JP2014112651A - Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same - Google Patents

Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same Download PDF

Info

Publication number
JP2014112651A
JP2014112651A JP2013201290A JP2013201290A JP2014112651A JP 2014112651 A JP2014112651 A JP 2014112651A JP 2013201290 A JP2013201290 A JP 2013201290A JP 2013201290 A JP2013201290 A JP 2013201290A JP 2014112651 A JP2014112651 A JP 2014112651A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
driving
electrolyte
electrolytic solution
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201290A
Other languages
Japanese (ja)
Inventor
Satoshi Okumura
聡 奥村
Ryoji Yasuda
亮二 保田
Shigehira Kuriyama
重平 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakamoto Yakuhin Kogyo Co Ltd
Original Assignee
Sakamoto Yakuhin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakamoto Yakuhin Kogyo Co Ltd filed Critical Sakamoto Yakuhin Kogyo Co Ltd
Priority to JP2013201290A priority Critical patent/JP2014112651A/en
Publication of JP2014112651A publication Critical patent/JP2014112651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage resistance improver of an electrolyte for driving an electrolytic capacitor and the electrolyte for driving an electrolytic capacitor containing the same.SOLUTION: For polyglycerol whose glycerin concentration is 10 wt% or less, whose diglycerol concentration is 20 wt% or less, and whose average polymerization degree calculated from a hydroxyl value is from 3 to 20, polyoxyethylene polyglyceryl ether formed by addition of an ethylene oxide is used as an additive agent of an electrolyte for driving an electrolytic capacitor.

Description

本発明は、電解コンデンサ駆動用電解液の耐電圧性向上剤、及びそれを含有する電解コンデンサ駆動用電解液に関するものである。   The present invention relates to a voltage resistance improver for an electrolytic solution for driving an electrolytic capacitor, and an electrolytic solution for driving an electrolytic capacitor containing the same.

電解コンデンサは、粗面化処理を施したアルミニウム、タンタル等の弁金属箔の表面に絶縁性の酸化皮膜層を形成した陽極電極箔と、集電用の陰極電極箔とを電解紙を介して巻回してコンデンサ素子を形成するとともに、電解液を含浸し、外装ケースに収納した構成から成る。電解液は、陽極箔上に形成された誘電体層と集電用の陰極箔の間に介入して、その抵抗分が電解コンデンサに直列に挿入され、電解液の特性が電解コンデンサ特性を左右させる大きな要因となることが知られている。   Electrolytic capacitors consist of an anode electrode foil in which an insulating oxide film layer is formed on the surface of a roughened valve metal foil such as aluminum or tantalum, and a cathode electrode foil for current collection through electrolytic paper. The capacitor element is wound to form a structure, impregnated with an electrolytic solution, and housed in an exterior case. The electrolyte intervenes between the dielectric layer formed on the anode foil and the cathode foil for current collection, and the resistance is inserted in series with the electrolytic capacitor. The characteristics of the electrolyte influence the characteristics of the electrolytic capacitor. It is known to be a major factor.

一般的な電解液は、エチレングリコールや、γ−ブチロラクトンなどの有機溶剤を主成分とし、セバシン酸、ホウ酸アンモニウム塩などの電解質を溶解させた組成から成るが、要求特性に応じて様々な添加剤が加えられる。この電解液の添加剤としては、分子量が大きいものほど、電極箔の酸化皮膜を保護することにより絶縁破壊を抑制するため、耐電圧性が向上することが知られている。また、近年では、車載電装用電源やデジタル家電の使用電圧の上昇に伴い、電解コンデンサ駆動用電解液に対して、高い耐電圧性を有しながら、寒冷地仕様を満たさなければならず、電解液の低温流動性の向上が要望されている。   A general electrolyte solution is composed of a composition in which an organic solvent such as ethylene glycol or γ-butyrolactone is the main component and an electrolyte such as sebacic acid or ammonium borate is dissolved. The agent is added. As an additive of this electrolytic solution, it is known that the higher the molecular weight, the higher the withstand voltage is improved because the dielectric breakdown is suppressed by protecting the oxide film of the electrode foil. In recent years, as the operating voltage of in-vehicle electrical equipment and digital home appliances has increased, the electrolytic solution for driving electrolytic capacitors must satisfy cold region specifications while having high voltage resistance. Improvement of the low temperature fluidity of the liquid is desired.

一般に、中高圧用の電解コンデンサ駆動用電解液として、エチレングリコールから成る溶媒に、耐電圧性を向上する添加剤として、ポリエチレングリコール(特許文献1)や、ポリオキシエチレングリセリルエーテル(特許文献2、特許文献3)、ポリオキシエチレンジグリセリルエーテル(特許文献4)が開示されている。これらは、耐電圧性の向上効果を有するものの、何れも分子量の増加に伴って融点が上昇するため、電解コンデンサ駆動用電解液の低温特性を満足する上で、添加量に制限があった。さらに、より高分子量であるポリオキシアルキレンポリグリセリルエーテル(特許文献5)についても耐電圧性の向上効果が示されているものの、ポリグリセリン重合度や組成、及びポリオキシアルキレンの付加モル数の違いによっては、電解コンデンサ駆動用電解液の低温流動性が悪化する場合や、電解コンデンサの耐電圧性の向上効果が得られにくい場合が存在した。そのため、エチレングリコールに対して高い溶解性を示し、且つ電解コンデンサ駆動用電解液の低温流動性を悪化させずに、優れた耐電圧性の向上効果が得られる添加剤が求められていた。   Generally, as an electrolytic solution for driving an electrolytic capacitor for medium to high pressure, a solvent composed of ethylene glycol, an additive for improving voltage resistance, polyethylene glycol (Patent Document 1), polyoxyethylene glyceryl ether (Patent Document 2, Patent Document 3) and polyoxyethylene diglyceryl ether (Patent Document 4) are disclosed. Although these have an effect of improving withstand voltage, since the melting point increases with increasing molecular weight, the amount of addition is limited to satisfy the low temperature characteristics of the electrolytic solution for driving an electrolytic capacitor. Furthermore, although polyoxyalkylene polyglyceryl ether having a higher molecular weight (Patent Document 5) has also been shown to improve voltage endurance, it depends on the degree of polyglycerin polymerization and composition, and the difference in the number of added polyoxyalkylenes. However, there are cases where the low-temperature fluidity of the electrolytic solution for driving the electrolytic capacitor is deteriorated, or the improvement effect of the voltage resistance of the electrolytic capacitor is difficult to obtain. Therefore, there has been a demand for an additive that exhibits high solubility with respect to ethylene glycol and that can improve the voltage resistance without deteriorating the low-temperature fluidity of the electrolytic solution for driving an electrolytic capacitor.

特開1987−268121号公報JP 1987-268121 A 特開2004−165262号公報JP 2004-165262 A 特開2006−12984号公報JP 2006-12984 A 特公平7−70444号公報Japanese Patent Publication No. 7-70444 特許第2925185号公報Japanese Patent No. 2925185

本発明は、耐電圧性に優れ、且つ低温特性が良好である電解コンデンサ駆動用電解液を提供することを課題とする。   An object of the present invention is to provide an electrolytic solution for driving an electrolytic capacitor that has excellent voltage resistance and good low-temperature characteristics.

グリセリン濃度が10重量%以下、ジグリセリン濃度が20重量%以下であり、且つ水酸基価から算出される平均重合度が3から20であるポリグリセリンに対して、エチレンオキサイドが付加されて成るポリオキシエチレンポリグリセリルエーテルを電解コンデンサ駆動用電解液の添加剤として使用することにより、耐電圧性の向上効果を有する電解コンデンサ駆動用電解液を見出し、本発明を完成するに至った。   Polyoxyl obtained by adding ethylene oxide to polyglycerin having a glycerin concentration of 10% by weight or less, a diglycerin concentration of 20% by weight or less, and an average degree of polymerization calculated from a hydroxyl value of 3 to 20. By using ethylene polyglyceryl ether as an additive for an electrolytic solution for driving an electrolytic capacitor, an electrolytic solution for driving an electrolytic capacitor having an effect of improving voltage resistance was found, and the present invention was completed.

本発明の電解コンデンサ駆動用電解液の耐電圧性向上剤を使用することにより、耐電圧性、及び低温特性に優れた電解コンデンサを製造することができる。   By using the voltage resistance improver of the electrolytic solution for driving an electrolytic capacitor of the present invention, an electrolytic capacitor excellent in voltage resistance and low temperature characteristics can be manufactured.

以下に本説明を実施するための形態をより詳細に説明するが、本発明の範囲はこの実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で、変更等が加えられた形態も本発明に属する。   Although the form for implementing this description is demonstrated in detail below, the scope of the present invention is not limited to this embodiment, and the change etc. were added in the range which does not impair the meaning of the present invention. The form also belongs to the present invention.

本発明のポリオキシエチレンポリグリセリルエーテルに用いられるポリグリセリンは、グリセリンの脱水縮合反応、グリシドール、エピクロルヒドリン、グリセリンハロヒドリン等のグリセリン類縁物質を用いての合成、あるいは合成グリセリンのグリセリン蒸留残分からの回収等によって得られるが、一般的には、グリセリンに少量のアルカリ触媒を加えて200℃以上の高温に加熱し、精製する水を除去しながら重縮合させる方法によって得られる。反応は逐次的な分子間脱水反応により、順次高重合体が生成するが、反応組成物は均質なものではなく、未反応グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン等の複雑な混合組成物となり、反応温度が高いほど、あるいは反応時間が長いほど反応は高重合度側にシフトする。また、未反応のグリセリンは減圧蒸留による蒸留が可能であり、ジグリセリンは分子蒸留による蒸留が可能であるため、一般的にはジグリセリンは高純度品が使用され、それ以上の重合度のポリグリセリンは、複雑な多成分の混合物や、グリセリン、ジグリセリンを蒸留した残分が使用される。   The polyglycerin used in the polyoxyethylene polyglyceryl ether of the present invention is a dehydration condensation reaction of glycerin, synthesis using a glycerin-related substance such as glycidol, epichlorohydrin, glycerin halohydrin, or recovery of synthetic glycerin from a glycerin distillation residue. In general, it is obtained by a method in which a small amount of an alkali catalyst is added to glycerin and heated to a high temperature of 200 ° C. or higher and polycondensed while removing water to be purified. The reaction is a sequential intermolecular dehydration reaction, and a high polymer is produced in sequence, but the reaction composition is not homogeneous and becomes a complex mixed composition such as unreacted glycerin, diglycerin, triglycerin, and tetraglycerin. The higher the reaction temperature or the longer the reaction time, the more the reaction shifts to the higher degree of polymerization. In addition, since unreacted glycerin can be distilled by vacuum distillation and diglycerin can be distilled by molecular distillation, diglycerin is generally used as a high-purity product and has a degree of polymerization higher than that. As the glycerin, a complex multi-component mixture and a residue obtained by distilling glycerin and diglycerin are used.

ポリグリセリンの組成分析は、一例として、ポリグリセリン試料を約0.5g、及び内部標準物質としてパルミチン酸メチル(1級試薬;キシダ化学)を約0.05g精秤し、ピリジン(特級試薬;キシダ化学)約1.8mlにこれらを溶解させ、次いで、この溶液20μlに対してTMS−HT(試薬;東京化成工業)を0.2ml注入し、温浴にて反応後に上澄み液1μLを下記の分析に供することで判定される。   As an example, the polyglycerin composition is analyzed by weighing about 0.5 g of a polyglycerin sample and about 0.05 g of methyl palmitate (first grade reagent; Kishida Chemical) as an internal standard substance, and pyridine (special grade reagent; Chemistry) Dissolve them in about 1.8 ml, then inject 0.2 ml of TMS-HT (reagent; Tokyo Kasei Kogyo) into 20 μl of this solution. After reaction in a warm bath, 1 μL of the supernatant liquid is subjected to the following analysis. It is determined by providing.

ガスクロマトグラフ:GC−14B(島津製作所製)
カラム:OV−1(GLサイエンス製、内径3mm、長さ1.5m)
カラム温度:100℃〜350℃(昇温速度10℃/min)
キャリアーガス:ヘリウム(50ml/min)
注入部温度:350℃
検出器温度:350℃
検出器:FID
Gas chromatograph: GC-14B (manufactured by Shimadzu Corporation)
Column: OV-1 (manufactured by GL Sciences, inner diameter 3 mm, length 1.5 m)
Column temperature: 100 ° C. to 350 ° C. (temperature increase rate 10 ° C./min)
Carrier gas: helium (50ml / min)
Injection part temperature: 350 ° C
Detector temperature: 350 ° C
Detector: FID

本発明のポリオキシエチレンポリグリセリルエーテルに用いられるポリグリセリンは、グリセリン濃度が10重量%以下、且つジグリセリン濃度が20重量%以下、好ましくはグリセリン濃度が5重量%以下、且つジグリセリン濃度が15重量%以下である。グリセリン濃度が10重量%を越えるポリグリセリンを用いた場合、または、ジグリセリン濃度が20重量%を越えるポリグリセリンを用いた場合では、ポリオキシエチレンポリグリセリルエーテルの低温流動性が低下し、電解コンデンサの耐電圧特性の低下に繋がる恐れがある。   The polyglycerin used in the polyoxyethylene polyglyceryl ether of the present invention has a glycerin concentration of 10% by weight or less, a diglycerin concentration of 20% by weight or less, preferably a glycerin concentration of 5% by weight or less, and a diglycerin concentration of 15% by weight. % Or less. When polyglycerin having a glycerin concentration exceeding 10% by weight or polyglycerin having a diglycerin concentration exceeding 20% by weight is used, the low-temperature fluidity of polyoxyethylene polyglyceryl ether decreases, and the electrolytic capacitor There is a risk of lowering the withstand voltage characteristics.

本発明のポリオキシエチレンポリグリセリルエーテルに用いられるポリグリセリンは、水酸基価から算出した平均重合度が3から20、好ましくは平均重合度が4から10のものを使用する。ここで、平均重合度は、末端基分析法による水酸基価から算出されるポリグリセリンの平均重合度(n)である。詳しくは、次式(式1)、及び(式2)から平均重合度が算出される。
(式1)分子量=74n+18
(式2)水酸基価=56110(n+2)/分子量
上記(式2)中の水酸基価とは、ポリグリセリンに含まれる水酸基数の大小の指標となる数値であり、1gのポリグリセリンに含まれる遊離ヒドロキシル基をアセチル化するために必要な酢酸を中和するのに要する水酸化カリウムのミリグラム数をいう。水酸化カリウムのミリグラム数は、社団法人日本油化学会編集、「日本油化学会制定、基準油脂分析試験法(I)、2003年度版に準じて算出される。
The polyglycerin used in the polyoxyethylene polyglyceryl ether of the present invention is one having an average degree of polymerization calculated from the hydroxyl value of 3 to 20, preferably 4 to 10. Here, the average degree of polymerization is the average degree of polymerization (n) of polyglycerin calculated from the hydroxyl value by end group analysis. Specifically, the average degree of polymerization is calculated from the following formulas (Formula 1) and (Formula 2).
(Formula 1) Molecular weight = 74n + 18
(Formula 2) Hydroxyl value = 56110 (n + 2) / Molecular weight The hydroxyl value in the above (Formula 2) is a numerical value that is an index of the number of hydroxyl groups contained in polyglycerin, and is free contained in 1 g of polyglycerin. The number of milligrams of potassium hydroxide required to neutralize the acetic acid required to acetylate the hydroxyl group. The number of milligrams of potassium hydroxide is calculated in accordance with the Japan Oil Chemists 'Society, “Established by the Japan Oil Chemists' Society, Standard Oil Analysis Test Method (I), 2003 edition”.

本発明のポリオキシエチレンポリグリセリルエーテルに用いられるエチレンオキサイドの付加モル数は20から100モル、好ましくは、25から90モル、さらに好ましくは、30から80モルである。エチレンオキサイドの付加モル数が20モル未満の場合では、電解コンデンサの耐電圧特性の低下に繋がる恐れがあり、一方、100モルを越える場合では、ポリオキシエチレンポリグリセリルエーテルの低温流動性が低下する。   The number of moles of ethylene oxide used in the polyoxyethylene polyglyceryl ether of the present invention is 20 to 100 moles, preferably 25 to 90 moles, and more preferably 30 to 80 moles. When the added mole number of ethylene oxide is less than 20 moles, the withstand voltage characteristic of the electrolytic capacitor may be lowered. On the other hand, when it exceeds 100 moles, the low temperature fluidity of polyoxyethylene polyglyceryl ether is lowered.

本発明で使用されるポリオキシエチレンポリグリセリルエーテルの−10℃における粘度は100,000mPa・s未満であり、好ましくは50,000mPa・s未満であり、さらに好ましくは、30,000mPa・s未満である。−10℃における粘度が100,000mPa・sを越える場合では、ポリオキシエチレンポリグリセリルエーテルの結晶性が高くなるため、エチレングリコールに対する溶解性が低下し、電解コンデンサの耐電圧特性の低下に繋がる恐れがある。   The viscosity at −10 ° C. of the polyoxyethylene polyglyceryl ether used in the present invention is less than 100,000 mPa · s, preferably less than 50,000 mPa · s, and more preferably less than 30,000 mPa · s. . When the viscosity at −10 ° C. exceeds 100,000 mPa · s, the crystallinity of polyoxyethylene polyglyceryl ether is increased, so that the solubility in ethylene glycol is lowered, which may lead to a decrease in the withstand voltage characteristics of the electrolytic capacitor. is there.

本発明の電解コンデンサ駆動用電解液は、ポリオキシエチレンポリグリセリルエーテルを0.5重量%から50重量%、好ましくは、1.0重量%から40重量%、さらに好ましくは、5.0重量%から30重量%含有する。含有量が0.5重量%未満では電解コンデンサの耐電圧性の向上効果が低い場合があり、一方、50重量%を越える場合では、電解コンデンサ駆動用電解液の低温特性が低下し、電解コンデンサの耐電圧特性の低下に繋がる恐れがある。   The electrolytic solution for driving an electrolytic capacitor of the present invention comprises 0.5% to 50% by weight of polyoxyethylene polyglyceryl ether, preferably 1.0% to 40% by weight, and more preferably 5.0% by weight. Contains 30% by weight. If the content is less than 0.5% by weight, the effect of improving the withstand voltage of the electrolytic capacitor may be low. On the other hand, if the content exceeds 50% by weight, the low-temperature characteristics of the electrolytic solution for driving the electrolytic capacitor will deteriorate, and the electrolytic capacitor There is a risk that the withstand voltage characteristic of the battery may be lowered.

本発明の電解コンデンサ駆動用電解液は、ポリオキシエチレンポリグリセリルエーテルと、有機溶媒、及び有機酸、無機酸、又はその塩を溶質として含有する。有機溶媒としては、エチレングリコール、γ-ブチロラクトンなどが挙げられる。また、有機酸、又はその塩としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸、1,6−デカンジカルボン酸、2−ブチルオクタン二酸、ならびにそのアンモニウム塩、ナトリウム塩、カリウム塩、アミン塩などが挙げられる。さらに、無機酸、又はその塩としては、炭酸、次亜リン酸、亜リン酸、リン酸、ホウ酸、過塩素酸、ならびにそのアンモニウム塩、ナトリウム塩、カリウム塩、アミン塩などが挙げられる。但し、それらに限定されるものではない。   The electrolytic solution for driving an electrolytic capacitor of the present invention contains polyoxyethylene polyglyceryl ether, an organic solvent, and an organic acid, an inorganic acid, or a salt thereof as a solute. Examples of the organic solvent include ethylene glycol and γ-butyrolactone. Examples of organic acids or salts thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, 1,10-decanedicarboxylic acid, 1,6-decanedicarboxylic acid, 2- Examples thereof include butyloctanedioic acid and its ammonium salt, sodium salt, potassium salt, and amine salt. Furthermore, examples of the inorganic acid or a salt thereof include carbonic acid, hypophosphorous acid, phosphorous acid, phosphoric acid, boric acid, perchloric acid, and ammonium salts, sodium salts, potassium salts, and amine salts thereof. However, it is not limited to them.

次に、本発明を実施例及び比較例により詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。尚、今回の合成に使用したポリグリセリンは、下記の合成例に示すポリグリセリンAからEであり、水酸基価から算出される平均重合度は、それぞれ4.5、6、10、2、4である。以下、本発明の実施例及び比較例を示す。ただし、%は重量基準である。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited only to these Examples. In addition, the polyglycerol used for this synthesis | combination is the polyglycerol A to E shown in the following synthesis examples, and the average degree of polymerization calculated from a hydroxyl value is 4.5, 6, 10, 2, 4 respectively. is there. Examples of the present invention and comparative examples are shown below. However,% is based on weight.

(ポリオキシエチレンポリグリセリルエーテルの粘度測定)
ポリオキシエチレンポリグリセリルエーテルについて、E型粘度計DV−II+Pro(ブルックフィールド社製)を用いて、測定温度が−10℃、スピンドルNo.42、ローター回転数0.5rpmの条件にて、粘度を測定した。尚、測定値は、ローターの回転開始から1分後の値とした。
(Measurement of viscosity of polyoxyethylene polyglyceryl ether)
For polyoxyethylene polyglyceryl ether, using an E-type viscometer DV-II + Pro (Brookfield), the measurement temperature was −10 ° C., spindle no. The viscosity was measured under the conditions of 42, rotor rotation speed 0.5 rpm. The measured value was a value one minute after the start of rotation of the rotor.

(エチレングリコール・ポリオキシエチレンポリグリセリルエーテル混合液の低温流動性評価)
エチレングリコールを80g、ポリオキシエチレンポリグリセリルエーテルを20g量り取り、80℃以下にて撹拌混合した。エチレングリコールと均一に相溶化したものについては、−25℃にて24時間静置した際の低温流動性を下記基準AからCの何れであるか判定した。一方、エチレングリコールと相溶化しないものについては、下記基準のDと判定した。
(Evaluation of low-temperature fluidity of ethylene glycol / polyoxyethylene polyglyceryl ether mixture)
80 g of ethylene glycol and 20 g of polyoxyethylene polyglyceryl ether were weighed and mixed with stirring at 80 ° C. or lower. For those that were uniformly compatibilized with ethylene glycol, it was determined whether the low-temperature fluidity when allowed to stand at −25 ° C. for 24 hours was any of the following criteria A to C. On the other hand, those not compatibilized with ethylene glycol were determined as D of the following criteria.

(−25℃における低温流動性の評価基準)
A:流動性がある状態
B:白濁があるが、流動性がある状態
C:白濁、固化状態
D:エチレングリコールに対して非相溶状態
(Evaluation criteria for low temperature fluidity at -25 ° C)
A: Fluidity state B: White turbidity but fluidity state C: White turbidity, solidified state D: Incompatible state with ethylene glycol

(電解液を用いた耐電圧測定)
溶媒にエチレングリコール、溶質に2−ブチルオクタン二酸・アンモニウム塩、添加剤として次亜リン酸アンモニウム、耐電圧向上剤としてポリオキシエチレンポリグリセリルエーテルを調合し、電解液を調製した。調製した電解液を85℃に加温し、定格皮膜耐電圧が665V、静電容量が0.45μF/cm(日本蓄電器工業製)である陽極箔を電解液に浸し、直流安定化電源(菊水電子工業)を用いて、電流密度0.6mA/cmの条件にて一定電流を陽極箔に印加した。耐電圧の評価は、一定電流を印加したときの時間−電圧の上昇カーブを測定し、初めにスパークまたはシンチレーションが観測された電圧を読み取り、下記の指標に従って耐電圧を判定した。尚、耐電圧向上剤を添加していない電解液の耐電圧は427Vであった。
(Withstand voltage measurement using electrolyte)
Ethylene glycol was used as a solvent, 2-butyloctanedioic acid / ammonium salt as a solute, ammonium hypophosphite as an additive, and polyoxyethylene polyglyceryl ether as a withstand voltage improver to prepare an electrolytic solution. The prepared electrolytic solution was heated to 85 ° C., and an anode foil having a rated film withstand voltage of 665 V and a capacitance of 0.45 μF / cm 2 (manufactured by Nippon Denki Kogyo Co., Ltd.) was immersed in the electrolytic solution. A constant current was applied to the anode foil under the condition of a current density of 0.6 mA / cm 2 using Kikusui Electronics Corporation. The withstand voltage was evaluated by measuring the time-voltage rise curve when a constant current was applied, reading the voltage at which spark or scintillation was first observed, and judging the withstand voltage according to the following index. In addition, the withstand voltage of the electrolyte without adding the withstand voltage improver was 427V.

(無添加に対する耐電圧の向上幅の指標)
○:10V以上
△:5V以上、10V未満
×:5V未満
(Indicator of improvement in withstand voltage against additive)
○: 10V or more Δ: 5V or more, less than 10V ×: less than 5V

(ポリグリセリンAからEの合成)
温度計、撹拌装置を付した四ツ口フラスコに精製グリセリン(阪本薬品工業株式会社製)、及び触媒として水酸化ナトリウムを添加し、窒素気流下にて250℃で反応させ、ポリグリセリン組成物を得た。次いで、この組成物を減圧蒸留して表1に示すポリグリセリンA、B、Dを得た。なお、減圧蒸留工程を実施しないものとして、ポリグリセリンC、及びEを得た。
(Synthesis of polyglycerol A to E)
A refined glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) and sodium hydroxide as a catalyst are added to a four-necked flask equipped with a thermometer and a stirrer, and reacted at 250 ° C. under a nitrogen stream to obtain a polyglycerin composition. Obtained. Subsequently, this composition was distilled under reduced pressure to obtain polyglycerols A, B and D shown in Table 1. In addition, polyglycerol C and E were obtained as what does not implement a vacuum distillation process.

Figure 2014112651
Figure 2014112651

(実施例1)
加熱装置のついた耐圧容器に、ポリグリセリンAを350g(1モル)、及び水酸化カリウムを2g添加し、窒素雰囲気とした。これを120℃に昇温し、エチレンオキサイド1760g(40モル)を添加し、150℃で3時間反応させた。その後、反応物を100℃に冷却して、未反応のエチレンオキサイドガスを減圧留去し、さらに80℃に冷却した後、触媒を中和し、−10℃における粘度14440mPa・sであるポリオキシエチレンポリグリセリルエーテル(PGEO1)を得た。次いで、エチレングリコール80gに対し、PGEO1を20g混合し、−25℃における低温流動性評価を行った。続いて、10.0gの2−ブチルオクタン二酸・アンモニウム塩をエチレングリコール82.98gに溶解させた。そこに、次亜リン酸アンモニウムの20重量%水溶液を0.1g、PGEO1を5.0g添加し、カールフィッシャー水分計KF−100(三菱化学製)を用いて、電解液の水分含有量を2.0%に調製した。得られた電解液を用いて、耐電圧測定を行った。これらの結果について、表2、表3、及び表4に示す。
Example 1
350 g (1 mol) of polyglycerin A and 2 g of potassium hydroxide were added to a pressure-resistant container equipped with a heating device to form a nitrogen atmosphere. The temperature was raised to 120 ° C., 1760 g (40 mol) of ethylene oxide was added, and the mixture was reacted at 150 ° C. for 3 hours. Thereafter, the reaction product was cooled to 100 ° C., unreacted ethylene oxide gas was distilled off under reduced pressure, and further cooled to 80 ° C., after which the catalyst was neutralized and a polyoxy having a viscosity of −14440 mPa · s at −10 ° C. Ethylene polyglyceryl ether (PGEO1) was obtained. Next, 20 g of PGEO1 was mixed with 80 g of ethylene glycol, and the low temperature fluidity evaluation at −25 ° C. was performed. Subsequently, 10.0 g of 2-butyloctanedioic acid / ammonium salt was dissolved in 82.98 g of ethylene glycol. Thereto, 0.1 g of 20% by weight aqueous solution of ammonium hypophosphite and 5.0 g of PGEO1 were added, and the water content of the electrolyte was adjusted to 2 using a Karl Fischer moisture meter KF-100 (manufactured by Mitsubishi Chemical). Prepared to 0.0%. Withstand voltage measurement was performed using the obtained electrolyte solution. These results are shown in Table 2, Table 3, and Table 4.

(実施例2から10)
ポリグリセリンの種類、エチレンオキサイドの付加モル数を変化させた以外は実施例1と同様にPGEO2から10を合成し、−10℃における粘度測定、更に、エチレングリコール・ポリオキシエチレンポリグリセリルエーテル混合液の低温流動性評価、及び電解液の調製、耐電圧の測定を行った。これらの結果について、表2、表3、及び表4に示す。
(Examples 2 to 10)
10 was synthesized from PGEO2 in the same manner as in Example 1 except that the kind of polyglycerin and the number of added moles of ethylene oxide were changed, viscosity measurement at −10 ° C., and further, ethylene glycol / polyoxyethylene polyglyceryl ether mixed solution Low temperature fluidity evaluation, preparation of electrolyte solution, and measurement of withstand voltage were performed. These results are shown in Table 2, Table 3, and Table 4.

Figure 2014112651
Figure 2014112651

Figure 2014112651
Figure 2014112651

Figure 2014112651
Figure 2014112651

(比較例1から4)
ポリグリセリンの種類、エチレンオキサイドの付加モル数を変化させた以外は実施例1と同様にPGEO11から14を合成し、−10℃における粘度測定、更に、エチレングリコール・ポリオキシエチレンポリグリセリルエーテル混合液の低温流動性評価、及び電解液の調製、耐電圧の測定を行った。これらの結果について、表5、表6、及び表7に示す。
(Comparative Examples 1 to 4)
PGEO 11 to 14 were synthesized in the same manner as in Example 1 except that the type of polyglycerin and the number of moles of ethylene oxide added were changed, viscosity measurement at −10 ° C., and further, ethylene glycol / polyoxyethylene polyglyceryl ether mixed solution Low temperature fluidity evaluation, preparation of electrolyte solution, and measurement of withstand voltage were performed. These results are shown in Table 5, Table 6, and Table 7.

(比較例5)
ポリオキシエチレンポリグリセリルエーテルの代わりに、ポリオキシエチレングリセリルエーテルを用いた以外は、実施例1と同様に評価した。これらの結果について、表5、表6、及び表7に示す。
(Comparative Example 5)
Evaluation was performed in the same manner as in Example 1 except that polyoxyethylene glyceryl ether was used instead of polyoxyethylene polyglyceryl ether. These results are shown in Table 5, Table 6, and Table 7.

(比較例6)
ポリオキシエチレンポリグリセリルエーテルの代わりに、ポリエチレングリコール(数平均分子量400)を用いた以外は、実施例1と同様に評価した。これらの結果について、表5、表6、及び表7に示す。
(Comparative Example 6)
Evaluation was conducted in the same manner as in Example 1 except that polyethylene glycol (number average molecular weight 400) was used instead of polyoxyethylene polyglyceryl ether. These results are shown in Table 5, Table 6, and Table 7.

(比較例7)
ポリオキシエチレンポリグリセリルエーテルの代わりに、ポリエチレングリコール(数平均分子量1000)を用いた以外は、実施例1と同様に評価した。これらの結果について、表5、表6、及び表7に示す。
(Comparative Example 7)
Evaluation was conducted in the same manner as in Example 1 except that polyethylene glycol (number average molecular weight 1000) was used instead of polyoxyethylene polyglyceryl ether. These results are shown in Table 5, Table 6, and Table 7.

(比較例8)
ポリオキシエチレンポリグリセリルエーテルの代わりに、ポリビニルアルコールを用いた以外は、実施例1と同様に評価した。これらの結果について、表5、表6、及び表7に示す。
(Comparative Example 8)
Evaluation was performed in the same manner as in Example 1 except that polyvinyl alcohol was used instead of polyoxyethylene polyglyceryl ether. These results are shown in Table 5, Table 6, and Table 7.

Figure 2014112651
Figure 2014112651

Figure 2014112651
Figure 2014112651

Figure 2014112651
Figure 2014112651

グリセリン濃度が10重量%以下、ジグリセリン濃度が20重量%以下であり、且つ水酸基価から算出される平均重合度が3から20であるポリグリセリンに対して、エチレンオキサイドが付加されて成るポリオキシエチレンポリグリセリルエーテルを電解コンデンサ駆動用電解液の添加剤として使用することによって、優れた低温流動性を示し、且つ耐電圧が高い電解液を得られることが明らかとなった。   Polyoxyl obtained by adding ethylene oxide to polyglycerin having a glycerin concentration of 10% by weight or less, a diglycerin concentration of 20% by weight or less, and an average degree of polymerization calculated from a hydroxyl value of 3 to 20. It has been clarified that by using ethylene polyglyceryl ether as an additive for an electrolytic solution for driving an electrolytic capacitor, an electrolytic solution exhibiting excellent low-temperature fluidity and having a high withstand voltage can be obtained.

本発明のポリオキシエチレンポリグリセリルエーテルを電解コンデンサ駆動用電解液の耐電圧向上剤に使用することにより、耐電圧性、及び低温特性に優れた電解コンデンサを製造することができる。   By using the polyoxyethylene polyglyceryl ether of the present invention as a voltage resistance improver for an electrolytic solution for driving an electrolytic capacitor, an electrolytic capacitor excellent in voltage resistance and low temperature characteristics can be produced.

Claims (5)

グリセリン濃度が10重量%以下、ジグリセリン濃度が20重量%以下であり、且つ水酸基価から算出される平均重合度が3から20であるポリグリセリンに対して、エチレンオキサイドが付加されて成るポリオキシエチレンポリグリセリルエーテルであることを特徴とする電解コンデンサ駆動用電解液の耐電圧性向上剤。   Polyoxyl obtained by adding ethylene oxide to polyglycerin having a glycerin concentration of 10% by weight or less, a diglycerin concentration of 20% by weight or less, and an average degree of polymerization calculated from a hydroxyl value of 3 to 20. A voltage resistance improver for an electrolytic solution for driving an electrolytic capacitor, which is ethylene polyglyceryl ether. ポリグリセリンに対するエチレンオキサイドの付加モル数が20から100モルであることを特徴とする請求項1に記載の電解コンデンサ駆動用電解液の耐電圧性向上剤。   The withstand voltage improver of the electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the number of moles of ethylene oxide added to polyglycerin is 20 to 100 moles. −10℃における粘度が100,000mPa・s未満であることを特徴とする請求項1から2何れかに記載の電解コンデンサ駆動用電解液の耐電圧性向上剤。   3. The withstand voltage improver for an electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the viscosity at −10 ° C. is less than 100,000 mPa · s. 請求項1から3何れかに記載の電解コンデンサ駆動用電解液の耐電圧性向上剤を0.5重量%から50重量%含有することを特徴とする電解コンデンサ駆動用電解液。   4. An electrolytic solution for driving an electrolytic capacitor, comprising 0.5% by weight to 50% by weight of the voltage resistance improver of the electrolytic solution for driving an electrolytic capacitor according to any one of claims 1 to 3. 請求項1から3何れかに記載の電解コンデンサ駆動用電解液の耐電圧向上剤と、有機溶媒、及び有機酸、無機酸、又はその塩を溶質として含有する事を特徴とする電解コンデンサ駆動用電解液。   The electrolytic capacitor driving electrolyte comprising the electrolytic solution for driving an electrolytic capacitor according to any one of claims 1 to 3, an organic solvent, and an organic acid, an inorganic acid, or a salt thereof as a solute. Electrolytic solution.
JP2013201290A 2012-11-08 2013-09-27 Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same Pending JP2014112651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201290A JP2014112651A (en) 2012-11-08 2013-09-27 Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012246682 2012-11-08
JP2012246682 2012-11-08
JP2013201290A JP2014112651A (en) 2012-11-08 2013-09-27 Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same

Publications (1)

Publication Number Publication Date
JP2014112651A true JP2014112651A (en) 2014-06-19

Family

ID=51169582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201290A Pending JP2014112651A (en) 2012-11-08 2013-09-27 Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same

Country Status (1)

Country Link
JP (1) JP2014112651A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017259A (en) * 2015-07-03 2017-01-19 阪本薬品工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2017034030A (en) * 2015-07-30 2017-02-09 三洋化成工業株式会社 Electrolyte for electrolytic capacitor
JP2018125410A (en) * 2017-02-01 2018-08-09 阪本薬品工業株式会社 Solid electrolytic capacitor
JP2020202362A (en) * 2019-06-04 2020-12-17 阪本薬品工業株式会社 Modifier for capacitor electrolyte solution, electrolyte solution arranged by use thereof, and electrolytic capacitor
CN114005679A (en) * 2021-12-16 2022-02-01 肇庆绿宝石电子科技股份有限公司 Aluminum electrolytic capacitor for gallium nitride charger and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017259A (en) * 2015-07-03 2017-01-19 阪本薬品工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2017034030A (en) * 2015-07-30 2017-02-09 三洋化成工業株式会社 Electrolyte for electrolytic capacitor
JP2018125410A (en) * 2017-02-01 2018-08-09 阪本薬品工業株式会社 Solid electrolytic capacitor
JP2020202362A (en) * 2019-06-04 2020-12-17 阪本薬品工業株式会社 Modifier for capacitor electrolyte solution, electrolyte solution arranged by use thereof, and electrolytic capacitor
JP7386053B2 (en) 2019-06-04 2023-11-24 阪本薬品工業株式会社 Modifier for capacitor electrolyte, electrolyte and electrolytic capacitor using the same
CN114005679A (en) * 2021-12-16 2022-02-01 肇庆绿宝石电子科技股份有限公司 Aluminum electrolytic capacitor for gallium nitride charger and preparation method thereof
CN114005679B (en) * 2021-12-16 2023-03-24 肇庆绿宝石电子科技股份有限公司 Aluminum electrolytic capacitor for gallium nitride charger and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2014112651A (en) Voltage resistance improver of electrolyte for driving electrolytic capacitor, and electrolyte for driving electrolytic capacitor containing the same
JP6256970B2 (en) Electrolytic capacitor and manufacturing method thereof
KR101794424B1 (en) Conductive composition and solid electrolytic capacitor obtained using aforementioned composition
JP5761728B2 (en) Aluminum electrolytic capacitor electrolyte and aluminum electrolytic capacitor
JP7112837B2 (en) Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2010232630A (en) Aluminum electrolytic capacitor electrolyte, and method of manufacturing core solute thereof
KR102516330B1 (en) Polyoxymethylene and its manufacturing method
JP2015090949A (en) Electrolyte for aluminum electrolytic capacitors and aluminum electrolytic capacitor arranged by use thereof
JP2016076663A (en) Polyglycerin fatty acid ester-containing electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor arranged by use thereof
JP5936099B2 (en) Electrolytic solution for electrolytic capacitors
JP6771806B2 (en) Solid electrolytic capacitors
TW201349270A (en) Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP6619573B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP7386053B2 (en) Modifier for capacitor electrolyte, electrolyte and electrolytic capacitor using the same
JP5348796B2 (en) Oxidizing agent / dopant solution for conductive polymer production, conductive polymer, solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same
JP7269883B2 (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2018174233A (en) Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor arranged by use thereof
JP6194721B2 (en) Electrolytic solution for electrolytic capacitors
JP2015198178A (en) Ion fluid
JP2021040087A (en) Modifier of capacitor electrolyte solution, electrolytic solution for aluminum electrolytic capacitor, which is arranged by use thereof, and aluminum electrolytic capacitor
WO2014141620A1 (en) Aluminum electrolytic capacitor-use electrolytic solution and aluminum electrolytic capacitor using same
JP2013207096A (en) Electrolytic capacitor
JP3473288B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2021190712A (en) Modifier for capacitor electrolytic solution including (meth) acrylate, electrolytic solution for aluminum electrolytic capacitor using the same, and aluminum electrolytic capacitor
JP3473291B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same