US20190107851A1 - Micro channel device temperature control - Google Patents

Micro channel device temperature control Download PDF

Info

Publication number
US20190107851A1
US20190107851A1 US16/123,671 US201816123671A US2019107851A1 US 20190107851 A1 US20190107851 A1 US 20190107851A1 US 201816123671 A US201816123671 A US 201816123671A US 2019107851 A1 US2019107851 A1 US 2019107851A1
Authority
US
United States
Prior art keywords
temperature
micro channel
channel device
fluid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/123,671
Other versions
US10663989B2 (en
Inventor
Louis Poulo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analogic Corp
Original Assignee
Analogic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analogic Corp filed Critical Analogic Corp
Priority to US16/123,671 priority Critical patent/US10663989B2/en
Publication of US20190107851A1 publication Critical patent/US20190107851A1/en
Application granted granted Critical
Publication of US10663989B2 publication Critical patent/US10663989B2/en
Assigned to TRUIST BANK, AS COLLATERAL AGENT reassignment TRUIST BANK, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANALOGIC CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Definitions

  • the following generally relates to micro channel devices and more particularly to temperature control of a sample carried by a micro channel device.
  • Micro channel devices include, but are not limited to, devices which carry a small volume of a sample for processing and/or analysis. Micro channel devices have been used in biochips, labs-on-a-chip, inkjet printheads, and other micro based technologies.
  • a temperature of a sample in a micro channel of a micro channel device is controlled so that it is within a predetermined temperature range for processing, analysis, and/or other purposes. Controlling the temperature includes heating and/or cooling the fluid so that the temperature of the fluid is within the predetermined temperature range.
  • One technique for heating and/or cooling the fluid involves using a Peltier device, which, generally, is a thermoelectric heat pump that transfers heat from one side of the Peltier device to the other side of the Peltier device.
  • the Peltier device is placed in thermal communication with the micro channel device, and an appropriate voltage is applied to the Peltier device to create a temperature gradient for transferring heat between the sides of the Peltier device, either away from or towards the micro channel device.
  • the polarity of the applied voltage determines whether the Peltier device heats up or cools down the micro channel device and thus the sample.
  • a Peltier device may require good mechanical/thermal contact between the Peltier device and the micro channel device. Such contact may require accurate and precise mechanical alignment and pressure. Moreover, heat transfer via the Peltier device may be non-uniform through conduction through the side of the Peltier device in mechanical contact with the micro channel device. Furthermore, using such a device may increase the thermal mass that participates in thermal cycling, which may increase the power required to implement thermal cycling.
  • using a Peltier or similar device may increase the overall size of the micro channel device, power consumption and/or dissipation of the micro channel device, and/or the cost of the micro channel device, as well as provide non-uniform and/or relatively slow temperature control.
  • a micro channel device processing apparatus includes a heating/cooling chamber configured to receive at least a sub-portion of a micro channel device and a fluid control system that controls a flow of a heating/cooling fluid in the chamber.
  • a method in another aspect, includes controlling a temperature of a sample carried by a micro channel device installed in a micro channel device processing apparatus via a heating/cooling chamber of the processing apparatus.
  • a micro channel device processing apparatus in another aspect, includes a heating/cooling chamber configured to receive a micro channel device carrying a sample and means for controlling a temperature of the sample in the chamber.
  • FIG. 1 illustrates an example processing apparatus with a heating/cooling chamber for heating and/or cooling a micro device installed therein;
  • FIGS. 2, 3, 4, and 5 illustrate non-limiting examples of fluid flow in the heating/cooling chamber of the processing apparatus of FIG. 1 ;
  • FIGS. 6 and 7 illustrate non-limiting examples of carrying the micro device in the heating/cooling chamber of the processing apparatus of FIG. 1 ;
  • FIG. 8 illustrates a method of heating/cooling a micro channel device installed in the heating/cooling chamber of the processing apparatus of FIG. 1 .
  • FIG. 1 illustrates a micro channel device processing apparatus 100 for processing one or more samples located on a micro channel device 102 .
  • the micro channel device 102 may include a biochip with one or more bio-samples in one or more micro channels of the biochip.
  • the processing apparatus 100 may be configured for DNA, enzymatic, protein, and/or other processing and/or analysis of at least one of the one or more bio-samples.
  • the micro channel device 102 may include a lab-on-a-chip and/or other micro technology carrying a sample for processing, analysis, etc.
  • the processing apparatus 100 includes a heating/cooling chamber 104 configured to receive the micro channel device 102 .
  • the heating/cooling chamber 104 receives the entire micro channel device 102 .
  • the heating/cooling chamber 104 is configured to receive only a sub-portion of the micro channel device 102 , such as a sub-portion that includes a sample to be processed under a predetermined temperature.
  • the micro channel device 102 is installed into the heating/cooling chamber 104 through an opening in the heating/cooling chamber 104 , which can be subsequently closed for processing the micro channel device 102 .
  • the micro channel device 102 can be removed from the heating/cooling chamber 104 through the opening.
  • the illustrated heating/cooling chamber 104 is configured to receive a heating/cooling fluid, which comes into thermal contact with the installed micro channel device 102 , from a fluid reservoir 106 .
  • Suitable heating/cooling fluids include, but are not limited to, a gas such as air, a liquid such as water, antifreeze, etc., and/or other fluid.
  • the heating/cooling chamber 104 is configured to heat and/or cool samples on the micro channel device 102 installed therein via the fluid. In one instance, the heating/cooling chamber 104 is configured to heat and/or cool a sample on such a micro channel device 102 based on a predetermined temperature or temperature range.
  • the particular type of processing may be associated with amplifying DNA samples in a bio-sample (e.g., blood, saliva, etc.) via a polymerase chain reaction or otherwise, where the bio-sample needs to be within a particular temperature range for the DNA to be replicated.
  • a fluid such as air within a particular temperature range may be moved into the heating/cooling chamber 104 .
  • the air circulates about the micro channel device 102 and, through convection, facilitates heating or cooling the sample to within the predetermined temperature range.
  • Other types of processing are also contemplated herein.
  • the heating/cooling fluid can facilitate heating and/or cooling the sample carried by the micro channel device 102 over various temperature ranges.
  • suitable temperatures include temperatures in a range of about zero degrees Celsius (0° C.) to about one hundred degrees Celsius (100° C.), such as about fifty degrees Celsius (50° C.), about fifty-nine degrees Celsius (59° C.), about seventy-two degrees Celsius (72° C.), about ninety-five degrees Celsius (95° C.), and/or other temperatures.
  • a fluid control system 108 controls a flow of the heating/cooling fluid from the fluid reservoir 106 .
  • the fluid control system 108 may includes a pressure system (e.g., a pump or the like) or fluid mover (e.g., a blower or the like) and/or one or more other components for controllably moving the fluid into the heating/cooling chamber 104 .
  • a fluid control system 108 may include Micro Electro Mechanical Systems (MEMS) and/or other micro technology based components.
  • MEMS Micro Electro Mechanical Systems
  • Other fluid control systems are also contemplated herein.
  • a temperature control system 110 controls a temperature of the heating/cooling fluid in the fluid reservoir 106 and hence the temperature in the heating/cooling chamber 104 .
  • the temperature control system 110 may include a temperature servomechanism or other feedback based system, and/or other system for dynamic temperature control.
  • a temperature sensor 112 senses a temperature in the heating/cooling chamber and generates a signal indicative thereof.
  • the temperature control system 110 controls the temperature of the heating/cooling fluid based on the feedback signal.
  • a controller 114 of the processing apparatus 100 controls the fluid control system 108 and the temperature control system 110 .
  • the heating/cooling chamber 104 can be used for relatively fast temperature cycling of a sample carried by the micro channel device 102 , with low thermal mass, high bandwidth control of the flow of the heating/cooling fluid, and/or relatively low power consumption.
  • FIGS. 2-5 illustrate non-limiting examples of flow of a fluid in the heating/cooling chamber 104 .
  • these examples show fluid flow in a two-dimensional plane.
  • the fluid may flow about the micro channel device 102 in three dimensional space.
  • the fluid control system 108 FIG. 1 moves a fluid 200 into the heating/cooling chamber 104 .
  • the fluid 200 moved into the heating/cooling chamber 104 circulates about the micro channel device 102 in the heating/cooling chamber 104 . Circulating the fluid as such may facilitate creating a substantially uniform temperature in the heating/cooling chamber 104 about the micro channel device 102 .
  • the fluid control system 108 moves the fluid 200 into the heating/cooling chamber 104 and around the micro channel device 102 , and out of the heating/cooling chamber 104 through the same side as the fluid is moved into the heating/cooling chamber 104 .
  • the fluid 200 leaving the heating/cooling chamber 104 may be expelled from the processing apparatus 100 or re-circulated, via the fluid control system 108 , back into the heating/cooling chamber 104 .
  • the fluid control system 108 moves the fluid 200 over multiple sides of the micro channel device 102 .
  • moving the fluid as such may facilitate creating a substantially uniform temperature in the heating/cooling chamber 104 about the micro channel device 102
  • the fluid control system 108 moves the fluid 200 into the heating/cooling chamber 104 through one side of the heating/cooling chamber 104 and the fluid 200 is expelled from the heating/cooling chamber 104 through a different side of the heating/cooling chamber 104 .
  • FIGS. 2-5 A combination of one or more of the embodiments of FIGS. 2-5 and/or other embodiments are also contemplated herein.
  • FIGS. 6 and 7 illustrate non-limiting examples for carrying the micro channel device 102 in the heating/cooling chamber 104 of the processing apparatus 100 .
  • one or more supports 600 in the heating/cooling chamber 104 support one or more corners of the micro channel device 102 . This technique allows the fluid to be circulated about the top, the bottom, and the sides of the micro channel device 102 .
  • one or more supports 700 in the heating/cooling chamber 104 support one or more sides of the micro channel device 102 . This technique physically contacts a greater area of the micro channel device 102 relative to the embodiment of FIG. 6 .
  • a combination of the supports 600 and 700 and/or other supports are also contemplated herein.
  • the surface area of the micro channel device 102 in contact with the supports is minimized, thereby maximizing the surface area in thermal communication with the fluid in the heating/cooling chamber 104 .
  • the relative geometry e.g., shape, size, etc.
  • the components e.g., the heating/cooling chamber 104 , the micro channel device 102 , the supports 600 and 700 , etc.
  • Other geometries are also contemplated herein.
  • FIG. 8 illustrates a method of heating/cooling a micro channel device installed in the heating/cooling chamber of the processing apparatus 100 .
  • At 802 at least a sub-portion of the micro channel device 102 is installed in the heating/cooling chamber 104 of the processing apparatus 100 .
  • the temperature control system 110 controls a temperature of a fluid in the fluid reservoir 106 .
  • the temperature of the fluid is controlled based on a predetermined temperature range and a feedback signal indicative of a temperature of the micro channel device 102 and/or a micro channel thereof.
  • the fluid control system 108 controls a flow of the heated/cooled fluid into the heating/cooling chamber 104 .
  • the fluid flows about the micro channel device 102 .
  • the fluid heats or cools the micro channel device 102 . In one instance, this includes heating or cooling a fluid in a micro channel of the micro channel device 102 .
  • a temperature in the heating/cooling chamber 104 is sensed and fed back to the temperature control system 110 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A micro channel device processing apparatus includes a heating/cooling chamber configured to receive at least a sub-portion of a micro channel device and a fluid control system that controls a flow of a heating/cooling fluid in the chamber. A method includes controlling a temperature of a sample carried by a micro channel device installed in a micro channel device processing apparatus via a heating/cooling chamber of the processing apparatus. A micro channel device processing apparatus includes a heating/cooling chamber configured to receive a micro channel device carrying a sample and means for controlling a temperature of the sample in the chamber.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 12/748,782, filed Mar. 29, 2010, now U.S. Pat. No. 10,078,340, issued Sep. 18, 2018, the disclosure of which is hereby incorporated herein in its entirety by this reference.
  • TECHNICAL FIELD
  • The following generally relates to micro channel devices and more particularly to temperature control of a sample carried by a micro channel device.
  • BACKGROUND
  • Micro channel devices include, but are not limited to, devices which carry a small volume of a sample for processing and/or analysis. Micro channel devices have been used in biochips, labs-on-a-chip, inkjet printheads, and other micro based technologies. In some instances, a temperature of a sample in a micro channel of a micro channel device is controlled so that it is within a predetermined temperature range for processing, analysis, and/or other purposes. Controlling the temperature includes heating and/or cooling the fluid so that the temperature of the fluid is within the predetermined temperature range.
  • One technique for heating and/or cooling the fluid involves using a Peltier device, which, generally, is a thermoelectric heat pump that transfers heat from one side of the Peltier device to the other side of the Peltier device. With this technique, the Peltier device is placed in thermal communication with the micro channel device, and an appropriate voltage is applied to the Peltier device to create a temperature gradient for transferring heat between the sides of the Peltier device, either away from or towards the micro channel device. The polarity of the applied voltage determines whether the Peltier device heats up or cools down the micro channel device and thus the sample.
  • Unfortunately, a Peltier device (or the like) may require good mechanical/thermal contact between the Peltier device and the micro channel device. Such contact may require accurate and precise mechanical alignment and pressure. Moreover, heat transfer via the Peltier device may be non-uniform through conduction through the side of the Peltier device in mechanical contact with the micro channel device. Furthermore, using such a device may increase the thermal mass that participates in thermal cycling, which may increase the power required to implement thermal cycling.
  • As a consequence, using a Peltier or similar device may increase the overall size of the micro channel device, power consumption and/or dissipation of the micro channel device, and/or the cost of the micro channel device, as well as provide non-uniform and/or relatively slow temperature control.
  • BRIEF SUMMARY
  • Aspects of the application address the above matters, and others.
  • In one aspect, a micro channel device processing apparatus includes a heating/cooling chamber configured to receive at least a sub-portion of a micro channel device and a fluid control system that controls a flow of a heating/cooling fluid in the chamber.
  • In another aspect, a method includes controlling a temperature of a sample carried by a micro channel device installed in a micro channel device processing apparatus via a heating/cooling chamber of the processing apparatus.
  • In another aspect, a micro channel device processing apparatus includes a heating/cooling chamber configured to receive a micro channel device carrying a sample and means for controlling a temperature of the sample in the chamber.
  • Those skilled in the art will recognize still other aspects of the present application upon reading and understanding the attached description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The application is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
  • FIG. 1 illustrates an example processing apparatus with a heating/cooling chamber for heating and/or cooling a micro device installed therein;
  • FIGS. 2, 3, 4, and 5 illustrate non-limiting examples of fluid flow in the heating/cooling chamber of the processing apparatus of FIG. 1;
  • FIGS. 6 and 7 illustrate non-limiting examples of carrying the micro device in the heating/cooling chamber of the processing apparatus of FIG. 1; and
  • FIG. 8 illustrates a method of heating/cooling a micro channel device installed in the heating/cooling chamber of the processing apparatus of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates a micro channel device processing apparatus 100 for processing one or more samples located on a micro channel device 102. By way of example, the micro channel device 102 may include a biochip with one or more bio-samples in one or more micro channels of the biochip. In this instance, the processing apparatus 100 may be configured for DNA, enzymatic, protein, and/or other processing and/or analysis of at least one of the one or more bio-samples. In another embodiment, the micro channel device 102 may include a lab-on-a-chip and/or other micro technology carrying a sample for processing, analysis, etc.
  • The processing apparatus 100 includes a heating/cooling chamber 104 configured to receive the micro channel device 102. In the illustrated embodiment, the heating/cooling chamber 104 receives the entire micro channel device 102. In another embodiment, the heating/cooling chamber 104 is configured to receive only a sub-portion of the micro channel device 102, such as a sub-portion that includes a sample to be processed under a predetermined temperature. The micro channel device 102 is installed into the heating/cooling chamber 104 through an opening in the heating/cooling chamber 104, which can be subsequently closed for processing the micro channel device 102. The micro channel device 102 can be removed from the heating/cooling chamber 104 through the opening.
  • The illustrated heating/cooling chamber 104 is configured to receive a heating/cooling fluid, which comes into thermal contact with the installed micro channel device 102, from a fluid reservoir 106. Suitable heating/cooling fluids include, but are not limited to, a gas such as air, a liquid such as water, antifreeze, etc., and/or other fluid. The heating/cooling chamber 104 is configured to heat and/or cool samples on the micro channel device 102 installed therein via the fluid. In one instance, the heating/cooling chamber 104 is configured to heat and/or cool a sample on such a micro channel device 102 based on a predetermined temperature or temperature range.
  • By way of non-limiting example, the particular type of processing may be associated with amplifying DNA samples in a bio-sample (e.g., blood, saliva, etc.) via a polymerase chain reaction or otherwise, where the bio-sample needs to be within a particular temperature range for the DNA to be replicated. In this instance, a fluid such as air within a particular temperature range may be moved into the heating/cooling chamber 104. The air circulates about the micro channel device 102 and, through convection, facilitates heating or cooling the sample to within the predetermined temperature range. Other types of processing are also contemplated herein.
  • The heating/cooling fluid can facilitate heating and/or cooling the sample carried by the micro channel device 102 over various temperature ranges. Examples of suitable temperatures include temperatures in a range of about zero degrees Celsius (0° C.) to about one hundred degrees Celsius (100° C.), such as about fifty degrees Celsius (50° C.), about fifty-nine degrees Celsius (59° C.), about seventy-two degrees Celsius (72° C.), about ninety-five degrees Celsius (95° C.), and/or other temperatures.
  • A fluid control system 108 controls a flow of the heating/cooling fluid from the fluid reservoir 106. The fluid control system 108 may includes a pressure system (e.g., a pump or the like) or fluid mover (e.g., a blower or the like) and/or one or more other components for controllably moving the fluid into the heating/cooling chamber 104. Such a fluid control system 108 may include Micro Electro Mechanical Systems (MEMS) and/or other micro technology based components. Other fluid control systems are also contemplated herein.
  • A temperature control system 110 controls a temperature of the heating/cooling fluid in the fluid reservoir 106 and hence the temperature in the heating/cooling chamber 104. The temperature control system 110 may include a temperature servomechanism or other feedback based system, and/or other system for dynamic temperature control. In the illustrated embodiment, a temperature sensor 112 senses a temperature in the heating/cooling chamber and generates a signal indicative thereof. The temperature control system 110 controls the temperature of the heating/cooling fluid based on the feedback signal.
  • A controller 114 of the processing apparatus 100 controls the fluid control system 108 and the temperature control system 110.
  • It is to be appreciated that the heating/cooling chamber 104 can be used for relatively fast temperature cycling of a sample carried by the micro channel device 102, with low thermal mass, high bandwidth control of the flow of the heating/cooling fluid, and/or relatively low power consumption.
  • FIGS. 2-5 illustrate non-limiting examples of flow of a fluid in the heating/cooling chamber 104. For explanatory purposes, these examples show fluid flow in a two-dimensional plane. However, it is to be understood that the fluid may flow about the micro channel device 102 in three dimensional space.
  • Initially referring to FIG. 2, the fluid control system 108 FIG. 1) moves a fluid 200 into the heating/cooling chamber 104. In this example, the fluid 200 moved into the heating/cooling chamber 104 circulates about the micro channel device 102 in the heating/cooling chamber 104. Circulating the fluid as such may facilitate creating a substantially uniform temperature in the heating/cooling chamber 104 about the micro channel device 102.
  • In FIG. 3, the fluid control system 108 (FIG. 1) moves the fluid 200 into the heating/cooling chamber 104 and around the micro channel device 102, and out of the heating/cooling chamber 104 through the same side as the fluid is moved into the heating/cooling chamber 104. The fluid 200 leaving the heating/cooling chamber 104 may be expelled from the processing apparatus 100 or re-circulated, via the fluid control system 108, back into the heating/cooling chamber 104.
  • In FIG. 4, the fluid control system 108 (FIG. 1) moves the fluid 200 over multiple sides of the micro channel device 102. Likewise, moving the fluid as such may facilitate creating a substantially uniform temperature in the heating/cooling chamber 104 about the micro channel device 102
  • In FIG. 5, the fluid control system 108 (FIG. 1) moves the fluid 200 into the heating/cooling chamber 104 through one side of the heating/cooling chamber 104 and the fluid 200 is expelled from the heating/cooling chamber 104 through a different side of the heating/cooling chamber 104.
  • A combination of one or more of the embodiments of FIGS. 2-5 and/or other embodiments are also contemplated herein.
  • FIGS. 6 and 7 illustrate non-limiting examples for carrying the micro channel device 102 in the heating/cooling chamber 104 of the processing apparatus 100.
  • Initially referring to FIG. 6, one or more supports 600 in the heating/cooling chamber 104 support one or more corners of the micro channel device 102. This technique allows the fluid to be circulated about the top, the bottom, and the sides of the micro channel device 102.
  • In FIG. 7, one or more supports 700 in the heating/cooling chamber 104 support one or more sides of the micro channel device 102. This technique physically contacts a greater area of the micro channel device 102 relative to the embodiment of FIG. 6.
  • A combination of the supports 600 and 700 and/or other supports are also contemplated herein. In one instance, the surface area of the micro channel device 102 in contact with the supports is minimized, thereby maximizing the surface area in thermal communication with the fluid in the heating/cooling chamber 104.
  • It is to be appreciated that the relative geometry (e.g., shape, size, etc.) of the components (e.g., the heating/cooling chamber 104, the micro channel device 102, the supports 600 and 700, etc.) herein are provided for explanatory purposes and are not limiting. Other geometries are also contemplated herein.
  • FIG. 8 illustrates a method of heating/cooling a micro channel device installed in the heating/cooling chamber of the processing apparatus 100.
  • It is to be appreciated that the ordering of the followings acts is not limiting. For example, one or more of the acts may occur in a different order, including concurrently with one or more acts. In addition, one or more of the following acts may be omitted and/or one or more other acts may additionally or alternatively be included.
  • At 802, at least a sub-portion of the micro channel device 102 is installed in the heating/cooling chamber 104 of the processing apparatus 100.
  • At 804, the temperature control system 110 controls a temperature of a fluid in the fluid reservoir 106. As described herein, the temperature of the fluid is controlled based on a predetermined temperature range and a feedback signal indicative of a temperature of the micro channel device 102 and/or a micro channel thereof.
  • At 806, the fluid control system 108 controls a flow of the heated/cooled fluid into the heating/cooling chamber 104.
  • At 808, the fluid flows about the micro channel device 102.
  • At 810, the fluid heats or cools the micro channel device 102. In one instance, this includes heating or cooling a fluid in a micro channel of the micro channel device 102.
  • At 812, a temperature in the heating/cooling chamber 104 is sensed and fed back to the temperature control system 110.
  • The application has been described with reference to various embodiments. Modifications and alterations will occur to others upon reading the application. It is intended that the invention be construed as including all such modifications and alterations, including insofar as they come within the scope of the appended claims and the equivalents thereof.

Claims (13)

1. A fluid control system for a micro channel device processing apparatus, the fluid control system comprising:
a fluid mover structured to control a temperature of a micro channel device received entirely in a temperature control chamber defined by multiple exterior sides by introducing and circulating a heat transfer fluid in the temperature control chamber relative to the micro channel device such that the heat transfer fluid enters the temperature control chamber from the same side of the multiple sides in a first direction, flows along a first side of the micro channel device in the temperature control chamber in the first direction, flows around an end of the micro channel device and into a second direction opposite the first direction, flows along a second opposing side of the micro channel device in the second direction, and exits the temperature control chamber from the same side of the multiple sides in the second direction, wherein the first and second sides are on opposites side of the micro channel device.
2. The fluid control system of claim 1, further comprising a temperature control system configured to control a temperature of the heat transfer fluid.
3. The fluid control system of claim 2, wherein the temperature control system is configured to control the temperature based on a predetermined temperature range.
4. The fluid control system of claim 3, wherein the predetermined temperature range corresponds to a processing temperature of a sample carried by the micro channel device.
5. The fluid control system of claim 1, further comprising a temperature sensor configured to generate a signal indicative of a temperature in the temperature control chamber.
6. The fluid control system of claim 5, further comprising a temperature control system that controls a temperature of the heat transfer fluid based on the signal.
7. The apparatus of claim 12, wherein the fluid control system is configured to control a temperature of the at least one region of the micro channel device and a sample carried thereby via the heat transfer fluid.
8. A method, comprising:
controlling a temperature of a micro channel device disposed entirely within a temperature control chamber defined by multiple exterior sides by circulating a heat transfer fluid relative to the micro channel device in the temperature control chamber such that the heat transfer fluid traverses in a first direction over only a first side of the micro channel device in the temperature control chamber, circles around a second side of the micro channel device, traverses in a second opposing direction over only a third side of the micro channel device in the temperature control chamber that opposes the first side, and returns to a same side of the temperature control chamber at which the heat transfer fluid was introduced into the temperature control chamber, wherein the fluid is introduced into the temperature control chamber and exits the temperature control chamber through the same side of the temperature control chamber in opposing directions.
9. The method of claim 8, further comprising:
controlling a temperature of a heat transfer fluid;
controlling a flow of the heat transfer fluid into the chamber; and
controlling the temperature of the micro channel device via the heat transfer fluid.
10. The method of claim 9, further comprising controlling the temperature of the heat transfer fluid based on a predetermined temperature range corresponding to a processing temperature of the sample.
11. The method of claim 10, further comprising:
sensing a temperature in the chamber;
generating a signal indicative of the sensed temperature; and
controlling the temperature of the heat transfer fluid based on the signal.
12. The method of claim 9, wherein the heat transfer fluid is air.
13. The method of claim 9, further comprising introducing the heat transfer fluid into the temperature control chamber through an inlet and withdrawing the temperature control chamber through only a single outlet.
US16/123,671 2010-03-29 2018-09-06 Micro channel device temperature control Active US10663989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/123,671 US10663989B2 (en) 2010-03-29 2018-09-06 Micro channel device temperature control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/748,782 US10078340B2 (en) 2010-03-29 2010-03-29 Micro channel device temperature control
US16/123,671 US10663989B2 (en) 2010-03-29 2018-09-06 Micro channel device temperature control

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/748,782 Continuation US10078340B2 (en) 2010-03-29 2010-03-29 Micro channel device temperature control

Publications (2)

Publication Number Publication Date
US20190107851A1 true US20190107851A1 (en) 2019-04-11
US10663989B2 US10663989B2 (en) 2020-05-26

Family

ID=44655030

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/748,782 Active 2034-01-18 US10078340B2 (en) 2010-03-29 2010-03-29 Micro channel device temperature control
US16/123,671 Active US10663989B2 (en) 2010-03-29 2018-09-06 Micro channel device temperature control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/748,782 Active 2034-01-18 US10078340B2 (en) 2010-03-29 2010-03-29 Micro channel device temperature control

Country Status (1)

Country Link
US (2) US10078340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078340B2 (en) * 2010-03-29 2018-09-18 Analogic Corporation Micro channel device temperature control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078340B2 (en) * 2010-03-29 2018-09-18 Analogic Corporation Micro channel device temperature control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094108A1 (en) * 2002-12-20 2006-05-04 Karl Yoder Thermal cycler for microfluidic array assays
US20090226971A1 (en) * 2008-01-22 2009-09-10 Neil Reginald Beer Portable Rapid Microfluidic Thermal Cycler for Extremely Fast Nucleic Acid Amplification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078340B2 (en) * 2010-03-29 2018-09-18 Analogic Corporation Micro channel device temperature control

Also Published As

Publication number Publication date
US10663989B2 (en) 2020-05-26
US10078340B2 (en) 2018-09-18
US20110232892A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5698668B2 (en) Temperature control device with flexible temperature control surface
CN213337028U (en) Instrument for heat treatment of nucleic acids according to a thermal profile
US20080038163A1 (en) Systems and Methods for Cooling in Biological Analysis Instruments
US11845080B2 (en) Temperature control system for microfluidic device
US8663976B2 (en) Polymerase chain reaction apparatus
JP4829252B2 (en) Temperature controller for microfluidic samples with different heat capacities
US9540686B2 (en) Systems and methods for the amplification of DNA
EP3463669B1 (en) Rapid thermal cycling for sample analyses and processing
US20180154363A1 (en) Thermal cycling methods and apparatuses for carrying out efficient polymerase chain reaction (pcr) processes to amplify deoxyribonucleic acid (dna)
US20110220332A1 (en) Micro channel device temperature control
US10663989B2 (en) Micro channel device temperature control
US20080247916A1 (en) Reaction apparatus and reaction chip
JP7123903B2 (en) Sample container array
JP2005214782A (en) Thermoregulator for micro-fluid device reaction
KR102510230B1 (en) Pcr device comprising reaction tube passing through plural heating blocks
JP7132158B2 (en) Temperature controller and nucleic acid amplifier

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TRUIST BANK, AS COLLATERAL AGENT, GEORGIA

Free format text: SECURITY INTEREST;ASSIGNOR:ANALOGIC CORPORATION;REEL/FRAME:064954/0027

Effective date: 20230914

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4