JP6676303B2 - Electrolyte for electrolytic capacitors - Google Patents

Electrolyte for electrolytic capacitors Download PDF

Info

Publication number
JP6676303B2
JP6676303B2 JP2015150822A JP2015150822A JP6676303B2 JP 6676303 B2 JP6676303 B2 JP 6676303B2 JP 2015150822 A JP2015150822 A JP 2015150822A JP 2015150822 A JP2015150822 A JP 2015150822A JP 6676303 B2 JP6676303 B2 JP 6676303B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
weight
electrolyte
mol
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150822A
Other languages
Japanese (ja)
Other versions
JP2017034030A (en
Inventor
慶彦 赤澤
慶彦 赤澤
隆宏 芝
隆宏 芝
秀基 木村
秀基 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2015150822A priority Critical patent/JP6676303B2/en
Publication of JP2017034030A publication Critical patent/JP2017034030A/en
Application granted granted Critical
Publication of JP6676303B2 publication Critical patent/JP6676303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は電解コンデンサ用電解液およびそれを用いた電解コンデンサに関する。詳しくは、アルミ電解コンデンサ用に好適な電解液に関する。   The present invention relates to an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor using the same. Specifically, the present invention relates to an electrolytic solution suitable for an aluminum electrolytic capacitor.

従来より、アルミニウム電解コンデンサに代表される電解コンデンサは、誘電体が設けられている陽極と、集電用の陰極と陽極、陰極との間に配置された電解液を保持したセパレータとが密封ケース内に収納された構造を有しており、巻回型、積層型の形状のものが広く知られている。   Conventionally, an electrolytic capacitor represented by an aluminum electrolytic capacitor has a sealed case in which an anode provided with a dielectric, a cathode for collecting current and a separator holding an electrolytic solution disposed between the anode and the cathode are sealed. It has a structure housed in the inside, and a wound type or a laminated type is widely known.

ここで、用いられる電解液には、耐電圧を高める目的で、電解液中にポリエチレングリコールを添加したものが提案されている。(例えば特許文献1)。 Here, for the purpose of increasing the withstand voltage, a solution in which polyethylene glycol is added to the electrolyte has been proposed as the electrolyte used. (For example, Patent Document 1).

特開昭62−268121号公報JP-A-62-268121

しかし、ポリエチレングリコールは、低温で固化し易く、電解コンデンサの使用できる温度領域が狭く、寒冷地では使用できない。
本発明は電圧の高い領域で、低温でも固化にくいいため寒冷地でも駆動でき、十分な耐電圧を有する電解コンデンサを提供することを目的とする。
However, polyethylene glycol is easily solidified at a low temperature, the temperature range in which an electrolytic capacitor can be used is narrow, and it cannot be used in cold regions.
An object of the present invention is to provide an electrolytic capacitor that can be driven even in a cold region because it is hard to be solidified even at a low temperature in a high voltage region and has a sufficient withstand voltage.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)、電解質(B)および極性溶媒(C)を必須成分とし、(A)/(C)の重量比が5/95〜40/60であり、前記4〜6価の多価アルコール(a)がソルビトール及び/又はマンニトールであり、前記アルキレンオキサイドがエチレンオキサイド単独であることを特徴とする電解コンデンサ用電解液;およびこれを用いた電解コンデンサである。
The present inventors have studied to achieve the above object, and as a result, have reached the present invention.
That is, the present invention comprises, as essential components, an alkylene oxide adduct of a polyhydric alcohol (a) (A), an electrolyte (B) and a polar solvent (C), and the weight of (A) / (C). The ratio is 5/95 to 40/60, the 4- to 6-valent polyhydric alcohol (a) is sorbitol and / or mannitol, and the alkylene oxide is ethylene oxide alone. An electrolytic solution; and an electrolytic capacitor using the same.

本発明の電解コンデンサは、低温、例えば−30℃でもまったく固化せず、耐電圧が十分高いという効果を奏する。   The electrolytic capacitor of the present invention does not solidify even at a low temperature, for example, −30 ° C., and has an effect that the withstand voltage is sufficiently high.

本発明の電解コンデンサ用電解液は、4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)、電解質(B)および極性溶媒(C)を必須成分とし、さらに(A)/(C)の重量比が5/95〜40/60であることを特徴とする。 The electrolytic solution for an electrolytic capacitor of the present invention contains, as essential components, an alkylene oxide adduct (A) of a polyhydric alcohol (a) having 4 to 6 valences, an electrolyte (B) and a polar solvent (C), and further comprises (A) / The weight ratio of (C) is 5/95 to 40/60.

本発明のアルキレンオキサイド付加物(A)は、4〜6価の多価アルコール(a)のアルキレンオキサイド付加物である。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどが挙げられ、単独でも、2種以上を併用してもよい。
付加させるアルキレンオキサイドの種類は、電極へ浸透しやすいという観点から、エチレンオキサイドが好ましい。
エチレンオキサイドをそれ以外のアルキレンオキサイドと併用する場合は、電極へ浸透しやすくするという観点から、アルキレンオキサイドの70モル%以上がエチレンオキサイドであることが好ましく、さらに好ましくは、85モル%以上である。アルキレンオキサイドの70モル%以上がエチオキサイドであると、耐電圧を上げる効果がある。
The alkylene oxide adduct (A) of the present invention is an alkylene oxide adduct of a polyhydric alcohol (a) having 4 to 6 valences. Examples of the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide, and may be used alone or in combination of two or more.
As the type of the alkylene oxide to be added, ethylene oxide is preferable from the viewpoint of easy penetration into the electrode.
When ethylene oxide is used in combination with other alkylene oxides, it is preferable that 70 mol% or more of the alkylene oxide is ethylene oxide, and more preferably 85 mol% or more, from the viewpoint of facilitating penetration into the electrode. . When 70 mol% or more of the alkylene oxide is ethoxide, there is an effect of increasing the withstand voltage.

4〜6価の多価アルコール(a)としては、ペンタエリスリトールなどの4価アルコール;キシリトールなどの5価アルコール;ソルビトール、マンニトール、ジペンタエイリスリトールなどの6価アルコールが挙げられる。
これらのうち、(a)としては、6価の多価アルコールが好ましく、ソルビトールとマンニトールがより好ましく、ソルビトールが最も好ましい。
一方、1価〜3価アルコールのアルキレンオキサイド付加物では、低温で固化するため、電解液として使いにくい。
多価アルコール(a)へのアルキレンオキサイドの平均付加モル数は、12〜42モルが好ましく、さらに好ましくは、18〜30モルである。
平均付加モル数が12モル未満であると耐電圧をあげる効果が弱く、42モルを超えると粘度が上がり過ぎて、コンデンサを組み立てるときにセパレータに電解液をしみこませにくくなる。
Examples of the 4- to 6-valent polyhydric alcohol (a) include a tetrahydric alcohol such as pentaerythritol; a pentahydric alcohol such as xylitol; and a hexahydric alcohol such as sorbitol, mannitol, and dipentaerythritol.
Among them, (a) is preferably a hexahydric polyhydric alcohol, more preferably sorbitol and mannitol, and most preferably sorbitol.
On the other hand, an alkylene oxide adduct of a monohydric to trihydric alcohol is solidified at a low temperature, and thus is difficult to use as an electrolyte.
The average number of moles of the alkylene oxide added to the polyhydric alcohol (a) is preferably from 12 to 42 mol, and more preferably from 18 to 30 mol.
If the average number of added moles is less than 12 moles, the effect of increasing the withstand voltage is weak, and if it exceeds 42 moles, the viscosity becomes too high, so that it becomes difficult to soak the electrolyte into the separator when assembling the capacitor.

4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)の数平均分子量は、電導度の観点から1,000〜2,200が好ましく、さらに好ましくは1,000〜1,500である。1,000未満であれば、耐電圧をあげる効果が弱く、2,200を超えれば、コンデンサを組み立てるときにセパレータに電解液をしみこませにくくなる。 The number average molecular weight of the alkylene oxide adduct (A) of the polyhydric alcohol (a) having 4 to 6 valences is preferably from 1,000 to 2,200, more preferably from 1,000 to 1,500, from the viewpoint of conductivity. It is. If it is less than 1,000, the effect of increasing the withstand voltage is weak, and if it exceeds 2,200, it becomes difficult to impregnate the electrolyte into the separator when assembling the capacitor.

4〜6価の多価アルコールのアルキレンオキサイド付加物(A)の合成方法として、多価アルコールに水酸化カリウム、または水酸化ナトリウム触媒のもとエチレンオキサイドやプロピレンオキサイドを反応させるのが一般的である。
本用途であるアルミ電解コンデンサ用途では、金属イオンはコンデンサのショートの原因となるため、カリウムまたは、ナトリウムを吸着処理等で、10ppm以下に好ましくは1ppm以下にする必要がある。
As a method for synthesizing the alkylene oxide adduct (A) of a polyhydric alcohol having 4 to 6 valences, it is general to react ethylene oxide or propylene oxide with the polyhydric alcohol in the presence of a potassium hydroxide or sodium hydroxide catalyst. is there.
In the aluminum electrolytic capacitor application of this application, since metal ions cause a short circuit of the capacitor, potassium or sodium must be reduced to 10 ppm or less, preferably 1 ppm or less by an adsorption treatment or the like.

本発明の電解質(B)は、電解コンデンサ用電解液に通常使われる電解質であれば特にその種類は限定されず、電解質(B)はカチオン成分(B1)、アニオン成分(B2)から構成される。 The type of the electrolyte (B) of the present invention is not particularly limited as long as it is an electrolyte usually used for an electrolytic solution for an electrolytic capacitor. The electrolyte (B) is composed of a cation component (B1) and an anion component (B2). .

カチオン成分(B1)としては、アンモニアカチオン;ジメチルアミン、エチルメチルアミン、ジエチルアミンなどの2級アミンのカチオン;トリメチルアミン、トリエチルアミンなどの3級アミンのカチオン;テトラメチルアンモニウム、1,2,3,4−テトラメチルイミダゾリニウム、1−エチル−2,3−メチルイミダゾリニウムなどの4級アンモニウムカチオンがあり、単独使用でもよいし2種以上を併用してもよい。これらのうち、アンモニアカチオン、2級アミンが好ましく、さらにアンモニアカチオンが好ましい。 Examples of the cation component (B1) include ammonia cations; cations of secondary amines such as dimethylamine, ethylmethylamine and diethylamine; cations of tertiary amines such as trimethylamine and triethylamine; tetramethylammonium, 1,2,3,4- There are quaternary ammonium cations such as tetramethyl imidazolinium and 1-ethyl-2,3-methyl imidazolinium, which may be used alone or in combination of two or more. Of these, ammonia cations and secondary amines are preferred, and ammonia cations are more preferred.

アニオン成分(B2)は、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、1,10−デカンジカルボン酸、マレイン酸、フタル酸、シトラコン酸などのカルボン酸アニオン;リン酸アニオンおよびリン酸エステルなどのリン酸誘導体アニオン;ホウ酸アニオン、ホウ酸誘導体アニオンなどが挙げられる。
なかでも、カルボン酸アニオンが好ましく、さらに、炭素数は4〜12の脂肪族カルボン酸アニオンが好ましい。
アニオンは、単独使用でも2種以上を併用してもよい。
The anionic component (B2) includes carboxylic acids such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 1,10-decanedicarboxylic acid, maleic acid, phthalic acid, and citraconic acid. Anions; phosphate anions such as phosphate anions and phosphate esters; borate anions; and borate derivative anions.
Among them, a carboxylate anion is preferred, and an aliphatic carboxylate anion having 4 to 12 carbon atoms is more preferred.
The anions may be used alone or in combination of two or more.

本発明の極性溶媒(C)は、電解コンデンサ用電解液に通常使われる極性溶媒であれば特に限定されず、例えば、(1)アルコール、(2)アミド、(3)ラクトン、(4)ニトリル、(5)スルホンおよび(6)その他の極性の有機溶媒が挙げられる。 The polar solvent (C) of the present invention is not particularly limited as long as it is a polar solvent usually used for an electrolytic solution for an electrolytic capacitor. Examples thereof include (1) alcohol, (2) amide, (3) lactone, and (4) nitrile. , (5) sulfone and (6) other polar organic solvents.

(1)アルコール
1価アルコール(メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ジアセトンアルコール、ベンジルアルコール、アミノアルコール、フルフリルアルコールなど)、2価アルコール(エチレングリコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリコールなど)、3価アルコール(グリセリンなど)、4価以上のアルコール(ヘキシトールなど)など。
(1) Alcohol Monohydric alcohol (methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, diacetone alcohol, benzyl alcohol, amino alcohol, furfuryl alcohol, etc.), dihydric alcohol (ethylene glycol, propylene glycol, diethylene glycol, hexylene) Glycol, etc.), trihydric alcohols (eg, glycerin), and tetravalent or higher alcohols (eg, hexitol).

(2)アミド
ホルムアミド(N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミドなど)、アセトアミド(N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミドなど)、プロピオンアミド(N,N−ジメチルプロピオンアミドなど)、ピロリドン(N−メチルピロリドン、N−エチルピロリドンなど)、ヘキサメチルホスホリルアミドなど。
(2) Amide formamide (N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, etc.), acetamide (N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide , N, N-diethylacetamide, etc.), propionamide (N, N-dimethylpropionamide, etc.), pyrrolidone (N-methylpyrrolidone, N-ethylpyrrolidone, etc.), hexamethylphosphorylamide and the like.

(3)ラクトン
γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなど。
(3) Lactone γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, δ-valerolactone and the like.

(4)ニトリル
アセトニトリル、プロピオニトリル、ブチロニトリル、アクリロニトリル、メタクリルニトリル、ベンゾニトリルなど。
(4) Nitrile Acetonitrile, propionitrile, butyronitrile, acrylonitrile, methacrylonitrile, benzonitrile and the like.

(5)スルホン
スルホラン、ジメチルスルホキシド、エチルメチルスルホンなど。
(5) Sulfone sulfolane, dimethyl sulfoxide, ethyl methyl sulfone and the like.

(6)その他の有機溶媒
1,3−ジメチル−2−イミダゾリジノンなど。
(6) Other organic solvents 1,3-dimethyl-2-imidazolidinone and the like.

これらの極性溶媒(C)は、単独使用でもよいし2種以上を併用してもよい。これらのうち、アルコール、ラクトンが好ましく、さらに好ましくはエチレングリコールとγ−ブチロラクトンであり、最も好ましくは、エチレングリコールである。     These polar solvents (C) may be used alone or in combination of two or more. Of these, alcohols and lactones are preferred, ethylene glycol and γ-butyrolactone are more preferred, and ethylene glycol is most preferred.

本発明の電解液中のアルキレンオキサイド付加物(A)と極性溶媒(C)との重量比(A)/(C)は5/95〜40/60であり、7/90〜30/70がさらに好ましい。
重量比(A)/(C)が5/95未満であると耐電圧が不十分となり、一方、40/60を超えると粘度が高くなるため、コンデンサを組み立てる際ににセパレータに電解液を浸み込みにくくなる。
The weight ratio (A) / (C) between the alkylene oxide adduct (A) and the polar solvent (C) in the electrolytic solution of the present invention is 5/95 to 40/60, and 7/90 to 30/70 is More preferred.
When the weight ratio (A) / (C) is less than 5/95, the withstand voltage becomes insufficient. On the other hand, when the weight ratio exceeds 40/60, the viscosity becomes high. It becomes difficult to seep.

本発明の電解液には必要により、電解液に通常用いられる種々の添加剤を添加することができる。
駆動中にわすかに発生する水素ガスを吸収させる目的で、例えば、o−ニトロ安息香酸、p−ニトロ安息香酸、m−ニトロ安息香酸、o−ニトロフェノール、p−ニトロフェノールなどのニトロ化合物などが添加される。また、耐電圧を高めるために、ホウ酸などが添加される。その添加量は、比電導度と電解液への溶解度の観点から、電解液の重量に基づいて、好ましくは5重量%以下、特に好ましくは0.1〜2重量%がよい。
If necessary, various additives commonly used for the electrolytic solution can be added to the electrolytic solution of the present invention.
For the purpose of absorbing hydrogen gas generated slightly during driving, for example, nitro compounds such as o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol, etc. Is added. Further, boric acid or the like is added to increase the withstand voltage. The amount of addition is preferably 5% by weight or less, particularly preferably 0.1 to 2% by weight, based on the weight of the electrolytic solution, from the viewpoint of specific conductivity and solubility in the electrolytic solution.

本発明の電解コンデンサ用電解液は、アルミニウム電解コンデンサ用に最適である。
アルミニウム電解コンデンサとしては、特に限定されず、例えば、捲き取り形の電解コンデンサであって、陽極表面に酸化アルミニウムが形成された陽極(酸化アルミニウム箔)と陰極アルミニウム箔との間に、セパレーターを介在させて捲回することにより構成されたコンデンサが挙げられる。
本発明の電解液を駆動用電解液としてセパレーターに含浸し、陽陰極と共に、有底筒状のアルミニウムケースに収納した後、アルミニウムケースの開口部を封口ゴムで密閉して電解コンデンサを構成することができる。
The electrolytic solution for an electrolytic capacitor of the present invention is most suitable for an aluminum electrolytic capacitor.
The aluminum electrolytic capacitor is not particularly limited, and is, for example, a wound electrolytic capacitor in which a separator is interposed between an anode (aluminum oxide foil) having aluminum oxide formed on the anode surface and a cathode aluminum foil. And then wound and wound.
Impregnating the separator of the present invention as a driving electrolyte into a separator, storing it in a cylindrical aluminum case with a bottom together with the positive and negative electrodes, and then closing the opening of the aluminum case with a sealing rubber to constitute an electrolytic capacitor. Can be.

次に本発明の具体的な実施例について説明するが、本発明はこれに限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not limited thereto.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。尚、以下における実施例4は参考例である。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified,% means% by weight and part means parts by weight. Example 4 below is a reference example.

製造例1
6価のソルビトール(a−1)182重量部(1mol)に水酸化カリウム1.1重量部(0.02mol)添加し、170℃でエチレンオキサイド880重量部(20mol)を反応させ、圧平衡に達したところで終点とした。その後、水酸化カリウム除去のために吸着剤としてキヨーワード600、キヨワード700(協和化学工業株式会社製)を用いて水酸化カリウムを1ppm以下にした。プロトン核磁気共鳴装置(H−NMR)チャートと水酸基価でソルビトールのエチレンオキサイド20モル付加物(A−1)が得たことを確認した。
Production Example 1
1.1 parts by weight (0.02 mol) of potassium hydroxide is added to 182 parts by weight (1 mol) of hexavalent sorbitol (a-1), and 880 parts by weight (20 mol) of ethylene oxide is reacted at 170 ° C. to obtain a pressure equilibrium. When it reached, it was the end point. Thereafter, potassium hydroxide was reduced to 1 ppm or less using KYOWARD 600 and KYOWARD 700 (manufactured by Kyowa Chemical Industry Co., Ltd.) as adsorbents to remove potassium hydroxide. Proton nuclear magnetic resonance (H-NMR) chart and hydroxyl value confirmed that 20 mol ethylene oxide adduct of sorbitol (A-1) was obtained.

製造例2
エチレンオキサイドの反応部数を1320重量部(30mol)とした以外は製造例1と同様に反応させてソルビトールのエチレンオキサイド30モル付加物(A−2)を得た。
Production Example 2
The reaction was carried out in the same manner as in Production Example 1 except that the number of reaction parts of ethylene oxide was changed to 1320 parts by weight (30 mol), to obtain a 30 mol ethylene oxide adduct of sorbitol (A-2).

製造例3
ソルビトールを6価のマンニトール(a−2)182重量部(1mol)に変更した以外は製造例1と同様にしてマンニトールのエチレンオキサイド20モル付加物(A−3)を得た。
Production Example 3
Except that sorbitol was changed to 182 parts by weight (1 mol) of hexavalent mannitol (a-2), a 20 mol ethylene oxide adduct of mannitol (A-3) was obtained in the same manner as in Production Example 1.

製造例4
エチレンオキサイド880重量部(20mol)をエチレンオキサイド528重量部(12mol)とプロピレンオキサイド472重量部(8mol)に変更した以外は製造例1と同様にしてソルビトールのエチレンオキサイド12モル/プロピレンオキサイド8モル付加物(A−4)を得た。
Production Example 4
Except that 880 parts by weight (20 mol) of ethylene oxide was changed to 528 parts by weight (12 mol) of ethylene oxide and 472 parts by weight (8 mol) of propylene oxide, the same procedure as in Production Example 1 was carried out to add 12 mol of ethylene oxide of sorbitol and 8 mol of propylene oxide. A product (A-4) was obtained.

比較製造例1
ソルビトールを3価のグリセリン(a’−1)92重量部(1mol)に変更した以外は製造例1と同様にしてグリセリンのエチレンオキサイド20モル付加物(A’−1)を得た。
Comparative Production Example 1
Except that sorbitol was changed to 92 parts by weight (1 mol) of trivalent glycerin (a'-1), a glycerin ethylene oxide 20 mol adduct (A'-1) was obtained in the same manner as in Production Example 1.

実施例1
ソルビトールのエチレンオキサイド20モル付加物(A−1)とエチレングリコール(B−1)とを、表1に記載した配合部数(重量部)で混合した。その後、この溶液100重量部に1,6−デカンジカルボン酸8重量部を添加し、アンモニアガスを1重量部吹き込み中和しながら溶解させ、実施例1の電解液を得た。pHは6.9であった。
Example 1
The sorbitol ethylene oxide 20 mol adduct (A-1) and ethylene glycol (B-1) were mixed in the blending parts (parts by weight) shown in Table 1. Thereafter, 8 parts by weight of 1,6-decanedicarboxylic acid was added to 100 parts by weight of the solution, and 1 part by weight of ammonia gas was blown thereinto to be dissolved while neutralizing, whereby an electrolytic solution of Example 1 was obtained. pH was 6.9.

実施例2〜4、比較例1〜3
表1に記載した部数(重量部)に従い、実施例1と同様の操作を行い、実施例2,3、比較例1〜3の電解液を得た。
Examples 2 to 4, Comparative Examples 1 to 3
According to the number of parts (parts by weight) described in Table 1, the same operation as in Example 1 was performed to obtain electrolyte solutions of Examples 2 and 3 and Comparative Examples 1 to 3.

実施例1〜4、および比較例1〜3で得た電解液を用い、以下に示す方法で、低温(−30℃)の状態を目視で観察し、電導度を測定した結果を表1に記載した。 Using the electrolyte solutions obtained in Examples 1 to 4 and Comparative Examples 1 to 3, the state at a low temperature (−30 ° C.) was visually observed by the method described below, and the results of measuring the electrical conductivity are shown in Table 1. Described.

[−30℃での電解液の状態]
電解液を透明のガラス瓶に入れ、−30℃の恒温槽で24時間放置し、−30℃の状態でガラス瓶を傾けて目視で観察し、下記の判定基準で評価した。
○:透明であり、析出物なく、傾けると流動性がある
△:うっすら白濁するが、全体として均一で、傾けると流動性がある
×:全体が固化
[State of electrolyte at -30 ° C]
The electrolytic solution was placed in a transparent glass bottle, left in a constant temperature bath at -30 ° C for 24 hours, and the glass bottle was tilted at -30 ° C, visually observed, and evaluated according to the following criteria.
:: transparent, no precipitate, and fluid when tilted. △: slightly turbid, but uniform as a whole and fluid when tilted. ×: solidified as a whole.

[電導度の測定]
電導度計CM−40S(東亜電波工業株式会社製)を用いて、30℃での電導度(mS/cm)を測定した。
[Measurement of conductivity]
The conductivity (mS / cm) at 30 ° C. was measured using a conductivity meter CM-40S (manufactured by Toa Denpa Kogyo Co., Ltd.).

[耐電圧の測定]
陽極に10cmの高圧用化成エッチングアルミニウム箔を用い、陰極に10cmのプレーンなアルミニウム箔を用い、25℃にて定電流(2mA)を負荷したときに、電圧の降下(ショート)がみられたときの電圧値を読み取って耐電圧とした。直流安定化電源として高砂製作所製のGP650−05Rを用いて測定した。
[Measurement of withstand voltage]
When a constant current (2 mA) was applied at 25 ° C. using a 10 cm 2 high-purity chemically etched aluminum foil for the anode and a 10 cm 2 plain aluminum foil for the cathode, a drop in voltage (short) was observed. The voltage value at the time of reading was read and regarded as the withstand voltage. The measurement was performed using a GP650-05R manufactured by Takasago Seisakusho as a DC stabilized power supply.

本発明の実施例1〜4の電解液は−30℃でも透明で析出物もなく流動性があり、かつ電導度も高かった。
一方、3価のアルコールのアルキレンオキサイド付加物用いている比較例1の電解液は−30℃で全体が固化してしまい、(A)/(C)の重量比が下限以下である比較例3の電解液は全体が固化した上、耐電圧も低かった。一方、(A)/(C)の重量比が、上限以上である比較例2の電解液は電導度が低かった。
The electrolyte solutions of Examples 1 to 4 of the present invention were transparent even at −30 ° C., had no deposits, had fluidity, and had high conductivity.
On the other hand, the electrolyte solution of Comparative Example 1 using an alkylene oxide adduct of a trihydric alcohol was completely solidified at −30 ° C., and the weight ratio of (A) / (C) was lower than the lower limit. The electrolyte solution was solidified as a whole and had a low withstand voltage. On the other hand, the electrolyte solution of Comparative Example 2 in which the weight ratio of (A) / (C) was equal to or more than the upper limit had low conductivity.

本発明の電解液は、低温でも固化しないため寒冷地でも駆動できる電解コンデンサであるため、屋外での用途、たとえば車載などの用途として好適に使用できる。 Since the electrolytic solution of the present invention is an electrolytic capacitor that does not solidify even at low temperatures and can be driven even in a cold region, it can be suitably used for outdoor use, for example, for use in vehicles.

Claims (4)

4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)、電解質(B)および極性溶媒(C)を必須成分とし、(A)/(C)の重量比が5/95〜40/60であり、前記4〜6価の多価アルコール(a)がソルビトール及び/又はマンニトールであり、前記アルキレンオキサイドがエチレンオキサイド単独であることを特徴とする電解コンデンサ用電解液。 Alkylene oxide adducts of polyhydric alcohols (a) (A), electrolytes (B) and polar solvents (C) are essential components, and the weight ratio of (A) / (C) is 5 / 95- 40/60, wherein the 4- to 6-valent polyhydric alcohol (a) is sorbitol and / or mannitol, and wherein the alkylene oxide is ethylene oxide alone. (A)のアルキレンオキサイドの平均付加モル数が12〜42である請求項1に記載の電解コンデンサ用電解液。   2. The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the average addition mole number of the alkylene oxide of (A) is 12 to 42. (A)の重量平均分子量が1,000〜2,200である請求項1または2に記載の電解コンデンサ用電解液。   The electrolytic solution for an electrolytic capacitor according to claim 1 or 2, wherein the weight average molecular weight of (A) is 1,000 to 2,200. 請求項1〜3のいずれかに記載の電解コンデンサ用電解液を用いた電解コンデンサ。   An electrolytic capacitor using the electrolytic solution for an electrolytic capacitor according to claim 1.
JP2015150822A 2015-07-30 2015-07-30 Electrolyte for electrolytic capacitors Active JP6676303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150822A JP6676303B2 (en) 2015-07-30 2015-07-30 Electrolyte for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150822A JP6676303B2 (en) 2015-07-30 2015-07-30 Electrolyte for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2017034030A JP2017034030A (en) 2017-02-09
JP6676303B2 true JP6676303B2 (en) 2020-04-08

Family

ID=57989316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150822A Active JP6676303B2 (en) 2015-07-30 2015-07-30 Electrolyte for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP6676303B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112837B2 (en) * 2017-07-31 2022-08-04 阪本薬品工業株式会社 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP7010350B1 (en) 2020-09-30 2022-01-26 日本ケミコン株式会社 Cathode and electrolytic capacitors
JP7010351B1 (en) 2020-09-30 2022-01-26 日本ケミコン株式会社 Cathode and electrolytic capacitors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693415B2 (en) * 1989-10-11 1994-11-16 日本ケミコン株式会社 Electrolytic solution for electrolytic capacitors
JP2902684B2 (en) * 1989-10-23 1999-06-07 日本ケミコン株式会社 Electrolyte for electrolytic capacitors
JP2925185B2 (en) * 1989-10-27 1999-07-28 日本ケミコン株式会社 Electrolyte for electrolytic capacitors
JP3172204B2 (en) * 1991-06-10 2001-06-04 ニチコン株式会社 Electrolyte for driving electrolytic capacitors
JP2006186217A (en) * 2004-12-28 2006-07-13 Nichicon Corp Electrolyte for driving aluminium electrolytic capacitor
JP5936099B2 (en) * 2011-08-04 2016-06-15 日油株式会社 Electrolytic solution for electrolytic capacitors
JP2014112651A (en) * 2012-11-08 2014-06-19 Sakamoto Yakuhin Kogyo Co Ltd Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same
JP2015090949A (en) * 2013-11-07 2015-05-11 阪本薬品工業株式会社 Electrolyte for aluminum electrolytic capacitors and aluminum electrolytic capacitor arranged by use thereof

Also Published As

Publication number Publication date
JP2017034030A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US8828261B2 (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using same
JP4964680B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP6676303B2 (en) Electrolyte for electrolytic capacitors
JP7181366B2 (en) Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP4891101B2 (en) Electrolyte
JP2011187705A (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same
JP6473114B2 (en) Electrolytic solution for electrolytic capacitors
EP2767994B1 (en) Electrolytic solution for aluminum electrolyte capacitor and aluminum electrolyte capacitor using same
JP2011003813A (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same
JP4718125B2 (en) Electrolytic solution and electrolytic capacitor using the same
JP2017034114A (en) Electrolyte for electrolytic capacitor
JP4724336B2 (en) Electrolytic solution for electrolytic capacitor drive
JP6423786B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2010171305A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same
JP2005093595A (en) Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP2018032856A (en) Electrolytic solution for electrolytic capacitors and electrolytic capacitor
JP4699650B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2012009653A (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2008085240A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP2017123394A (en) Electrolytic solution for aluminum electrolytic capacitor
JP2017034180A (en) Electrolyte for electrolytic capacitor
JP2017034203A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2012151376A (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using it
JP2006049531A (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using it
JP2007273922A (en) Electrolytic capacitor and electrolyte thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150