JP6702985B2 - 軸方向磁束機械 - Google Patents

軸方向磁束機械 Download PDF

Info

Publication number
JP6702985B2
JP6702985B2 JP2017537951A JP2017537951A JP6702985B2 JP 6702985 B2 JP6702985 B2 JP 6702985B2 JP 2017537951 A JP2017537951 A JP 2017537951A JP 2017537951 A JP2017537951 A JP 2017537951A JP 6702985 B2 JP6702985 B2 JP 6702985B2
Authority
JP
Japan
Prior art keywords
rotor
stator
machine
axial
flux machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017537951A
Other languages
English (en)
Other versions
JP2018506254A (ja
Inventor
ウールマー ティモシー
ウールマー ティモシー
エドワード ミラー クリストファー
エドワード ミラー クリストファー
Original Assignee
ヤサ リミテッド
ヤサ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤサ リミテッド, ヤサ リミテッド filed Critical ヤサ リミテッド
Publication of JP2018506254A publication Critical patent/JP2018506254A/ja
Application granted granted Critical
Publication of JP6702985B2 publication Critical patent/JP6702985B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、軸方向磁束機械に関する。
本発明において、我々は軸方向磁束永久磁石機械に関心がある。広義には、これらは、軸の周りに配置されている円板状又はリング状のロータ及びステータの構造体を有している。典型的には、ステータは、軸にそれぞれが平行な1組のコイルを備え、そして、ロータは1組の永久磁石を担持し、ステータのコイルからの磁界によって駆動され、軸の周りを回転できるようにベアリングに取り付けられている。本発明の簡単な構造ではロータの1つを省くことができるが、図1aは、ステータSのいずれかの側に一対のロータR1、R2を有する本発明の軸方向磁束機械の一般的な構成を示している。図示されているように、ロータとステータとの間には空隙Gが存在し、軸方向磁束機械では、当該空隙を通る磁束の方向が実質的に軸方向である。
ロータ上のN極及びS極の配置に依存して、軸方向磁束永久磁石機械の様々な構成が存在する。図1bは、Torus NS機械、Torus NN機械(これは、NN磁極配置がヨークの厚さを通って流れる磁束を必要とするのでより厚いヨークを有している)、及びヨークレスセグメント化アーマチャ(YASA:Yokeless and Segmented Armature)トポロジを図解している。YASAトポロジの図は、2つのコイルの断面を示しており、クロスハッチングの領域は各コイルの周りの巻線を示している。理解されるように、ステータヨークを省略することは、重量損失及び鉄損を実質的に節約するが、欠点の1つは、ロータを支持するためにベアリングを取り付けることができる剛性構造の欠損である。したがって、好ましくは、二重ロータ、単一ステータの軸方向磁束モータのYASAトポロジでは、ベアリングがステータ領域内に取り付けられ、ステータの両側のロータからの磁力が軸方向に釣り合っている。ロータは、ステータに向かっての曲げに抵抗するようにデザインされる。
ベアリングがステータの領域内に囲まれ、ベアリングが二重のロータを支持しているモジュール式配列は、先に、特許文献1(GB2468017)に記載されており、そこでは、出力と環状のハウジングとの間の全体の負荷がステータとロータとの間のベアリングを介して伝達され、それにより、ロータ又はステータのハウジングに関するその出力の他の取り付けが設けられておらず、そこでは、ロータの各段が図1aに概略的に示されるような環状の皿を備えている。
軸方向磁束モータの場合、ロータとステータとの間にロータのステータに向かっての曲げを生じさせる高い磁力が存在している。これらの磁力が複合化すると、機械のいくつかの用途において生じる振動及び歳差力となる。
高トルク及び動力密度の高いモータのデザイナは、ロータの永久磁石とステータのアーマチュアとの間の物理的な空隙を最小限に抑え、それによって磁気抵抗を最小限に抑えようとしている。物理的な空隙は通常1mm程度であり、ロータがステータに接触するのを避けるために、剛性のベアリングとロータディスクが必要とされている。
軸方向磁束モータにおいてロータの剛性を高める一つの方法は、ロータディスクに半径方向のリブを付加することである。しかしながら、半径方向リブは機械加工に費用がかかり、モータの軸方向寸法に長さを加える。別のアプローチは、高い固有剛性を有する材料を使用することである。しかしながら、永久磁石ロータは、ロータ上に円周方向に分配されセグメント化された磁極を連結するための磁気戻り経路を必要とする。典型的には、鉄系のロータが使用され、これらの質量は、厚さが増すにつれて著しく増加し、それによって機械のトルク及び出力密度が損なわれる。
トルクと出力密度を損なうことなくロータに十分な剛性を提供することは困難であるので、モータデザイナは、半径方向磁束機械に焦点を当てる傾向があった。
特許文献2(GB2486932)は、図4のU字形ヨークがH字型ステータのいずれかの側に磁場を伝達する半径方向磁束モータを記載している。この構成では、剛性が永久磁石を保持するU字形ヨークを介して提供される。この構造は剛性を欠いており、内側のロータリングが補強機構を持たず、ロータは公差誤差を複合させる多数の部品から成っている。シール機能が教示されておらず、その結果、微粒子がロータとステータの空隙に入るのを防ぐために周囲の包囲体が必要である。特許文献3(US 4、731、554)の図1及び図2は、ステータアーマチュアのいずれかの側に到達するU字状のロータを使用する半径方向トポロジにおいて短かい軸方向の長さが有効にされている、同様の外部ロータのモータを教示している。
先行技術文献の大部分は、U字形の磁気ヨークがその内部にステータアーマチュアが取り付けられた開放カップである、半径方向磁束ロータを教示している。これらのフォーマットは、磁気ヨーク材料の強度だけで磁気圧縮力に抵抗しており、出力又はトルク密度に対しては最適化されていない。
外部ロータ軸方向磁束モータの特許文献4(US2009 / 0322165)は、図3に、U字形ステータによって囲まれたロータを記載している。ロータに向かうステータの移動に対する抵抗は、複数の剛い機械的ヨークによってもたらされる。ロータ剛性は、分離されたベアリングに取付られた外部ハウジング、又はより商業的に実用的な、特許文献4(US2009 / 0322165)の図1aの広く離間されたベアリングと一緒に連動される3相のステータ‐ロータによって達成される。
全ての従来技術の例において、ロータ及びステータは、ロータステージへの微粒子の進入を防止するために、別個の包囲体によっての環境からのさらなる保護を必要としている。磁気的又は機械的負荷の下において曲がりを回避するのに十分なロータの剛性は、ヨークの追加の質量によって達成され、組立は本発明よりも複雑である。
加えて、一般的な背景技術は、特許文献5(US2009322165A1)、特許文献6(GB992800A)、特許文献7(JPH03150054A)、特許文献8(KR100663641 B1)、特許文献9(US5854526A)、特許文献10(US6762525B1)及び特許文献11(US2007228860A1)に見出すことができる。
英国特許出願公開第2468017号明細書(GB2468017) 英国特許出願公開第2486932号明細書(GB2486932) 米国特許第4731554号明細書(US4731554) 米国特許出願公開第2009/0322165号明細書(US2009/0322165) 米国特許出願公開第2009/322165号明細書(US2009/322165A1) 英国特許出願公告第992800号明細書(GB992800A) 特開平03-150054号公報(JPH03150054A) 韓国登録特許第10-0663641号公報(KR100663641 B1) 米国特許第5854526号明細書(US5854526A) 米国特許第6762525号明細書(US6762525B1) 米国特許出願公開第2007/228860号明細書(US2007228860A1) 国際公開第2012/022974号(PCT出願WO2012/022974)
したがって、改良された軸方向磁束機械の必要性が認識されている。
本発明は、軸方向磁束機械であって、機械の軸の周りに周方向にある間隔で配置された複数のステータバーを囲むステータハウジングを備え、各ステータバーが、磁場を発生させるためにその周りに巻回されたコイルの組を有しているステータ、永久磁石の組を備え、機械の軸の周りに回転するように取り付けられたロータであって、ステータとロータとの間に隙間を画定し、且つ機械内の磁束が概ね軸方向であるべく、機械の軸に沿ってステータから間隔があけられているロータ、回転用ハブと当該ハブが取付部に対して回転するのを可能にするべくベアリングによって分離されている取付部とを備えるハブ組立体であって、当該回転用ハブはハブフランジを備え、そして当該取付部は取付フランジを備えて、これらのフランジの各々が軸方向に離間されているハブ組立体、及び当該ハブ組立体及び当該ステータを取付けるための隔壁、を備え、当該隔壁は、当該ハブ組立体の取付フランジに取り付けられ、当該ステータハウジングは当該隔壁に取り付けられ、当該ロータは、当該ステータのいずれかの側に配置される第1及び第2のロータを備え、当該第1のロータは当該ハブフランジに取り付けられ、そして当該第2のロータは当該第1のロータにのみ取り付けられ、当該第1及び第2のロータは、当該ステータにわたっていずれの側にも延在するU字形のロータを一緒に形成し、機械の軸の周りにステータに対して回転可能である軸方向磁束機械を提供する。
U字形ロータのデザインを使用し、そしてハブ組立体を使用することによって、1つのロータのみが回転用ハブに取り付けられる必要がある、十分な剛性を有する機械が提供され得る。これは、コンパクトな軸方向磁束機械を提供する。
第2のロータは、第1のロータの外側の軸方向リムに沿って第1のロータにのみ取り付けられ、ステータの外側半径方向周囲部にわたっていずれの側にも延在するU字形ロータを形成してもよい。第2のロータは、その外側の軸方向リムに沿って第1のロータにのみ取り付けられ、ステータの外側半径方向の周囲を横切ってかつその両側に延びるU字形のロータを形成する。
このバージョンにおいて、第2のロータはL字形の環状体であり、ステータハウジングに面する第2のロータの内面は、ステータから離れて面する隔壁の外面と相互作用して、当該ステータハウジングを囲うべく隔壁と第2のロータとの間にシールを形成してもよい。
第2のロータとステータとの間にシールを設けることにより、モータへの微粒子及び液体の侵入を防止する。
第2のロータの内面は、第2のロータの内周部の周りに環状溝を備えてもよく、環状溝の開口はステータハウジングに面し、そして、隔壁は第2のロータに面する円形の隆起部を備え、当該円形の隆起部は、環状溝とラビリンスシールを形成するべく第2のロータの環状溝内に位置するように構成されている。
このような配列は、ステータとロータとの間にラビリンスシールを設けるのみならず、ロータの構造体に付加的な剛性をもたらす。
上記に代えて、第2のロータは、その外側軸方向リムから半径方向内側に位置される内側部分に沿って第1のロータにのみ取り付けられてもよい。この場合、第1及び第2のロータは、ステータの内側半径方向周囲部にわたっていずれの側にも延在するU字形ロータを一緒に形成している。有利なことに、これは、磁石が構造的な支持要素及びベアリングから分離され得る機械を提供する。このようにして、ロータのバックアイアンが、内周の構造要素が、例えば、磁気を変えることなくハブベアリング組立体の直径を変更するのに容易に修正される状態の2つの部片であってもよい。
機械のこのバージョンにおいて、第2のロータは環状体から延びる取付部を備える環状体であり、第2のロータは取付部を介して第1のロータに取付けられ、そして、取付部は、第1及び第2のロータを機械内で軸方向に分離している。
この機械のバージョンはまた、第1のロータを囲むカバーを備えてもよい。このカバーは、スプレーや埃及び他の材料のモータへの侵入から第1のロータを保護するであろう。カバーは、ステータに取り付けられてもよい。また、ステータハウジングとハブ組立体の取付フランジとの間の取付部が、第2のロータを包囲してもよく、かくて、外部環境から保護された機械を提供することができる。
好ましくは、ステータは、第1及び第2のロータから等距離にある。
ステータハウジングは、第1及び第2の半径方向の壁と、内側及び外側のほぼ円筒形の壁とを備えていてもよい。半径方向の壁及びほぼ円筒形の壁の一方又は両方は、ポリマーから成ってもよい。半径方向の壁及びほぼ円筒形の壁の一方又は両方は、熱可塑性ポリマー、特に、高温熱可塑性ポリマー、好ましくは、PPAから成ってもよい。
実施形態において、機械は、ヨークレスでセグメント化されたアーマチュアの軸方向磁束機械である。
機械は隔壁を備えるので、この隔壁は機械に追加の剛性を提供することができる。さらに、機械は、ハブ組立体の取付フランジ又は隔壁を介して構造体に取り付けることが可能である。
機械の内外に動力を連結するために、機械は、回転用ハブから延びて回転用ハブに結合される車軸又はシャフトを備えてもよい。当該シャフト又は車軸は、ホイール又はプロペラに連結されてもよい。
機械は、モータ又は発電機であってもよい。
本発明はまた、上述の機械のような軸方向磁束機械を組み立てる方法を提供し、当該方法は、ステータを隔壁に取り付けること、隔壁をハブ組立体の取付フランジに取り付けること、第1のロータをハブ組立体のハブフランジに取り付けること、及び第2のロータを第1のロータに取り付けることを含み、第1及び第2のロータは、ステータにわたってそのいずれの側にも延在するU字形ロータを形成し、ロータは機械の軸の周りにステータに対して回転可能である。
上記の方法では、第1のロータの外側の軸方向リムに沿って第1のロータにのみ取り付けられ、ステータの外側の半径方向の周囲にわたってそのいずれの側にも延在するU字形ロータを形成している。
第2のロータはL字形の環状体であってもよく、ステータハウジングに面する第2のロータの内面は、ステータから離れて面する隔壁の外面と相互作用して、ステータハウジングを囲むべく隔壁と第2のロータとの間にシールを形成している。第2のロータの内面は、第2のロータの内周部の周りに環状溝を備えてもよく、環状溝の開口はステータハウジングに面し、そして隔壁は、第2のロータに面する円形の隆起部を備え、円形の隆起部は第2のロータの環状溝内に位置して、環状溝とラビリンスシールを形成するように構成されている。
上記の方法の代わりに、第2のロータは、第1のロータの外側の軸方向リムから半径方向内側に位置される内側部分に沿って第1のロータにのみ取り付けられてもよく、第1及び第2のロータは、ステータの内側の半径方向の周囲部にわたっていずれの側にも延在するU字形のロータを一緒に形成する。
この代替の方法において、第2のロータは、環状体から延在する取付部分を備える環状体であり、第2のロータは取付部分を介して第1のロータに取り付けられ、取付部分が第1及び第2のロータを機械において軸方向に分離している。
この代替の方法はまた、第1のロータを囲むカバーを取り付けることを含んでもよい。カバーは、ステータに取り付けられてもよい。さらに、ステータハウジングとハブ組立体の取付フランジとの間の隔壁が、第2のロータを包囲してもよい。
ステータと第1及び第2のロータが取り付けられるとき、ステータは、ステータとそれぞれのロータとの間の力を釣り合わせるべく、好ましくは、第1及び第2のロータから等距離にある。
この方法はまた、機械を、取付フランジ又は隔壁を介して構造体に取り付けることを含んでもよい。さらに、この方法は、動力を機械に供給するか又は機械から引き出すことを可能にする、回転用ハブ又は第1のロータに車軸又はシャフトを取り付けることを含んでもよい。
以下、添付の図面を参照して、本発明を実施例としてのみ説明する。
図1aは、2ロータ軸方向磁束機械の概略構成を示している。 図1bは、軸方向磁束永久磁石機械のための例示的なトポロジ、及びヨークレス及びセグメント化されたアーマチュア(YASA)機械の概略側面図をそれぞれ示している。 図1cは、ヨークレス及びセグメント化されたアーマチュア(YASA)機械の概略側面図を示している。 図2は、図1cのYASA機械の斜視図を示している。 図3は、YASA機械のためのステータ及びステータハウジングの斜視分解図を示している。 図4は、本発明の一実施形態によるカップ型ロータ軸方向磁束永久磁石機械の分解図を示している。 図5は、一旦組み立てられた図4の機械の切欠き図である。 図6は、図5に示された機械の一部のより詳細な図を示している。 図5に示された機械の斜視図を示している。 図8は、図4の機械の分解切欠き図を示している。 図9は、代替の機械の一部の切欠き図を示している。 図10は、図9の機械の切欠き図を示している。
まず、我々の特許文献12(PCT出願WO2012 / 022974)から得られる図1c、図2及び図3を参照するに、図1cは、ヨークレス及びセグメント化されたアーマチュア機械10の概略図を示している。
機械10は、ステータ12及び2つのロータ14a、14bを備えている。ステータ12は、ロータ14a、14bの回転軸20の周りに円周方向に間隔を置いて配置された別個のステータバー16の集まりである。各バー16は、それ自体の軸(図示せず)を有し、回転軸20に平行に配置されることが好ましいが、必須ではない。各ステータバーの各端部には、コイルスタック22を閉じ込めるための物理的な目的に役立つシュー18a、18bが設けられている。このコイルスタック22は、高い充填率が達成されるように、好ましくは、正方形/矩形断面の絶縁ワイヤである。コイル22は、モータの場合には、コイルに流れる電流によって生成される合成磁場の極が隣接するステータのコイル22において反対になるように、コイルを励磁する電気回路(図示せず)に接続されている。
2つのロータ14a、14bは、ステータのコイル22を挟んで対向する永久磁石24a、24bを担持している(ステータバーが傾けられている(図示はされていない)場合には、磁石も同様である)。2つの空隙26a、26bは、それぞれ、シューと磁石の対18a / 24a、18b / 24bの間に配置されている。回転軸20の周りに間隔を置いて配置された偶数のコイル及び磁石が存在し、好ましくは、コイルが全て対応する磁石対と同時に、且つステータに対するロータの同じ回転位置に整合しないように、異なる数のコイル及び磁石が存在する。これは、コギングを低減するのに役立つ。
モータにおいては、コイル22は、異なる時にコイルを異なる磁石対と整列させるべく、その極性が交互に入れ替わるように励磁され、ロータとステータとの間にトルクを加えることになる。ロータ14a、14bは、一般に、(例えば、図示しないシャフトによって)互いに接続されており、ステータ12に対して軸20の周りに一緒に回転する。磁気回路30は、2つの隣接するステータバー16と2つの磁石対24a、24bとによって提供され、各ロータのバックアイアン32a、32bは、それぞれのコイル22から離れて面している各磁石24a、24bの後部間で磁束をリンクさせている。ステータのコイル16は、空隙26a、26bを通って延在し、冷却媒体が供給されるチャンバを画定するハウジング内に封入されている。
図3を参照するに、ステータのコイルがプラスチック材料のクラムシェル42a、42bの間に配置されているステータ12aが示されている。これらのクラムシェルは、外側円筒壁44と、内側円筒壁46と、半径方向に配置された環状壁48とを有している。図3の従来技術の例では、半径方向の壁48は、ステータ12aの2つのクラムシェルハウジング42a、42bが一緒に組み立てられたときに、ステータバー16のシュー18a、18bを受け入れ、そしてステータコイル組立体16、22、18a、18bを配置するのに役立つ内側ポケット50を含んでいる。ステータハウジング42a、42bは、コイル22の内側に空間52を、コイル22の外側の周囲に空間54を画定し、そしてコイルの間には空間56が存している。空間52、54、56は、冷却チャンバを画定するように相互連結されている。図3には示されていないが、組み立てられたとき、ステータハウジング42a、42bには、オイルのような冷却媒体が空間52、54、56内にポンプ輸送されてコイルの回りを循環し、冷却するのを可能にするポートが設けられている。
コイルコアは、所望の磁束方向に平行な層内絶縁体を伴って積層されてもよい。しかしながら、コイルコアはまた、電気絶縁体で被覆され、所望の形状に成形された軟鉄粒子(軟磁性複合体-SMC)から形成されてもよく、絶縁マトリックスによって一緒に結合されている。例示的なSMCは、ガラス接合された鉄粒子、及び鉄粒子を相互に電気的に絶縁し、いくらかの残留気孔を残しているガラス接合の薄い層(典型的には、<10μm)を含むことができる。優れた形状係数を有し、そして高い充填率の巻線が使用され、SMCの歯に真直ぐに巻き付けられるのを可能にする3次元磁束パターンを生成する、複雑な形状に構成部品を成形するために、高温高圧の圧縮プロセスが使用される。都合のよいことに、シューとステータバーは別々に形成され、その後組み立てられてもよく、シューは、最小リラクタンスの軸方向を有する中央領域と最小リラクタンスの半径方向を有する外側領域とを有してもよい(特許文献12(WO2012 / 022974)参照)。
ここで図4乃至図8を参照するに、ステータ402及びロータ404a、404bを備えるYASA機械400の様々な図(組立られた、切欠かれた、及び分解された)が示されている。ロータは、U字形のデザインを有し、すなわち、ロータ404a、404bが一緒になって、ステータ402にわたって両側に延びるU字形のロータを形成している。
ステータとロータを互いに対して取り付けるために、ハブ組立体406が設けられている。ハブ組立体406は、回転用ハブとベアリング416によって分離された取付部とを備え、ハブは取付部に対して回転することができる。回転用ハブには、ハブフランジ412が設けられ、及び取付部は取付フランジ408を備えており、フランジの各々は、互いに軸方向に離間して配置されている。
ステータ402は、取付フランジ408を介してハブ組立体406に取り付けられている。図示の実施形態では、ステータ402は、隔壁410を介してハブ組立体の取付フランジ408に取り付けられている。隔壁410又は取付フランジ408を使用して、機械を他の構造体に取り付けることができる。
第1のロータ404aは、典型的にはボルト(図示せず)を用いて、ハブフランジ412を介してハブ組立体に取り付けられている。第2のロータ404bは、第1のロータ404aの外側の軸方向リムに沿い複数のロータフランジ414a、414bを介して、第1のロータ404aにのみ取り付けられる。2つのロータ404a、404bは、ステータ402にわたってその両側に延在し、ステータに対して機械の軸の周りに回転するU字形ロータを形成する。見て分かるように、第2のロータは、その内周に取り付けられていない環状体である。代わりに、その内周部は、機械のその側のステータ及び隔壁を覆い相対的に回転する。
ロータ404a、404bは、一組の永久磁石418aを取付る半径方向の壁を有している。ロータ404aは、発電機/モータの場合には、それぞれ、駆動入力/出力を提供するが、これは簡略化のために図示されていない。
このように、この機械は、事実上、一方のロータ404aのみがステータ内のハブ組立体406(図4に簡略化して示されている)に取り付けられ、第2のロータ404bは第1のロータ404aにのみ取り付けられる、二重ロータ機械である。
ステータ402は、冷却剤が内部を循環することができるチャンバを画定する、第1の半径方向の壁422、及び第2の半径方向の壁424と、概して、円筒状の内側壁426及び外側壁428を含むハウジング420を有している。ハウジングは、1組のステータのコイルを囲み、これら及びこれらの電気的接続は、簡略化のために示されていない。コイルはポールピース(磁極片)(図示せず)に巻回されている。
第2のロータ404bの内面(ステータ402と対向する面)には、環状溝430が設けられている。このU状の環状溝430は、隔壁410上の対応する形状の特徴部432と相互作用して、ロータ404bとステータ402との間にラビリンスシールを形成する。図において、隔壁410は、隔壁から延在しロータ404bに向かって面する円形の隆起部432を含んでいる。当該隆起部は、環状溝430内に位置してラビリンスシールを提供する。このようなシールは、磁気空隙を粒子状物質及び入射液体の侵入から保護する。
典型的には、トルク出力の理由から、小さな磁気的及び物理的空隙を有する二重ロータ単一ステータの軸方向磁束モータは、ロータに支持され時計方向に分布されている永久磁石とステータのポールピースのアーマチュアとの間に存在する実質的な引力を克服するため、ロータに剛性を提供している。ベアリングもまた、剛性である必要があり、すなわち、ロータがステータに向かって動くことを可能にする軸方向の動きがなく、それによってロータのステータへの接触の危険性をなくしている。
巨大な鉄構造体は剛性を提供することができるが、モータの質量をもまた増加させ、トルクと出力密度を希釈する。固定された土地ベースの用途では、大量のロータにはより大きな質量が許容されるが、移動する陸上及び空中のモータは質量の増加に敏感であり、これを減らす努力は、かなりの燃料/エネルギーの節約をもたらす。
上記のようなホイールハブ組立体を使用することは、ベアリング剛性の利点を提供する。
一方、このホイールハブ組立体は剛性のあるベアリング構造体を提供するが、自動車のサスペンション/シャーシに取り付けるべく、ホイール及びもう1つを支持するためのフランジは通常1つだけである。したがって、上記のホイールハブ組立体及びフランジの配列は、二重ロータ単一ステータ軸方向磁束モータがどのように組み立てられるかの典型的なものではない。何故ならば、構造体に剛性を提供するためには、両方のロータが、通常は、ステータのいずれか側のベアリングに別個に取り付けられるからである。
それにもかかわらず、ただ1つの回転用ハブフランジ412を有するホイールハブ組立体406が、本発明においては、回転用ハブフランジ412に取り付けられ、ステータ402を部分的に取り囲んでいるロータ404aと組み合わされて有利に使用されている。
本発明のU字形ロータ404a、404bでは、吸引磁力は高いが、ステータ402のいずれの側でもバランスが取られている。バランスが取られていない吸引力は、ステータ402とロータ404a、404bとの間に等しい空隙を維持することによって低く保たれ、したがって、バランスが取られていない力が、ハブ組立体の構造体(特に、ベアリング)、及び特に、支持用ロータディスクに、過度の応力を存在させない。
本発明のU字形ロータ404a、404bは、本来的に剛性の構造体である。ロータの剛性は、いずれかのロータがステータへの磁気吸引力に抵抗する際に有益であり、吸引力は、典型的には、平坦で自由に回転するロータのコーニング(円錐化)を生成させる。増大された剛性は、その内側径部でハブ組立体406によって、そして外側径部で軸方向の円周リングによって支持されている、ロータ404aの側部を支持するハブ組立体406にも特に当てはまり、この円周リングは第2のロータ404bに連結して本来的に堅いU字形構造体を提供している。
第2のロータ404bは、その外周部でのみ支持されているので、このようなコーニングに対する抵抗は得られない。
第2のロータ404bの内径部に位置されている第2の構造体430(環状溝)は、驚くべきことに及び有利に、第2のロータ404bの剛性を増大させ、これは、内周リムのステータ402へ向けてのコーニングに抵抗し、軸方向の隆起部432との係合を生じさせ、それによって、微粒子及び液体噴霧の侵入による狭い空隙でロータキャビティを効果的にシールするラビリンスにつながっている。
ロータ404全体は、外部にあり、微粒子及び液体噴霧の偶発的な侵入に対して効果的にシールされており、他の保護体を必要とせずに大気に開放されたままであり、その回転による空冷の利点を利用することができる。
二重ロータ単一ステータ軸方向モータについては、ロータとステータとの間に大きな磁気吸引力が存在し、組立中、ステータへのロータの「タッチダウン」を防止するために、かなりの注意を払う必要があることが理解されよう。バランスが取られていない磁力を最小限にするように、ロータとステータを一緒に引き込み、一旦、組み立てられると、ロータが凡そ中立の位置エネルギー状態になる簡単な組立冶具を使用することができることは理解されよう。機械の組み立て中、ロータとステータとの間に等しい空隙を提供するように、ロータを軸方向に正しく配置するため、1つ又は複数のシムがハブ組立体の回転側に配置されてもよい。
図9及び図10は、図4乃至図8に示す機械とは異なる構造を有するが、共通の構成部品を有する代替の機械を示す。同様の構成部品には、上記と同様の番号が付けられている。
図9及び図10の代替の機械では、第2のロータ404bが第1のロータ404aの外側の軸方向リムに沿って第1のロータ404aにのみ取り付けられている代わりに、第2のロータ404bは、その外側の軸方向リムから半径方向内側に位置される内側部分に沿って、第1のロータ404aにのみ取り付けられている。代替の機械では、第1及び第2のロータは、(図4乃至図8の場合のようなステータの外側半径方向周囲部の代わりに)ステータの内側の半径方向周囲部を横切ってその両側に延在するU字形ロータを形成している。
上記のように、ハブ組立体406が、ステータとロータとを互いに相対的に取り付けるために設けられている。ハブ組立体406は、ハブが取付部に対して回転することができるように、回転用ハブと、ベアリング416によって分離されている取付部とを備えている。回転用ハブにはハブフランジ412が設けられ、及び取付部は取付フランジ408を備えており、各々のフランジが、互いに軸方向に離間されている。
ステータ402は、取付フランジ408を介してハブ組立体406に取り付けられている。図示の実施形態では、ステータ402は、隔壁410を介して、ハブ組立体の取付フランジ408に取り付けられている。隔壁410又は取付フランジ408は、機械を他の構造体に取り付けるために使用されてもよい。この代替機械では、第2のロータ404bを収容するため、隔壁とステータとの間に十分な空間を提供するために、追加の取り付け部分442がステータと隔壁410との間に使用されている。
第1のロータ404aは、典型的には、ボルト(図示せず)を用いてハブフランジ412を介してハブ組立体に取り付けられる。この場合、第1のロータ404aは平らなディスクとして示されているが、他の構造、例えば、カップ状のロータ構造体も可能である。第2のロータ404bは、第1のロータ404aの外側の軸方向リムからより半径方向内側に位置される内側部分に沿う取り付け部分440を介して、第1のロータ404aにのみ取り付けられている。2つのロータ404a、404bは一緒に、ステータ402にわたってその両側に延在し、ステータに対して機械の軸の周りに回転するU字形のロータを形成している。この別の機械では、U字形のロータは、ステータ402の内側の半径方向周囲部にわたってその両側に延在している。
第2のロータ404bは、取付部440を介してその内側周囲部に取り付けられる環状体であってもよい。代替的に、第2のロータ404bは、L字形のロータであってもよい(すなわち、取付部分が、上述の環状体と一体である)。このように、その外側の周囲部は、ステータと機械のその側の隔壁との間で、ステータにわたり且つそれに対して相対的に回転する。
ロータ404a、404bは、一組の永久磁石418a、418bを取付る半径方向の壁を有している。ロータ404aは、それぞれ、発電機/モータの場合には、駆動入力/出力を提供するが、簡略化のためにこれは図示されていない。
かくして、再度、機械は、ロータのうちの1つのロータ404aだけがステータ内のハブ組立体406に取り付けられ、そして、第2のロータ404bが第1のロータ404aにのみ取り付けられる、二重ロータ機械である。
この代替機械には多くの利点がある。例えば、磁石が構造的支持要素及びベアリングから分離され、その結果、例えば、磁気を変えることなくベアリングハブの直径を変更するために、内側周囲の構造要素が容易に修正される状態で、ロータ構造体404aは各々が強磁性のバックアイアン(裏金)及び1組の永久磁石を含むことができる2つの部品とされ得る。
同様に、取付け用のプレート(隔壁)410は、ステータ402に影響を及ぼすことなく変更され得る。
図9において、機械は、機械の第1のロータ404a側の環境に曝されている。図9において、ハブ組立体の取付フランジ408へのステータ402の構造的な取り付け部は、機械の第2のロータ側を取り囲んでいる。
図10は、ステータ402に取り付けられ、そして機械の第1のロータ404a側を囲むカバー444を備える機械の一例を示している。代替的に、カバー444は、ステータハウジングの半径方向外面に取り付けられてもよい。
図10に示されるカバーは、軸方向開口を含んでいる。示されていないものは、車軸が存在する場合に使用されるかもしれないリップシールである。しかしながら、カバー444は、機械からの入力/出力が隔壁410を介して取られる状態では、軸方向開口を等しく有さなくてもよい。
この代替構造の上記の利点に加えて、ステータとロータとの間の物理的空隙は、回転用フランジ412又は固定フランジ408上のシムによって調整されてもよい。合計の物理的空隙は一定のままでよいが、これのバランスは、回転用フランジ412と第1のロータ404aとの間、又は固定フランジ408と隔壁410との間のシムによって調整されてもよい。
モータである機械を参照して上記の機械を説明してきたが、我々はまた、機械が、ステータ402に対するロータ404の回転から発電する発電機として動作することも想定している。
回転動力を機械の内外に結合するために、駆動シャフト又は車軸が、第1のロータ404a又はハブ組立体406の回転用ハブに結合されてもよい。図には示されていないが、ハブ組立体の内面はスプライン付表面を有していてもよい。これは、シャフトを介して機械との内外間で動力を結合するために使用される。しかしながら、シャフトがハブフランジ又はロータ404aの適切な表面に結合され得るときは、スプライン付表面は必要ではない。
当然のことながら、当業者には他の多くの有効な代替案が生じるであろう。本発明は、記載された実施形態に限定されず、添付の特許請求の範囲内にある当業者に明らかな変更を包含することが理解されよう。

Claims (30)

  1. 軸方向磁束機械であって、
    機械の軸の周りに周方向にある間隔で配置された複数のステータバーを囲むステータハウジングを備え、各ステータバーが、磁場を発生させるためにその周りに巻回されたコイルの組を有しているステータ、
    永久磁石の組を備え、機械の軸の周りに回転するように取り付けられたロータであって、ステータとロータとの間に隙間を画定し、且つ機械内の磁束が概ね軸方向であるべく、機械の軸に沿ってステータから間隔があけられているロータ、
    回転用ハブと当該ハブが取付部に対して回転するのを可能にするべくベアリングによって分離されている取付部とを備えるハブ組立体であって、当該回転用ハブはハブフランジを備え、そして当該取付部は取付フランジを備えて、これらのフランジの各々が軸方向に離間されているハブ組立体、及び
    当該ハブ組立体及び当該ステータを取付けるための隔壁、を備え、
    当該隔壁は、当該ハブ組立体の取付フランジに取り付けられ、
    当該ステータハウジングは当該隔壁に取り付けられ、
    当該ロータは、当該ステータのいずれかの側に配置される第1及び第2のロータを備え、当該第1のロータは当該ハブフランジに取り付けられ、そして当該第2のロータは当該第1のロータにのみ取り付けられ、当該第1及び第2のロータは、当該ステータにわたっていずれの側にも延在するU字形のロータを一緒に形成し、機械の軸の周りにステータに対して回転可能であることを特徴とする軸方向磁束機械。
  2. 当該第2のロータは、当該第1のロータの外側の軸方向周縁のみに沿って当該第1のロータに取り付けられ、当該ステータの外側の半径方向周囲部にわたっていずれの側にも延在するU字形ロータを形成していることを特徴とする請求項1に記載の軸方向磁束機械。
  3. 当該第2のロータはL字形の環状体であり、当該ステータハウジングに面する当該第2のロータの内面は、当該ステータから離れて面する当該隔壁の外面と相互作用して、当該ステータハウジングを囲うべく当該隔壁と当該第2のロータとの間にシールを形成することを特徴とする請求項2に記載の軸方向磁束機械。
  4. 当該第2のロータの当該内面は、当該第2のロータの内周部の周りに環状溝を備え、当該環状溝の開口は当該ステータハウジングに面し、そして、当該隔壁は当該第2のロータに面する円形の隆起部を備え、当該円形の隆起部は、当該環状溝とラビリンスシールを形成するべく当該第2のロータの環状溝内に位置するように構成されていることを特徴とする請求項3に記載の軸方向磁束機械。
  5. 当該第2のロータは、当該第1のロータの外側の軸方向周縁から径方向内側に位置される内側部分のみに沿って当該第1のロータに取り付けられ、当該第1及び第2のロータは、当該ステータの内側の半径方向周囲部にわたっていずれの側にも延在するU字形のロータを一緒に形成していることを特徴とする請求項1に記載の軸方向磁束機械。
  6. 当該第2のロータは、環状体から延びる取付部を備える環状体であり、当該第2のロータは当該取付部を介して当該第1のロータに取付けられ、そして、当該取付部は、当該第1及び第2のロータを機械内で軸方向に分離していることを特徴とする請求項5に記載の軸方向磁束機械。
  7. 当該第1のロータを囲むカバーを備えることを特徴とする請求項5又は6に記載の軸方向磁束機械。
  8. 当該カバーは、当該ステータに取り付けられていることを特徴とする請求項7に記載の軸方向磁束機械。
  9. 当該ステータハウジングと当該ハブ組立体の取付フランジとの間の当該隔壁は、当該第2のロータを包囲していることを特徴とする請求項5乃至8のいずれか一項に記載の軸方向磁束機械。
  10. 当該ステータは、当該第1及び第2のロータから等距離にあることを特徴とする請求項1乃至9のいずれか一項に記載の軸方向磁束機械。
  11. 当該ステータハウジングは、当該第1及び第2の半径方向の壁と、当該内側及び外側のほぼ円筒形の壁とを備えていることを特徴とする請求項1乃至10のいずれか一項に記載の軸方向磁束機械。
  12. 当該半径方向の壁及びほぼ円筒形の壁の一方又は両方は、ポリマーから成ることを特徴とする請求項11に記載の軸方向磁束機械。
  13. 当該半径方向の壁及びほぼ円筒形の壁の一方又は両方は、熱可塑性ポリマー、高温熱可塑性ポリマー、又はPPAから成ることを特徴とする請求項11又は12に記載の軸方向磁束機械。
  14. 軸方向磁束機械であって、機械は、ヨークレスでセグメント化されたアーマチュアの軸方向磁束機械であることを特徴とする請求項1乃至13のいずれか一項に記載の軸方向磁束機械。
  15. 当該機械は、当該取付フランジ又は当該隔壁を介して構造体に取り付け可能であることを特徴とする請求項1乃至14のいずれか一項に記載の軸方向磁束機械。
  16. 車軸が、回転用ハブから延びて、そして当該回転用ハブに結合されることを特徴とする請求項1乃至15のいずれか一項に記載の軸方向磁束機械。
  17. 当該車軸は、ホイール又はプロペラに連結されることを特徴とする請求項16に記載の軸方向磁束機械。
  18. 当該機械は、モータ又は発電機であることを特徴とする請求項1乃至15のいずれか一項に記載の軸方向磁束機械。
  19. 請求項1に記載の機械である軸方向磁束機械を組み立てる方法であって、当該方法は、
    当該ステータを当該隔壁に取り付けること、
    当該隔壁をハブ組立体の取付フランジに取り付けること、
    当該第1のロータをハブ組立体のハブフランジに取り付けること、及び
    当該第2のロータを当該第1のロータに取り付けることを含み、
    当該第1及び第2のロータは、当該ステータにわたってそのいずれの側にも延在するU字形ロータを形成し、当該ロータは機械の軸の周りに当該ステータに対して回転可能であることを特徴とする方法。
  20. 当該第2のロータは、当該第1のロータの外側の軸方向周縁のみに沿って当該第1のロータに取り付けられ、当該ステータの外側の半径方向の周囲にわたってそのいずれの側にも延在するU字形ロータを形成することを特徴とする請求項19に記載の方法。
  21. 当該第2のロータはL字形の環状体であり、当該ステータハウジングに面する当該第2の
    ロータの内面は、ステータから離れて面する当該隔壁の外面と相互作用して、当該ステータハウジングを囲むべく当該隔壁と当該第2のロータとの間にシールを形成することを特徴とする請求項20に記載の方法。
  22. 当該第2のロータの内面は、当該第2のロータの内周部の周りに環状溝を備え、当該環状溝の開口は当該ステータハウジングに面し、そして当該隔壁は、当該第2のロータに面する円形の隆起部を備え、当該円形の隆起部は当該第2のロータの環状溝内に位置して、当該環状溝とラビリンスシールを形成するように構成されていることを特徴とする請求項21に記載の方法。
  23. 当該第2のロータは、当該第1のロータの外側の軸方向周縁から半径方向内側に位置される内側部分のみに沿って当該第1のロータに取り付けられ、当該第1及び第2のロータは、当該ステータの内側の半径方向の周囲部にわたっていずれの側にも延在するU字形のロータを形成することを特徴とする請求項19に記載の方法。
  24. 当該第2のロータは、環状体から延在する取付部分を備える環状体であり、当該第2のロータは当該取付部分を介して当該第1のロータに取り付けられ、当該取付部分が当該第1及び第2のロータを機械において軸方向に分離していることを特徴とする請求項23に記載の方法。
  25. 当該第1のロータを囲むため、カバーを取り付けることを含むことを特徴とする請求項23又は24に記載の方法。
  26. 当該カバーは、当該ステータに取り付けられることを特徴とする請求項25に記載の方法。
  27. 当該ステータハウジングと当該ハブ組立体の取付フランジとの間の当該隔壁が、当該第2のロータを包囲することを特徴とする請求項23乃至26のいずれか一項に記載の方法。
  28. 当該ステータと当該第1及び第2のロータが取り付けられるとき、当該ステータは当該第1及び第2のロータから等距離にあることを特徴とする請求項19乃至27のいずれか一項に記載の方法。
  29. 機械を、当該取付フランジを介して構造体に取り付けることを備えることを特徴とする請求項19乃至28のいずれか一項に記載の方法。
  30. 当該回転用ハブ又は当該第1のロータに、車軸又はシャフトを取り付けることを備えることを特徴とする請求項19乃至29のいずれか一項に記載の方法。
JP2017537951A 2015-01-16 2016-01-14 軸方向磁束機械 Active JP6702985B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1500745.3 2015-01-16
GB1500745.3A GB2534196B (en) 2015-01-16 2015-01-16 Axial flux machine
PCT/GB2016/050085 WO2016113567A1 (en) 2015-01-16 2016-01-14 Axial flux machine

Publications (2)

Publication Number Publication Date
JP2018506254A JP2018506254A (ja) 2018-03-01
JP6702985B2 true JP6702985B2 (ja) 2020-06-03

Family

ID=52630698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017537951A Active JP6702985B2 (ja) 2015-01-16 2016-01-14 軸方向磁束機械

Country Status (7)

Country Link
US (1) US10826338B2 (ja)
EP (1) EP3245719B1 (ja)
JP (1) JP6702985B2 (ja)
CN (1) CN107408875B (ja)
GB (1) GB2534196B (ja)
RU (1) RU2689983C2 (ja)
WO (1) WO2016113567A1 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534196B (en) * 2015-01-16 2017-06-14 Yasa Motors Ltd Axial flux machine
CN105539119A (zh) * 2016-01-13 2016-05-04 韩汶冀 一种轮辋一体化发电装置
US10075035B2 (en) * 2016-03-04 2018-09-11 Bryan Prucher Segmented dual radial gap brushless PMDC motor/generator
CN112713739B (zh) 2016-09-13 2024-02-27 核科学股份有限公司 多连杆电传动系统
GB2557270B (en) * 2016-12-02 2023-01-25 Time To Act Ltd Improvements to rotary generators
KR101955983B1 (ko) * 2017-02-24 2019-03-11 엘지전자 주식회사 축방향 공극형 모터 및 이를 구비한 의류처리장치
US10259563B2 (en) * 2017-05-19 2019-04-16 Kitty Hawk Corporation Combined fan and motor
CN107612252B (zh) * 2017-11-02 2019-09-10 合肥工业大学 一种双转子轴向盘式永磁电机
CN107681854A (zh) * 2017-11-02 2018-02-09 合肥工业大学 一种轴向永磁电机
WO2020081736A1 (en) * 2018-10-16 2020-04-23 Cummins Inc. Electric machine structure and technology
NL2022078B1 (en) * 2018-11-27 2020-06-09 Atlas Technologies Holding Bv Improved permanent magnet motor/generator.
GB201900478D0 (en) * 2019-01-14 2019-02-27 Rolls Royce Plc Turbomachine
WO2020212787A1 (en) * 2019-04-15 2020-10-22 Vishal Sharma Dual airgap electrical machines
RU197978U1 (ru) * 2019-07-09 2020-06-10 Надир Харунович Нутфуллин Генератор для велосипеда
US11799342B2 (en) 2020-02-20 2023-10-24 Kohler Co. Printed circuit board electrical machine
JP2021136777A (ja) * 2020-02-27 2021-09-13 セイコーエプソン株式会社 アキシャルギャップモーター
CN113394936A (zh) * 2020-03-13 2021-09-14 通用汽车环球科技运作有限责任公司 轴向磁通电机的磁体、极靴和槽开口
DE102020125116A1 (de) * 2020-09-25 2022-03-31 Dormakaba Deutschland Gmbh Stator für eine Axialflussmaschine, Axialflussmaschine und Antriebseinrichtung zum Bewegen eines Flügels
DE102021124998A1 (de) * 2020-10-07 2022-04-07 Schaeffler Technologies AG & Co. KG Stator für eine elektrische Axialflussmaschine, Verfahren zur Herstellung eines Stators und elektrische Axialflussmaschine mit einem Stator
GB2599592B (en) 2021-01-29 2023-05-03 Univ Jiangsu Dual-rotor in-wheel motor based on axial magnetic field and control method therefor
CN112721611A (zh) * 2021-01-29 2021-04-30 江苏大学 一种基于轴向磁场的双转子轮毂电机及其控制方法
CN112803641B (zh) * 2021-02-22 2022-06-24 苏州诺雅电动车有限公司 永磁盘式电机及转子组件安装方法
DE102021104646A1 (de) 2021-02-26 2022-09-01 Schaeffler Technologies AG & Co. KG Lenkungsaktuator einer Hinterachslenkung und Verfahren zur Montage eines Lenkungsaktuators
US11973376B2 (en) 2021-04-06 2024-04-30 Hamilton Sundstrand Corporation Electric motor with simplified winding and U-shaped rotor
US11851196B2 (en) * 2021-04-06 2023-12-26 Hamilton Sundstrand Corporation Aircraft electric motor
US11811268B2 (en) 2021-04-06 2023-11-07 Hamilton Sundstrand Corporation Aircraft electric motor
CN113270985B (zh) * 2021-05-24 2022-06-28 东南大学 一种模块化轴向磁场永磁电机
DE102021003706A1 (de) 2021-07-19 2023-01-19 Mercedes-Benz Group AG Verfahren zum Herstellen eines Rotors für eine elektrische Maschine, insbesondere für eine Axialflussmaschine
CN117514774A (zh) * 2022-07-29 2024-02-06 丹佛斯(天津)有限公司 压缩机和组装该压缩机的方法
DE102022004795B4 (de) 2022-12-19 2024-09-05 Mercedes-Benz Group AG Rotor für eine elektrische Maschine, insbesondere eine Axialflussmaschine, sowie eine entsprechende elektrische Maschine
FR3144439A1 (fr) 2022-12-22 2024-06-28 Valeo Equipements Electriques Moteur Stator de machine électrique à flux axial
FR3144438A1 (fr) 2022-12-22 2024-06-28 Valeo Equipements Electriques Moteur Stator de machine électrique à flux axial
CN115864760B (zh) * 2023-02-07 2023-05-05 常州双联磁电科技有限公司 一种线圈器件、轴向磁通电机及线圈器件的制作方法
JP2024121221A (ja) * 2023-02-27 2024-09-06 株式会社デンソー アキシャルギャップモータの製造方法
CN116094206B (zh) * 2023-03-08 2023-06-23 四川宜宾力源电机有限公司 一种使用转子的电机及转子与定子的间隙趋势计算方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189770A (en) * 1959-09-07 1965-06-15 Electronique & Automatisme Sa Axial airgap electric rotary machines
US3261998A (en) 1960-08-12 1966-07-19 Aerojet General Co Axial airgap dynamoelectric machine
JPS59111486U (ja) * 1983-12-22 1984-07-27 株式会社東芝 タ−ンテ−ブル装置
JPS6188482U (ja) * 1984-11-14 1986-06-09
US4731554A (en) 1985-11-14 1988-03-15 Allied Corporation Low profile ring-shaped motor
JP2604038B2 (ja) 1989-11-06 1997-04-23 株式会社 四国総合研究所 遠心ポンプ
JPH04132044A (ja) * 1990-09-20 1992-05-06 Fujitsu Ltd ディスクファイル装置の回転支持構造
US5677585A (en) * 1995-01-31 1997-10-14 Sony Corporation Motor
JP3384180B2 (ja) * 1995-03-29 2003-03-10 ソニー株式会社 モータ
JPH08242572A (ja) 1995-02-28 1996-09-17 Japan Servo Co Ltd 3相永久磁石式回転電機
DE19713528B4 (de) * 1997-04-01 2013-03-28 Papst Licensing Gmbh & Co. Kg Plattenspeichergerät
JP3265252B2 (ja) * 1998-01-13 2002-03-11 山形日本電気株式会社 半導体収納治具、ハンドリング方法及び生産システム
GB2358523A (en) * 1999-12-21 2001-07-25 Richard Fletcher Electronically commutated electrical machine
US20020145351A1 (en) * 2001-04-04 2002-10-10 Sunonwealth Electric Machine Industry Co., Ltd Double sensing face motor structure
US6891306B1 (en) 2002-04-30 2005-05-10 Wavecrest Laboratories, Llc. Rotary electric motor having both radial and axial air gap flux paths between stator and rotor segments
JP2006067650A (ja) * 2004-08-25 2006-03-09 Fujitsu General Ltd アキシャルギャップ型電動機
US7554241B2 (en) 2006-03-31 2009-06-30 Rao Dantam K Three-gapped motor with outer rotor and stationary shaft
KR100663641B1 (ko) 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
US7868510B2 (en) 2007-03-30 2011-01-11 Rittenhouse Norman P High-efficiency wheel-motor utilizing molded magnetic flux channels with transverse-flux stator
JP5177359B2 (ja) * 2007-06-18 2013-04-03 株式会社富士通ゼネラル アキシャルエアギャップ型電動機
JP5052288B2 (ja) * 2007-06-28 2012-10-17 信越化学工業株式会社 アキシャルギャップ型回転機
JP2010045878A (ja) * 2008-08-08 2010-02-25 Nakagawa Electric Ind Co Ltd 発電機
RU2400006C1 (ru) * 2009-02-11 2010-09-20 Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет Электрическая машина
GB0902393D0 (en) 2009-02-13 2009-04-01 Isis Innovation Elaectric machine - modular
GB201013881D0 (en) * 2010-08-19 2010-10-06 Oxford Yasa Motors Ltd Electric machine - construction
GB2486932A (en) 2010-11-01 2012-07-04 John Patrick Ettridge Snr Dynamo electric machine having U-shaped permanent magnet assemblies
JP5450361B2 (ja) * 2010-11-30 2014-03-26 ニスカ株式会社 アキシャルギャップ型回転機及びアキシャルギャップ型発電機
CN103904852B (zh) * 2014-04-17 2016-01-20 哈尔滨理工大学 一种永磁体结构外转子盘式电机
GB2534195B (en) * 2015-01-16 2018-02-21 Yasa Ltd Axial flux machine manufacture
GB2534196B (en) * 2015-01-16 2017-06-14 Yasa Motors Ltd Axial flux machine
GB2538526B (en) * 2015-05-19 2021-05-26 Yasa Ltd Axial flux machine

Also Published As

Publication number Publication date
EP3245719B1 (en) 2019-02-27
JP2018506254A (ja) 2018-03-01
RU2017128923A3 (ja) 2019-04-09
EP3245719A1 (en) 2017-11-22
US10826338B2 (en) 2020-11-03
CN107408875A (zh) 2017-11-28
US20180013323A1 (en) 2018-01-11
RU2017128923A (ru) 2019-02-18
GB201500745D0 (en) 2015-03-04
GB2534196B (en) 2017-06-14
CN107408875B (zh) 2019-12-06
WO2016113567A1 (en) 2016-07-21
GB2534196A (en) 2016-07-20
RU2689983C2 (ru) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6702985B2 (ja) 軸方向磁束機械
US10630157B2 (en) Axial flux machine
EP1734645B1 (en) Axial air gap-type electric motor
JP2005151725A (ja) アキシャルギャップ回転電機
JPH04219496A (ja) きれいな分子真空のための真空ポンプ
GB2545306A (en) Axial flux machine
JP5943063B2 (ja) ハイブリッド励磁式回転電機
JP2008104278A (ja) モータ
JP2006304539A (ja) アキシャルギャップ型回転電機のロータ構造
JP2017186006A (ja) モータ及び電動車両
CN111211709A (zh) 一种无推力盘的五自由度磁悬浮电机
EP0762618B1 (en) Transverse flux electrical machine
JP2527067Y2 (ja) 電動機のロータ
JP6332094B2 (ja) ロータ、電動モータ
JP2006304532A (ja) アキシャルギャップ型回転電機のロータ構造
US20220181933A1 (en) Rotor, motor, and electric power steering device
US4701656A (en) Electromechanical device with slotted stator
JP2019054615A (ja) モータ
CN211239723U (zh) 一种无推力盘的五自由度磁悬浮电机
KR101798331B1 (ko) 코어레스형 비엘디씨 모터
JP2020010452A (ja) ロータ、モータ
JP2014236648A (ja) 回転電機および回転電機の回転子
JP2018067991A (ja) モータ
JP7543229B2 (ja) アキシャルギャップ型回転電機のステータコア、アキシャルギャップ型回転電機のステータ製造方法
WO2023100274A1 (ja) 回転子および磁気波動歯車装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6702985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250