JP2017034030A - Electrolyte for electrolytic capacitor - Google Patents
Electrolyte for electrolytic capacitor Download PDFInfo
- Publication number
- JP2017034030A JP2017034030A JP2015150822A JP2015150822A JP2017034030A JP 2017034030 A JP2017034030 A JP 2017034030A JP 2015150822 A JP2015150822 A JP 2015150822A JP 2015150822 A JP2015150822 A JP 2015150822A JP 2017034030 A JP2017034030 A JP 2017034030A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic
- electrolyte
- electrolytic capacitor
- weight
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は電解コンデンサ用電解液およびそれを用いた電解コンデンサに関する。詳しくは、アルミ電解コンデンサ用に好適な電解液に関する。 The present invention relates to an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor using the same. Specifically, the present invention relates to an electrolytic solution suitable for an aluminum electrolytic capacitor.
従来より、アルミニウム電解コンデンサに代表される電解コンデンサは、誘電体が設けられている陽極と、集電用の陰極と陽極、陰極との間に配置された電解液を保持したセパレータとが密封ケース内に収納された構造を有しており、巻回型、積層型の形状のものが広く知られている。 Conventionally, an electrolytic capacitor typified by an aluminum electrolytic capacitor has a sealed case in which an anode provided with a dielectric and a separator holding an electrolytic solution disposed between a cathode for collecting current and the anode and cathode are sealed. It has a structure housed inside and is widely known to have a wound type or a laminated type.
ここで、用いられる電解液には、耐電圧を高める目的で、電解液中にポリエチレングリコールを添加したものが提案されている。(例えば特許文献1)。 Here, for the purpose of increasing the withstand voltage, an electrolytic solution in which polyethylene glycol is added to the electrolytic solution has been proposed. (For example, patent document 1).
しかし、ポリエチレングリコールは、低温で固化し易く、電解コンデンサの使用できる温度領域が狭く、寒冷地では使用できない。
本発明は電圧の高い領域で、低温でも固化にくいいため寒冷地でも駆動でき、十分な耐電圧を有する電解コンデンサを提供することを目的とする。
However, polyethylene glycol is easily solidified at a low temperature, and the temperature range in which the electrolytic capacitor can be used is narrow, so that it cannot be used in cold regions.
An object of the present invention is to provide an electrolytic capacitor having a sufficient withstand voltage that can be driven in a cold region because it is hard to solidify even at low temperatures in a high voltage region.
本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)、電解質(B)および極性溶媒(C)を必須成分とし、(A)/(C)の重量比が5/95〜40/60であることを特徴とする電解コンデンサ用電解液;およびこれを用いた電解コンデンサである。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention comprises an alkylene oxide adduct (A), an electrolyte (B) and a polar solvent (C) of a tetravalent to hexavalent polyhydric alcohol (a) as essential components, and the weight of (A) / (C). An electrolytic solution for electrolytic capacitors characterized by a ratio of 5/95 to 40/60; and an electrolytic capacitor using the same.
本発明の電解コンデンサは、低温、例えば−30℃でもまったく固化せず、耐電圧が十分高いという効果を奏する。 The electrolytic capacitor of the present invention does not solidify even at a low temperature, for example, −30 ° C., and has an effect that the withstand voltage is sufficiently high.
本発明の電解コンデンサ用電解液は、4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)、電解質(B)および極性溶媒(C)を必須成分とし、さらに(A)/(C)の重量比が5/95〜40/60であることを特徴とする。 The electrolytic solution for an electrolytic capacitor of the present invention comprises, as essential components, an alkylene oxide adduct (A) of a 4 to 6 valent polyhydric alcohol (a), an electrolyte (B) and a polar solvent (C), and (A) / The weight ratio of (C) is 5/95 to 40/60.
本発明のアルキレンオキサイド付加物(A)は、4〜6価の多価アルコール(a)のアルキレンオキサイド付加物である。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどが挙げられ、単独でも、2種以上を併用してもよい。
付加させるアルキレンオキサイドの種類は、電極へ浸透しやすいという観点から、エチレンオキサイドが好ましい。
エチレンオキサイドをそれ以外のアルキレンオキサイドと併用する場合は、電極へ浸透しやすくするという観点から、アルキレンオキサイドの70モル%以上がエチレンオキサイドであることが好ましく、さらに好ましくは、85モル%以上である。アルキレンオキサイドの70モル%以上がエチオキサイドであると、耐電圧を上げる効果がある。
The alkylene oxide adduct (A) of the present invention is an alkylene oxide adduct of a tetravalent to hexavalent polyhydric alcohol (a). Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and the like may be used alone or in combination of two or more.
The kind of alkylene oxide to be added is preferably ethylene oxide from the viewpoint of easy penetration into the electrode.
When ethylene oxide is used in combination with other alkylene oxides, 70 mol% or more of alkylene oxide is preferably ethylene oxide, and more preferably 85 mol% or more from the viewpoint of facilitating penetration into the electrode. . When 70 mol% or more of the alkylene oxide is ethoxide, there is an effect of increasing the withstand voltage.
4〜6価の多価アルコール(a)としては、ペンタエリスリトールなどの4価アルコール;キシリトールなどの5価アルコール;ソルビトール、マンニトール、ジペンタエイリスリトールなどの6価アルコールが挙げられる。
これらのうち、(a)としては、6価の多価アルコールが好ましく、ソルビトールとマンニトールがより好ましく、ソルビトールが最も好ましい。
一方、1価〜3価アルコールのアルキレンオキサイド付加物では、低温で固化するため、電解液として使いにくい。
多価アルコール(a)へのアルキレンオキサイドの平均付加モル数は、12〜42モルが好ましく、さらに好ましくは、18〜30モルである。
平均付加モル数が12モル未満であると耐電圧をあげる効果が弱く、42モルを超えると粘度が上がり過ぎて、コンデンサを組み立てるときにセパレータに電解液をしみこませにくくなる。
Examples of the 4- to 6-valent polyhydric alcohol (a) include tetravalent alcohols such as pentaerythritol; pentavalent alcohols such as xylitol; hexavalent alcohols such as sorbitol, mannitol, and dipentaerythritol.
Of these, (a) is preferably a hexavalent polyhydric alcohol, more preferably sorbitol and mannitol, and most preferably sorbitol.
On the other hand, an alkylene oxide adduct of monohydric to trihydric alcohol is hard to use as an electrolyte because it is solidified at a low temperature.
12-42 mol is preferable and, as for the average addition mole number of the alkylene oxide to a polyhydric alcohol (a), More preferably, it is 18-30 mol.
When the average number of added moles is less than 12 moles, the effect of increasing the withstand voltage is weak, and when it exceeds 42 moles, the viscosity is excessively increased and it is difficult for the separator to soak the electrolyte when assembling the capacitor.
4〜6価の多価アルコール(a)のアルキレンオキサイド付加物(A)の数平均分子量は、電導度の観点から1,000〜2,200が好ましく、さらに好ましくは1,000〜1,500である。1,000未満であれば、耐電圧をあげる効果が弱く、2,200を超えれば、コンデンサを組み立てるときにセパレータに電解液をしみこませにくくなる。 The number average molecular weight of the alkylene oxide adduct (A) of the tetravalent to hexavalent polyhydric alcohol (a) is preferably 1,000 to 2,200, more preferably 1,000 to 1,500, from the viewpoint of conductivity. It is. If it is less than 1,000, the effect of increasing the withstand voltage is weak, and if it exceeds 2,200, it is difficult to impregnate the separator with the electrolyte when assembling the capacitor.
4〜6価の多価アルコールのアルキレンオキサイド付加物(A)の合成方法として、多価アルコールに水酸化カリウム、または水酸化ナトリウム触媒のもとエチレンオキサイドやプロピレンオキサイドを反応させるのが一般的である。
本用途であるアルミ電解コンデンサ用途では、金属イオンはコンデンサのショートの原因となるため、カリウムまたは、ナトリウムを吸着処理等で、10ppm以下に好ましくは1ppm以下にする必要がある。
As a method for synthesizing an alkylene oxide adduct (A) of a tetravalent to hexavalent polyhydric alcohol, it is common to react polyhydric alcohol with ethylene oxide or propylene oxide under a potassium hydroxide or sodium hydroxide catalyst. is there.
In the aluminum electrolytic capacitor application, which is the present application, since metal ions cause a short circuit of the capacitor, potassium or sodium needs to be reduced to 10 ppm or less, preferably 1 ppm or less by an adsorption treatment or the like.
本発明の電解質(B)は、電解コンデンサ用電解液に通常使われる電解質であれば特にその種類は限定されず、電解質(B)はカチオン成分(B1)、アニオン成分(B2)から構成される。 The electrolyte (B) of the present invention is not particularly limited as long as it is an electrolyte that is usually used in an electrolytic solution for an electrolytic capacitor. The electrolyte (B) is composed of a cation component (B1) and an anion component (B2). .
カチオン成分(B1)としては、アンモニアカチオン;ジメチルアミン、エチルメチルアミン、ジエチルアミンなどの2級アミンのカチオン;トリメチルアミン、トリエチルアミンなどの3級アミンのカチオン;テトラメチルアンモニウム、1,2,3,4−テトラメチルイミダゾリニウム、1−エチル−2,3−メチルイミダゾリニウムなどの4級アンモニウムカチオンがあり、単独使用でもよいし2種以上を併用してもよい。これらのうち、アンモニアカチオン、2級アミンが好ましく、さらにアンモニアカチオンが好ましい。 As the cation component (B1), ammonia cation; cation of secondary amine such as dimethylamine, ethylmethylamine, diethylamine; cation of tertiary amine such as trimethylamine, triethylamine; tetramethylammonium, 1,2,3,4- There are quaternary ammonium cations such as tetramethylimidazolinium and 1-ethyl-2,3-methylimidazolinium, which may be used alone or in combination of two or more. Of these, ammonia cations and secondary amines are preferred, and ammonia cations are more preferred.
アニオン成分(B2)は、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、1,10−デカンジカルボン酸、マレイン酸、フタル酸、シトラコン酸などのカルボン酸アニオン;リン酸アニオンおよびリン酸エステルなどのリン酸誘導体アニオン;ホウ酸アニオン、ホウ酸誘導体アニオンなどが挙げられる。
なかでも、カルボン酸アニオンが好ましく、さらに、炭素数は4〜12の脂肪族カルボン酸アニオンが好ましい。
アニオンは、単独使用でも2種以上を併用してもよい。
Anionic component (B2) is a carboxylic acid such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 1,10-decanedicarboxylic acid, maleic acid, phthalic acid, citraconic acid Anions; phosphate anions such as phosphate anions and phosphate esters; borate anions and borate derivative anions.
Of these, a carboxylate anion is preferable, and an aliphatic carboxylate anion having 4 to 12 carbon atoms is more preferable.
Anions may be used alone or in combination of two or more.
本発明の極性溶媒(C)は、電解コンデンサ用電解液に通常使われる極性溶媒であれば特に限定されず、例えば、(1)アルコール、(2)アミド、(3)ラクトン、(4)ニトリル、(5)スルホンおよび(6)その他の極性の有機溶媒が挙げられる。 The polar solvent (C) of the present invention is not particularly limited as long as it is a polar solvent usually used in an electrolytic solution for electrolytic capacitors. For example, (1) alcohol, (2) amide, (3) lactone, (4) nitrile , (5) sulfone and (6) other polar organic solvents.
(1)アルコール
1価アルコール(メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ジアセトンアルコール、ベンジルアルコール、アミノアルコール、フルフリルアルコールなど)、2価アルコール(エチレングリコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリコールなど)、3価アルコール(グリセリンなど)、4価以上のアルコール(ヘキシトールなど)など。
(1) Alcohol Monohydric alcohol (methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, diacetone alcohol, benzyl alcohol, amino alcohol, furfuryl alcohol, etc.) Dihydric alcohol (ethylene glycol, propylene glycol, diethylene glycol, hexylene) Glycol, etc.), trihydric alcohol (glycerin, etc.), tetravalent or higher alcohol (hexitol, etc.), etc.
(2)アミド
ホルムアミド(N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミドなど)、アセトアミド(N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミドなど)、プロピオンアミド(N,N−ジメチルプロピオンアミドなど)、ピロリドン(N−メチルピロリドン、N−エチルピロリドンなど)、ヘキサメチルホスホリルアミドなど。
(2) Amide formamide (N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, etc.), acetamide (N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide) N, N-diethylacetamide, etc.), propionamide (N, N-dimethylpropionamide, etc.), pyrrolidone (N-methylpyrrolidone, N-ethylpyrrolidone, etc.), hexamethylphosphorylamide, etc.
(3)ラクトン
γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなど。
(3) Lactone γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, δ-valerolactone, and the like.
(4)ニトリル
アセトニトリル、プロピオニトリル、ブチロニトリル、アクリロニトリル、メタクリルニトリル、ベンゾニトリルなど。
(4) Nitrile Acetonitrile, propionitrile, butyronitrile, acrylonitrile, methacrylonitrile, benzonitrile and the like.
(5)スルホン
スルホラン、ジメチルスルホキシド、エチルメチルスルホンなど。
(5) Sulfone sulfolane, dimethyl sulfoxide, ethyl methyl sulfone and the like.
(6)その他の有機溶媒
1,3−ジメチル−2−イミダゾリジノンなど。
(6) Other organic solvents 1,3-dimethyl-2-imidazolidinone and the like.
これらの極性溶媒(C)は、単独使用でもよいし2種以上を併用してもよい。これらのうち、アルコール、ラクトンが好ましく、さらに好ましくはエチレングリコールとγ−ブチロラクトンであり、最も好ましくは、エチレングリコールである。 These polar solvents (C) may be used alone or in combination of two or more. Of these, alcohol and lactone are preferable, ethylene glycol and γ-butyrolactone are more preferable, and ethylene glycol is most preferable.
本発明の電解液中のアルキレンオキサイド付加物(A)と極性溶媒(C)との重量比(A)/(C)は5/95〜40/60であり、7/90〜30/70がさらに好ましい。
重量比(A)/(C)が5/95未満であると耐電圧が不十分となり、一方、40/60を超えると粘度が高くなるため、コンデンサを組み立てる際ににセパレータに電解液を浸み込みにくくなる。
The weight ratio (A) / (C) of the alkylene oxide adduct (A) and the polar solvent (C) in the electrolytic solution of the present invention is 5/95 to 40/60, and 7/90 to 30/70 is Further preferred.
When the weight ratio (A) / (C) is less than 5/95, the withstand voltage becomes insufficient. On the other hand, when it exceeds 40/60, the viscosity increases. Therefore, when assembling the capacitor, the electrolyte is immersed in the separator. It becomes difficult to penetrate.
本発明の電解液には必要により、電解液に通常用いられる種々の添加剤を添加することができる。
駆動中にわすかに発生する水素ガスを吸収させる目的で、例えば、o−ニトロ安息香酸、p−ニトロ安息香酸、m−ニトロ安息香酸、o−ニトロフェノール、p−ニトロフェノールなどのニトロ化合物などが添加される。また、耐電圧を高めるために、ホウ酸などが添加される。その添加量は、比電導度と電解液への溶解度の観点から、電解液の重量に基づいて、好ましくは5重量%以下、特に好ましくは0.1〜2重量%がよい。
If necessary, various additives usually used in the electrolytic solution can be added to the electrolytic solution of the present invention.
For the purpose of absorbing hydrogen gas generated slightly during driving, for example, nitro compounds such as o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol, etc. Is added. In addition, boric acid or the like is added to increase the withstand voltage. The addition amount is preferably 5% by weight or less, particularly preferably 0.1 to 2% by weight, based on the weight of the electrolytic solution, from the viewpoint of specific conductivity and solubility in the electrolytic solution.
本発明の電解コンデンサ用電解液は、アルミニウム電解コンデンサ用に最適である。
アルミニウム電解コンデンサとしては、特に限定されず、例えば、捲き取り形の電解コンデンサであって、陽極表面に酸化アルミニウムが形成された陽極(酸化アルミニウム箔)と陰極アルミニウム箔との間に、セパレーターを介在させて捲回することにより構成されたコンデンサが挙げられる。
本発明の電解液を駆動用電解液としてセパレーターに含浸し、陽陰極と共に、有底筒状のアルミニウムケースに収納した後、アルミニウムケースの開口部を封口ゴムで密閉して電解コンデンサを構成することができる。
The electrolytic solution for electrolytic capacitors of the present invention is optimal for aluminum electrolytic capacitors.
The aluminum electrolytic capacitor is not particularly limited. For example, it is a scraped electrolytic capacitor, and a separator is interposed between an anode (aluminum oxide foil) in which aluminum oxide is formed on the anode surface and a cathode aluminum foil. For example, a capacitor formed by winding is used.
A separator is impregnated with the electrolytic solution of the present invention as a driving electrolytic solution, housed in a bottomed cylindrical aluminum case together with a positive electrode, and then the aluminum case opening is sealed with a sealing rubber to form an electrolytic capacitor. Can do.
次に本発明の具体的な実施例について説明するが、本発明はこれに限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not limited thereto.
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
製造例1
6価のソルビトール(a−1)182重量部(1mol)に水酸化カリウム1.1重量部(0.02mol)添加し、170℃でエチレンオキサイド880重量部(20mol)を反応させ、圧平衡に達したところで終点とした。その後、水酸化カリウム除去のために吸着剤としてキヨーワード600、キヨワード700(協和化学工業株式会社製)を用いて水酸化カリウムを1ppm以下にした。プロトン核磁気共鳴装置(H−NMR)チャートと水酸基価でソルビトールのエチレンオキサイド20モル付加物(A−1)が得たことを確認した。
Production Example 1
To 182 parts by weight (1 mol) of hexavalent sorbitol (a-1), 1.1 parts by weight (0.02 mol) of potassium hydroxide was added, and 880 parts by weight (20 mol) of ethylene oxide was reacted at 170 ° C. The end point was reached when it reached. Thereafter, potassium hydroxide was adjusted to 1 ppm or less using Kiyoward 600 and Kiyoward 700 (manufactured by Kyowa Chemical Industry Co., Ltd.) as adsorbents for removing potassium hydroxide. It was confirmed that a 20-mol adduct of sorbitol with ethylene oxide (A-1) was obtained with a proton nuclear magnetic resonance apparatus (H-NMR) chart and a hydroxyl value.
製造例2
エチレンオキサイドの反応部数を1320重量部(30mol)とした以外は製造例1と同様に反応させてソルビトールのエチレンオキサイド30モル付加物(A−2)を得た。
Production Example 2
The reaction was carried out in the same manner as in Production Example 1 except that the number of reaction parts of ethylene oxide was 1320 parts by weight (30 mol) to obtain an adduct of 30 mol of ethylene oxide of sorbitol (A-2).
製造例3
ソルビトールを6価のマンニトール(a−2)182重量部(1mol)に変更した以外は製造例1と同様にしてマンニトールのエチレンオキサイド20モル付加物(A−3)を得た。
Production Example 3
Except for changing sorbitol to 182 parts by weight (1 mol) of hexavalent mannitol (a-2), a 20-mole ethylene oxide adduct (A-3) of mannitol was obtained in the same manner as in Production Example 1.
製造例4
エチレンオキサイド880重量部(20mol)をエチレンオキサイド528重量部(12mol)とプロピレンオキサイド472重量部(8mol)に変更した以外は製造例1と同様にしてソルビトールのエチレンオキサイド12モル/プロピレンオキサイド8モル付加物(A−4)を得た。
Production Example 4
Addition of sorbitol ethylene oxide 12 mol / propylene oxide 8 mol in the same manner as in Production Example 1 except that 880 parts by weight (20 mol) of ethylene oxide was changed to 528 parts by weight (12 mol) of ethylene oxide and 472 parts by weight (8 mol) of propylene oxide. A product (A-4) was obtained.
比較製造例1
ソルビトールを3価のグリセリン(a’−1)92重量部(1mol)に変更した以外は製造例1と同様にしてグリセリンのエチレンオキサイド20モル付加物(A’−1)を得た。
Comparative production example 1
Except having changed sorbitol into 92 weight part (1 mol) of trivalent glycerol (a'-1), it carried out similarly to manufacture example 1, and obtained the ethylene oxide 20 mol adduct (A'-1) of glycerol.
実施例1
ソルビトールのエチレンオキサイド20モル付加物(A−1)とエチレングリコール(B−1)とを、表1に記載した配合部数(重量部)で混合した。その後、この溶液100重量部に1,6−デカンジカルボン酸8重量部を添加し、アンモニアガスを1重量部吹き込み中和しながら溶解させ、実施例1の電解液を得た。pHは6.9であった。
Example 1
Sorbitol ethylene oxide 20 mol adduct (A-1) and ethylene glycol (B-1) were mixed in the number of parts (parts by weight) listed in Table 1. Thereafter, 8 parts by weight of 1,6-decanedicarboxylic acid was added to 100 parts by weight of this solution, and 1 part by weight of ammonia gas was blown and dissolved while neutralization to obtain an electrolyte solution of Example 1. The pH was 6.9.
実施例2〜4、比較例1〜3
表1に記載した部数(重量部)に従い、実施例1と同様の操作を行い、実施例2,3、比較例1〜3の電解液を得た。
Examples 2-4, Comparative Examples 1-3
According to the number of parts (parts by weight) described in Table 1, the same operation as in Example 1 was performed to obtain electrolytic solutions of Examples 2 and 3 and Comparative Examples 1 to 3.
実施例1〜4、および比較例1〜3で得た電解液を用い、以下に示す方法で、低温(−30℃)の状態を目視で観察し、電導度を測定した結果を表1に記載した。 Using the electrolytic solutions obtained in Examples 1 to 4 and Comparative Examples 1 to 3, the low temperature (−30 ° C.) state was visually observed by the method shown below, and the results of measuring the conductivity are shown in Table 1. Described.
[−30℃での電解液の状態]
電解液を透明のガラス瓶に入れ、−30℃の恒温槽で24時間放置し、−30℃の状態でガラス瓶を傾けて目視で観察し、下記の判定基準で評価した。
○:透明であり、析出物なく、傾けると流動性がある
△:うっすら白濁するが、全体として均一で、傾けると流動性がある
×:全体が固化
[Electrolyte state at −30 ° C.]
The electrolyte was placed in a transparent glass bottle, left in a -30 ° C. constant temperature bath for 24 hours, tilted at −30 ° C., visually observed, and evaluated according to the following criteria.
○: Transparent, no precipitate, and fluid when tilted. Δ: Slightly clouded, but uniform as a whole, fluid when tilted. X: Solidified as a whole.
[電導度の測定]
電導度計CM−40S(東亜電波工業株式会社製)を用いて、30℃での電導度(mS/cm)を測定した。
[Measurement of conductivity]
The conductivity (mS / cm) at 30 ° C. was measured using a conductivity meter CM-40S (manufactured by Toa Denpa Kogyo Co., Ltd.).
[耐電圧の測定]
陽極に10cm2の高圧用化成エッチングアルミニウム箔を用い、陰極に10cm2のプレーンなアルミニウム箔を用い、25℃にて定電流(2mA)を負荷したときに、電圧の降下(ショート)がみられたときの電圧値を読み取って耐電圧とした。直流安定化電源として高砂製作所製のGP650−05Rを用いて測定した。
[Measurement of withstand voltage]
When a 10 cm 2 high pressure chemical etching aluminum foil is used for the anode and a 10 cm 2 plain aluminum foil is used for the cathode, and a constant current (2 mA) is loaded at 25 ° C., a voltage drop (short) is observed. The withstand voltage was read by reading the voltage value. It measured using GP650-05R made from Takasago Seisakusho as a direct current stabilization power supply.
本発明の実施例1〜4の電解液は−30℃でも透明で析出物もなく流動性があり、かつ電導度も高かった。
一方、3価のアルコールのアルキレンオキサイド付加物用いている比較例1の電解液は−30℃で全体が固化してしまい、(A)/(C)の重量比が下限以下である比較例3の電解液は全体が固化した上、耐電圧も低かった。一方、(A)/(C)の重量比が、上限以上である比較例2の電解液は電導度が低かった。
The electrolytic solutions of Examples 1 to 4 of the present invention were transparent even at −30 ° C., had no deposits, were fluid, and had high electrical conductivity.
On the other hand, the electrolytic solution of Comparative Example 1 using an alkylene oxide adduct of a trivalent alcohol solidifies at -30 ° C., and the weight ratio of (A) / (C) is less than the lower limit. The electrolyte solution was solidified as a whole and had a low withstand voltage. On the other hand, the electrolytic solution of Comparative Example 2 in which the weight ratio of (A) / (C) was equal to or higher than the upper limit had low conductivity.
本発明の電解液は、低温でも固化しないため寒冷地でも駆動できる電解コンデンサであるため、屋外での用途、たとえば車載などの用途として好適に使用できる。 Since the electrolytic solution of the present invention is an electrolytic capacitor that does not solidify even at a low temperature and can be driven even in a cold region, it can be suitably used for outdoor use, for example, on-vehicle use.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015150822A JP6676303B2 (en) | 2015-07-30 | 2015-07-30 | Electrolyte for electrolytic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015150822A JP6676303B2 (en) | 2015-07-30 | 2015-07-30 | Electrolyte for electrolytic capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017034030A true JP2017034030A (en) | 2017-02-09 |
JP6676303B2 JP6676303B2 (en) | 2020-04-08 |
Family
ID=57989316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015150822A Active JP6676303B2 (en) | 2015-07-30 | 2015-07-30 | Electrolyte for electrolytic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6676303B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029520A (en) * | 2017-07-31 | 2019-02-21 | 阪本薬品工業株式会社 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor arranged by use thereof |
JP2021040087A (en) * | 2019-09-05 | 2021-03-11 | 阪本薬品工業株式会社 | Modifier of capacitor electrolyte solution, electrolytic solution for aluminum electrolytic capacitor, which is arranged by use thereof, and aluminum electrolytic capacitor |
WO2022071402A1 (en) | 2020-09-30 | 2022-04-07 | 日本ケミコン株式会社 | Cathode and electrolytic capacitor |
WO2022071403A1 (en) | 2020-09-30 | 2022-04-07 | 日本ケミコン株式会社 | Cathode body and electrolytic capacitor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03126207A (en) * | 1989-10-11 | 1991-05-29 | Nippon Chemicon Corp | Electrolyte for electrolytic capacitor |
JPH03136309A (en) * | 1989-10-23 | 1991-06-11 | Nippon Chemicon Corp | Electrolyte for electrolytic capacitor |
JPH03142813A (en) * | 1989-10-27 | 1991-06-18 | Nippon Chemicon Corp | Electrolytic solution for electrolytic capacitor |
JPH04364015A (en) * | 1991-06-10 | 1992-12-16 | Nichicon Corp | Electrolytic capacitor driving electrolytic solution |
JP2006186217A (en) * | 2004-12-28 | 2006-07-13 | Nichicon Corp | Electrolyte for driving aluminium electrolytic capacitor |
JP2013038131A (en) * | 2011-08-04 | 2013-02-21 | Nof Corp | Electrolyte for electrolytic capacitor |
JP2014112651A (en) * | 2012-11-08 | 2014-06-19 | Sakamoto Yakuhin Kogyo Co Ltd | Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same |
JP2015090949A (en) * | 2013-11-07 | 2015-05-11 | 阪本薬品工業株式会社 | Electrolyte for aluminum electrolytic capacitors and aluminum electrolytic capacitor arranged by use thereof |
-
2015
- 2015-07-30 JP JP2015150822A patent/JP6676303B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03126207A (en) * | 1989-10-11 | 1991-05-29 | Nippon Chemicon Corp | Electrolyte for electrolytic capacitor |
JPH03136309A (en) * | 1989-10-23 | 1991-06-11 | Nippon Chemicon Corp | Electrolyte for electrolytic capacitor |
JPH03142813A (en) * | 1989-10-27 | 1991-06-18 | Nippon Chemicon Corp | Electrolytic solution for electrolytic capacitor |
JPH04364015A (en) * | 1991-06-10 | 1992-12-16 | Nichicon Corp | Electrolytic capacitor driving electrolytic solution |
JP2006186217A (en) * | 2004-12-28 | 2006-07-13 | Nichicon Corp | Electrolyte for driving aluminium electrolytic capacitor |
JP2013038131A (en) * | 2011-08-04 | 2013-02-21 | Nof Corp | Electrolyte for electrolytic capacitor |
JP2014112651A (en) * | 2012-11-08 | 2014-06-19 | Sakamoto Yakuhin Kogyo Co Ltd | Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same |
JP2015090949A (en) * | 2013-11-07 | 2015-05-11 | 阪本薬品工業株式会社 | Electrolyte for aluminum electrolytic capacitors and aluminum electrolytic capacitor arranged by use thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029520A (en) * | 2017-07-31 | 2019-02-21 | 阪本薬品工業株式会社 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor arranged by use thereof |
JP7112837B2 (en) | 2017-07-31 | 2022-08-04 | 阪本薬品工業株式会社 | Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same |
JP2021040087A (en) * | 2019-09-05 | 2021-03-11 | 阪本薬品工業株式会社 | Modifier of capacitor electrolyte solution, electrolytic solution for aluminum electrolytic capacitor, which is arranged by use thereof, and aluminum electrolytic capacitor |
WO2022071402A1 (en) | 2020-09-30 | 2022-04-07 | 日本ケミコン株式会社 | Cathode and electrolytic capacitor |
WO2022071403A1 (en) | 2020-09-30 | 2022-04-07 | 日本ケミコン株式会社 | Cathode body and electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP6676303B2 (en) | 2020-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6676303B2 (en) | Electrolyte for electrolytic capacitors | |
JP5492221B2 (en) | Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same | |
JP7181366B2 (en) | Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same | |
JP6186351B2 (en) | Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same | |
JP2017199815A (en) | Electrolytic solution for aluminum electrolytic capacitors, and aluminum electrolytic capacitor arranged by use thereof | |
JP6473114B2 (en) | Electrolytic solution for electrolytic capacitors | |
JP2017034114A (en) | Electrolyte for electrolytic capacitor | |
WO2019049848A1 (en) | Solid electrolytic capacitor | |
JP4718125B2 (en) | Electrolytic solution and electrolytic capacitor using the same | |
EP2767994A1 (en) | Electrolytic solution for aluminum electrolyte capacitor and aluminum electrolyte capacitor using same | |
JP6829160B2 (en) | Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it | |
JP4724336B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP2010171305A (en) | Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same | |
JP2018032856A (en) | Electrolytic solution for electrolytic capacitors and electrolytic capacitor | |
JP5488998B2 (en) | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same | |
JP2008085240A (en) | Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor | |
JP4699650B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP2008244346A (en) | Electrolyte for electrolytic capacitor | |
WO2014156105A1 (en) | Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using same | |
JP2023097332A (en) | Electrolyte for electrolytic capacitor and electrolytic capacitor | |
JP5064364B2 (en) | Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same | |
JP2017123394A (en) | Electrolytic solution for aluminum electrolytic capacitor | |
JP2011176102A (en) | Driving electrolyte of aluminum electrolytic capacitor | |
JP2017034180A (en) | Electrolyte for electrolytic capacitor | |
JP2012151376A (en) | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6676303 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |