の形態4は、車載バッテリ101から電源電圧Vbbが給電される誘導素子131の励磁電流を断続制御して、この電源電圧Vbbよりも高い高圧電圧Vhを得て、車載電気負荷105に給電する昇圧回路ユニット130Dと、この車載電気負荷105を駆動制御する演算制御回路部120Dとを有する車載電子制御装置100Dであって、昇圧回路ユニット130Dは、誘導素子131に対して直列接続されて、この誘導素子131に対する励磁電流を断続制御する開閉制御素子134と、この開閉制御素子134が開路したときに充電ダイオード132を介して誘導素子131が発生する誘導電圧によって充電される高圧コンデンサ133と、開閉制御素子134に対して駆動信号電圧GT0を発生する駆動信号発生部と、駆動信号電圧GT0の論理レベルに応動して、開閉制御素子134に対して第一ゲート信号GT1と第二ゲート信号GT2を発生する時差制御部を構成する時差制御回路240、時差制御手段(工程ブロックS940が相当する)とを備えている。
そして、開閉制御素子134は、第一の昇圧用開閉素子134a及び第二の昇圧用開閉素子134bの並列回路によって構成されていて、一方の開閉素子である第一の昇圧用開閉素子134aは、他方の開閉素子である第二の昇圧用開閉素子134bに比べてスルーレートが大きな電流増減率を有するとともに、他方の開閉素子は一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有しており、駆動信号発生部は、高圧コンデンサ133の充電電圧が予め定められた電圧下限値以下のときに、これが予め定められた電圧上限電値を超過するまでの期間において駆動信号電圧GT0の発生を許可するとともに、駆動信号電圧GT0の発生に伴って開閉制御素子134が閉路駆動されて、誘導素子131の励磁電流が予め定められた電流上限値を超過すると、この励磁電流が予め定められた電流下限値以下になるまでは駆動信号電圧GT0の発生を停止する駆動信号出力手段(工程ブロックS938が相当する)によって構成され、時差制御部を構成する時差制御回路240、時差制御手段(工程ブロックS940が相当する)は、駆動信号電圧GT0が発生すると、まず第一の昇圧用開閉素子134aを閉路するための第一ゲート信号GT1を発生し、続いて予め定められた第二閉路遅延時間Tdonを置いて第二の昇圧用開閉素子134bを閉路するための第二ゲート信号GT2を発生する第二時差設定部を備えるとともに、駆動信号電圧GT0が停止すると、まず第二ゲート信号GT2を停止し、続いて予め定められた第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止する第一時差設定部を備えている。
駆動信号発生部は、不揮発性のプログラムメモリ(PMEM)及びデータメモリ(DMEM)と揮発性のRAMメモリ(RMEM)を含むメモリ(MEM)121と、多チャンネルAD変換器(ADC)122を含むマイクロプロセッサ(CPU)123によって構成された演算制御回路部120Dと、電流検出信号電圧IN1の生成回路部と電圧検出信号電圧IN2の生成回路部とによって構成され、プログラムメモリは、車載電気負荷105を駆動制御するための入出力制御手段に加えて、電流判定手段と電圧判定手段と駆動信号出力手段(工程ブロックS938が相当する)によって構成された駆動信号発生手段となる制御プログラムを包含するとともに、データメモリには、電流上限値Vref12、電流下限値Vref11、電圧上限値Vref22、電圧下限値Vref21に対応した数値データが格納されており、多チャンネルAD変換器(ADC)122には、誘導素子131に直列接続された電流検出抵抗135uの両端電圧を増幅して得られる電流検出信号電圧IN1と、高圧コンデンサ133の両端電圧を分圧抵抗137c、137dによって分圧して得られる電圧検出信号電圧IN2が入力されており、駆動信号出力手段(工程ブロックS938が相当する)は、電圧検出信号電圧IN2が電圧下限値Vref21以下であるか、これが超過していても電圧上限値Vref22に未達であるとき、及び、電流検出信号電圧IN1が電流下限値Vref11以下であるか、これが超過していても電流上限値Vref12に未達であるときに駆動信号電圧GT0を発生するとともに、電圧検出信号電圧IN2が電圧上限値Vref22を超過するか、又は、電流検出信号電圧IN1が電流上限値Vref12を超過したときに、駆動信号電圧GT0を停止するようになっている。
以上のとおり、この実施の形態4では、駆動信号発生回路は、誘導素子の励磁電流が予め定められた下限値以下であると、これが予め定められた上限値を超過するまで駆動信号電圧GT0を発生し、高圧コンデンサの監視電圧が予め定められた電圧上限値を超過すると、この監視電圧が予め定められた電圧下限値以下となるまで駆動信号電圧GT0を停止する駆動信号出力手段を備えていて、電圧・電流の大小判定はデータメモリに格納されている制御定数に基づいてマイクロプロセッサによって実行されるようになっている。
従って、駆動信号電圧の発生と停止を、電気負荷の駆動制御用の演算制御回路部に設けられたマイクロプロセッサによって行うことによって、昇圧回路ユニットのハードウエア構成を簡略化することができる特徴がある。
これは、実施の形態2の場合と同様である。
時差制御部を構成する時差制御回路240は、第一時差設定部となる第一時差設定回路と、第二時差設定部となる第二時差設定回路を備え、第一の昇圧用開閉素子134aは、個別に直列接続された切換電流検出抵抗235gの上流端電位である第一電流検出電圧Vssを発生し、第一時差設定回路は、第一電流比較回路241aと中間論理積素子244と一時記憶回路242と論理和素子243aによって構成され、第一電流比較回路241aは、第一電流検出電圧Vssの値が電流下限値である第一電流I1に接近した予め定められた第一電圧CMP11以上であって、駆動信号電圧GT0が発生していることによって、中間論理積素子244を介して一時記憶回路242をセット駆動するようになっている。
そして、論理和素子243aは、駆動信号電圧GT0が発生すると直ちに第一ゲート信号GT1を発生し、一時記憶回路242がセット信号を発生している期間は第一ゲート信号GT1の発生を持続し、駆動信号電圧GT0が停止すると一時記憶回路242がリセットされるまでの第一開路遅延時間Tdoffを置いて第一ゲート信号GT1を停止し、第二時差設定回路は、第二電流比較回路241bと一時記憶回路242と論理積素子243bによって構成され、第二電流比較回路241bは、第一電流検出電圧Vssの値が電流上限値である第二電流I2に接近した第二電圧CMP12以上であることによって一時記憶回路242をリセット駆動し、論理積素子243bは、駆動信号電圧GT0が発生した後に、一時記憶回路242がセット駆動されるまでの第二閉路遅延時間Tdonをおいて第二ゲート信号GT2を発生するとともに、駆動信号電圧GT0が停止すると直ちに第二ゲート信号GT2を停止するようになっている。
以上のとおり、この実施の形態4では、第一の昇圧用開閉素子は第一電流検出電圧Vssを発生するための電流検出抵抗を備えるとともに、時差制御回路には駆動信号電圧GT0と第一電流の増加判定と、第二電流が第一の昇圧用開閉素子側に移行したかどうか判定する比較基準信号が入力されており、時差制御回路に駆動信号電圧GT0が入力されると、第一ゲート信号GT1は直ちに発生するが、第二ゲート信号GT2は第一電流検出電圧Vssが予め定められた値以上に増加した時点で発生するとともに、駆動信号電圧GT0が停止されると第二ゲート信号GT2は直ちに発生するが、第一ゲート信号GT1は第一電流検出電圧Vssが予め定められた値以上に増加して、第二電流が第一の昇圧用開閉素子側に移行した時点で停止するようになっている。
従って、第二の昇圧用開閉素子は第一の昇圧用開閉素子が閉路している期間内に開閉動作が行われることによって開閉過渡損失の発生が防止され、第二の昇圧用開閉素子の閉路期間においては第一の昇圧用開閉素子の閉路通電損失が削減され、相互に発生損失を分担することができるとともに、第一ゲート信号GT1と第二ゲート信号GT2の発生と停止のタイミングは、タイマ回路に依存することなく、第一電流検出電圧Vssと一対の比較基準電圧である第一電圧CMP11と第二電圧CMP12との比較を行うことによって正確、迅速に決定することができる特徴がある。
これは、実施の形態3の場合と同様である。
時差制御回路240は、論理和素子243aの出力回路に接続された平滑抵抗149aと、平滑コンデンサ148aとによるフィルタ回路を備えるとともに、論理積素子243bの出力回路に接続された安定化抵抗149bと安定化コンデンサ148bとによる安定化回路を備え、フィルタ回路は、第一ゲート信号GT1の急峻な変化を抑制して、第一の昇圧用開閉素子134aの急峻な開閉動作にともなうノイズ発生を抑制するもので有るのに対し、安定化回路は、第二の昇圧用開閉素子134b又は並列開閉素子134bbの内部寄生コンデンサ139b、139bbのばらつき変動による開閉過渡時間の変動を抑制して、第二ゲート信号GT2によるゲート電圧の増減特性を安定化するためのものとなっている。
以上のとおり、この実施の形態4では、第一の昇圧用開閉素子のゲート端子と、第二の昇圧用開閉素子及び並列開閉素子のゲート端子には、それぞれフィルタ回路と安定化回路が設けられている。
従って、第一の昇圧用開閉素子を過度に急速開閉することによって発生するノイズを抑制しながら、第一の昇圧用開閉素子の急速開閉動作を行って、開閉動作中に発生する過渡損失を抑制することができるとともに、第二の昇圧用開閉素子及び並列開閉素子の開閉動作時間の変動による第一の昇圧用開閉素子の閉路通電損失の増大を抑制することができる特徴がある。
これは、実施の形態3の場合と同様である。
第一の昇圧用開閉素子134aは、個別に直列接続された切換電流検出抵抗235gの上流端電位である第一電流検出電圧Vssを発生して、演算制御回路部120Dに対する入力信号とし、プログラムメモリ(PMEM)は更に、第一時差設定部となる第一時差設定手段(工程S908bが相当する)と、第二時差設定部となる第二時差設定手段(工程S908aが相当する)とによって、時差制御部となる時差制御手段(工程ブロックS940が相当する)を構成する制御プログラムを包含し、第二時差設定手段(工程S908aが相当する)は、駆動信号電圧GT0の発生に伴って第一ゲート信号GT1を発生したことに応動して、第一電流検出電圧Vssの値が電流下限値である第一電流I1に接近した時の予め定められた第一電圧CMP11に到達するための第二閉路遅延時間Tdonをおいて第二ゲート信号GT2を発生し、第一時差設定手段(工程S908bが相当する)は、駆動信号電圧GT0の停止に伴って第二ゲート信号GT2を停止したことに応動して、第一電流検出電圧Vssの値が電流上限値である第二電流I2に接近した時の予め定められた第二電圧CMP12に到達するための第一開路遅延時間Tdoffをおいて第一ゲート信号GT1を停止し、比較判定基準となる第一電圧CMP11と第二電圧CMP12の値は、予めデータメモリ(DMEM)に格納されている。
以上のとおり、この実施の形態4では、第一の昇圧用開閉素子は第一電流検出電圧Vssを発生するための電流検出抵抗を備えるとともに、演算制御回路部には、この第一電流検出電圧Vssが入力されており、駆動信号電圧GT0を発生するための駆動信号出力手段を備えたプログラムメモリは更に、時差制御部となる時差制御手段と、第一時差設定部となる第一時差設定手段と、第二時差設定部となる第二時差設定手段を備えている。
従って、第二の昇圧用開閉素子は第一の昇圧用開閉素子が閉路している期間内に開閉動作が行われることによって開閉過渡損失の発生が防止され、第二の昇圧用開閉素子の閉路期間においては第一の昇圧用開閉素子の閉路通電損失が削減され、相互に発生損失を分担することができるとともに、第一ゲート信号GT1と第二ゲート信号GT2の発生と停止のタイミングは、タイマ回路に依存することなく、第一電流検出電圧Vssの監視を行うことによって正確、迅速に決定することができる特徴がある。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
100A 車載電子制御装置、105 車載電気負荷、120A 演算制御回路部、130A 昇圧回路ユニット、131 誘導素子、132 充電ダイオード、133 高圧コンデンサ、134 開閉制御素子、134a 第一の昇圧用開閉素子、134b 第二の昇圧用開閉素子、138 駆動信号出力回路、140 時差制御回路

Claims (10)

  1. 車載バッテリから電源電圧が給電される誘導素子の励磁電流を断続制御して、前記電源電圧よりも高い高圧電圧を得て、車載電気負荷に給電する昇圧回路ユニットと、前記車載電気負荷を駆動制御する演算制御回路部とを有する車載電子制御装置であって、
    前記昇圧回路ユニットは、前記誘導素子に対して直列接続されて、前記誘導素子に対する励磁電流を断続制御する開閉制御素子と、前記開閉制御素子が開路したときに充電ダイオードを介して前記誘導素子が発生する誘導電圧によって充電される高圧コンデンサと、前記開閉制御素子に対して駆動信号電圧を発生する駆動信号発生部と、前記駆動信号電圧の論理レベルに応動して、前記開閉制御素子に対して第一ゲート信号と第二ゲート信号を発生する時差制御部とを備え、
    前記開閉制御素子は、第一の昇圧用開閉素子及び第二の昇圧用開閉素子の並列回路によって構成されていて、一方の開閉素子である前記第一の昇圧用開閉素子は、他方の開閉素子である前記第二の昇圧用開閉素子に比べてスルーレートが大きな電流増減率を有するとともに、前記他方の開閉素子は前記一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有しており、
    前記駆動信号発生部は、前記高圧コンデンサの充電電圧が予め定められた電圧下限値以下のときに、前記充電電圧が予め定められた電圧上限値を超過するまでの期間において前記駆動信号電圧の発生を許可するとともに、前記駆動信号電圧の発生に伴って前記開閉制御素子が閉路駆動されて、前記誘導素子の励磁電流が予め定められた電流上限値を超過すると、前記励磁電流が予め定められた電流下限値以下になるか、又は予め定められた遮断時間を経過するまでは前記駆動信号電圧の発生を停止する駆動信号出力手段又は駆動信号出力回路によって構成され、
    前記時差制御部は、前記駆動信号電圧が発生すると、まず前記第一の昇圧用開閉素子を閉路するための前記第一ゲート信号を発生し、続いて予め定められた第二閉路遅延時間を置いて前記第二の昇圧用開閉素子を閉路するための前記第二ゲート信号を発生する第二時差設定部を備えるとともに、前記駆動信号電圧が停止すると、まず前記第二ゲート信号を停止し、続いて予め定められた第一開路遅延時間を置いて前記第一ゲート信号を停止する第一時差設定部を備えたものであって、
    前記第一の昇圧用開閉素子及び前記第二の昇圧用開閉素子、及び前記第二の昇圧用開閉素子と並列接続されることがある並列開閉素子は、いずれも電界効果型のトランジスタであって、それぞれにゲート端子とソース端子との間に内部寄生コンデンサを有するとともに、
    前記並列開閉素子は、前記第二の昇圧用開閉素子と同様に、前記第一の昇圧用開閉素子に比べて内部抵抗が小さい高導電率を有しているとともに、前記内部抵抗は共に正の温度係数を有しており、
    前記並列開閉素子と前記第二の昇圧用開閉素子とは、共通の前記第二ゲート信号によって断続制御されるものにおいて、
    前記時差制御部を構成する時差制御回路は、前記第一時差設定部となる第一時差設定回路と、前記第二時差設定部となる第二時差設定回路を備え、
    前記第一時差設定回路は、前記駆動信号電圧によって第一急速閉路用ダイオードと低抵抗の充電抵抗を介して急速充電される第一時差設定コンデンサと、前記第一時差設定コンデンサの充電電荷を緩速放電する高抵抗の第一遅延開路抵抗によって構成され、
    前記第一時差設定回路は、前記駆動信号電圧の論理レベルがハイレベルとなったときに、前記第一急速閉路用ダイオードと前記充電抵抗を介して前記第一時差設定コンデンサが急速充電される一方で、前記第一急速閉路用ダイオードと低抵抗の第一急速閉路用抵抗と、比較器である波形整形素子を介し前記第一の昇圧用開閉素子の前記内部寄生コンデンサを急速充電する前記第一ゲート信号を発生して、前記第一の昇圧用開閉素子が急速閉路駆動され、
    前記第一時差設定回路はまた、前記駆動信号電圧の論理レベルがローレベルとなったとき前記第一時差設定コンデンサの充電電荷が前記第一遅延開路抵抗を介して緩速放電し、前記第一時差設定コンデンサの残留電圧が前記波形整形素子の負側入力端子に接続された比較基準電圧未満になると、前記波形整形素子の比較出力によって前記第一ゲート信号を急速減衰させて前記第一の昇圧用開閉素子が急速開路されることを特徴とする車載電子制御装置。
  2. 前記駆動信号発生部は、電流判定回路と電圧判定回路と前記駆動信号出力回路とによって構成された駆動信号発生回路であり、
    前記電流判定回路は、前記開閉制御素子の下流端に直列接続された電流検出抵抗の両端電圧である全体電流検出電圧の値と、前記誘導素子に対する励磁電流の目標上限電流に比例した比較電圧である電流上限値を比較して、前記目標上限電流を超過する励磁電流に到達するとタイマ回路を介して第一の駆動禁止信号を発生する第一の比較器を備え、
    前記タイマ回路は、前記励磁電流が前記目標上限電流に到達してから目標下限電流に低下する減衰所要期間において前記第一の駆動禁止信号の発生を持続するパルス発生回路であり、
    前記電圧判定回路は、前記高圧コンデンサの両端電圧を分圧抵抗で分圧して得られる監視電圧が、目標とする前記監視電圧に対する電圧上限値を超過したことによって、第二の駆動禁止信号を発生する第二の比較器を備え、
    前記第二の比較器には、正帰還抵抗が監視入力端子と比較出力端子間に接続されており、前記第二の駆動禁止信号が発生した後に、前記高圧コンデンサの充電電荷が前記車載電気負荷に放電することによって、前記監視電圧が予め定められた下限電圧値以下となったことによって前記第二の駆動禁止信号が停止し、
    前記駆動信号出力回路は、前記第一の駆動禁止信号と前記第二の駆動禁止信号が共に発生していない論理状態において前記駆動信号電圧を発生する請求項1に記載の車載電子制御装置。
  3. 前記駆動信号発生部は、不揮発性のプログラムメモリ及びデータメモリと揮発性のRAMメモリ含むメモリと、多チャンネルAD変換器を含むマイクロプロセッサによって構成された前記演算制御回路部と、電流検出信号電圧の生成回路部と電圧検出信号電圧の生成回路部とによって構成され、
    前記プログラムメモリは、前記車載電気負荷を駆動制御するための入出力制御手段に加えて、電流判定手段と電圧判定手段と駆動信号出力手段によって構成された駆動信号発生手段となる制御プログラムを包含するとともに、
    前記データメモリには、電流上限値、電流下限値、電圧上限値、電圧下限値に対応した数値データが格納されており、
    前記多チャンネルAD変換器には、前記誘導素子に直列接続された電流検出抵抗の両端電圧を増幅して得られる前記電流検出信号電圧と、前記高圧コンデンサの両端電圧を分圧抵抗によって分圧して得られる前記電圧検出信号電圧が入力されており、
    前記駆動信号出力手段は、前記電圧検出信号電圧が前記電圧下限値以下であるか、前記電圧検出信号電圧が前記電圧下限値を超過していても前記電圧上限値に未達であるとき、及び、前記電流検出信号電圧が前記電流下限値以下であるか、前記電流検出信号電圧が前記電流下限値を超過していても前記電流上限値に未達であるときに前記駆動信号電圧を発生するとともに、
    前記電圧検出信号電圧が前記電圧上限値を超過するか、又は、前記電流検出信号電圧が前記電流上限値を超過したときに、前記駆動信号電圧を停止する請求項1に記載の車載電子制御装置。
  4. 前記第一の昇圧用開閉素子のゲート端子には、平滑コンデンサが接続され、
    前記平滑コンデンサと前記波形整形素子の出力端子との間には平滑抵抗が接続されてフィルタ回路を構成し、
    前記フィルタ回路を付加したことに伴って低下する前記第一の昇圧用開閉素子の電流増減率の値は、前記第二の昇圧用開閉素子及び前記並列開閉素子の側の電流増減率よりも大きな値となっている請求項1から請求項3のいずれか1項に記載の車載電子制御装置。
  5. 前記第二時差設定回路は、前記内部寄生コンデンサと前記第二の昇圧用開閉素子のゲート端子に接続された第二時差設定コンデンサとの一部又は全部と、前記内部寄生コンデンサ、前記第二時差設定コンデンサを緩速充電する第二遅延閉路抵抗とを備え、前記第二時差設定回路は、前記駆動信号電圧の論理レベルがハイレベルとなったときに、前記第二遅延閉路抵抗を介して前記内部寄生コンデンサと前記第二時差設定コンデンサが充電されることによって前記第二ゲート信号が遅れて上昇して、前記第二の昇圧用開閉素子又は前記第二の昇圧用開閉素子と前記並列開閉素子が遅延閉路駆動され、
    前記第二時差設定回路はまた、前記駆動信号電圧の論理レベルがローレベルとなったときに、第二急速開路用ダイオードと低抵抗の第二急速開路用抵抗を介して、前記内部寄生コンデンサと前記第二時差設定コンデンサの充電電荷を急速放電して前記第二ゲート信号を急速低下させることによって、前記第二の昇圧用開閉素子又は前記第二の昇圧用開閉素子と前記並列開閉素子が急速開路され、
    前記第二時差設定コンデンサを接続した場合には前記第二急速開路用ダイオードは短絡して削除されている請求項1から請求項4のいずれか1項に記載の車載電子制御装置。
  6. 車載バッテリから電源電圧が給電される誘導素子の励磁電流を断続制御して、前記電源電圧よりも高い高圧電圧を得て、車載電気負荷に給電する昇圧回路ユニットと、前記車載電気負荷を駆動制御する演算制御回路部とを有する車載電子制御装置であって、
    前記昇圧回路ユニットは、前記誘導素子に対して直列接続されて、前記誘導素子に対する励磁電流を断続制御する開閉制御素子と、前記開閉制御素子が開路したときに充電ダイオードを介して前記誘導素子が発生する誘導電圧によって充電される高圧コンデンサと、前記開閉制御素子に対して駆動信号電圧を発生する駆動信号発生部と、前記駆動信号電圧の論理レベルに応動して、前記開閉制御素子に対して第一ゲート信号と第二ゲート信号を発生する時差制御部とを備え、
    前記開閉制御素子は、第一の昇圧用開閉素子及び第二の昇圧用開閉素子の並列回路によって構成されていて、一方の開閉素子である前記第一の昇圧用開閉素子は、他方の開閉素子である前記第二の昇圧用開閉素子に比べてスルーレートが大きな電流増減率を有するとともに、前記他方の開閉素子は前記一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有しており、
    前記駆動信号発生部は、前記高圧コンデンサの充電電圧が予め定められた電圧下限値以下のときに、前記充電電圧が予め定められた電圧上限値を超過するまでの期間において前記駆動信号電圧の発生を許可するとともに、前記駆動信号電圧の発生に伴って前記開閉制御素子が閉路駆動されて、前記誘導素子の励磁電流が予め定められた電流上限値を超過すると、前記励磁電流が予め定められた電流下限値以下になるか、又は予め定められた遮断時間を経過するまでは前記駆動信号電圧の発生を停止する駆動信号出力手段又は駆動信号出力回路によって構成され、
    前記時差制御部は、前記駆動信号電圧が発生すると、まず前記第一の昇圧用開閉素子を閉路するための前記第一ゲート信号を発生し、続いて予め定められた第二閉路遅延時間を置いて前記第二の昇圧用開閉素子を閉路するための前記第二ゲート信号を発生する第二時差設定部を備えるとともに、前記駆動信号電圧が停止すると、まず前記第二ゲート信号を停止し、続いて予め定められた第一開路遅延時間を置いて前記第一ゲート信号を停止する第一時差設定部を備えたものであって、
    前記第一の昇圧用開閉素子及び前記第二の昇圧用開閉素子、及び前記第二の昇圧用開閉素子と並列接続されることがある並列開閉素子は、いずれも電界効果型のトランジスタであって、それぞれにゲート端子とソース端子との間に内部寄生コンデンサを有するとともに、
    前記並列開閉素子は、前記第二の昇圧用開閉素子と同様に、前記第一の昇圧用開閉素子に比べて内部抵抗が小さい高導電率を有しているとともに、前記内部抵抗は共に正の温度係数を有しており、
    前記並列開閉素子と前記第二の昇圧用開閉素子とは、共通の前記第二ゲート信号によって断続制御されるものにおいて、
    前記時差制御部を構成する時差制御回路は、前記第一時差設定部となる第一時差設定回路と、前記第二時差設定部となる第二時差設定回路を備え、
    前記第一の昇圧用開閉素子は、個別に直列接続された切換電流検出抵抗の上流端電位である第一電流検出電圧を発生し、前記第一時差設定回路は、第一電流比較回路と中間論理積素子と一時記憶回路と論理和素子によって構成され、
    前記第一電流比較回路は、前記第一電流検出電圧の値が電流下限値である第一電流に接近した予め定められた第一電圧以上であって、前記駆動信号電圧が発生していることによって、前記中間論理積素子を介して前記一時記憶回路をセット駆動し、
    前記論理和素子は、前記駆動信号電圧が発生すると直ちに前記第一ゲート信号を発生し、前記一時記憶回路がセット信号を発生している期間は前記第一ゲート信号の発生を持続し、前記駆動信号電圧が停止すると前記一時記憶回路がリセットされるまでの前記第一開路遅延時間を置いて前記第一ゲート信号を停止し、
    前記第二時差設定回路は、第二電流比較回路と前記一時記憶回路と論理積素子によって構成され、前記第二電流比較回路は、前記第一電流検出電圧の値が前記電流上限値である第二電流に接近した第二電圧以上であることによって前記一時記憶回路をリセット駆動し、前記論理積素子は、前記駆動信号電圧が発生した後に、前記一時記憶回路がセット駆動されるまでの前記第二閉路遅延時間をおいて前記第二ゲート信号を発生するとともに、前記駆動信号電圧が停止すると直ちに前記第二ゲート信号を停止するものであることを特徴とする車載電子制御装置。
  7. 前記時差制御回路は、前記論理和素子の出力回路に接続された平滑抵抗と、平滑コンデンサとによるフィルタ回路を備えるとともに、前記論理積素子の出力回路に接続された安定化抵抗と安定化コンデンサとによる安定化回路を備え、
    前記フィルタ回路は、前記第一ゲート信号の急峻な変化を抑制して、前記第一の昇圧用開閉素子の急峻な開閉動作にともなうノイズ発生を抑制するもので有るのに対し、
    前記安定化回路は、前記第二の昇圧用開閉素子又は前記並列開閉素子の内部寄生コンデンサのばらつき変動による開閉過渡時間の変動を抑制して、前記第二ゲート信号によるゲート電圧の増減特性を安定化するためのものである請求項6に記載の車載電子制御装置。
  8. 車載バッテリから電源電圧が給電される誘導素子の励磁電流を断続制御して、前記電源電圧よりも高い高圧電圧を得て、車載電気負荷に給電する昇圧回路ユニットと、前記車載電気負荷を駆動制御する演算制御回路部とを有する車載電子制御装置であって、
    前記昇圧回路ユニットは、前記誘導素子に対して直列接続されて、前記誘導素子に対する励磁電流を断続制御する開閉制御素子と、前記開閉制御素子が開路したときに充電ダイオードを介して前記誘導素子が発生する誘導電圧によって充電される高圧コンデンサと、前記開閉制御素子に対して駆動信号電圧を発生する駆動信号発生部と、前記駆動信号電圧の論理レベルに応動して、前記開閉制御素子に対して第一ゲート信号と第二ゲート信号を発生する時差制御部とを備え、
    前記開閉制御素子は、第一の昇圧用開閉素子及び第二の昇圧用開閉素子の並列回路によって構成されていて、一方の開閉素子である前記第一の昇圧用開閉素子は、他方の開閉素子である前記第二の昇圧用開閉素子に比べてスルーレートが大きな電流増減率を有するとともに、前記他方の開閉素子は前記一方の開閉素子に比べて閉路時の内部抵抗が小さい高導電率を有しており、
    前記駆動信号発生部は、前記高圧コンデンサの充電電圧が予め定められた電圧下限値以下のときに、前記充電電圧が予め定められた電圧上限値を超過するまでの期間において前記駆動信号電圧の発生を許可するとともに、前記駆動信号電圧の発生に伴って前記開閉制御素子が閉路駆動されて、前記誘導素子の励磁電流が予め定められた電流上限値を超過すると、前記励磁電流が予め定められた電流下限値以下になるか、又は予め定められた遮断時間を経過するまでは前記駆動信号電圧の発生を停止する駆動信号出力手段又は駆動信号出力回路によって構成され、
    前記時差制御部は、前記駆動信号電圧が発生すると、まず前記第一の昇圧用開閉素子を閉路するための前記第一ゲート信号を発生し、続いて予め定められた第二閉路遅延時間を置いて前記第二の昇圧用開閉素子を閉路するための前記第二ゲート信号を発生する第二時差設定部を備えるとともに、前記駆動信号電圧が停止すると、まず前記第二ゲート信号を停止し、続いて予め定められた第一開路遅延時間を置いて前記第一ゲート信号を停止する第一時差設定部を備えたものであって、
    前記第一の昇圧用開閉素子及び前記第二の昇圧用開閉素子、及び前記第二の昇圧用開閉素子と並列接続されることがある並列開閉素子は、いずれも電界効果型のトランジスタであって、それぞれにゲート端子とソース端子との間に内部寄生コンデンサを有するとともに、
    前記並列開閉素子は、前記第二の昇圧用開閉素子と同様に、前記第一の昇圧用開閉素子に比べて内部抵抗が小さい高導電率を有しているとともに、前記内部抵抗は共に正の温度係数を有しており、
    前記並列開閉素子と前記第二の昇圧用開閉素子とは、共通の前記第二ゲート信号によって断続制御されるものにおいて、
    前記駆動信号発生部は、不揮発性のプログラムメモリ及びデータメモリと揮発性のRAMメモリ含むメモリと、多チャンネルAD変換器を含むマイクロプロセッサによって構成された前記演算制御回路部と、電流検出信号電圧の生成回路部と電圧検出信号電圧の生成回路部とによって構成され、
    前記プログラムメモリは、前記車載電気負荷を駆動制御するための入出力制御手段に加えて、電流判定手段と電圧判定手段と駆動信号出力手段によって構成された駆動信号発生手段となる制御プログラムを包含するとともに、
    前記データメモリには、電流上限値、電流下限値、電圧上限値、電圧下限値に対応した数値データが格納されており、
    前記多チャンネルAD変換器には、前記誘導素子に直列接続された電流検出抵抗の両端電圧を増幅して得られる前記電流検出信号電圧と、前記高圧コンデンサの両端電圧を分圧抵抗によって分圧して得られる前記電圧検出信号電圧が入力されており、
    前記駆動信号出力手段は、前記電圧検出信号電圧が前記電圧下限値以下であるか、前記電圧検出信号電圧が前記電圧下限値を超過していても前記電圧上限値に未達であるとき、及び、前記電流検出信号電圧が前記電流下限値以下であるか、前記電流検出信号電圧が前記電流下限値を超過していても前記電流上限値に未達であるときに前記駆動信号電圧を発生するとともに、
    前記電圧検出信号電圧が前記電圧上限値を超過するか、又は、前記電流検出信号電圧が前記電流上限値を超過したときに、前記駆動信号電圧を停止するものであり、
    前記第一の昇圧用開閉素子は、個別に直列接続された切換電流検出抵抗の上流端電位である第一電流検出電圧を発生して、前記演算制御回路部に対する入力信号とし、
    前記プログラムメモリは更に、前記第一時差設定部となる第一時差設定手段と、前記第二時差設定部となる第二時差設定手段とによって、前記時差制御部となる時差制御手段を構成する制御プログラムを包含し、
    前記第二時差設定手段は、前記駆動信号電圧の発生に伴って前記第一ゲート信号を発生したことに応動して、前記第一電流検出電圧の値が前記電流下限値である第一電流に接近した時の予め定められた第一電圧に到達するための前記第二閉路遅延時間をおいて前記第二ゲート信号を発生し、
    前記第一時差設定手段は、前記駆動信号電圧の停止に伴って前記第二ゲート信号を停止したことに応動して、前記第一電流検出電圧の値が前記電流上限値である第二電流に接近した時の予め定められた第二電圧に到達するための前記第一開路遅延時間をおいて前記第一ゲート信号を停止し、
    比較判定基準となる前記第一電圧と前記第二電圧の値は、予め前記データメモリに格納されていることを特徴とする車載電子制御装置。
  9. 前記第一の昇圧用開閉素子の開閉動作時における電流増減率α1は、前記第二の昇圧用開閉素子及び前記並列開閉素子の電流増減率α2に対して4倍以上の高速動作を行うものであるとともに、
    前記第二の昇圧用開閉素子及び前記並列開閉素子の閉路動作時における内部抵抗Rs2は、前記第一の昇圧用開閉素子の内部抵抗Rs1に対して1/4以下の低抵抗となっている請求項1から請求項8のいずれか1項に記載の車載電子制御装置。
  10. 前記車載電気負荷は、交互に燃料噴射が行われる奇数番号と偶数番号の複数の燃料噴射用電磁弁を駆動する電磁コイルを備えるとともに、
    前記演算制御回路部は、各気筒に対する燃料噴射指令を発生して、指令分配回路とインジェクタ駆動回路を介して前記電磁コイルを順次給電駆動し、前記インジェクタ駆動回路は、奇数気筒群と偶数気筒群別に設けられた急速給電素子と開弁保持素子と、各気筒別に設けられた通電選択素子を備え、
    前記急速給電素子は、前記高圧コンデンサの充電電圧である前記高圧電圧によって前記電磁コイルを順次急速駆動し、
    前記開弁保持素子は、前記急速給電素子を開路した後の前記燃料噴射用電磁弁の開弁期間において、前記電源電圧によって開弁保持動作を行い、
    前記通電選択素子は、前記電磁コイルの通電期間において閉路駆されており、
    前記演算制御回路部は、少なくとも、前記誘導素子に対する前記電流上限値の値を、燃料噴射頻度に応動して増減調整し、前記高圧コンデンサの放電頻度が決められた放電頻度よりも低い場合においては、前記電流上限値を決められた電流上限値よりも小さく設定する可変制御手段を備えているとともに、前記高圧コンデンサが前記電磁コイルの一つに対する一回の急速給電を行うために、前記開閉制御素子は複数回の断続動作を行って放出エネルギーの補充を行うものである請求項1から請求項9のいずれか1項に記載の車載電子制御装置。
JP2018217042A 2018-11-20 2018-11-20 車載電子制御装置 Expired - Fee Related JP6723325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217042A JP6723325B2 (ja) 2018-11-20 2018-11-20 車載電子制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217042A JP6723325B2 (ja) 2018-11-20 2018-11-20 車載電子制御装置

Publications (2)

Publication Number Publication Date
JP2020088963A JP2020088963A (ja) 2020-06-04
JP6723325B2 true JP6723325B2 (ja) 2020-07-15

Family

ID=70910195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217042A Expired - Fee Related JP6723325B2 (ja) 2018-11-20 2018-11-20 車載電子制御装置

Country Status (1)

Country Link
JP (1) JP6723325B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399908A (en) * 1992-06-26 1995-03-21 Kollmorgen Corporation Apparatus and method for forced sharing of parallel MOSFET switching losses
US6249111B1 (en) * 2000-06-22 2001-06-19 Intel Corporation Dual drive buck regulator
JP2002064975A (ja) * 2000-08-17 2002-02-28 Taiyo Yuden Co Ltd Dc/dcコンバータの駆動制御方法及びdc/dcコンバータ
JP5542884B2 (ja) * 2012-08-30 2014-07-09 三菱電機株式会社 車載エンジン制御装置
JP5462387B1 (ja) * 2013-04-18 2014-04-02 三菱電機株式会社 車載エンジン制御装置及びその制御方法
JP2015216420A (ja) * 2014-05-07 2015-12-03 株式会社オートネットワーク技術研究所 スイッチ装置、降圧装置及び昇圧装置
CN107024957B (zh) * 2016-01-29 2019-04-02 丰田自动车工程及制造北美公司 用于电流/功率平衡的方法和装置
JP6180600B1 (ja) * 2016-09-02 2017-08-16 三菱電機株式会社 車載エンジン制御装置

Also Published As

Publication number Publication date
JP2020088963A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
DE102013222312B4 (de) Fahrzeugmotorsteuervorrichtung und Steuerverfahren dafür
DE60015019T2 (de) Steuerungsvorrichtung für einen elektromagnetischen Verbraucher mit veränderlicher Antriebs- und Startenergieversorgung
JP6104340B1 (ja) 車載エンジン制御装置
US10227943B2 (en) Vehicle engine control system
US20090243574A1 (en) Internal combustion engine controller
JP5541225B2 (ja) 電磁弁駆動装置
JP5124031B2 (ja) 内燃機関の点火装置
DE102013222326A1 (de) Kraftstoffeinspritzsteuerungsvorrichtung und Kraftstoffeinspritzsystem
DE102016202350B4 (de) Kraftstoffeinspritzantriebsvorrichtung
DE102016213522B4 (de) Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftfahrzeugs
JP3508407B2 (ja) 内燃機関用燃料噴射弁の駆動装置
US7107976B2 (en) Inductive load powering arrangement
JP6723325B2 (ja) 車載電子制御装置
JP2010144534A (ja) 内燃機関の点火装置
JP2018096229A (ja) 噴射制御装置
JP2005330934A (ja) インジェクタ駆動装置
DE102016210449B3 (de) Verfahren und Vorrichtung zur Ermittlung von Bestromungsdaten für ein Stellglied eines Einspritzventils eines Kraftfahrzeugs
JP2019190307A (ja) 噴射制御装置
JP7135809B2 (ja) 噴射制御装置
JP6723326B2 (ja) 開閉制御素子に対する通電制御回路ユニット、及びこれを備えた車載電子制御装置
JP6191496B2 (ja) 燃料噴射弁駆動装置
JP2008106723A (ja) 内燃機関の点火制御装置
JP5994756B2 (ja) インジェクタ駆動装置
US10862293B2 (en) Vehicle electronic control apparatus
JP6841145B2 (ja) 噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R151 Written notification of patent or utility model registration

Ref document number: 6723325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees