JP6711282B2 - 温度制御装置および温度制御方法 - Google Patents

温度制御装置および温度制御方法 Download PDF

Info

Publication number
JP6711282B2
JP6711282B2 JP2016570550A JP2016570550A JP6711282B2 JP 6711282 B2 JP6711282 B2 JP 6711282B2 JP 2016570550 A JP2016570550 A JP 2016570550A JP 2016570550 A JP2016570550 A JP 2016570550A JP 6711282 B2 JP6711282 B2 JP 6711282B2
Authority
JP
Japan
Prior art keywords
temperature
temperature control
heat storage
heat
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016570550A
Other languages
English (en)
Other versions
JPWO2016117334A1 (ja
Inventor
展雄 佐々木
展雄 佐々木
天野 雅彦
雅彦 天野
昌洋 松川
昌洋 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Publication of JPWO2016117334A1 publication Critical patent/JPWO2016117334A1/ja
Application granted granted Critical
Publication of JP6711282B2 publication Critical patent/JP6711282B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、ペルチェ素子を用いた温度制御の技術に係り、特に、生体サンプルの温度制御など生化学反応用の温調制御に好適な技術に関する。
DNAを増幅させる技術として、PCR(ポリメラーゼ連鎖反応)がある。生体サンプルから抽出できるDNAが微量であり直接に検出するのが難しいため、増幅してから検出する方法がしばしば用いられる。このPCR増幅法は、DNAを含む水溶液の温度を周期的に上下させることにより、短時間で指数関数的にDNAを増幅させる技術である。
このようなPCR工程における加熱冷却制御用の温度制御装置として、温度や時間を設定して、温度制御対象を加熱および吸熱するサイクルを繰り返すサーマルサイクラー(温度制御装置)が存在する。このサーマルサイクラーの熱源としてペルチェ素子が用いられる場合がある。このペルチェ素子は、電子式であるために制御性や応答性に優れ、また、デバイスに流す電流の向きを変えることによって単一のデバイスで加熱も吸熱も行うことができる。
ペルチェ素子は機能的にヒートポンプであり、その性能は、温度制御対象と接しない面の温度と密接に関係する。ペルチェ素子を駆動すると、一般に、ペルチェ素子の両面に望まない温度差が生じる。温度差が大き過ぎると、熱を汲み上げて温度制御対象を温度調整することが難しくなる。
このため、従来のペルチェ素子を用いた温度制御装置では、ペルチェ素子の反対面にフィン及びファンからなる空冷式のヒートシンクを設置して、ペルチェ素子の両面の温度差の拡大を抑えている。
また、特許文献1には、液体循環式のヒートシンクを用いて温度調整することが開示されている。
特開2007−110943号公報
空冷式のヒートシンクを用いた場合、ファンを有する分、装置が大型化すると共に、ファンを駆動するために振動が発生する。
また液体循環式のヒートシンクを用いた場合でも、液体を収容するタンク、循環するためのポンプや温度調整のためのファンやラジエターが必要であることから、装置が大型化すると共に、ファンを駆動するために振動が発生する。
本発明は、上記のような点に着目してなされたもので、装置を小型化し、更に静音性に優れた温度制御方法や温度制御装置を提供することを目的としている。
課題を解決するために、本発明の一態様は、生体サンプルを温度制御対象とし、その温度制御対象への加熱及び上記温度制御対象からの吸熱の少なくとも一方をペルチェ素子を用いて行うことで、上記温度制御対象を予め設定した制御温度範囲に温度制御し、上記ペルチェ素子の放熱面と熱伝達可能な蓄熱材を有し、その蓄熱材は、上記温度制御範囲内、若しくは上記制御温度範囲の下限値より低く且つ使用時の雰囲気温度よりも高い第2の温度範囲内に相変化温度を持つ。
本発明の態様によれば、従来の温度制御装置のペルチェ素子の放熱面側に大型のフィンとファンを設置する代わりに潜熱式の蓄熱材を配置することで、装置を小型化且つ省力化できる。
また本発明によれば、ファンなどの機械的な駆動部が無いため静音性に優れている。
本発明に基づく実施形態に係る温度制御装置の構成を示す概略断面図である。 本発明に基づく実施形態に係る温度制御装置の制御関係を示す図である。 本発明に基づく実施形態に係る温度制御装置の装置構成の例を示す図である。 温度制御対象をセットした状態を示す図である。 ペルチェ素子両面の温度差の状態を示す概念図であり、(a)は空冷の場合、(b)は発明に基づく場合を示している。 温度制御対象をセットした状態における、比較例の温度制御装置の装置構成を示す概略図である。 実施例の温度制御装置を駆動したときの、温度の時間変化及びペルチェ素子への入力電力の時間変化を示すグラフである。 比較例の温度制御装置を駆動したときの、温度の時間変化及びペルチェ素子への入力電力の時間変化を示すグラフである。 第2の実施例における温度の時間変化及びペルチェ素子への入力電力の時間変化を示すグラフである。 図9を部分的に拡大した図である。 第2の実施例の遺伝子解析チップにおける反応後の確認としての電気泳動を例示する図である。
次に、本発明の実施形態について図面を参照しつつ説明する。
本実施形態では、生体サンプルの温度制御の一例として、生化学反応用の温調制御を対象とした場合を例示する。すなわち、PCR工程における加熱冷却制御用の温度制御装置を例に挙げ、温度制御対象を加熱および吸熱するサイクルを、設定した温度や時間で繰り返す場合を想定して説明する。勿論、温度制御対象への加熱又は温度制御対象からの吸熱のいずれかをペルチェ素子を用いて行うことで、温度制御対象を予め設定した制御温度範囲で温度制御を行う場合であっても良い。
本実施形態の温度制御装置は、図1に示すように、ペルチェ素子10、蓄熱材ヒートシンク11、および予熱ヒーター13を備える。
(ペルチェ素子)
ペルチェ素子10は、温度制御対象A側の第1の面10aと、蓄熱材ヒートシンク11側の第2の面10b(放熱面)とを有する。ペルチェ素子10の第1の面10aは、ヒートスプレッダ12を介して温度制御対象Aに面接触する。ヒートスプレッダ12は、温度制御対象Aにおける、図1の断面と垂直な面での温度分布の偏差を低減させるために配置される。ヒートスプレッダ12を設けなくても良い。
蓄熱材ヒートシンク11は、蓄熱材15と、その蓄熱材15を収容する蓄熱材容器16とから構成される。
(蓄熱材)
蓄熱材15は、潜熱式の蓄熱材からなる。潜熱式の蓄熱材は、小型でより多くの熱を蓄えるため、一般に顕熱式の蓄熱材より蓄熱密度が高い蓄熱材である。本実施形態の潜熱式の蓄熱材15として、その相変化温度が、温度調整する制御温度範囲内に位置する材料からなる蓄熱材を選択する。好ましくは相変化温度が、該制御温度範囲内のうち室温側に近い温度であることが好ましい。制御温度範囲の上限値及び下限値は、実際の制御時に誤差が生じるため、その誤差分だけ広い範囲に設定する。誤差分は、制御の精度にもよるが例えば2℃である。
又は、蓄熱材15として、相変化温度が、制御温度範囲の下限値より低く且つ使用時の雰囲気温度よりも高い第2の温度範囲内となる蓄熱材を採用する。温度制御装置を室温で使用することを想定すると、室温の平均温度は20℃前後であり、使用時の雰囲気温度は高くても40℃未満であると想定されるため、例えば上記の第2の温度範囲の下限値を40℃以上として設定して、蓄熱材15の相変化温度を決定しても良い。但し、その場合であっても、相変化温度が制御温度範囲に近い温度であることが好ましい。
PCRでは、室温の温度雰囲気で、およそ70℃から90℃の制御温度範囲において加熱と吸熱を繰り返すため、相変化温度が、例えば、80℃前後の材質から蓄熱材15を構成する。例えば、相変化温度が80℃前後に設定されたパラフィンから構成する。
ここでパラフィンの蓄熱量は、およそ200J/gであり、パラフィンの相変化温度は、炭素鎖数によって選択可能である。従って、相変化温度が制御温度範囲内若しくは制御温度範囲内よりも低い第2の温度範囲内となっているパラフィンを使用すれば良い。第2の温度範囲内を選択する場合であっても、上述のように制御温度範囲に近いことが好ましいため、第2の温度範囲として、例えば使用時の雰囲気温度よりも20℃以上高温の60℃以上70℃未満に設定する。
(蓄熱材容器)
蓄熱材容器16は、蓄熱材15を収容する容器部17と、蓋部18から構成される。本実施形態では、蓄熱材容器16として、容器部17の収容部の形状が直方体形状の場合を例示しているが、収容部が円筒状やボール状その他であっても構わない。
蓄熱材容器16は、伝熱促進のために、銅やアルミその他の金属など、熱伝導性の良い材料で作製されている。ここで、蓋部18は熱伝達部を構成する。容器部17の少なくとも側面部17aは、放熱用の熱伝達体を構成する。
蓋部18の外面18aは、ペルチェ素子10の第2の面10b(ヒートシンク側の面)に接触している。
蓋部18の内面18b(蓄熱材15に向く面)には、上記蓄熱材15内に向けて突出して該蓄熱材15に埋入する複数の突起部19を備える。本実施形態では、突起部19の形状として円柱形状のピンを例示した。蓄熱材15に埋入される突起部19の形状は、円柱形状に限定されず、角柱形状や円錐形状などでも良く、特に限定されない。
この突起部19を設けることで、蓋部18と蓄熱材15との接触面積が増加して、蓄熱材15の熱をペルチェ素子10に、またペルチェ素子10の熱を蓄熱材15に効率よく伝熱出来るようになる。すなわち、突起部19を有することで追従性が向上する。なお、この突起部19を設けなくても良い。
また、上記突起部19の蓄熱材15への埋入量Lは、蓄熱材15の深さDの半分以上に設定されていることが好ましい。
突起部19が蓄熱材15の表面側の部分にだけ接触している場合には、蓄熱材15の底側の蓄熱材部分の蓄熱を効率よくペルチェ素子10に伝達出来ないおそれがある。これを考慮して、突起部19の蓄熱材15への埋入量は、蓄熱材15の深さ(突起部の突出方向での深さ)の半分以上に設定することで、蓄熱材15の底側の部分とペルチェ素子10との熱交換も、迅速且つ効率良く出来るようになる。
ここで、各突起部19の大きさ(表面積)や本数が、多いほど効果があるが、多くなるほど蓄熱材容器16に収容される蓄熱材15の量の減少に繋がる。従って、必要な蓄熱材15の量を勘案しつつ、各突起部19の大きさ(体積)や本数を設定すればよい。
また、容器部17の下面に予熱ヒーター13が配置され、その予熱ヒーター13を覆うようにして断熱材14が配置されている。断熱材14を配置することで、予熱ヒーター13の熱を蓄熱材15に効率良く入力することが出来る。
(制御部)
また図2に示すように制御部100を有する。制御部100は、予熱ヒーター13への電流制御を行うヒーター制御部104と、ペルチェ素子10への電流制御を行うペルチェ制御部102を備える。制御部100の処理として、予熱工程と、予熱工程が完了後に行われる温度制御工程とを有する。
蓄熱材15には、第1の温度センサ103が配置され、第1の温度センサ103は、検出信号をヒーター制御部104に供給する。ヒーター制御部104は、第1の温度センサ103からの信号を参照しつつ、蓄熱材15が目的の予熱温度となるまで予熱ヒーター13に通電を行う。この通電は、温度制御を実行する温度制御工程の前に行われる。すなわち、予熱ヒーター13に通電するのは、温度制御対象Aの加熱と吸熱を繰り返す前に、蓄熱材ヒートシンク11を室温から制御温度範囲まで予熱する予熱工程においてであり、温度制御対象Aの加熱と吸熱を繰り返す温度制御工程において予熱ヒーター13に通電しない。これは、無駄な通電を防止するためである。
また、ヒートスプレッダ12の温度を検出する第2の温度センサ101を有する。第2の温度センサ101は、検出信号をペルチェ制御部102に供給する。ペルチェ制御部102では、ヒートスプレッダ12の温度を温度制御対象Aの温度とみなして、ペルチェ素子10を電流をフィードバック制御する。
即ち、制御部100は、まず作動すると、予熱工程として、蓄熱材15を室温から制御温度範囲の下限温度に近い蓄熱初期温度である予熱温度まで予熱する。蓄熱材15が予熱温度になったことを検知したら、ヒーター13への通電を停止して予熱を終了する。
予熱工程が終了したら、ペルチェ制御部102を起動して、第2の温度センサ101の温度を参照しながら、予め設定した制御温度範囲及び時間間隔で、温度制御対象Aを加熱および吸熱するサイクルを予め設定した時間間隔で予め設定した回数繰り返すように、ペルチェ素子10に対し電流制御を実行する。
(温度制御装置の配置例)
次に、温度制御対象Aを加熱制御する際の温度制御装置の配置構造の例を説明する。
本実施形態では、図3に示すように、上記説明した温度制御装置1,2を2組用意し、それぞれのヒートスプレッダ12を対向するようにして基台4に取り付けられている。本実施形態では、2組の温度制御装置1,2を上下で対向させる場合で例示するが、横方向などで対向するように配置しても良い。
基台4は、上下で対向する底面部4aと天井部4bと備え、更に底面部4aと天井部4bとを繋いで連結する支持部4cを有する。
一方(下側)の温度制御装置1は、断熱材14側を下方に向けた状態で、基台4の底面部4aの上面に固定されている。
他方(上側)の温度制御装置2は、ねじ送り機構からなる加圧機構を介して天井部4bに支持されている。加圧機構は、他方の温度制御装置2を昇降(一方の温度制御装置1に接近・離脱)させる装置である。
加圧機構は、天井部4bに形成された雌ねじ部(不図示)に螺合する雄ねじ部3を備える。図3では、一つの雄ねじ部3だけが図示されているが、紙面直交方向に離隔して2本の雄ねじ部3が設けられている。そして、2本の雄ねじ部3の下端部に他方の温度制御装置2が取り付けられている。
なお、雄ねじ部3の軸回転に対して温度制御装置2が回転しないようにして、各雄ねじ部3の下端部を温度制御装置2に取付ける。雄ねじ部3にモータを接続しておき、制御部100からの指令でモータを駆動して昇降するように構成しても良い。この場合、ロードセルなどの圧力センサを設けて、挟み込んだときの押し付け圧が所定値になるようにフィードバック制御などで昇降を調整するようにしても良い。
加圧機構は、図に示すねじ式以外でも、温度制御装置1と温度制御装置2で、温度制御対象Aを適正に挟み込むことができる機構であればよい。例えば、モーターと歯車を組合わせたもの、モーターと歯車と無端ベルトを組合わせたもの、リンク機構を用いたもの、バネなどの弾性体を用いたもの、油圧、空気圧等の流体圧駆動のものが挙げられる。
そして、一方の温度制御装置1のヒートスプレッダ12の上に温度制御対象Aを載置し、加圧機構を操作して、上側に位置する他方の温度制御装置2を下降させて、図4のように、対向する2つのヒートスプレッダ12で温度制御対象Aを挟み込む。このとき、所定圧力で加圧するように、他方の温度制御装置2を下降させる。加圧状態とすることで、上下の温度制御装置1,2と温度制御対象Aの間の接触熱抵抗を低減させた状態で温度制御が可能となる。
この状態で、制御部100を作動して、上述の余熱、及び温度制御対象Aに対する加熱および吸熱するサイクルを予め設定した回数繰り返すための電流制御を実施する。
(動作その他)
ここで、ペルチェ素子10の吸加熱量Qは、ペルチェ素子10への入力電流をIin、ペルチェ素子10の両面の温度差をΔTとすると、下記の(1)式で表すことができる。
Q = α・Iin +(1/2)・R・Iin −L・ΔT ・・・(1)
ここで、
α:ペルチェ係数
R:電気抵抗
1/L:熱抵抗(ペルチェ素子10に固有の値)
である。
(1)式における、右辺の第1項は、ペルチェ素子10の一方の面から他方の面へのペルチェ効果による熱移動量であり、第2項は、電流を流すことによるペルチェ素子10自体からの発熱であり、第3項は、ペルチェ素子10の両面の温度差に伴う熱伝導である。
本実施形態において、3つの項は比較し得る大きさとなり、これらの項の効果により温度制御対象Aの温度が増減する。従来から、ペルチェ素子10への入力電流Iinは積極的に制御されてきたが、加熱と吸熱を繰り返す用途において、ペルチェ素子10の両面の温度差ΔTは積極的に制御されていなかった。
すなわち、図5(a)のように、汲み上げる温度差が大きいほど、ペルチェ素子10に通電する電流を大電流とすることが必要となる。図5(a)は、空冷ヒートシンクを使用した場合を想定している。
これに対し、本実施形態では、ペルチェ素子10の第2の面10bに予熱した蓄熱材15を配置することで、図5(b)のように、ペルチェ両面の温度差を小さくすることが出来る。このため、温度制御のためにペルチェ素子10に通電する電流を小さく出来ると共に、加熱、吸熱の際の温度変化の立上りを早くすることが出来る。またペルチェ素子10への通電が小さい場合、ペルチェ素子10が発生する熱もその分小さくなる。すなわち、温度制御中にペルチェ素子10の両面の温度差が小さくなり、ペルチェ素子10を少ない入力電力で駆動できることから、温度制御のためのエネルギー効率が上がる。
更に、本実施形態の温度制御装置では、蓄熱材15として、制御温度範囲内に相変化温度が設定された潜熱式の蓄熱材15を採用する。
この構成によれば、蓄熱材15における一番蓄熱密度の良い温度範囲及びその近傍で、当該蓄熱材15を使用出来るようになるため、装置を小型化できたり、蓄熱材15への熱の吸収や放熱を、余裕の蓄熱容量を持って実行可能に設定したり出来る。
ここで、上述の特許文献1の方法では、液体循環式ヒートシンクの温度を変えるために、流す液体それぞれの温調機構と、液体を切り替える可動機構とが必要になり、構造が複雑かつ装置が大型となる。また、系全体を流れる液体を別に温度調整するため、エネルギー効率が低くなる。
また、本実施形態の温度制御装置によれば、従来の温度制御装置のペルチェ素子10の放熱面に設置されていた大型のフィンとファンに代わりに潜熱式の蓄熱材15を使用することで、装置の大きさを小型化できる。また、ファンなどの機械的な駆動部が無いため静音性に優れている。
また、蓋部18に対し蓄熱材15内に埋入する複数の突起部19を備える。
突起部19を設けることで、蓄熱材15と蓋部18(熱伝達部)との接触面積が増加することから、蓄熱材15とペルチェ素子10との間の熱の授受が迅速且つ効率的に実行可能となる。
また、突起部19の蓄熱材15への埋入量Lが、蓄熱材15の深Dさの半分以上に設定されている。
この構成によれば、蓋部18から離れた位置にある蓄熱材15の部分とも効率良く熱交換が可能となり、より有効に蓄熱材15の蓄熱容量を使用出来る。
また、蓄熱材15を温度制御する前に予熱するための予熱ヒーター13を備える。
この構成によれば、温度制御前に蓄熱材15を、室温よりも高くして、制御温度範囲若しくはその近傍に加熱可能となる。これによって、上述のように、ペルチェ素子10を少ない入力電力で駆動できるため、温度制御のためのエネルギー効率が上がる。
蓄熱材15は、温度制御前に、相変化温度よりも低い温度に予熱、例えば制御温度範囲以下の温度に予熱される。予熱温度は、室温よりも高く、制御温度範囲の下限値近傍が好ましい。更には、温度制御終了後の蓄熱材15の温度が、制御温度範囲に収まると推定される範囲で、制御温度範囲の下限値に近い温度に設定することが好ましい。
ここで発明者は、最初、蓄熱材15の予熱温度を制御温度範囲の中央値に設定して実験を行った。このとき、サイクル数が所定以上の場合に、蓄熱材15の温度が制御温度範囲よりも高くなっていくことが分かった。すなわち、通電によって発生するペルチェ素子10からの熱によって、蓄熱材15の温度がサイクル変動を伴いつつ徐々に高くなることが分かった。このため、予熱温度を、室温よりも高く且つ相変化温度よりも低い温度、好ましくは制御温度範囲の下限値より低い温度に設定した。
蓄熱材15の具体的な予熱温度は、制御温度範囲と、サイクル数によって予め確認をして設定することができる。
このように、蓄熱材15の初期温度を相変化温度以下に設定しておくことで、加熱、吸熱処理を行ううちに蓄熱材15の温度は、その温度制御の時間の半分以上を制御温度範囲若しくはその近傍の温度となって、温度制御中にペルチェ素子10の両面の温度差がより小さくなり、確実にペルチェ素子10を少ない入力電力で駆動できるため、エネルギー効率が上がる。
蓄熱材15の予熱温度を制御温度範囲内に設定しても良いが、制御温度範囲の下限値側に設定することが好ましい。
温度制御対象Aを挟んで上記構成の温度制御装置1,2を一対使用する。
温度制御対象Aに対し両側から温度調整することで、より反応良く温度制御対象Aを温度制御することが可能となる。
ここで、一つの温度制御装置1で温度制御対象Aを温度制御しても良い。例えば、図3の装置構成において、他方の温度制御装置2の代わりに、金属板や断熱材14などの押付け板を加圧機構に取り付けて、その押付け板と一方の温度制御装置1で温度制御対象Aを挟み込んで温度制御するような装置構成としても良い。
このような場合でも、温度制御時に機械的な駆動部が無いので、静音且つ装置の小型化が図れる。
また、2組の温度制御装置1,2のうちの一方の装置のヒートシンクとして、従来のような空冷式のヒートシンクを採用した装置構成としても良い。
蓄熱材15には、放熱用の熱伝達体(側面部17a)が接触している。
この構成によれば、蓄熱材15からの放熱が促進することで、温度制御時の蓄熱材15の温度上昇をその分、抑制することが可能となり、蓄熱材15の予熱温度を制御温度範囲内若しくはその近傍に近づけることが出来る。フィン状の放熱板を、容器部17の側面部17aに別途取り付けても良い。
以上のように、ペルチェ素子10を用いて、加熱および吸熱を繰り返す温度制御装置に利用できる。特に、PCR工程の後に増幅産物を4℃保存する必要がなく、温度設定の汎用性よりサイズや消費電力が優先される、全自動の遺伝子解析装置にも利用できる。
ここで、本実施形態の温度制御装置1,2は、PCR用に特定されず、患者のベッド近傍での温度制御や、ワインセラーのように空冷ファンの振動除去の要請が高い状態での吸熱用途に好適である。
以下、本発明の実施例について説明する。
<第1の実施例>
第1の実施例の温度制御装置として、実施形態で説明した装置(図4)に示す装置を使用した。また比較のために、比較例として、図6に示すような温度制御装置を使用した。比較例の温度制御装置は、蓄熱材ヒートシンク11の代わりに、フィン及びファンからなる空冷式のヒートシンクを採用している。
温度制御対象Aは、特許第5003845号に記載の、内部に23個の反応槽が設けられた遺伝子解析チップとした。遺伝子解析チップは、反応を阻害しないためにポリプロピレンで作製されており、直径75mm、厚さ2mmの円板状の外形をしており、各反応槽は円板の最外周部分に並んで設けられている。各反応槽は、略円柱状の形状となっている。ヒートスプレッダ12は、それぞれの反応槽に等しく温度をかけるために、形状を遺伝子解析チップの外形に合わせて、熱伝導性の良いアルミ合金で作製した。
温度制御対象の温度は、任意の5つの反応槽に熱電対を差し込む穴をあけ、反応槽内に熱電対を設置し、各反応槽には生化学試験用の水を満たし、反応槽内の温度を記録した。
(実施例の装置)
ペルチェ素子10として、フェローテック社9501/242/160BSを用いた。
蓄熱材15としては、パラフィン(JSR社Calgrip)を用いた。この蓄熱材15は、パラフィンの熱伝導率が0.2W/(m・K)と低いため、伝熱促進のために、蓄熱材容器16は、熱伝導率が390W/(m・K)と高いタフピッチ銅合金で作製し、蓋部18に、直径4mm、高さ14mmのピン(突起部19)を73本設けた。蓄熱材15の相変化温度は、約72℃である。
ここで、蓄熱材容器16の外形サイズは、幅80mm、奥行80mm、深さ20mmである。蓄熱材容器16と断熱材14を合わせた高さは41mmである。この実施例は、ピンを断熱材14の深さ方向に14mm埋入した例である。
(比較例の装置)
図6は、温度制御対象Aをセットした状態における、比較例の温度制御装置の構成を示す概略断面図である。ペルチェ素子10の放熱側(第2の面10b)には、空冷ヒートシンクが配置されている。空冷ヒートシンクは、フィン51、ファン52から構成されている。空冷ヒートシンクの高さは110mmである。
(温度制御方法)
実施例及び比較例ともに、それぞれの反応槽においてPCR増幅を行うための条件として、遺伝子解析チップに対して、所定時間間隔毎に90℃への加熱と70℃への吸熱を30サイクル繰り返した。
すなわち、温度センサの検出値に基づきフィードバック制御によって、第2の温度センサの温度が90℃となるよう加熱制御のための通電を実施し、所定時間経過後に、電流の向きを変更して、第2の温度センサの温度が70℃となるように吸熱制御のための通電を実施した。これを30サイクル繰り返した。
なお、蓄熱材15の予熱は、制御温度範囲である70℃〜90℃の範囲より低めの60℃とした。
(温度制御結果)
図7は、上記の温度制御方法で、実施例の温度制御装置の駆動時における、ペルチェ素子10への入力電力の時間変化と温度の時間変化とを表すグラフの一部である。
図8は、上記の温度制御方法で、比較例の温度制御装置の駆動時における、ペルチェ素子10への入力電力の時間変化と温度の時間変化とを表すグラフの一部である。
また図7及び図8に電力が示されているが、温度上昇時と温度下降時では電流の向きが逆に制御されている。また、図7及び図8のグラフは、上下の温度制御装置への両方の蓄熱材の温度のグラフを重ねて記載しているが、ヒートスプレッダの温度については、グラフを分かり易くするため、上側の温度制御対象側の計測値を記載している。
温度制御対象の温度は、上記に示す測定を行った5つのウェルのうち、1つのウェル温度を代表として図7及び図8に記載している。
図7と図8との比較から分かるように、制御温度を70℃から90℃に上昇させる際の、温度変化の立ち上がりが、比較例に比べて実施例の方が良いことが分かる。
実施例では、ヒートスプレッダの温度変化に追随して、温度制御対象(解析チップの反応槽内)の温度変化も良いことがわかる。
更に、同じ温度制御となるように電流制御を行っているにも係わらず、電力の波形が異なっており、実施例においては、蓄熱材ヒートシンク11を予熱するために37,000Jのエネルギーが新たに必要になったが、加熱および吸熱を30サイクル繰り返す工程において、比較例では、420,000Jの電力が掛かっていたのに対し、実施例では110,000Jの電力しか掛からず、合計の必要エネルギーは従来の35%に低減されたことを確認した。
ここで、ピンの高さが14mmの場合を例示したが、ピンの高さが10mmにしても同様の効果を得たことを確認している。
また、装置の寸法においても、実施例の装置構成は、比較例の装置構成に比べて、各温度制御装置の高さ方向の大きさが37%削減されたにも関わらず、同等以上の温度制御が実現されていることが分かった。同等以上とは、比較のために最大±9Aの電源にそろえた場合、実施例のほうが、比較例に比べて加熱速度が速いことを指す。
また上記実施例では、蓄熱材15の相変化温度が約72℃のものを使用したが、相変化温度が約65℃の蓄熱材を使用しても、比較例に比べて上記と同様な有利な効果を奏することを確認している。
<第2の実施例>
次に、第2の実施例について説明する。
(実施例の装置)
第1の実施例では、蓋部18にピン(突起部19)を設けた温度制御装置を使用する場合を示した。これに対し、第2の実施例の温度制御装置は、蓋部18にピン(突起部19)を設けず、代わりに蓄熱材15の量を増やした点が、第1の実施例と異なる。その他は第1の実施例の装置と同じ構成とした。
すなわち、第2の実施例は、温度制御装置にピン(突起部19)を設けない場合の実施例である。
(温度制御方法)
また、第2の実施例では、本発明の装置に基づくPCR処理を20サイクルで済むように、後述のように、一次処理を施してから、本発明に基づく温度制御(二次処理)を実施した場合を例示している。但し、二次処理におけるPCR処理の処理サイクル数を増加すれば、一次処理は不要である。
[一次処理]
反応液を、表1記載の配列を含む表2に記載の組成となるように調整した。調整した反応液を96穴プレートに入れ、リアルタイムPCRシステム(Roche製、「LightCycler」)にセットし、95 ℃で2分間保持した。その後、95 ℃, 18秒間、66 ℃, 20秒間の2ステップPCRを40サイクル行い、最後に99 ℃, 2分間の加熱により反応を終了させた。
Figure 0006711282
Figure 0006711282
「二次処理」
次に、一次処理で得られた溶液を表3に記載の組成となるように調製した。
その調整後の溶液を、特許第5003845号に記載の遺伝子解析チップに260μL送液して、卓上遠心機を利用して遠心を行って、各反応ウェルに溶液を送液し、本第2の実施例の温度制御装置で93℃45秒間、62℃45秒間の2ステップPCRを20サイクル行い、後述のように反応結果を確認した。
なお、この遺伝子解析チップには、表1の各プライマーと表2のHawk Taqが予め各反応ウェルに乾燥固化してある。
なお、約200bpの増幅産物を得られるように表1のプライマーを設計している。
Figure 0006711282
(温度制御効果)
図9は、第2の実施例の温度制御装置の駆動時における、ペルチェ素子10への入力電力の時間変化と温度の時間変化とを表すグラフであり、図10はその一部の拡大図である。
この第2の実施例においても、制御温度を上昇させる際の、温度変化の立ち上がりが良いことが分かる。
ここで、遺伝子解析チップにおける反応後の確認は、12%ポリアクリルアミドゲル(モノアクリルアミド:ビスアクリルアミド=19:1)にて電気泳動を実施し、1x SYBR Goldで染色後、BIO−RAD社のPharos FXにてイメージングで行った。結果を図11に示す。
図11に示した第一レーン(左端のレーン)は、20bpラダーマーカー(TaKaRa社)であり、第二レーン(中央のレーン)は前記PCRより得られた溶液を表3記載の組成に従い調整したものを用いて遺伝子解析チップ内にて更に増幅反応を行ったものである。なお、第三レーン(右端のレーン)は、PCR処理をする前の溶液を表3記載の組成に従い調整したものである。
図11から分かるように、第2の実施例においても、目的のバンド200bp付近に増幅産物を得たことが確認されているため、目的としたものを増幅出来ていることが分かる。
また、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。
以上、本願が優先権を主張する日本国特許出願2015−008633(201年1月20日出願)の全内容はここに引用例として包含される。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1,2 温度制御装置
4 基台
4a 底面部
4b 天井部
4c 支持部
10 ペルチェ素子
10a 第1の面
10b 第2の面
11 蓄熱材ヒートシンク
12 ヒートスプレッダ
13 予熱ヒーター
14 断熱材
15 蓄熱材
16 蓄熱材容器
17 容器部
17a 側面部(熱伝達体)
18 蓋部(熱伝達部)
19 突起部
51 フィン
52 ファン
100 制御部
101 第2の温度センサ
102 ペルチェ制御部
103 第1の温度センサ
104 ヒーター制御部

Claims (9)

  1. 生体サンプルを温度制御対象とし、その温度制御対象への加熱及び上記温度制御対象からの吸熱の少なくとも一方をペルチェ素子を用いて行うことで、上記温度制御対象を予め設定した制御温度範囲に温度制御し、
    上記ペルチェ素子の放熱面と熱伝達可能な蓄熱材を有し、
    上記蓄熱材は、上記制御温度範囲内、若しくは上記制御温度範囲の下限値より低く且つ使用時の雰囲気温度よりも高い第2の温度範囲内に相変化温度をもつ潜熱式の蓄熱材であり、
    上記蓄熱材を予熱するための予熱ヒーターを備え、
    上記温度制御対象への温度制御の実施前に上記予熱ヒーターに通電して上記蓄熱材を予熱し、
    上記蓄熱材は、室温よりも高く、且つ上記相変化温度よりも低い温度に予熱されることを特徴とする温度制御方法。
  2. 上記温度制御対象を一対のペルチェ素子で挟み込んで上記温度制御を行い、各ペルチェ素子の放熱面と熱伝達可能に上記蓄熱材を配置することを特徴とする請求項1に記載した温度制御方法。
  3. 上記ペルチェ素子の面のうち上記温度制御対象と対向する面とは反対側の面側に、蓄熱部が配置され、
    上記蓄熱部は、上記ペルチェ素子に接する熱伝達部と、その熱伝達部に接する上記蓄熱材とを備えることを特徴とする請求項1又は請求項2に記載した温度制御方法。
  4. 上記温度制御は、上記制御温度範囲内で上記温度制御対象への加熱と吸熱を繰り返ことを特徴とする請求項1〜請求項3のいずれか1項に記載した温度制御方法。
  5. 温度制御対象への加熱及び上記温度制御対象からの吸熱の少なくとも一方をペルチェ素子を用いて行って上記温度制御対象を予め設定した制御温度範囲で温度制御を行う温度制御装置であって、
    上記ペルチェ素子の面のうち上記温度制御対象と対向する面とは反対の面側に、蓄熱部が配置され、
    上記蓄熱部は、上記ペルチェ素子に接する熱伝達部と、その熱伝達部に接する蓄熱材とを備え、上記蓄熱材は、上記制御温度範囲内、若しくは上記制御温度範囲の下限値より低く且つ使用時の雰囲気温度よりも高い第2の温度制御範囲内に相変化温度が設定された潜熱式の蓄熱材であり、
    上記蓄熱材を予熱する予熱ヒーターを備え、
    上記予熱ヒーターで、上記蓄熱材は、上記温度制御前に、室温よりも高く、且つ上記相変化温度よりも低い温度に予熱されることを特徴とする温度制御装置。
  6. 上記熱伝達部は、上記蓄熱材内に埋入する複数の突起部を備えることを特徴とする請求項に記載した温度制御装置。
  7. 上記突起部の上記蓄熱材への埋入量は、上記蓄熱材の深さの半分以上に設定されていることを特徴とする請求項に記載した温度制御装置。
  8. 上記温度制御対象を挟んで2組の温度制御装置が配置され、
    上記2組の温度制御装置の少なくとも一方が、請求項〜請求項のいずれか1項の温度制御装置で構成されることを特徴とする温度制御装置。
  9. 上記蓄熱材には、放熱用の熱伝達体が接触していることを特徴とする請求項〜請求項のいずれか1項に記載した温度制御装置。
JP2016570550A 2015-01-20 2016-01-19 温度制御装置および温度制御方法 Expired - Fee Related JP6711282B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015008633 2015-01-20
JP2015008633 2015-01-20
PCT/JP2016/000256 WO2016117334A1 (ja) 2015-01-20 2016-01-19 温度制御装置および温度制御方法

Publications (2)

Publication Number Publication Date
JPWO2016117334A1 JPWO2016117334A1 (ja) 2017-11-02
JP6711282B2 true JP6711282B2 (ja) 2020-06-17

Family

ID=56416886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570550A Expired - Fee Related JP6711282B2 (ja) 2015-01-20 2016-01-19 温度制御装置および温度制御方法

Country Status (2)

Country Link
JP (1) JP6711282B2 (ja)
WO (1) WO2016117334A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144905A1 (zh) * 2018-01-24 2019-08-01 北京光阱管理咨询合伙企业(有限合伙) 微液滴容器、微液滴容器制备方法、微液滴平铺方法、微液滴生成试剂盒、温控装置、微液滴生成用油相组合物及其处理方法
KR101964614B1 (ko) * 2018-03-07 2019-04-02 충남대학교산학협력단 웨스턴 블로팅용 전사탱크

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317041A (ja) * 2003-04-17 2004-11-11 Yaskawa Electric Corp 温度制御装置
JP2007155269A (ja) * 2005-12-07 2007-06-21 Toshiba Corp 冷却装置
JP5239353B2 (ja) * 2008-01-22 2013-07-17 凸版印刷株式会社 温度制御装置および温度制御方法
JP5315874B2 (ja) * 2008-09-16 2013-10-16 凸版印刷株式会社 温度制御装置およびその予熱または予冷方法
JP2013198409A (ja) * 2012-03-23 2013-10-03 Toppan Printing Co Ltd 温度制御装置及び温度制御方法
JP2015064842A (ja) * 2013-09-26 2015-04-09 凸版印刷株式会社 温度制御装置および温度制御方法

Also Published As

Publication number Publication date
JPWO2016117334A1 (ja) 2017-11-02
WO2016117334A1 (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
JP2018113995A (ja) 温度均一性を提供するための熱循環装置および方法
EP2076605B2 (en) Cooling in a thermal cycler using heat pipes
TWI310890B (en) Apparatus for controlling fluid temperature and method thereof
RU2016138324A (ru) Индуктивная передача энергии с помощью индуктивной энергопередающей площадки
JP6711282B2 (ja) 温度制御装置および温度制御方法
US8795592B2 (en) Sample thermal cycling
CA2856345C (en) Device for thermal convection polymerase chain reaction
JP2019505228A5 (ja)
US8574516B2 (en) Apparatus for insulated isothermal polymerase chain reaction
JP4857800B2 (ja) 温度制御方法
CN113801778A (zh) 基于液态金属的pcr升温加热系统、装置及方法
JP2013198409A (ja) 温度制御装置及び温度制御方法
JP2006238848A (ja) 遺伝子検査用温度調節装置
JP4756880B2 (ja) Pcr反応液の温度制御装置
JP5239353B2 (ja) 温度制御装置および温度制御方法
JP5315874B2 (ja) 温度制御装置およびその予熱または予冷方法
WO2014102403A1 (es) Termociclador
JP6107016B2 (ja) 温度制御装置
JP2015064842A (ja) 温度制御装置および温度制御方法
JP6835940B2 (ja) 熱伝導均一性及び熱履歴整合性を改善するための熱サイクル装置
JP2007110943A (ja) ペルチェモジュールの温度制御装置
JP2005006507A (ja) インキュベータ
US20110232892A1 (en) Micro channel device temperature control
GB2472455A (en) Controlling the cooling of a thermoelectric cooler's heatsink
CN114672410A (zh) 基于液态金属的pcr升温加热系统、装置及方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees