WO2014102403A1 - Termociclador - Google Patents

Termociclador Download PDF

Info

Publication number
WO2014102403A1
WO2014102403A1 PCT/ES2012/070923 ES2012070923W WO2014102403A1 WO 2014102403 A1 WO2014102403 A1 WO 2014102403A1 ES 2012070923 W ES2012070923 W ES 2012070923W WO 2014102403 A1 WO2014102403 A1 WO 2014102403A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
chip
reaction chambers
temperature application
reproducibility
Prior art date
Application number
PCT/ES2012/070923
Other languages
English (en)
French (fr)
Inventor
Javier Berganzo Ruiz
Florian Laouenan
Jesus Miguel Ruano Lopez
Lisandro Gabriel MONSALVE SMITT
Original Assignee
Ikerlan, S. Coop.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikerlan, S. Coop. filed Critical Ikerlan, S. Coop.
Priority to PCT/ES2012/070923 priority Critical patent/WO2014102403A1/es
Publication of WO2014102403A1 publication Critical patent/WO2014102403A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1894Cooling means; Cryo cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • B01L7/5255Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones by moving sample containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00366Several different temperatures used

Definitions

  • the present invention falls within the field of heating and cooling reaction chamber systems where thermocycling or constant temperature reactions are performed.
  • Point of Care (POC) diagnostic systems based on molecular diagnostics generally have an analyzer system (hereinafter machine) and a disposable chip, cartridge or cassette.
  • the chip or cartridge contains one or more reaction chambers, fluidic channels that connect them to each other and with the fluid inlets or outlets, valves to redirect the fluids in the proper way, and so on.
  • reaction chambers biological reactions take place between different compounds.
  • it is sometimes required to raise the temperature of the chamber to a certain value, or reduce it to a certain value, or perform certain temperature cycles.
  • the reaction in the latter case, is favored when the transitions between the different temperatures are rapid.
  • the machine must have the necessary means to heat and / or cool the chip or cartridge.
  • this heating and / or cooling is done by contacting a hot or cold surface with the chip, the thermal coupling between the two is essential to obtain a repeatable and reproducible system.
  • a misalignment between the surfaces, or a low pressure between them, can lead to significant differences in heat transmission, which results in the chemical reaction not being carried out optimally, reducing its effectiveness.
  • the invention relates to a system for enhancing the repeatability and reproducibility of thermocycling in reaction chambers, which solves the above problem, ensuring optimal contact and alignment between the heater / cooler and the chip and provides a way to accelerate the thermal cycles. .
  • the heating or cooling element will be called the temperature variator element, so that we can say that the repeatability booster system and Thermocycling reproducibility of reaction chambers arranged in chips comprises at least one temperature variant sub-system the reaction chambers of the chip comprising:
  • the temperature application means are displaced arranged in thermal contact with the chip
  • It may comprise means for guiding the block or mass of displacement relative to the means for applying temperature.
  • the displacement mass is a block that acts as a block of thermal inertia.
  • the temperature application means are temperature application means that said application temperature may be higher or lower than that of the reaction chamber, assuming a heating or cooling of said chamber.
  • the system can comprise a flexible membrane disposed on the chip, between the temperature application means and the chip, which causes an overpressure inside the reaction chamber when the temperature application means comes into contact with the membrane flexible and with the chip, thus obtaining, in the event that the temperature application medium is a heating medium of the reaction chamber, always the same heat transfer capacity, temperature detection and more precise control which allows Increase reproducibility and repeatability in thermocycling such as PCR (Chain Reaction polymerase).
  • This system can be applied for: incubation, elution, purification and concentration of DNA, amplification of DNA by NASBA (Nucleic Acid Sequence Based Amplification or isothermal amplification of nucleic acids), in which a heating or cooling at constant temperature is necessary, as well as to perform cycles between two or more temperatures, normally using an element heater (temperatures below ambient are not required).
  • NASBA Nucleic Acid Sequence Based Amplification or isothermal amplification of nucleic acids
  • Figure 1 b scheme of the system in operation in intermediate position.
  • Figure 1 d scheme of the system in operation in cooling position.
  • Figure 2 a scheme of the system at rest with misaligned chip.
  • FIG. 2b diagram of the system in operation of Figure 2a in intermediate position.
  • Figure 2c scheme of the system in operation of Figure 2a in intermediate position with complete contact to the chip.
  • Figure 2d diagram of the system in operation of Figure 2a in the heating / cooling position.
  • FIG. 4 scheme of a preferred embodiment with flexible sheet.
  • Figure 5 a scheme of a preferred embodiment by thermal shock with a single pass through each subsystem.
  • FIG. 1a A first preferred embodiment of the invention is presented schematically in Figures 1a, 1b, 1c, 1d and 1 d.
  • Figure 1 a shows the chip (1) that has been inserted into the machine (not shown in the figure) and a heating or cooling subsystem composed of a temperature application element (2) connected to a metal block (3) in a flexible manner by means of springs (4).
  • the temperature variation subsystem is initially retracted, that is, it does not contact the chip (1) that we want to heat or cool.
  • the block (3) moves up and forces the temperature application element (2) to come into contact with the chip (figure 1 b).
  • the block (3) continues to rise to the heating / cooling position of Figure 1 c. In this position, the temperature application element (2) is in contact with the chip (1) and the springs are compressed, whereby the temperature application element (2) is being pressed against the chip with a determined force , which ensures proper thermal contact.
  • the temperature application element (2) is a heater and it is desired to cool to perform thermal cycling (PCR), that is, to reduce the temperature of the chip, for example lowering it from 95 ° C to 60 ° C, the temperature application element (or its power is reduced) and the mass or displacement block (3) is raised until contacting the heater (2) (figure 1 c). Since the block (3) was at room temperature (or cooler if a means is used to cool it), the heater (2) cools quickly. Once the desired temperature is reached, the system goes to the position of figure 1 c and the heater (2) keeps the temperature stable.
  • PCR thermal cycling
  • FIG. 2 shows the same sequence in which the chip (1) and the temperature variation subsystem are initially misaligned.
  • the flexibility of the springs absorbs misalignment and allows, as seen in Figure 2d, that the thermal contact in the heating position is good.
  • FIG. 4 shows the system with the flexible membrane (9)
  • the block (3) In order for the thermal contact in the temperature reduction stage to be good, figure 2e, the block (3) must be connected to the drive that moves it upwards (not shown in the figure) by means of a flexible joint (eg springs), which allow it to adapt to the angle at which the chip (1) is arranged.
  • a flexible joint eg springs
  • the system ensures a good thermal contact and alignment between the chip and the heater in a reproducible manner; ensures a pressure between the chip and the heater or cooler; and, in addition, accelerates the process of temperature reduction with respect to a passive reduction by natural convection.
  • Figure 3 shows a preferred embodiment in which a system of repeatability and reproducibility of thermocycling of reaction chambers is shown comprising a temperature variant subsystem comprising: A plurality of heating elements as temperature application means (2) comprising a base printed circuit, heating means and a power connector of the heating means with an electric power supply.
  • the heating elements also comprise means of uniformization to standardize the temperature of the heating means and temperature sensing means, which are optional elements.
  • a temperature probe is available to regulate the temperature of the thermal mass (3).
  • the subsystem moved vertically using a stepper motor with a spindle
  • the cold in the block or thermal mass is kept cold by two Peltier cells (7) which in turn are cooled by radiators with forced air as heatsinks (5).
  • the block or mass of thermal displacement (3) pushes through four springs (4) a piece (8) on which the heaters (2) are fixed, which in the embodiment are electrical resistors connected by a flexible printed circuit, which also contains a temperature probe and copper blocks to standardize the temperature and provide a support base against the chip (1).
  • the springs (4) are guided by pins that are inserted inside, to limit the movement in the X and Y axes, normal to the movement produced by the motor (Z axis), since the misalignment between chip (1) and heater (2) is usually small.
  • Figure 5 shows two or more subsystems (10) like that of Figure 1, and each one is regulated at a constant temperature and different from the previous ti and t 2 .
  • the chip (1) has a channel (1 1) through the that circulates a liquid that passes consecutively over the subsystems (10), so that the liquid that circulates through the channel is subjected, when passing from one area to another to very rapid changes in temperature (thermal shocks).
  • This step can be done once (figure 5a) or several times (figure 5b).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

En la figura 1 a se muestra el chip (1) que ha sido introducido en la máquina (no presentada en la figura) y un subsistema de calentamiento o enfriamiento compuesto por un elemento de aplicación de temperatura (2) unido a un bloque metálico (3) de manera flexible mediante resortes (4). El subsistema de variación de temperatura está retraído inicialmente, esto es, no contacta con el chip (1) que queremos calentar o enfriar. Tras insertar el chip (figura 1a), se desplaza el bloque (3) hacia arriba y fuerza al elemento de aplicación de temperatura (2) a entrar en contacto con el chip (figura 1b). El bloque (3) continua subiendo hasta la posición de calentamiento/enfriamiento de la figura 1c. En esta posición, el elemento de aplicación de temperatura (2) está en contacto con el chip (1) y los resortes están comprimidos, con lo que el elemento de aplicación de temperatura (2) está siendo presionado contra el chip con una fuerza determinada, lo que asegura un correcto contacto térmico.

Description

SISTEMA POTENCIADOR DE LA REPETITIVIDAD Y REPRODUCIBILIDAD EN
CÁMARAS DE REACCIÓN
DESCRIPCIÓN
Campo de la invención
La presente invención se engloba dentro del campo de los sistemas de calentamiento y enfriamiento de cámaras de reacción donde se realizan termociclados o reacciones a temperatura constante.
Antecedentes de la invención
Los sistemas de diagnóstico Point Of Care (POC) basados en diagnóstico molecular, disponen, generalmente, de un sistema analizador (en adelante máquina) y un chip, cartucho o cassette desechable. El chip o cartucho, contiene una o más cámaras de reacción, canales fluídicos que las conectan entre sí y con las entradas o salidas fluídicas, válvulas para redirigir los fluidos por el camino adecuado, etcétera.
En las cámaras de reacción tienen lugar reacciones biológicas entre diferentes compuestos. Para que las reacciones ocurran, se requiere en ocasiones bien elevar la temperatura de la cámara a un determinado valor, bien reducirla a un determinado valor, o bien realizar unos determinados ciclos de temperatura. La reacción, en este último caso, se ve favorecida cuando las transiciones entre las diferentes temperaturas son rápidas.
Tanto para calentar o enfriar la cámara como para someterla a ciclos térmicos, la máquina debe disponer de los medios necesarios para calentar y/o enfriar el chip o cartucho. Cuando este calentamiento y/o enfriamiento se realiza contactando una superficie caliente o fría con el chip, el acoplamiento térmico entre ambos es primordial para obtener un sistema repetitivo y reproducible.
Un desalineamiento entre las superficies, o una escasa presión entre ellas, puede llevar a diferencias significativas en la transmisión del calor, que acarrea como consecuencia que la reacción química no se realice de manera óptima, reduciéndose la eficacia de la misma. Descripción de la invención
La invención se refiere a un sistema potenciador de la repetitividad y reproducibilidad de termociclados en cámaras de reacción, que resuelve el problema anteriormente expuesto, asegurando un contacto y alineamiento óptimo entre el calentador/enfriador y el chip y proporciona una forma de acelerar los ciclos térmicos.
El elemento calentador o enfriador lo vamos a denominar elemento variador de temperatura, de manera que podemos decir que el sistema potenciador de la repetitividad y reproducibilidad de termociclado de cámaras de reacción dispuestas en chips comprende al menos un sub-sistema variador de temperatura las cámaras de reacción del chip que comprende:
o Medios de aplicación de temperatura;
o Una masa de desplazamiento de los medios de aplicación de temperatura a las cámaras de reacción del chip,
o Medios de unión de los medios de aplicación de temperatura y la masa de desplazamiento,
o un dispositivo de accionamiento del desplazamiento de la masa de desplazamiento y los medios de aplicación de temperatura,
de manera que el dispositivo de accionamiento desplaza los medios de aplicación de temperatura y la masa de desplazamiento según una de las siguientes posiciones:
o una posición de reposo donde la masa de desplazamiento y los medios de aplicación de temperatura están separados del chip y entre ellos; o una posición de accionamiento donde:
la masa de desplazamiento está separada de los medios de aplicación de temperatura ;
los medios de aplicación de temperatura están desplazados dispuestos en contacto térmico con el chip;
o una posición de regulación donde la masa de desplazamiento está en contacto físico con los medios de aplicación de temperatura.
Puede comprender medios de guiado del bloque o masa de desplazamiento respecto a los medios de aplicación de temperatura.
La masa de desplazamiento es un bloque que actúa como bloque de inercia térmica. Los medios de aplicación de temperatura son medios de aplicación de temperatura que puede ser dicha temperatura de aplicación superior o inferior a la de la cámara de reacción, suponiendo un calentamiento o un enfriamiento de dicha cámara.
Adicionalmente el sistema puede comprender una membrana flexible dispuesta sobre el chip, entre los medios de aplicación de temperatura y el chip, lo que produce una sobrepresion en el interior de la cámara de reacción al entrar en contacto los medios de aplicación de temperatura con la membrana flexible y con el chip, obteniendo así, en el caso de que el medio de aplicación de temperatura sea un medio calentador de la cámara de reacción, siempre la misma capacidad de transferencia de calor, detección de temperatura y un control mas preciso lo que permite aumentar la reproducibilidad y repetitividad en termociclados como la PCR (polimerasa Chain Reaction).
Este sistema puede ser aplicado para : incubación, elución, purificación y concentración de ADN, amplificación de ADN por NASBA (Nucleic Acid Sequence Based Amplification o amplificación isotérmica de ácidos nucleicos), en los que es necesario un calentamiento o enfriamiento a temperatura constante, así como para realizar ciclos entre dos o más temperaturas, normalmente utilizando un elemento calentador (no se requieren temperaturas por debajo de la ambiental). El ejemplo más típico de uso es la realización de una reacción de PCR.
Breve descripción de los dibujos
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
Figúral a esquema del sistema en reposo.
Figura 1 b esquema del sistema en funcionamiento en posición intermedia.
Figura 1 c esquema del sistema en funcionamiento en posición de calentamiento/enfriamiento.
Figura 1 d esquema del sistema en funcionamiento en posición de enfriamiento.
Figura 2a esquema del sistema en reposo con chip desalineado.
Figura 2b esquema del sistema en funcionamiento de la figura 2a en posición intermedia. Figura 2c esquema del sistema en funcionamiento de la figura 2a en posición intermedia con contacto completo al chip.
Figura 2d esquema del sistema en funcionamiento de la figura 2a en posición de calentamiento/enfriamiento.
Figura 2e esquema del sistema en funcionamiento en posición de enfriamiento.
Figura 3 esquema de una realización preferida para termociclado.
Figura 4 esquema de una realización preferida con lámina flexible.
Figura 5a esquema de una realización preferida por choque térmico con paso de una sola vez por cada subsistema.
Figura 5b esquema de una realización preferida por choque térmico con paso de dos veces por cada subsistema.
Descripción detallada de la invención
Una primera realización preferida de la invención se presenta esquemáticamente en las figuras 1a, 1 b, 1c, 1d y 1 d.
En la figura 1 a se muestra el chip (1 ) que ha sido introducido en la máquina (no presentada en la figura) y un subsistema de calentamiento o enfriamiento compuesto por un elemento de aplicación de temperatura (2) unido a un bloque metálico (3) de manera flexible mediante resortes (4). El subsistema de variación de temperatura está retraído inicialmente, esto es, no contacta con el chip (1 ) que queremos calentar o enfriar.
Tras insertar el chip (figura 1 a), se desplaza el bloque (3) hacia arriba y fuerza al elemento de aplicación de temperatura (2) a entrar en contacto con el chip (figura 1 b). El bloque (3) continua subiendo hasta la posición de calentamiento/enfriamiento de la figura 1 c. En esta posición, el elemento de aplicación de temperatura (2) está en contacto con el chip (1) y los resortes están comprimidos, con lo que el elemento de aplicación de temperatura (2) está siendo presionado contra el chip con una fuerza determinada, lo que asegura un correcto contacto térmico.
Cuando el elemento de aplicación de temperatura (2) es un calentador y se quiere enfriar para realizar un ciclado térmico (PCR), esto es, reducir la temperatura del chip, por ejemplo bajarla de 95°C a 60°C, se apaga el elemento de aplicación de temperatura (o se reduce su potencia) y se sube la masa o bloque de desplazamiento (3) hasta contactar con el calentador (2) (figura 1 c). Dado que el bloque (3) se encontraba a temperatura ambiente (o más frió si se utiliza un medio para enfriarlo), el calentador (2) se enfría rápidamente. Una vez alcanzada la temperatura deseada, el sistema pasa a la posición de la figura 1 c y el calentador (2) mantiene la temperatura estable.
La figura 2 muestra la misma secuencia en la que el chip (1) y el subsistema de variación de temperatura se encuentran inicialmente desalineados.
Como se aprecia en la figura 2, la flexibilidad de los resortes absorben el desalineamiento y permiten, como se aprecia en la figura 2d, que el contacto térmico en la posición de calentamiento sea bueno.
La figura 4 muestra el sistema con la membrana flexible (9)
Para que el contacto térmico en la etapa de reducción de temperatura sea bueno, figura 2e, el bloque (3) debe estar unido al accionamiento que lo mueve hacia arriba (no presentado en la figura) mediante una unión flexible (p. e. resortes), que le permita adaptarse al ángulo en el que esté dispuesto el chip (1 ).
En resumen, se puede afirmar que el sistema permite garantizar un buen contacto térmico y alineamiento entre el chip y el calentador de manera reproducible; asegura una presión entre el chip y el calentador o enfriador; y, adicionalmente, acelera el proceso de reducción de temperatura con respecto a una reducción pasiva por convección natural.
La figura 3 muestra un modo de realización preferida en el que se muestra un sistema potenciador de la repetitividad y reproducibilidad de termociclado de cámaras de reacción que comprende un subsistema variador de temperatura que comprende: Una pluralidad de elementos calefactores como medios de aplicación de temperatura (2) que comprenden un circuito impreso base, medios calefactores y un conector de alimentación de los medios de calefactores con un suministro de energía eléctrica. En esta realización los elementos calefactores comprenden también medios de uniformización para uniformizar la temperatura de los medios de calentamiento y medios de detección de temperatura, que son elementos opcionales.
Una pluralidad de resortes (4)
Una masa térmica (3) como medio enfriador a la que se une un disipador (5) de calor remanente del elemento enfriador (3) al ambiente y dos células Peltier (6) dispuestas entre el disipador de calor (5) y los medios de enfriamiento (3). Para regular la temperatura de la masa térmica (3) se dispone de una sonda de temperatura.
El subsistema se desplazaba verticalmente mediante un motor paso a paso con un usillo
(7).
El frío en el bloque o masa térmica se mantiene frió mediante dos células Peltier (7) que a su vez se enfrían mediante radiadores con aire forzado como disipadores (5).
El bloque o masa de desplazamiento térmica (3) empuja mediante cuatro resortes (4) una pieza (8) sobre la que van fijos los calentadores (2), que en la realización son resistencias eléctricas conectadas mediante un circuito impreso flexible, que además contiene una sonda de temperatura y unos bloques de cobre para uniformizar la temperatura y proporcionar una base de apoyo contra el chip (1).
Los resortes (4) van guiados por pasadores que se insertan en su interior, para limitar el movimiento en los ejes X e Y, normales al movimiento que produce el motor (eje Z), ya que el desalineamiento ente chip (1 ) y calentador (2) suele ser pequeño.
En otra realización preferida se muestra su aplicación a choques térmicos. La figura 5 muestra dos o más subsistemas (10) como el de la figura 1 , y se regulan cada uno a una temperatura constante y diferente al anterior ti y t2.. El chip (1 ) tiene un canal (1 1 ) por el que circula un líquido que pasa consecutivamente sobre los subsistemas (10), de modo que el líquido que circula por el canal se ve sometido, al pasar de una zona a otra a cambios muy rápidos de temperatura (choques térmicos).
Este paso se puede realizar una vez (figura 5a) o varias veces (figura 5b).

Claims

REIVINDICACIONES
1.- Un sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción dispuestas en chips (1 ) caracterizado por que comprende al menos un sub-sistema (10) variador de temperatura de las cámaras de reacción del chip (1 ) que comprende:
o Medios de aplicación de temperatura (2);
o Una masa de desplazamiento (3) de los medios de aplicación de temperatura a las cámaras de reacción del chip,
o Medios de unión (4) de los medios de aplicación de temperatura (2) y la masa de desplazamiento (3)
o un dispositivo de accionamiento del desplazamiento de la masa de desplazamiento (3) y los medios de aplicación de temperatura (2),
de manera que el dispositivo de accionamiento del subsistema variador de temperatura (10) desplaza los medios de aplicación de temperatura (2) y la masa de desplazamiento (3) según una de las siguientes posiciones:
o una posición de reposo donde la masa de desplazamiento (3) y los medios de aplicación de temperatura (2) están separados del chip (1 ) y entre ellos;
o una posición de accionamiento donde:
la masa de desplazamiento (3) están separados de los medios de aplicación de temperatura (2) ;
los medios de aplicación de temperatura (2) están desplazados dispuestos en contacto térmico con el chip;
o una posición de regulación donde la masa de desplazamiento (3) está en contacto físico con los medios de aplicación de temperatura (2).
2.- El sistema potenciador de la repetitividad y reproducibilidad según reivindicación 1 caracterizado por que comprende una membrana flexible (9) dispuesta sobre el chip (1 ), entre los medios de aplicación de temperatura (2) y el chip (1 ).
3.- El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicaciones 1 o 2 caracterizado por que los medios de unión (4) son un resorte.
4.- El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicación 1-3 caracterizado por que los medios de aplicación de temperatura (2) son medios de calentamiento.
5. - El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicación 4 caracterizado por que comprende un disipador (30) de calor remanente de la masa de desplazamiento (3) al ambiente.
6. - El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicación 5 caracterizado por que comprende una célula Peltier (70) dispuesta entre el disipador de calor (30) y la masa de desplazamiento (3).
7. - El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicaciones 4-6 caracterizado por que los medios de calentamiento comprenden un circuito impreso base, medios calefactores y un conector de alimentación de los medios de calefactores con un suministro de energía eléctrica.
8. - El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicación 7 caracterizado por que los medios de calentamiento comprenden medios de uniformización para uniformizar la temperatura de los medios de calentamiento.
9.- El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicación 8 caracterizado por que medios de aplicación de temperatura (2) comprenden medios de detección de temperatura.
10. - El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicación 1 o 2 caracterizado por que los medios de aplicación de temperatura (2) son medios de enfriamiento.
1 1. - .- El sistema potenciador de la repetitividad y reproducibilidad en cámaras de reacción según reivindicaciones anteriores caracterizado por que comprende dos sub-sistema (10) variador de temperatura dispuestos sobre un canal que comprende el líquido de las cámaras de reacción del chip.
PCT/ES2012/070923 2012-12-31 2012-12-31 Termociclador WO2014102403A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070923 WO2014102403A1 (es) 2012-12-31 2012-12-31 Termociclador

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070923 WO2014102403A1 (es) 2012-12-31 2012-12-31 Termociclador

Publications (1)

Publication Number Publication Date
WO2014102403A1 true WO2014102403A1 (es) 2014-07-03

Family

ID=47827260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070923 WO2014102403A1 (es) 2012-12-31 2012-12-31 Termociclador

Country Status (1)

Country Link
WO (1) WO2014102403A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092080A1 (es) * 2013-12-18 2015-06-25 Ikerlan, S. Coop. Aparato para la determinación de la temperatura de dispositivos microfluídicos
GB2548984A (en) * 2016-03-09 2017-10-04 Cell Therapy Catapult Ltd A device and method for heating or cooling a sample
EP3831491A4 (en) * 2018-08-01 2022-03-30 Mico Biomed Co., Ltd. MULTIPLE HEAT BLOCK NUCLEIC ACID AMPLIFICATION DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115624A1 (de) * 2004-05-25 2005-12-08 Advalytix Ag Temperierverfahren und-vorrichtung für die temperaturbehandlung kleiner flüssigkeitsmengen
WO2008000767A1 (de) * 2006-06-27 2008-01-03 Zenteris Gmbh Kühleinrichtung für eine reaktionskammer zum prozessieren eines biochips und verfahren zum ansteuern einer solchen kühleinrichtung
DE102006030381A1 (de) * 2006-06-27 2008-01-03 Jenoptik Instruments Gmbh Temperiereinheit und Verfahren zur Steuerung eines Temperaturprofils in einem Prozessraum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115624A1 (de) * 2004-05-25 2005-12-08 Advalytix Ag Temperierverfahren und-vorrichtung für die temperaturbehandlung kleiner flüssigkeitsmengen
WO2008000767A1 (de) * 2006-06-27 2008-01-03 Zenteris Gmbh Kühleinrichtung für eine reaktionskammer zum prozessieren eines biochips und verfahren zum ansteuern einer solchen kühleinrichtung
DE102006030381A1 (de) * 2006-06-27 2008-01-03 Jenoptik Instruments Gmbh Temperiereinheit und Verfahren zur Steuerung eines Temperaturprofils in einem Prozessraum

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092080A1 (es) * 2013-12-18 2015-06-25 Ikerlan, S. Coop. Aparato para la determinación de la temperatura de dispositivos microfluídicos
GB2548984A (en) * 2016-03-09 2017-10-04 Cell Therapy Catapult Ltd A device and method for heating or cooling a sample
GB2548984B (en) * 2016-03-09 2018-04-18 Cell Therapy Catapult Ltd A device and method for heating or cooling a sample
US11064694B2 (en) 2016-03-09 2021-07-20 Cell Therapy Catapult Limited Device and method for heating or cooling a sample
US11785940B2 (en) 2016-03-09 2023-10-17 Cell Therapy Catapult Limited Device and method for heating or cooling a sample
EP3831491A4 (en) * 2018-08-01 2022-03-30 Mico Biomed Co., Ltd. MULTIPLE HEAT BLOCK NUCLEIC ACID AMPLIFICATION DEVICE

Similar Documents

Publication Publication Date Title
JP4758891B2 (ja) 微小流体デバイス上の加熱、冷却および熱サイクリングのためのシステムおよび方法
KR100938374B1 (ko) 다수의 샘플을 포함하는 블럭의 열순환 장치, 시스템 및 방법
EP2076605B1 (en) Cooling in a thermal cycler using heat pipes
US8759085B2 (en) Temperature control device with a flexible temperature control surface
EP3160649B1 (en) Floating thermal contact enabled pcr
US9333504B2 (en) Active, micro-well thermal control subsystem
WO2014102403A1 (es) Termociclador
JP2008529002A (ja) 異なる熱容量を有する微小流体試料用の温度制御装置
KR102001150B1 (ko) 온도 제어 장치 및 이를 포함하는 pcr 장치
JP2006238848A (ja) 遺伝子検査用温度調節装置
ES2731530T3 (es) Aparato para la determinación de la temperatura de dispositivos microfluídicos
JP2005214782A (ja) マイクロ流体デバイス反応用温度調節器
EP3686270B1 (en) Heating mechanism for biochemical reaction device
JP6711282B2 (ja) 温度制御装置および温度制御方法
US20190107851A1 (en) Micro channel device temperature control
Sailaja et al. A Review on Heating and Cooling system using Thermo electric Modules
CN220867431U (zh) 双向磁力吸附pcr模块
TWI624306B (zh) Heating mechanism of biochemical reaction device
KR20220002405U (ko) Pcr 장치의 히터구조물
KR20110054738A (ko) Pcr 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829177

Country of ref document: EP

Kind code of ref document: A1