JP6699900B2 - 整流装置 - Google Patents

整流装置 Download PDF

Info

Publication number
JP6699900B2
JP6699900B2 JP2016221392A JP2016221392A JP6699900B2 JP 6699900 B2 JP6699900 B2 JP 6699900B2 JP 2016221392 A JP2016221392 A JP 2016221392A JP 2016221392 A JP2016221392 A JP 2016221392A JP 6699900 B2 JP6699900 B2 JP 6699900B2
Authority
JP
Japan
Prior art keywords
support member
turbine exhaust
flow
cooling water
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016221392A
Other languages
English (en)
Other versions
JP2018080849A (ja
Inventor
古屋 修
修 古屋
山下 勝也
勝也 山下
坂上 英一
英一 坂上
佳浩 岩田
佳浩 岩田
将太 津田
将太 津田
景 真下
景 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016221392A priority Critical patent/JP6699900B2/ja
Publication of JP2018080849A publication Critical patent/JP2018080849A/ja
Application granted granted Critical
Publication of JP6699900B2 publication Critical patent/JP6699900B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明の実施形態は、整流装置に関する。
ランキンサイクルを利用する発電システムは、主に、作動流体を液体から気体へ加熱する蒸発器、蒸発器で生成した気体状の作動流体によって駆動する蒸気タービン、蒸気タービンから排出されたタービン排気を凝縮する復水器、および作動流体を循環する循環ポンプから構成される。また、蒸気タービンと復水器とは、連結流路によって接続される。
復水器が地熱発電システムなどに用いられる直接接触式復水器の場合、蒸気タービンから排出されたタービン排気に含まれる水蒸気が復水器の凝縮部に導入されると、凝縮部に均一に設けられているノズル配管から噴射ノズルに供給された冷却水が水蒸気に噴射される。そして、水蒸気は、冷却水によって凝縮されて液化される。水蒸気の凝縮によって生成した水は、復水器内のホットウェルに流れる。
発電システムの稼働時には、復水器および連結流路の内部圧力は、大気圧よりも低い状態になり、これらの内部圧力と大気圧との圧力差に由来する力が、復水器および連結流路の外側から内側にかかる。このような圧力差に由来する力に対して、復水器および連結流路の構造形状を維持するため、復水器や連結流路の内部には、支持部材が設けられている。支持部材は、復水器や連結流路の内面に突き当たるように設けられ、上記の圧力差に由来する力に対向するように、復水器および連結流路の壁面を内側から外側に向かって支持している。
特開2014−219160号公報
上記のように、蒸気タービンから排出された水蒸気は、連結流路を介して復水器へ流入し、冷却水と熱交換することによって凝縮される。ここで、蒸気タービンに設けられるタービン翼やディフューザを通過した後のタービン排気では、タービン排気の流れ方向に垂直な断面において、タービン排気の流れ方向の流速分布が生じる。そのため、復水器に供給されるタービン排気は、このような流速分布を有する。その一方で、一般的に、復水器の内部において、噴射ノズルを備えたノズル配管は、発電システムの幅広い運転への対応や設置の容易さなどを考慮して、凝縮部内に一様に配置されている。
つまり、流速分布を有さないタービン排気が復水器に流入した場合、一様に配置されているノズル配管は、流速分布を有さないタービン排気を効率的に凝縮することができる。しかしながら、流速分布を有するタービン排気が復水器に流入すると、一様に配置されているノズル配管は、流速分布を有するタービン排気を凝縮できないことがある。
復水器がこのような流速分布を有するタービン排気を効率的に凝縮するために、例えば、タービン排気の流速分布を予測し、流速の大きな領域にノズル配管を新たに設置することが考えられる。しかしながら、ノズル配管を新たに設置するためには、ノズル配管を支持するための構造物を復水器内に別途設置する必要がある。新たに設置されたノズル配管や構造物は、タービン排気の流動を阻害して復水器内におけるタービン排気の流動抵抗を増加したり、既設の噴射ノズルから噴射された冷却水の分散を妨げたりするので、復水器の性能低下を引き起こすことがある。
本発明が解決しようとする課題は、復水器の上流側に設けられた連結流路内を流れるタービン排気の流速分布を平準化することによって、復水器の性能の低下を抑制することができる整流装置を提供することである。
実施の形態の整流装置は、蒸気タービンと前記蒸気タービンからのタービン排気から復水を生成する復水器とを連結する連結流路の内部に設けられ、前記連結流路の内面の少なくとも2点に突き当たる形で取り付けられる中空な支持部材と、前記支持部材に接続され、前記支持部材に冷却水を供給する給水管と、前記支持部材に設けられ、前記支持部材から前記連結流路内に前記冷却水を噴射する貫通孔とを備える。
第1の実施の形態の整流装置を備える発電システムの一部を模式的に示す概略図である。 第1の実施の形態の整流装置を構成する連結流路におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。 第1の実施の形態の整流装置を構成する支持部材の他の例を模式的に示す断面図である。 第2の実施の形態の整流装置を構成する連結流路におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。 第2の実施の形態の整流装置を構成する支持部材の他の例を模式的に示す断面図である。 第2の実施の形態の整流装置を構成する連結流路の他の例におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。 第3の実施の形態の整流装置を構成する連結流路におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。 第4の実施の形態の整流装置を備える発電システムの一部を模式的に示す拡大図である。 第4の実施の形態の整流装置の他の例を備える発電システムの一部を模式的に示す拡大図である。
以下、実施の形態について図面を参照して説明する。
(第1の実施の形態)
図1は、第1の実施の形態の整流装置50を備える発電システム1の一部を模式的に示す概略図である。図2は、第1の実施の形態の整流装置50を構成する連結流路3におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。なお、図2は、連結流路3の内部を流れるタービン排気の流れ方向の下流側から見た図であって、図1のA−A線に沿った連結流路3の断面図である。
図1に示すように、発電システム1は、蒸気によって駆動される蒸気タービン2と、蒸気タービン2のタービン排気に含まれる水蒸気を凝縮して復水を生成する復水器4と、蒸気タービン2および復水器4を連結する連結流路3と、連結流路3および復水器4に冷却水を供給する冷却塔5とを備えている。ここでは、蒸気タービン2が地熱発電用の軸流排気型の蒸気タービンである一例について説明するが、蒸気タービン2の構成は特には限定されるものではない。また、X軸方向は連結流路3の内部を流れるタービン排気の流れ方向、Y軸方向は上下方向、Z軸方向は幅方向である。
不図示の蒸気井で発生する地熱蒸気から熱水を分離した蒸気は、図1に示すように、蒸気タービン2に供給される。蒸気タービン2では、蒸気が膨張仕事を行い、膨張仕事を行った際に発生する動力によって、不図示の発電機が駆動される。ここで、蒸気タービン2は、不図示のタービン翼などのタービン部に加えて、最終段のタービン段落を通過した蒸気を排出する不図示のディフューザも備える。換言すると、蒸気タービン2は、タービン部とディフューザとから構成される。ディフューザの下流側の端部には、連結流路3の上流側の端部が接続される。
膨張仕事を終えたタービン排気は、蒸気タービン2から連結流路3に排出され、連結流路3の内部を流れる。連結流路3の下流側の端部には、復水器4のタービン排気導入口8が接続される。連結流路3を排出したタービン排気は、タービン排気導入口8から復水器4に導入される。
図1に示すように、第1の実施の形態の整流装置50は、発電システム1において、蒸気タービン2から排出されたタービン排気が復水器4の凝縮部9で凝縮されるまでの間に設けられる。
整流装置50は、図1および図2に示すように、連結流路3の内部に設けられる支持部材51と、支持部材51に接続される給水管52と、支持部材51に設けられる貫通孔53とを備える。
図1および図2に示すように、支持部材51は、蒸気タービン2と復水器4とを連結する連結流路3の内部に設けられており、連結流路3の内面の少なくとも2点に突き当たる形で取り付けられている。
支持部材51は、連結流路3の上下方向に沿って直線的に延設され、連結流路3の内面の2点に突き当たる。すなわち、支持部材51は、連結流路3の内面の2点を突っ張る。支持部材51の一方の端部は、連結流路3の上側の内面と接続されると共に、開口している。また、支持部材51の他方の端部は、連結流路3の下側の内面と接続されると共に、閉口している。
また、支持部材51は中空の管状体である。ここでは、連結流路3の内部を流れるタービン排気の流れ方向に平行な支持部材51の断面形状が円環状である一例を示すが、支持部材51の当該断面形状は、多角環状であってもよいし、翼型の環状であってもよいし、これらを組み合わせた形状であってもよい。連結流路3を流れるタービン排気の流動抵抗を低下させるという観点から、支持部材51の上記断面形状は、円環状または翼型の環状であることが好ましい。また、支持部材51の内部構造の形状は、冷却水が支持部材51の内部を流通することができれば、特には限定されるものではない。
ここで、発電システム1の稼働時には、連結流路3の内部圧力は、連結流路3の外部圧力、すなわち大気圧よりも低いので、連結流路3の内部圧力と大気圧との圧力差に由来する力が、連結流路3の外側から内側にかかる。そのため、支持部材51は、当該圧力差に由来する力に対向するように、連結流路3の内壁面を内部から外側に向かって支持している。このように、支持部材51は、連結流路3の構造の強度を高める。
ここでは、図1および図2に示すように、連結流路3の内面の2点に突き当てられる支持部材51が連結流路3の上下方向に沿って直線的に延設される一例を示すが、支持部材51の延設方向は、特には限定されるものではない。例えば、上記の支持部材51は、連結流路3の幅方向に沿って直線的に延設されてもよい。
また、ここでは、支持部材51が連結流路3の内面の2点に突き当てられる一例を示すが、支持部材51が連結流路3の内面に突き当てられる箇所は3点以上であってもよい。例えば支持部材51の流路断面積が均一な場合、支持部材51が連結流路3の内面に突き当てられる箇所は2点であると、タービン排気の流れ方向に垂直な断面(以下、連結流路3の流路断面ともいう)に占める支持部材51の面積は小さい。連結流路3の流路断面に占める支持部材51の面積が小さいほど、連結流路3を流れるタービン排気の流動抵抗は低下する。
また、ここでは、図2に示すように、連結流路3の形状は、中空の角柱形状であるが、特に限定されるものではなく、中空の円柱形状であってもよい。
連結流路3の上側の内面と接続している支持部材51の一方の端部は、給水管52の下流側の端部と接続している。具体的には、給水管52の下流側の端部は、連結流路3の上面を貫通し、開口している支持部材51の一方の端部と連結している。給水管52の上流側の端部は、図1に示すように、冷却水を貯留している冷却塔5と接続している。冷却塔5は、冷却水を給水管52に供給する。給水管52は、冷却塔5から排出された冷却水を支持部材51の内部に供給する。
ここでは、図1および図2に示すように、支持部材51の上側の端部が給水管52に接続されている一例を示すが、支持部材51の下側の端部が給水管52に接続されていてもよく、支持部材51の上下の両端部が給水管52に接続されていてもよい。なお、支持部材51の下側の端部が給水管52に接続される場合、支持部材51の下側の端部は開口しており、給水管52の下流側の端部は、連結流路3の下面を貫通し、開口している支持部材51の下側の端部と連結している。
また、給水管52の内部構造の形状は、冷却水が給水管52の内部を流通することができれば、特には限定されるものではない。
図1および図2に示すように、支持部材51に形成される貫通孔53は、支持部材51の一部分を開孔している。具体的には、貫通孔53は、支持部材51の一か所を、支持部材51の径方向に、支持部材51の内面から外面まで貫通する。また、貫通孔53は、支持部材51の内部を流れる冷却水を、支持部材51の内部から連結流路3内に噴射する。
冷却塔5内の冷却水は、例えば、冷却塔5と支持部材51との圧力ヘッドを利用して、支持部材51に供給され、貫通孔53から噴射される。貫通孔53から噴射される冷却水の噴射圧力は、冷却塔5の設置場所の大気圧、冷却塔5の設置場所と貫通孔53の設置場所との高低差に基づく圧力差、および冷却水が給水管52および支持部材51の内部を流れる際の圧力降下量の和に概ね等しい。
後述するように、貫通孔53から噴射される冷却水がタービン排気に接触すると、冷却水と接触したタービン排気は凝縮され、タービン排気の流速が減少する。そのため、タービン排気における流速の速い領域に冷却水を噴射できるように、貫通孔53を配置することによって、タービン排気の流速分布を効率的に平準化することができる。
例えば、数値解析や経験則などを基に、連結流路3内を流れるタービン排気の流速分布を予測する。そして、タービン排気における流速の速い領域に冷却水を噴射できるように、貫通孔53から噴射される冷却水の噴射量、貫通孔53の配置位置、貫通孔53の設置数などを適宜設定する。冷却水の噴射量は、支持部材51に形成される貫通孔53の流路断面積、貫通孔53から噴射される冷却水の噴射圧力などによって決定される。
なお、ここでは、図1および図2に示すように、貫通孔53が支持部材51の上半側部分、中間部分、下半側部分の3か所に設けられる一例を示すが、貫通孔53の配置位置や設置数は、特に限定されるものではなく、タービン排気の流速分布に応じて適宜設定される。
図3は、第1の実施の形態の整流装置50を構成する支持部材51bの他の例を模式的に示す断面図である。なお、図3は、連結流路3の上下方向における上方から見た支持部材51bの断面図であって、図1のB−B線に沿った断面図である。図3では、タービン排気は、左側から右側に流れる。
図3に示すように、貫通孔53の開孔方向53rと連結流路3の上流側から下流側に延びる中心軸3aとの間の角度θは−90°以上90°以下であることが好ましい。なお、貫通孔53の開孔方向53rとは、貫通孔53の中心を通り、支持部材51bの中心軸51aに直交する直線の方向である。
具体的には、図2に示すように、貫通孔53の開孔方向53rが連結流路3の中心軸3aに沿ってタービン排気の流れ方向の下流側を向いているとき、θは0である。また、図3に示すように、貫通孔53の開孔方向53rが図2における連結流路3の右側を向いているとき、θは正である。また、貫通孔53の開孔方向53rが図2における連結流路3の左側を向いているとき、θは負である。
貫通孔53の開孔方向53rと連結流路3の中心軸3aとの間の角度θを−90°以上90°以下の範囲であると、連結流路3の流路断面において、タービン排気の様々な領域に冷却水を選択的に噴射できるので、タービン排気の流速分布をさらに効率的に平準化することができる。
また、角度θが上記範囲外であると、貫通孔53から噴射された冷却水は、蒸気タービン2から排出されたタービン排気に対向する。そのため、冷却水およびタービン排気の流動抵抗が増加する。さらに、貫通孔53から噴射された冷却水は、噴射方向と逆向きの力をタービン排気から受けて、タービン排気の流れ方向に押し戻されることがある。このとき、押し戻された冷却水と新たに貫通孔53から噴射された冷却水とが干渉すると、冷却水の分散性が減少し、タービン排気の整流の効率は低下する。
また、図1に示すように、連結流路3の下流側の端部と接続している復水器4は、例えば直接接触式復水器であり、本体胴容器6と、本体胴容器6に隣接しているガス冷却部7とを備えている。本体胴容器6の上流側の端部には、タービン排気導入口8が形成されている。
本体胴容器6内には、タービン排気に含まれる水蒸気を凝縮する凝縮部9が構成されている。また、本体胴容器6の底部には、凝縮水や冷却水を貯めるホットウェル10が設けられている。
凝縮部9には、タービン排気を導入する水平方向に延設された複数のノズル配管11が設けられている。ノズル配管11には、水蒸気に冷却水を噴射するための噴射ノズル12が設けられている。
また、ノズル配管11は、凝縮部9におけるタービン排気の流入方向に対して垂直かつ水平な方向である本体胴容器6の幅方向に、所定の間隔をあけて複数設けられ、ノズル配管列を構成している。さらに、このノズル配管列は、本体胴容器6の上下方向に所定の間隔をあけて複数設けられている。
また、各ノズル配管11のガス冷却部7側の端部は、給水管13の下流側の端部と接続している。給水管13の上流側の端部は、冷却塔5と接続している。給水管13には、ノズル配管11に供給される冷却水の流量を調整する流量調整部21が設けられている。冷却塔5に貯留されている冷却水は、給水管13を介して、ノズル配管11に供給される。
このような構成を備える凝縮部9では、噴射ノズル12から噴射された冷却水によって、タービン排気導入口8から導入されたタービン排気に含まれる水蒸気が凝縮される。
ガス冷却部7は、凝縮部9に連通するガス冷却流路14を備えている。ガス冷却流路14には、凝縮部9を通過したタービン排気が流れる。ガス冷却流路14は、例えば下方から上方に向かう方向に形成される。
ガス冷却流路14の出口14aには、冷却された不凝縮ガスを排出する不凝縮ガス排出管15が接続される。不凝縮ガス排出管15の出口は、不図示のエジェクタポンプや真空ポンプに連通される。そのため、発電システム1の稼働時では、連結流路3および復水器4の内部は、大気圧よりも圧力の低い真空状態に維持されている。
ガス冷却流路14には、ガス冷却部7の幅方向に水平にノズル配管16が設けられている。ノズル配管16には、冷却水を噴射するための噴射ノズル17が設けられている。ノズル配管16の端部は、不図示の給水管を介して、冷却塔5と接続している。
このような構成を備えるガス冷却部7では、噴射ノズル17から冷却水を噴射して、凝縮部9を通過したタービン排気に残存する蒸気および不凝縮ガスを冷却する。冷却された蒸気は、凝縮して水滴となり下方に落下して、ホットウェル10に流れ込む。冷却された不凝縮ガスは、ガス冷却流路14の出口14aから不凝縮ガス排出管15に排出される。
また、ホットウェル10の下部には、凝縮された水や冷却水などから構成される貯水を排出する排出管18が接続される。例えば、ホットウェル10内の水量がほぼ一定となるように、貯水が排出管18から適宜排出される。
排出管18には、貯水の一部を冷却塔5に供給する給水管19が接続される。給水管19の下流側は、冷却塔5に接続される。排出管18を流れる貯水の一部は、給水管19を介し、給水管19に設けられている給水ポンプ20によって、冷却塔5に再び供給される。冷却塔5に再び供給された冷却水は、外気によって冷却された後、連結流路3内の支持部材51および復水器4に再び供給されて、タービン排気の凝縮に用いられる。
また、図1に示すように、整流装置50は、支持部材51の内部に供給される冷却水の流量を調整し、冷却塔5と支持部材51とを連結する給水管52に設けられる流量調整部54をさらに備えてもよい。流量調整部54は、例えば、流量調整弁から構成される。流量調整部54は、給水管52を流れる冷却水の流量を調整することができるので、貫通孔53を介して支持部材51の内部から連結流路3内に噴射される冷却水の排出量を調整することができる。
また、図1に示すように、整流装置50は、支持部材51の内部に供給される冷却水を支持部材51に加圧供給し、給水管52に設けられる加圧部55をさらに備えてもよい。加圧部55は、例えば、加圧ポンプから構成される。加圧部55は、給水管52を流れる冷却水を加圧するので、貫通孔53から噴射される冷却水の噴射圧力を増加することができる。そのため、冷却水の噴射量が増えると共に、冷却水のペネトレーションが増加するので、冷却水を連結流路3内の広範囲に多量に噴射することができる。加圧部55は、例えば、流量調整部54よりも上流側に設けられる。
次に、整流装置50が連結流路3を流れるタービン排気を整流する流れについて説明する。
発電システム1の稼働時において、膨張仕事を終えたタービン排気は、蒸気タービン2のディフューザから連結流路3に排出される。ここで、ディフューザを通過したタービン排気では、タービン排気の流れ方向に垂直な断面において、タービン排気の流れ方向の流速分布が生じる。そのため、連結流路3の内部を流れるタービン排気は、連結流路3の流路断面において、流れ方向における流速分布を有する。
一方、冷却塔5に貯留している冷却水は、給水管52から支持部材51の内部に導入された後、貫通孔53から連結流路3内に噴射される。貫通孔53から噴射された冷却水は、上記の流速分布を有するタービン排気と接触する。なお、冷却水の温度は、連結流路3内を流れるタービン排気の温度よりも低い。
冷却水とタービン排気とが接触すると、タービン排気は凝縮され、冷却水の温度は上昇する。そして、タービン排気が凝縮されると、凝縮されたタービン排気の流速が減少する。このように、冷却水と接触したタービン排気の領域は凝縮され、冷却水と接触したタービン排気の当該領域における流速は減少する。なお、このタービン排気の凝縮は、タービン排気と接触している冷却水の温度がタービン排気の温度と等しくなるまで継続する。
例えば、連結流路3内を流れるタービン排気の流速分布の予測を基に、冷却水の噴射量、冷却水の噴射圧力、貫通孔53の配置位置、貫通孔53の設置数、貫通孔53の開孔方向53rなどを適宜設定し、連結流路3の流路断面におけるタービン排気の流れ方向の流速の速い領域に冷却水を選択的に噴射すると、冷却水と接触した当該領域の流速は部分的に遅くなる。そのため、連結流路3の流路断面におけるタービン排気の流れ方向の流速分布は効率的に平準化される。すなわち、タービン排気は整流される。
タービン排気と熱交換してタービン排気を凝縮させた冷却水は、連結流路3の内面を伝いながら復水器4の内面に排出した後、連結流路3側の復水器4の壁面を伝ってホットウェル10に流れ込んだり、連結流路3の内面や復水器4の壁面を介さずに、連結流路3の内部空間から復水器4に排出した後、復水器4の内部空間からホットウェル10へ直接落下したりする。
流速分布を平準化したタービン排気は、連結流路3から復水器4内に流入する。凝縮部9において、噴射ノズル12から噴射される冷却水は、整流されたタービン排気を効率的に凝縮することができる。このように、流速分布を平準化したタービン排気が復水器4に供給されるので、従来のような流速分布を有するタービン排気が復水器に供給される場合に比べて、復水器4の性能の低下は抑制される。
凝縮部9を通過したタービン排気は、ガス冷却部7に流入する。ガス冷却部7において、噴射ノズル17から噴射された冷却水は、タービン排気に残存する蒸気および不凝縮ガスを冷却する。冷却された蒸気は、凝縮して水滴となり、ホットウェル10に流れ込む。また、冷却された不凝縮ガスは、ガス冷却流路14の出口14aから不凝縮ガス排出管15に排出される。
上記したように、第1の実施の形態の整流装置50によれば、連結流路3内に設けられた支持部材51の貫通孔53から連結流路3内に、冷却水を噴射することができる。そして、流速分布を有するタービン排気が冷却水と接触すると、タービン排気の流速分布は平準化される。連結流路3内を流れるタービン排気の流速分布の予測に基づいて、冷却水の噴射条件や貫通孔53の設置条件を適宜設定すると、連結流路3の流路断面におけるタービン排気の流れ方向の流速の速い領域に冷却水を選択的に噴射することができるので、タービン排気の流速分布はさらに平準化される。整流されたタービン排気が復水器4に供給されると、凝縮部9は整流されたタービン排気を効率的に凝縮することができる。そのため、復水器4の性能の低下は抑制される。
さらに、支持部材51は、連結流路3の構造を維持するために、連結流路3内に既設されている。このように、タービン排気の流速分布を平準化するための支持部材を新たに設置せずに、既設の支持部材51を用いて、タービン排気の流速分布を平準化することができる。そのため、支持部材を新たに設置した場合に生じる、連結流路3の内部におけるタービン排気の流動抵抗の増加を回避することができる。
(第2の実施の形態)
第2の実施の形態の整流装置150において、支持部材151および貫通孔153の構成が異なる以外は、第1の実施の形態の整流装置50の構成と基本的に同じである。そのため、ここでは、その異なる構成について主に説明する。なお、以下に示す実施の形態において、第1の実施の形態の整流装置50の構成と重複する説明を省略または簡略する。
図4は、第2の実施の形態の整流装置150を構成する連結流路3におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。なお、図4は、連結流路3内を流れるタービン排気の流れ方向の下流側から見た連結流路3の断面図である。
図4に示すように、第2の実施の形態の整流装置150は、連結流路3の内面の2点以上に突き当てられる支持部材151と、支持部材151に接続される給水管52と、支持部材151に設けられる貫通孔153とを備える。
支持部材151は、連結流路3の内面の4点に突き当てられる。具体的には、支持部材151は、十字状であり、連結流路3の上下方向に沿って延設される第1支持部材151aと、連結流路3の幅方向に沿って延設される第2支持部材151bとから構成される。第1支持部材151aと第2支持部材151bとは、互いに連通している。
第1支持部材151aは、連結流路3の上下両面の2点に突き当てられる。第1支持部材151aの一方の端部は、連結流路3の上側の内面と接続されると共に、開口している。また、第1支持部材151aの他方の端部は、連結流路3の下側の内面と接続されると共に、閉口している。
第2支持部材151bは、連結流路3の両側面の2点に突き当てられる。第2支持部材151bの一方の端部は、図4における連結流路3の右側の内面と接続されると共に、閉口している。また、第2支持部材151bの他方の端部は、図4における連結流路3の左側の内面と接続されると共に、閉口している。
ここでは、図4に示すように、第1支持部材151aが連結流路3の上下方向に沿って延設されると共に、第2支持部材151bが連結流路3の幅方向に沿って延設される一例を示すが、第1支持部材151aおよび第2支持部材151bの延設方向は、特には限定されるものではない。例えば、第1支持部材151aおよび第2支持部材151bは、それぞれ異なる連結流路3の対角線に沿って延設されてもよい。また、支持部材151が連結流路3の内面に突き当てられる箇所は4点でなくてもよく、例えば3点であってもよい。
図4に示すように、給水管52の下流側の端部は、連結流路3の上側の内面と接続している第1支持部材151aの上側の端部と接続している。具体的には、給水管52の下流側の端部は、連結流路3の上面を貫通し、開口している第1支持部材151aの上側の端部と連結している。
なお、給水管52の下流側の端部は、第1支持部材151aの下側の端部に接続されてもよい。また、給水管52の下流側の端部は、第1支持部材151aではなく、第2支持部材151bの端部に接続されてもよく、第1支持部材151aおよび第2支持部材151bの両方に接続されてもよい。
なお、第1支持部材151aの下側の端部が給水管52に接続される場合、支持部材51の下側の端部は開口しており、給水管52の下流側の端部は、連結流路3の下面を貫通し、開口している第1支持部材151aの下側の端部と連結している。また、第2支持部材151bの端部が給水管52に接続される場合、第2支持部材151bの当該端部は開口しており、給水管52の下流側の端部は、連結流路3の側面を貫通し、開口している第2支持部材151bの端部と連結している。
支持部材151には、複数の貫通孔153が設けられている。図4に示すように、複数の貫通孔153は、第1支持部材151aの上半側部分に設けられる第1貫通孔153aと、第2支持部材151bの右半側部分に設けられる第2貫通孔153bとから構成される。
第1貫通孔153aおよび第2貫通孔153bの配置位置や設置数は、特に限定されるものではなく、連結流路3の流路断面におけるタービン排気の流れ方向の流速分布に応じて適宜設定される。
例えば、連結流路3の流路断面におけるタービン排気の流れ方向の流速分布が連結流路3の上下方向にある場合、第1支持部材151aに設けられる第1貫通孔153aは複数であることが好ましい。また、タービン排気の流れ方向の流速分布が連結流路3の幅方向にある場合、第2支持部材151bに設けられる第2貫通孔153bは複数であることが好ましい。
また、図4では、第1貫通孔153aの開孔方向は、連結流路3の中心軸3aに沿ってタービン排気の流れ方向の下流側を向いているが、特に限定されるものではない。上述したように、貫通孔53の開孔方向と同様に、第1貫通孔153aの開孔方向を適宜設定してもよい。
図5は、第2の実施の形態の整流装置を構成する支持部材の他の例を模式的に示す断面図である。なお、図5は、第2支持部材151bの上下方向における断面図であって、図4のC−C線に沿った断面図である。図5では、タービン排気は、左側から右側に流れる。
貫通孔53と基本的に同様に、第2貫通孔153bの開孔方向153rと連結流路3の中心軸3aとの間の角度θ’は−90°以上90°以下であることが好ましい。第2貫通孔153bの開孔方向153rとは、第2貫通孔153bの中心を通り、第2支持部材151bの中心軸151cに直交する直線の方向である。
具体的には、図4に示すように、第2貫通孔153bの開孔方向153rが中心軸3aに沿ってタービン排気の流れ方向の下流側を向いているとき、θ’は0である。また、図5に示すように、第2貫通孔153bの開孔方向153rが連結流路3の上側を向いているとき、θ’は正である。また、第2貫通孔153bの開孔方向153rが連結流路3の下側を向いているとき、θ’は負である。
角度θ’が−90°以上90°以下の範囲であると、連結流路3の流路断面において、タービン排気の様々な領域に冷却水を選択的に噴射できるので、タービン排気の流速分布をさらに効率的に平準化することができる。一方、角度θ’が上記範囲外であると、第2貫通孔153bから噴射された冷却水と蒸気タービン2から排出されたタービン排気との流動抵抗が増加する。さらには、冷却水の分散性が減少し、タービン排気の整流の効率は低下する。
図6は、第2の実施の形態の整流装置を構成する連結流路の他の例におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。支持部材151に複数設けられる貫通孔153について、複数の貫通孔153の少なくとも1つの貫通孔の流路断面積は、他の貫通孔の流路断面積よりも大きくてもよい。
例えば、図6に示すように、貫通孔153は、第1支持部材151aの上半側上部に設けられる第1貫通孔153cと、上半側中部に設けられる第2貫通孔153dと、上半側下部に設けられる第3貫通孔153eとから構成され、第2貫通孔153dの流路断面積は、第1貫通孔153cおよび第3貫通孔153eの流路断面積よりも大きい。連結流路3の流路断面におけるタービン排気の流れ方向の流速分布が連結流路3の上下方向にあって一定でない場合、特に、タービン排気の流速の速い領域が第1支持部材151aの上半側中部の近傍である場合、図6に示すような貫通孔153の配置構成は、タービン排気の流速分布をさらに効率的に平準化することができる。
また、連結流路3の流路断面におけるタービン排気の流れ方向の流速分布が連結流路3の幅方向にあって一定でない場合、複数の貫通孔153は第2支持部材151bに設けられ、タービン排気の流速の速い領域に冷却水を噴射する貫通孔の流路断面積は、他の貫通孔の流路断面積よりも大きいことが好ましい。
次に、整流装置150が連結流路3を流れるタービン排気を整流する流れについて説明する。
冷却塔5に貯留している冷却水は、図4に示すように、給水管52から第1支持部材151aの内部に導入される。第1支持部材151aと第2支持部材151bとは互いに連通しているので、冷却水は第2支持部材151bの内部にも導入される。そして、冷却水は、第1貫通孔153aおよび第2貫通孔153bから連結流路3内に噴射される。
第1貫通孔153aおよび第2貫通孔153bから噴射された冷却水は、流速分布を有するタービン排気と接触する。冷却水とタービン排気とが接触すると、タービン排気は凝縮され、凝縮されたタービン排気の流速が減少する。
数値解析や経験則などを基に、連結流路3の内部を流れるタービン排気の流速分布に対応するように、複数の貫通孔の配置位置や設置数、各々の貫通孔の流路断面積や開孔方向を適宜設定することによって、連結流路3の流路断面におけるタービン排気の流れ方向の流速の速い領域に冷却水を選択的に多く噴射することができる。そして、タービン排気の流速分布は、さらに平準化される。平準化したタービン排気は、復水器4内の凝縮部9において、効率的に凝縮される。そのため、復水器4の性能の低下は、さらに抑制される。
上記したように、第2の実施の形態の整流装置150によれば、支持部材151に設けられる複数の貫通孔153から、連結流路3内に冷却水を噴射することができる。そして、複数の貫通孔の配置位置や設置数、各々の貫通孔の流路断面積や開孔方向を適宜設定することによって、タービン排気の流れ方向の流速の速い領域に冷却水を選択的に多く噴射することができる。そのため、タービン排気の流速分布はさらに平準化され、復水器4の性能の低下は抑制される。
(第3の実施の形態)
第3の実施の形態の整流装置250において、微粒化部256をさらに備える以外は、第1の実施の形態の整流装置50の構成と基本的に同じである。そのため、ここでは、その異なる構成について主に説明する。
図7は、第3の実施の形態の整流装置250を構成する連結流路3におけるタービン排気の流れ方向に垂直な断面を模式的に示す概略図である。なお、図7は、連結流路3内を流れるタービン排気の流れ方向の下流側から見た連結流路3の断面図である。
図7に示すように、第3の実施の形態の整流装置250は、連結流路3の内部に設けられる支持部材51と、支持部材51に接続される給水管52と、支持部材51に設けられる貫通孔53と、貫通孔53の出口に設けられる微粒化部256とを備える。
微粒化部256は、例えば、支持部材51の外側から貫通孔53の出口に設けられる。また、微粒化部256は、貫通孔53から連結流路3内に噴射される冷却水を微粒化する。この微粒化部256は、例えばスプレーノズルから構成され、冷却塔5と支持部材51との圧力ヘッドや加圧部55によって、冷却水を液滴に微粒化する。ここでは、微粒化部256が貫通孔53の全てに設けられる一例を示すが、微粒化部256の設置数は特に限定されるものではなく、微粒化部256は貫通孔53の1つに設けられていてもよい。
また、貫通孔53の開孔方向53rと基本的に同様に、微粒化部256の開孔方向と連結流路3の中心軸3aとの間の角度θ’’は−90°以上90°以下であることが好ましい。微粒化部256の開孔方向とは、微粒化部256の中心および支持部材51の中心軸51aを通る直線の方向である。
具体的には、図7に示すように、微粒化部256の開孔方向が中心軸3aに沿ってタービン排気の流れ方向の下流側を向いているとき、θ’’は0である。また、微粒化部256の開孔方向が図7における連結流路3の右側および上側を向いているとき、θ’’は正である。また、微粒化部256の開孔方向が連結流路3の左側および下側を向いているとき、θ’’は負である。
貫通孔53に微粒化部256を設けることによって、連結流路3内に噴射される冷却水が液滴状になる。そして、微粒化部256を設けない貫通孔から噴射された冷却水に比べて、微粒化した冷却水(以下、微粒化冷却水ともいう)とタービン排気との接触面積は増加し、微粒化冷却水とタービン排気との単位時間当たりの交換熱量は増加する。そのため、整流装置250が微粒化部256を備えることによって、タービン排気を短時間で凝縮できる。連結流路3の流路断面におけるタービン排気の流速の速い領域が支持部材51の近傍に存在するとき、微粒化部256からの微粒化冷却水の噴射は、タービン排気を効率的に凝縮することができる。
また、微粒化部256を設けない貫通孔から噴射された冷却水の形状は、柱状である。その一方、微粒化部256を設けた貫通孔53から噴射された微粒化冷却水の形状は、円錐状や扇状など、タービン排気の流速分布の状態に応じて、適宜選択することができる。連結流路3の流路断面におけるタービン排気の流速の速い領域が広範囲であるとき、タービン排気を効率的に凝縮できる。
上記したように、第3の実施の形態の整流装置250によれば、貫通孔53の出口に設けられる微粒化部256によって、支持部材51の貫通孔53から連結流路3内に噴射される冷却水を微粒化することができる。微粒化した冷却水は、タービン排気を短時間で凝縮することができる。そのため、タービン排気の流速分布はさらに平準化され、復水器4の性能の低下は抑制される。
(第4の実施の形態)
第4の実施の形態の整流装置350において、支持部材351および給水管352の構成が異なり、圧力計測部357をさらに備える以外は、第1の実施の形態の整流装置50の構成と基本的に同じである。そのため、ここでは、その異なる構成について主に説明する。
図8は、第4の実施の形態の整流装置350を備える発電システムの一部を模式的に示す拡大図である。図8に示すように、第4の実施の形態の整流装置350は、連結流路3におけるタービン排気の流れ方向に複数設けられる支持部材351と、支持部材351に接続される給水管352と、支持部材351に設けられる貫通孔53とを備える。
図8に示すように、連結流路3の上流側から下流側にかけて、複数の支持部材351が設けられている。ここでは、複数の支持部材351は、タービン排気の流れ方向における上流側に設けられている第1支持部材351aと、第1支持部材351aよりも下流側に設けられている第2支持部材351bと、第2支持部材351bよりも下流側に設けられている第3支持部材351cとから構成されている。なお、ここでは、支持部材351の設置数は3つであるが、特に限定されるものではない。
給水管352は、例えば第1給水管352aと第2給水管352bと第3給水管352cとに分岐され、第1給水管352aは第1支持部材351aに接続され、第2給水管352bは第2支持部材351bに接続され、第3給水管352cは第3支持部材351cに接続されている。
第1支持部材351a、第2支持部材351b、および第3支持部材351cには、貫通孔53が設けられている。
また、整流装置350は、支持部材351における貫通孔53よりも上流側に設けられる圧力計測部357をさらに設けてもよい。圧力計測部357は、連結流路3内を流れるタービン排気の圧力を計測する。タービン排気の圧力の高い領域は、連結流路3の流路断面におけるタービン排気の流れ方向の流速の速い領域である。
圧力計測部357は、連結流路3内を流れるタービン排気の流れ方向に向き合うように、支持部材351におけるタービン排気の上流側の表面に設けられる。また、圧力計測部357は、図8に示すように圧力計測部357は貫通孔53の全てに対して設けられてもよいし、貫通孔53の一部に対して設けられてもよい。
また、図8に示すように、第1給水管352a、第2給水管352b、および第3給水管352cには、流量調整部54や加圧部55が適宜設けられていてもよい。
また、整流装置350は、入力部361と、演算部362と、出力部363とを具備する制御部360を備えてもよい。入力部361は圧力計測部357と接続し、圧力計測部357で計測されたタービン排気の圧力が入力部361に入力される。演算部362は、入力部361に入力されたタービン排気の圧力からタービン排気の流速を算出する。出力部363は流量調整部54や加圧部55と接続し、演算部362で算出されたタービン排気の流速値を基に、流量調整部54や加圧部55を適宜調整する。
次に、整流装置350が連結流路3を流れるタービン排気を整流する流れについて説明する。
冷却水は、第1給水管352aから第1支持部材351aに導入され、第2給水管352bから第2支持部材351bに導入され、第3給水管352cから第3支持部材351cに導入される。そして、冷却水は、第1支持部材351aと第2支持部材351bと第3支持部材351cとに設けられた各貫通孔53から連結流路3内に噴射される。
このように、タービン排気の流れ方向の上流側から下流側にかけて複数の支持部材351が設けられると、複数の支持部材351から噴射された冷却水によって、タービン排気の流れ方向における広い範囲で、タービン排気を整流することができる。例えば、連結流路3が長い場合、複数の支持部材351を設けることによって、各支持部材351の貫通孔53から噴射される冷却水は、タービン排気を広範囲に効率的に整流することができる。
また、圧力計測部357は、タービン排気の圧力を計測する。したがって、圧力計測部357で計測されたタービン排気の圧力のデータを基に、圧力計測部357の近傍におけるタービン排気の流速を算出することができる。例えば、支持部材351の複数に設けられる圧力計測部357の配置位置は、タービン排気の流れ方向に垂直な方向において互いに異なると、連結流路3を流れるタービン排気の流速分布をリアルタイムで正確に把握することができる。
また、制御部361は、圧力計測部357で得られたタービン排気の圧力のデータから算出したタービン排気の流速分布を基に、各給水管352に設けられた流量調整部54や加圧部55を適宜制御することによって、冷却水の噴射量や噴射圧力をリアルタイムで調整してもよい。そして、支持部材351の複数に設けられる貫通孔53の配置位置や開孔方向53rが、タービン排気の流れ方向に垂直な方向において互いに異なると、連結流路3の流路断面におけるタービン排気の流速の速い領域に冷却水を局所的に多く噴射できるので、タービン排気の流速分布をさらに平準化することができる。
図9は、第4の実施の形態の整流装置の他の例を備える発電システムの一部を模式的に示す断面拡大図である。図9に示すように、連結流路303におけるタービン排気の流れ方向が水平ではなく傾斜している場合、換言すると、蒸気タービン2に接続している連結流路303の上流側の端部の高さに比べて、復水器4に接続している連結流路303の下流側の端部の高さが低い場合であっても、整流装置は傾斜している連結流路303内を流れるタービン排気の流速分布を平準化することができる。
上記したように、第4の実施の形態の整流装置350によれば、連結流路3の上流側から下流側にかけて支持部材351を複数設けることによって、タービン排気の流れ方向における広い範囲にわたって、タービン排気の流速分布を平準化することができる。さらに、支持部材351に圧力計測部357を設けることによって、タービン排気の流速分布をリアルタイムで算出することができる。さらに、制御部361は、圧力計測部357で得られたタービン排気の圧力のデータに応じて、各給水管352に設けられた流量調整部54や加圧部55をリアルタイムで適宜制御することによって、タービン排気の流速分布はさらに平準化される。
以上説明した実施の形態によれば、復水器の上流側に設けられた連結流路内を流れるタービン排気の流速分布を平準化することによって、復水器の性能の低下を抑制することができる整流装置を提供することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…発電システム、2…蒸気タービン、3,303…連結流路、3a…中心軸、4…復水器、5…冷却塔、6…本体胴容器、7…ガス冷却部、8…タービン排気導入口、9…凝縮部、10…ホットウェル、11,16…ノズル配管、12,17…噴射ノズル、14…ガス冷却流路、14a…出口、15…不凝縮ガス排出管、18…排出管、20…給水ポンプ、21,54…流量調整部、50,150,250,350…整流装置、51,51b,151,351…支持部材、51a…中心軸、13,19,52,352…給水管、53,153…貫通孔、53r,153r…開孔方向、55…加圧部、151a,351a…第1支持部材、151b,351b…第2支持部材、351c…第3支持部材、151c…中心軸、153a,153c…第1貫通孔、153b,153d…第2貫通孔、153e…第3貫通孔、256…微粒化部、352a…第1給水管、352b…第2給水管、352c…第3給水管、357…圧力計測部、360…制御部、361…入力部、361…制御部、362…演算部、363…出力部。

Claims (9)

  1. 蒸気タービンと前記蒸気タービンからのタービン排気から復水を生成する復水器とを連結する連結流路の内部に設けられ、前記連結流路の内面の少なくとも2点に突き当たる形で取り付けられる中空な支持部材と、
    前記支持部材に接続され、前記支持部材に冷却水を供給する給水管と、
    前記支持部材に設けられ、前記支持部材から前記連結流路内に前記冷却水を噴射する貫通孔と
    を備えることを特徴とする整流装置。
  2. 前記支持部材は、前記連結流路における前記タービン排気の流れ方向に、複数設けられることを特徴とする請求項1に記載の整流装置。
  3. 前記給水管に設けられ、前記支持部材に供給される前記冷却水の流量を調整する流量調整部をさらに備えることを特徴とする請求項1または2に記載の整流装置。
  4. 前記給水管に設けられ、前記支持部材に供給される前記冷却水を前記支持部材に加圧供給する加圧部をさらに備えることを特徴とする請求項1乃至3のいずれか1項に記載の整流装置。
  5. 前記貫通孔は、前記支持部材に複数設けられ、
    少なくとも1つの前記貫通孔の流路断面積は、他の前記貫通孔の流路断面積よりも大きいことを特徴とする請求項1乃至4のいずれか1項に記載の整流装置。
  6. 前記貫通孔の開孔方向と前記連結流路の上流側から下流側に延びる中心軸との間の角度は、−90°以上90°以下であることを特徴とする請求項1乃至5のいずれか1項に記載の整流装置。
  7. 前記貫通孔の出口に設けられ、前記連結流路内に噴射される前記冷却水を微粒化する微粒化部をさらに備えることを特徴とする請求項1乃至6のいずれか1項に記載の整流装置。
  8. 前記支持部材における前記貫通孔よりも上流側に設けられ、前記連結流路内を流れる前記タービン排気の圧力を計測する圧力計測部をさらに備えることを特徴とする請求項1乃至7のいずれか1項に記載の整流装置。
  9. 前記支持部材の複数に設けられる前記貫通孔の配置位置は、前記タービン排気の流れ方向に垂直な方向において互いに異なることを特徴とする請求項2乃至8のいずれか1項に記載の整流装置。
JP2016221392A 2016-11-14 2016-11-14 整流装置 Active JP6699900B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221392A JP6699900B2 (ja) 2016-11-14 2016-11-14 整流装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221392A JP6699900B2 (ja) 2016-11-14 2016-11-14 整流装置

Publications (2)

Publication Number Publication Date
JP2018080849A JP2018080849A (ja) 2018-05-24
JP6699900B2 true JP6699900B2 (ja) 2020-05-27

Family

ID=62197172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221392A Active JP6699900B2 (ja) 2016-11-14 2016-11-14 整流装置

Country Status (1)

Country Link
JP (1) JP6699900B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198654B2 (ja) * 2018-12-11 2023-01-04 東芝プラントシステム株式会社 復水器及び脱気方法

Also Published As

Publication number Publication date
JP2018080849A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
US20150377133A1 (en) Intake-air cooling device
US10480404B2 (en) Method for injecting water into a multistage axial compressor of a gas turbine
CN102003888A (zh) 直接空冷凝汽器喷雾增湿系统优化方法
CN105650677A (zh) 带有新型冷却结构一体化设计的火焰稳定器
JP6699900B2 (ja) 整流装置
EP2924356B1 (en) Water spray type desuperheater and desuperheating method
JP2011231972A (ja) 冷媒分配器、蒸発器及び冷媒噴射方法
KR20150142621A (ko) 충돌 냉각식 벽 장치
US11852335B2 (en) Swirl stabilized high capacity duct burner
JP2013130326A (ja) 空気調和装置の室外機
JP2012202335A (ja) インピンジメント冷却構造、及び、それを用いたガスタービン静翼
KR20130106203A (ko) 에너지 회수형 냉각탑 및 이를 이용한 에너지 회수방법
JP4247982B2 (ja) 造雪装置
US9314802B2 (en) Spraying tube device and heat exchanger using the same
JP2011111944A (ja) ガスタービン吸気冷却装置
JP4673765B2 (ja) タービン排気システム
US20140034752A1 (en) Atomizer
JP2018044703A (ja) 直接接触式復水器
JP2015127595A (ja) 空気調和装置の室外機
JP2017040459A (ja) 冷凍装置の熱源ユニット
US20170067673A1 (en) Ejector and heat pump apparatus
JP7002420B2 (ja) 直接接触式復水器及び発電プラント
JP6094646B2 (ja) 冷凍装置の熱源ユニット
WO2012115505A1 (en) Apparatus for cooling hot condensate in a piping
JP2015127596A (ja) 空気調和装置の室外機

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6699900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150