JP6702087B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6702087B2
JP6702087B2 JP2016164650A JP2016164650A JP6702087B2 JP 6702087 B2 JP6702087 B2 JP 6702087B2 JP 2016164650 A JP2016164650 A JP 2016164650A JP 2016164650 A JP2016164650 A JP 2016164650A JP 6702087 B2 JP6702087 B2 JP 6702087B2
Authority
JP
Japan
Prior art keywords
input
output
circuit
signal
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016164650A
Other languages
English (en)
Other versions
JP2018032458A (ja
JP2018032458A5 (ja
Inventor
六都也 本島
六都也 本島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016164650A priority Critical patent/JP6702087B2/ja
Priority to PCT/JP2017/027286 priority patent/WO2018037828A1/ja
Priority to DE112017004223.2T priority patent/DE112017004223T5/de
Publication of JP2018032458A publication Critical patent/JP2018032458A/ja
Publication of JP2018032458A5 publication Critical patent/JP2018032458A5/ja
Priority to US16/249,986 priority patent/US10573402B2/en
Application granted granted Critical
Publication of JP6702087B2 publication Critical patent/JP6702087B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31701Arrangements for setting the Unit Under Test [UUT] in a test mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/1201Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/48Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1096Write circuits, e.g. I/O line write drivers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/24Memory cell safety or protection circuits, e.g. arrangements for preventing inadvertent reading or writing; Status cells; Test cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、半導体装置に関する。
不揮発性メモリ素子あるいは不揮発性メモリを備えた半導体装置では、入力端子として、メモリ書込み用高電圧印加とテスト入力を兼用した端子が設けられることがある。例えば特許文献1のものでは、TEST端子は、テストモード切り替えを行わないときはローレベルに固定する必要があるため、メモリ書込み時にはVPP検知回路で所望の高電圧であることを検知し、Q1のトランジスタを介してTEST出力をローレベル(GND)にしている。そのため、テストモード切り替えとメモリ書込み電圧印加を同時に行えない。
またメモリ書込み電圧が負電圧の場合には対応していないので、使い勝手が良くない。
特許第3530402号公報
本発明は、上記事情を考慮してなされたもので、その目的は、テストモード切り替えとメモリ書込み電圧印加を同時に行うことができ、しかもメモリ書込み電圧が負電圧の場合にも対応した構成の半導体装置を提供することにある。
請求項1に記載の半導体装置は、内部に不揮発性メモリを備え、外部からテスト制御信号および前記不揮発性メモリの書込み/消去の電圧の入力信号を受ける入力端子を備えた半導体装置であって、内部の他の回路へ信号を出力するための出力端子と、前記入力端子に入力される正の前記テスト制御信号の電圧レベルが所定の正の閾値よりも大きいときに、所定の正のハイレベルの信号を出力する正パルス検出回路と、前記入力端子に入力される負の前記テスト制御信号の電圧レベルが所定の負の閾値よりも小さいときに、前記所定の正のハイレベルの信号を出力する負パルス検出回路と、前記正パルス検出回路の出力および前記負パルス検出回路の出力を入力して論理和を前記出力端子に出力するOR回路とを備えている。
上記構成を採用することにより、外部から入力端子にテスト制御信号入力および書込み/消去の電圧の入力信号が入力されると、正パルス検出回路は、正のテスト制御信号および正のメモリ書込み/消去の電圧を検出してテスト制御信号として出力端子に出力する。また、負パルス検出回路は、負のテスト制御信号および負のメモリ書込み/消去の電圧を検出して反転した信号として出力端子に出力する。これにより、入力端子を正負のテスト制御信号および正負のメモリ書込み/消去の電圧の入力を兼用したものとし、いずれの入力に対しても出力端子にテスト制御信号として出力することができる。この結果、テスト制御信号の入力によるテストモード切り替えと、メモリ書込み電圧印加を同時に行うことができ、しかもメモリ書込み電圧が負電圧の場合にも対応することができる。
第1実施形態を示す電気的構成図 入力信号と閾値との関係を示す図 入力信号および出力信号のタイムチャートで、テスト制御入力および書き込み電圧が連続的に入力される場合の例(その1) 入力信号および出力信号のタイムチャートで、テスト制御入力および書き込み電圧が連続的に入力される場合の例(その2) 入力信号および出力信号のタイムチャートで、テスト制御入力および書き込み電圧が連続的に入力される場合の例(その3) プルダウン抵抗およびESD保護回路を付加して構成した電気的構成図 第2実施形態を示す電気的構成図 入力信号および出力信号のタイムチャートで、テスト制御入力および書き込み電圧が連続的に入力される場合の例 第3実施形態を示す電気的構成図 第4実施形態を示す電気的構成図 入力信号および出力信号のタイムチャートで、テスト制御入力および書き込み電圧が連続的に入力される場合の例 第5実施形態を示す電気的構成図
(第1実施形態)
以下、本発明の第1実施形態について、図1〜図6を参照して説明する。本実施形態の半導体装置1は、図1に示すように、内部に不揮発性メモリ100、テスト制御回路110、内部回路120などを備え、テスト制御回路110の入力段には入力回路130が設けられている。テスト制御回路110は、入力回路130から与えられるテスト制御信号に応じて内部回路120のテストを実施するものである。また、テスト制御回路110は、内部回路120のテスト実施時に、不揮発性メモリ100にテストモードの信号を出力する。半導体装置1は、外部と接続するためのパッドとなる入力端子Aに、入力信号Vinとして、不揮発性メモリ100に対する書込み/消去の電圧が入力されると共に、テスト制御回路110を制御するためのテスト制御信号が入力される構成である。
入力端子Aは、不揮発性メモリ100に接続されると共に、入力回路130の過電圧保護回路2を介して正パルス検出回路3および負パルス検出回路4に接続される。過電圧保護回路2は、入力端子Aから電源端子VD側に接続される過電圧保護回路2aと、入力端子Aからグランド側に接続される過電圧保護回路2bとを備える。外部端子Aから侵入するノイズなどの正負の過電圧信号を過電圧回路2a、2bを介して電源側あるいはグランド側に逃すものである。
正パルス検出回路3は、バッファ回路3aを備える回路で、電源端子VDから給電される。入力端子Aからの入力信号Vinが正の閾値Vth+を超えるときにはハイレベルの信号Hとし、閾値Vth+以下のときにはローレベルの信号Lとして出力し、OR回路5の一方の入力端子に入力する。
負パルス検出回路4は、インバータ回路4a、MOSFET4bおよび抵抗4cを備えている。MOSFET4bのドレインは抵抗4cを介して電源端子VDに接続され、ソースは入力端子Aに接続され、ゲートはグランドに接続される。インバータ回路4aの入力端子はMOSFET4bのドレインに接続され、出力端子はOR回路5の他方の入力端子に接続される。負パルス検出回路4は、入力端子Aからの入力信号Vinが負の閾値Vth−を下回るときにはハイレベルの信号Hとし、閾値Vth−以上のときにはローレベルの信号Lとして出力する。
OR回路5は、バッファ回路3aの出力およびインバータ回路4aの出力の少なくとも一方にハイレベルの信号Hが入力されているとハイレベルの信号Hをテスト制御信号の出力端子Bに出力する。出力端子Bはテスト制御回路110に接続され、テスト制御信号がテスト制御回路110に入力される。
次に、上記構成の作用について、図2から図5も参照して説明する。
まず、基本動作について図2を参照して説明する。入力端子Aの入力信号Vinとして、テストモードの正パルスが入力されると、正パルス検出回路3において、入力されるパルスのレベルが閾値Vth+を超えるとバッファ回路3aからハイレベルの信号Hが出力される。このとき、負パルス検出回路4においては、正パルスの変化状態にかかわらずMOSFET4bがオフ状態に保持されるので、インバータ回路4aの入力端子は抵抗4cによりハイレベルの入力状態となり、ローレベルの信号Lを出力する状態である。
次に、入力端子Aに入力信号Vinとして、テストモードの負パルスが入力されると、負パルス検出回路4において、入力されるパルスのレベルが負の閾値Vth−を下回るとMOSFET4bがオンし、インバータ回路4aの入力端子はローレベルになる。これにより、インバータ回路4aは、ハイレベルの信号Hを出力するようになる。つまり、負パルスが正パルスに反転された信号として出力されるようになる。このとき、正パルス検出回路3においては、負パルスでは閾値を超えることがないので、負パルスの変化状態にかかわらずローレベルの信号Lを出力する状態である。
次に、入力端子Aに、入力信号Vinとして、正負のメモリ書込み/消去の電圧VPP、VBBが印加された場合について説明する。まず、正のメモリ書込み/消去の電圧VPPが入力端子Aに印加されると、正パルス検出回路3において、ハイレベルの信号Hが出力されるようになる。また、負のメモリ書込み/消去の電圧VBBが入力端子Aに印加されると、負パルス検出回路4において、ハイレベルの信号Hが出力されるようになる。
OR回路5は、正パルス検出回路3および負パルス検出回路4の双方のハイレベルの信号Hを出力する。この結果、図2に示すように、出力端子Bには、テストモードの正パルスのハイレベルの信号、および正のメモリ書込み/消去の電圧VPPに応じてハイレベルの信号が出力され、テストモードの負パルスの負側へのハイレベルの信号、および負のメモリ書込み/消去の電圧VBBの入力に応じてハイレベルの信号Hが出力される。
図3は入力端子Aに、入力信号Vinとして、3個の正パルスを印加した後、正のメモリ書込み/消去の電圧VPPを連続的に印加した場合の出力端子Bの出力を示している。なお、ここで入力する数回例えばここでは3回の正パルスあるいは負パルスは、誤動作防止の処置として入力するもので、テストモードに移行するものではない。
正パルスが入力される状態では、正パルス検出回路3により、正パルスがハイレベルHになると出力端子Bにハイレベルの信号Hを出力する。また、3個の正パルスの入力状態に続けて、ハイレベルの正のメモリ書込み/消去の電圧VPPが印加されると、正パルス検出回路3は出力端子Bのハイレベルの信号Hを継続して出力する。
図4は、入力端子Aに、入力信号Vinとして、負パルスを印加した後、負のメモリ書込み/消去の電圧VBBを連続的に印加した場合の出力端子Bの出力を示している。負パルスが入力される状態では、負パルス検出回路4により、負パルスがハイレベルHになると出力端子Bにハイレベルの信号Hを出力する。また、負パルスの入力状態に続けて、負側にハイレベルの負のメモリ書込み/消去の電圧VBBが印加されると、負パルス検出回路4は出力端子Bのハイレベルの信号Hを継続して出力する。
図5は、入力端子Aに、入力信号Vinとして、2個の正パルスを印加し、続けて1個の負パルスを印加した後、負のメモリ書込み/消去の電圧VBBを連続的に印加した場合の出力端子Bの出力を示している。正パルスおよび負パルスが入力される状態では、正パルス検出回路3および負パルス検出回路4のそれぞれにより、正パルスあるいは負パルスがハイレベルHになると出力端子Bにハイレベルの信号Hを出力する。また、負パルスの入力状態に続けて、負側にハイレベルの負のメモリ書込み/消去の電圧VBBが印加されると、負パルス検出回路4は出力端子Bのハイレベルの信号Hを継続して出力する。
図6は、上記のように構成した半導体装置1の一使用形態を示している。この構成では、半導体装置1の入力端子Aに保護回路6を外付けしている。保護回路6は、入力端子Aをプルダウンする抵抗6aおよびESD(Electro-Static-Discharge)保護回路6bを備えている。これにより、入力端子Aに対する入力がない状態ではプルダウン抵抗6aにより電位をグランドレベルに固定することができるので、誤動作を防止できる。また、入力端子Aに侵入する静電気放電などに対してESD保護回路6bにより保護することができるようになる。
以上説明したように、本実施形態によれば、正パルス検出回路3および負パルス検出回路4を設けることで、入力端子Aを共用する構成としながら、正パルスおよび負パルスのいずれにも対応することができ、しかも、メモリ書込み/消去の電圧VPPやVBBが入力されたときに、出力端子Bのレベルをハイレベルに保持した状態でメモリへの書込みや消去の処理を実施させることができるようになる。
(第2実施形態)
図7および図8は第2実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。この実施形態では、図7に示すように、入力回路131は、OR回路5を設けない構成とし、正パルス検出回路3の出力を出力端子B1に出力し、負パルス検出回路4の出力を出力端子B2に出力するように構成している。テスト制御回路110は、出力端子B1およびB2から個別にテスト制御信号を受け付ける構成である。
上記構成を採用することで、入力端子Aへの入力信号Vinに対して、入力回路131において、テスト信号とメモリ書込み/消去の電圧VPP、VBBについて、正パルスおよび正の電圧VPPに対する出力を出力端子B1で行い、負パルスおよび負の電圧VBBに対する出力を出力端子B2で行うようにしている。これにより、正パルスと負パルスをそれぞれ出力端子B1、B2により区別して出力することができる。
図8は出力の一例を示すもので、入力端子Aに、入力信号Vinとして、正パルスでアドレスが入力され、続けて負パルスでデータが入力され、さらにその後、負のメモリ書込み/消去の電圧VBBが入力された場合の出力端子B1、B2の出力を示している。入力端子Aにアドレスの正パルスが入力されると、正パルス検出回路3によりこれが検出されて出力端子B1からアドレスに対応する信号を出力する。
入力端子Aにデータの負パルスが入力されると、負パルス検出回路4によりこれが検出されて出力端子B2から正負の状態を反転させて正パルスとして出力する。続く負のメモリ書込み/消去の電圧VBBが入力端子Aに入力されると、負パルス検出回路4によりこれが検出されて、出力端子B2から連続的にハイレベルの信号が出力される。
このような第2実施形態によっても、第1実施形態と同様に、入力信号Vinとして正および負のパルスおよびメモリ書込み/消去の電圧VBBを同じ入力端子Aから入力することができる。
また、第2実施形態によれば、正パルス検出回路3の出力を出力端子B1に出力し、負パルス検出回路4の出力を出力端子B2に出力するように構成したので、テストモードの正および負のパルスを区別して検出し、別々に出力することができる。
(第3実施形態)
図9は第3実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。この実施形態では、半導体装置20として、第1実施形態の図6にて外部接続した保護回路6と同様の保護回路12を内部に設ける構成としたものである。
図9に示す構成では、半導体装置20は、入力端子Aから不揮発性メモリ100の書込み/消去電圧の入力経路と、入力回路130の過電圧保護回路2への入力経路に保護回路21を接続している。保護回路21は、入力端子Aの電位を固定するプルダウン抵抗21aおよびESD保護回路21bを備えている。
このような第3実施形態によれば、半導体装置20の内部に保護回路21を一体に設ける構成としたので、入力端子Aに入力がない状態ではプルダウン抵抗21aにより電位をグランドレベルに固定することができるので、誤動作を防止できる。また、入力端子Aに侵入するノイズに対してESD保護回路21bにより遮断することができるようになる。
(第4実施形態)
図10および図11は第4実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。この実施形態では、半導体装置30の入力回路132において、OR回路5の出力端子と出力端子Bとの間に出力回路31を備えた構成としている。
図10に示すように、出力回路31は、ローパスフィルタ32およびバッファ回路33を備えている。ローパスフィルタ32は、抵抗32a、コンデンサ32bを備え、OR回路5の出力端子から抵抗32aを介してバッファ回路33の入力端子に接続されている。バッファ回路33の出力端子は出力端子Bに接続されている。
これにより、OR回路5の出力信号が、ハイレベル状態から瞬時的にローレベルに変化してハイレベルに戻る場合や、その反対の変化をする場合などには、その瞬時的な変化は出力端子Bに伝わることなく、変化前の状態が保持されるようになる。
図11は、上記のパターンの一例を示すもので、入力端子Aへの入力信号Vinが、正パルスから正のメモリ書込み/読み出しの電圧VPPにかわり、その後、負のメモリ書込み/読み出しの電圧VBBに変化した場合である。正パルスから正のメモリ書込み/読み出しの電圧VPPに変化するときには、前述同様、正パルス検出回路3によりこれが検出されてパルスの信号に対応した出力から電圧VPPに対応してハイレベルの出力信号を得ることができる。
この後、図11中に示す時刻txで、入力信号Vinが、正のメモリ書込み/読み出しの電圧VPPから負のメモリ書込み/読み出しの電圧VBBに変化するときには、正パルス検出信号3から出力されているハイレベルの信号が一旦消失し、この後負パルス検出回路4により電圧VBBが検出されて再びハイレベルの出力信号となる。このとき、電圧が正から負に変化する際に、OR回路5の出力は瞬時的にローレベルに変化する。しかし、ローパスフィルタ32ではこの変化が吸収され、若干の変動を伴うハイレベルの信号が保持される。バッファ回路33は、閾値Vth+を超える入力レベルであれば、出力端子Bへのハイレベルの信号出力状態が保持されるようになる。
このような第4実施形態によれば、出力段にローパスフィルタ32およびバッファ回路33を設けた出力回路31を設けたので、出力端子Bの出力をイネーブルのハイレベルに保持させたまま、書込み/消去電圧を正の電圧VPPから負の電圧VBBに切り替えることができるようになる。
(第5実施形態)
図12は第5実施形態を示すもので、第1実施形態と異なるところは、半導体装置40として、入力回路133に、負パルス検出回路4に代えて負パルス検出回路41を設けたところである。図12に示すように、負パルス検出回路41は、入力端子AからMOSFET4bのソースに至る経路にダイオード42が介在されている。ダイオード42は、アノードがMOSFET4bのソースに接続され、カソードが入力端子Aに接続されている。
上記構成によれば、入力端子Aへの入力信号Vinが負のときに、ダイオード42の順方向電圧VfとMOSFET4bの閾値電圧との和の電圧に達した時にMOSFET4bがオンするようになる。換言すれば、ダイオード42を設けることで負パルスを検出する場合の閾値電圧Vth−を調整することができるようになる。
このような第5実施形態によれば、第1実施形態と同様の作用効果を得ることができると共に、負パルス検出回路41にダイオード42を設けることで負パルスの検出の閾値電圧を調整することができるようになる。
(他の実施形態)
なお、本発明は、上述した実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能であり、例えば、以下のように変形または拡張することができる。
第2実施形態で示した出力端子をB1、B2として設ける構成は、第3実施形態、第4実施形態、第5実施形態に適用することもできる。
第3実施形態で示した保護回路21を内蔵する構成は、第4実施形態、第5実施形態に適用することもできる。
第4実施形態で示した出力回路31を設ける構成は、第5実施形態に適用することもできる。
第5実施形態で、負パルス検出回路41にダイオード42を設ける構成では、閾値電圧を調整する目的で、2個以上のダイオードを直列に接続して設けることができる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
図面中、1、10、20、30、40は半導体装置、2は過電圧保護回路、3は正パルス検出回路、4、41は負パルス検出回路、5はOR回路、6、21は保護回路、6a、21aはプルダウン抵抗、6b、21bはESD保護回路、31は出力回路、32はローパスフィルタ、33はバッファ回路、42はダイオード、100は不揮発性メモリ、110はテスト制御回路、120は内部回路、130、131、132、133は入力回路、Aは入力端子、B、B1、B2は出力端子である。

Claims (3)

  1. 内部に不揮発性メモリ(100)を備え、外部からテスト制御信号および前記不揮発性メモリの書込み/消去の電圧の入力信号を受ける入力端子(A)を備えた半導体装置であって、
    内部の他の回路へ信号を出力するための出力端子(B)と、
    前記入力端子に入力される正の前記テスト制御信号の電圧レベルが所定の正の閾値よりも大きいときに、所定の正のハイレベルの信号を出力する正パルス検出回路(3)と、
    前記入力端子に入力される負の前記テスト制御信号の電圧レベルが所定の負の閾値よりも小さいときに、前記所定の正のハイレベルの信号を出力する負パルス検出回路(4)と、
    前記正パルス検出回路の出力および前記負パルス検出回路の出力を入力して論理和を前記出力端子(B)に出力するOR回路(5)とを備えた半導体装置。
  2. 請求項に記載の半導体装置において、
    前記OR回路(5)の出力信号の低周波成分を通過させるローパスフィルタ(32)と、
    前記ローパスフィルタの出力信号を所定閾値で判定して出力するバッファ回路(33)とを設けた半導体装置。
  3. 請求項1または2に記載の半導体装置において、
    前記入力端子とグランドとの間にプルダウン抵抗(21a)を備える半導体装置。
JP2016164650A 2016-08-25 2016-08-25 半導体装置 Active JP6702087B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016164650A JP6702087B2 (ja) 2016-08-25 2016-08-25 半導体装置
PCT/JP2017/027286 WO2018037828A1 (ja) 2016-08-25 2017-07-27 半導体装置
DE112017004223.2T DE112017004223T5 (de) 2016-08-25 2017-07-27 Halbleitervorrichtung
US16/249,986 US10573402B2 (en) 2016-08-25 2019-01-17 Semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164650A JP6702087B2 (ja) 2016-08-25 2016-08-25 半導体装置

Publications (3)

Publication Number Publication Date
JP2018032458A JP2018032458A (ja) 2018-03-01
JP2018032458A5 JP2018032458A5 (ja) 2018-09-20
JP6702087B2 true JP6702087B2 (ja) 2020-05-27

Family

ID=61245398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164650A Active JP6702087B2 (ja) 2016-08-25 2016-08-25 半導体装置

Country Status (4)

Country Link
US (1) US10573402B2 (ja)
JP (1) JP6702087B2 (ja)
DE (1) DE112017004223T5 (ja)
WO (1) WO2018037828A1 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556851A (en) * 1983-08-22 1985-12-03 Rca Corporation Reduction of noise in signal from charge transfer devices
JP2621894B2 (ja) 1987-12-26 1997-06-18 株式会社東芝 マイクロコンピュータ
JPH0944467A (ja) * 1995-07-27 1997-02-14 Sharp Corp マイクロコンピュータ
JP2850825B2 (ja) * 1995-12-13 1999-01-27 日本電気株式会社 半導体集積装置
JP3530402B2 (ja) * 1998-10-29 2004-05-24 シャープ株式会社 半導体集積回路装置
JP2007243808A (ja) * 2006-03-10 2007-09-20 Denso Corp 半導体集積回路におけるリセット検出回路
JP2010055676A (ja) * 2008-08-27 2010-03-11 Fujitsu Microelectronics Ltd 半導体メモリおよびメモリチップの製造方法
JP5629075B2 (ja) 2009-09-16 2014-11-19 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置
JP6671996B2 (ja) 2015-02-27 2020-03-25 キヤノン株式会社 導電性ローラ、プロセスカートリッジ及び電子写真装置

Also Published As

Publication number Publication date
US10573402B2 (en) 2020-02-25
DE112017004223T5 (de) 2019-05-09
JP2018032458A (ja) 2018-03-01
US20190147970A1 (en) 2019-05-16
WO2018037828A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
US10644501B2 (en) Driving circuit
JP6914867B2 (ja) 過電流保護機能を備えたドライバ回路
US9454165B2 (en) Semiconductor device and current control method that controls amount of current used for voltage generation based on connection state of external capacitor
US10839921B2 (en) Circuits for bleeding supply voltage from a device in a power down state
JP2019012753A (ja) 電源保護回路
JP2010147979A (ja) 半導体装置およびパワーオンリセット回路の調整方法
KR100548558B1 (ko) 반도체 장치용 내부전압 발생기
US8514638B2 (en) Write control circuit and semiconductor device
US10566781B2 (en) Input/output buffer circuit with a protection circuit
US20160056625A1 (en) Electrostatic discharge protection circuit
JP2013045245A (ja) 電源回路、その電源回路を有するフラッシュメモリシステム、及び電源供給方法
JP6702087B2 (ja) 半導体装置
US9203390B1 (en) Functional device and test mode activation circuit of the same
US10453498B2 (en) Power reset circuit
CN108400781B (zh) 功率开关装置及其操作方法
US20100123509A1 (en) Pad circuit for the programming and i/o operations
US9871509B2 (en) Power-on reset circuit
US20190271728A1 (en) Device and method for detecting a number of electrostatic discharges
US9135960B2 (en) Signal receiver circuit
US10691151B2 (en) Devices and methods for dynamic overvoltage protection in regulators
JP5257526B2 (ja) リセット回路およびシステム
JP4578882B2 (ja) 半導体集積回路
JP4147174B2 (ja) パワーオンリセット回路
US20050184770A1 (en) Internal circuit protection device
US11183252B2 (en) Dynamic voltage supply circuits and nonvolatile memory devices including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6702087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250