JP2018174233A - Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor arranged by use thereof - Google Patents

Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor arranged by use thereof Download PDF

Info

Publication number
JP2018174233A
JP2018174233A JP2017071613A JP2017071613A JP2018174233A JP 2018174233 A JP2018174233 A JP 2018174233A JP 2017071613 A JP2017071613 A JP 2017071613A JP 2017071613 A JP2017071613 A JP 2017071613A JP 2018174233 A JP2018174233 A JP 2018174233A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
colloidal silica
electrolytic solution
electrolyte solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071613A
Other languages
Japanese (ja)
Other versions
JP6802105B2 (en
Inventor
田中 寛之
Hiroyuki Tanaka
寛之 田中
潤一 清澤
Junichi Kiyosawa
潤一 清澤
和人 西澤
Kazuto Nishizawa
和人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2017071613A priority Critical patent/JP6802105B2/en
Publication of JP2018174233A publication Critical patent/JP2018174233A/en
Application granted granted Critical
Publication of JP6802105B2 publication Critical patent/JP6802105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte solution for driving an electrolytic capacitor, which can suppress the gelation and agglomeration of colloidal silica in an electrolyte solution, which is improved in the impregnating ability into a device by suppressing the rise in the viscosity of the electrolyte solution, which never freezes in a low temperature region, and which has good low-temperature characteristics.SOLUTION: An electrolyte solution for driving an electrolytic capacitor comprises higher carboxylic acid of 300 or larger in molecular weight, and colloidal silica which are blended in a mix solvent containing ethylene glycol and diethylene glycol. In the electrolyte solution, the blend rate of the diethylene glycol is 5-50 wt.%. The blend rates of the higher carboxylic acid and colloidal silica are preferably 1-12.5 wt.% and 0.5-10 wt.% respectively. The higher carboxylic acid is preferably 7-vinyl-9-hexadecene-1,16-dicarboxylic acid, 1,16-hexadecane dicarboxylic acid, 1,18-octadecane dicarboxylic acid, or 3-dodecyl adipic acid.SELECTED DRAWING: None

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称する)およびそれを用いた電解コンデンサに関する。   The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution) and an electrolytic capacitor using the electrolytic solution.

電解コンデンサは一般的な電子回路の主要部品の1つであり、様々な電子機器、電気製品においては不可欠な電子部品である。そして、最近の機器の高電圧化や耐環境性に対する要求の高まりから、従来以上の高耐電圧化と長期の耐熱安定性を実現するとともに低温特性を改善した電解コンデンサの開発が喫緊の課題となっている。   An electrolytic capacitor is one of the main components of a general electronic circuit, and is an indispensable electronic component in various electronic devices and electrical products. Due to the recent increase in demands for higher voltage and environmental resistance of equipment, the development of electrolytic capacitors that realize higher voltage resistance and longer-term heat stability and improved low-temperature characteristics is an urgent issue. It has become.

耐電圧の向上を図る手法としては、溶質に高分子量のカルボン酸を用いることや、更なる耐電圧向上を図る手法としてコロイダルシリカを添加する手法が知られており、例えば下記の特許文献1には、電解液を構成する溶媒として、エチレングリコールとジエチレングリコールとを含む混合溶媒が使用されることや、耐電圧を向上させるためにコロイダルシリカを添加することが開示されており、電解液に添加できるカルボン酸として各種のカルボン酸が例示されている。
また、下記の特許文献2には、特定の化学構造を有する二塩基酸が電解質として溶解された電解液が開示されており、使用可能な溶媒としてジエチレングリコールが、添加物としてコロイダルシリカが各々挙げられており、各種カルボン酸も例示されている。
Known techniques for improving the withstand voltage include the use of a high-molecular weight carboxylic acid as a solute, and a technique for adding colloidal silica as a technique for further improving the withstand voltage. Discloses that a mixed solvent containing ethylene glycol and diethylene glycol is used as a solvent constituting the electrolytic solution, and that colloidal silica is added to improve the withstand voltage, and can be added to the electrolytic solution. Various carboxylic acids are exemplified as the carboxylic acid.
Further, Patent Document 2 below discloses an electrolytic solution in which a dibasic acid having a specific chemical structure is dissolved as an electrolyte, and examples include diethylene glycol as a usable solvent and colloidal silica as an additive. Various carboxylic acids are also exemplified.

さらに、下記の特許文献3には、更なる耐電圧の向上を図るために、ポリエーテルポリオールと、コロイダルシリカと、電解質塩と、有機溶媒と、を少なくとも含有する電解液が開示されている。   Further, Patent Document 3 below discloses an electrolytic solution containing at least a polyether polyol, colloidal silica, an electrolyte salt, and an organic solvent in order to further improve the withstand voltage.

特開2014−72465号公報JP 2014-72465 A 特開2015−32726号公報Japanese Patent Laid-Open No. 2015-32726 特開2015−26764号公報JP 2015-26764 A

しかしながら、単に高分子量のカルボン酸とコロイダルシリカについて組成比を詳細に検討することなく併含させた場合には、高分子量のカルボン酸によってコロイダルシリカ表面の電荷のバランスが変動し、コロイダルシリカがゲル化・凝集を起こすという問題があった。これに対し、前記引用文献1および2のいずれにも、特定の分子量以上のカルボン酸とコロイダルシリカを混合することにより、ゲル化・凝集化の防止が可能な電解液組成は開示されておらず、低温特性を改善するために特定量のジエチレングリコールを添加することも記載されていない。
一方、特許文献3記載の電解液中に含まれるポリエーテルポリオールによってゲル化・凝集を抑制することができるが、この特許文献3記載の電解液の場合には、低温(−40℃)で凍結する問題があり、低温特性の改善が課題であった。
However, when the high molecular weight carboxylic acid and colloidal silica are included together without examining the composition ratio in detail, the balance of charge on the surface of the colloidal silica is changed by the high molecular weight carboxylic acid, and the colloidal silica is gelled. There was a problem of causing crystallization and aggregation. On the other hand, neither of the cited references 1 and 2 discloses an electrolyte composition that can prevent gelation and aggregation by mixing carboxylic acid having a specific molecular weight or more and colloidal silica. There is also no mention of adding a specific amount of diethylene glycol to improve the low temperature properties.
On the other hand, gelation / aggregation can be suppressed by the polyether polyol contained in the electrolytic solution described in Patent Document 3, but in the case of the electrolytic solution described in Patent Document 3, it is frozen at a low temperature (−40 ° C.). However, improvement of low temperature characteristics has been a problem.

本発明の課題は、上述の従来技術における問題点を解決し、電解液中のコロイダルシリカのゲル化・凝集が抑制でき、電解液の粘度上昇が抑制されることにより素子への含浸性が改善され、低温領域で凍結せず、良好な低温特性を有した電解液を提供することである。また、本発明は、上記の特性を有した電解コンデンサ、特にアルミニウム電解コンデンサを提供することでもある。   The object of the present invention is to solve the above-mentioned problems in the prior art, to suppress the gelation / aggregation of colloidal silica in the electrolyte, and to improve the impregnation of the device by suppressing the increase in the viscosity of the electrolyte It is an object of the present invention to provide an electrolytic solution having good low temperature characteristics without being frozen in a low temperature region. Another object of the present invention is to provide an electrolytic capacitor, particularly an aluminum electrolytic capacitor, having the above characteristics.

本発明者らは、前記課題を解決するために種々検討を行った結果、溶媒としてエチレングリコールを含み、耐電圧向上剤としてのコロイダルシリカと、分子量300以上の高級カルボン酸が配合されたアルミニウム電解コンデンサの駆動用電解液に、特定量のジエチレングリコールを添加すると、コロイダルシリカのゲル化・凝集を抑制することができ、電解液の粘度上昇が抑制されて含浸性が向上し、しかも、低温領域で凍結しない電解液が得られることを見出して、本発明を完成した。   As a result of various studies to solve the above problems, the present inventors have found that aluminum electrolysis containing ethylene glycol as a solvent, colloidal silica as a withstand voltage improver, and a higher carboxylic acid having a molecular weight of 300 or more. When a specific amount of diethylene glycol is added to the electrolytic solution for driving the capacitor, the gelation / aggregation of colloidal silica can be suppressed, the increase in the viscosity of the electrolytic solution is suppressed, and the impregnation property is improved. The present invention was completed by finding that an electrolyte solution that does not freeze was obtained.

すなわち、本発明の電解液は、エチレングリコールとジエチレングリコールを含む混合溶媒中に、分子量300以上の高級カルボン酸と、コロイダルシリカが配合されており、前記ジエチレングリコールの配合割合が5〜50重量%であることを特徴とする。   That is, in the electrolytic solution of the present invention, a higher carboxylic acid having a molecular weight of 300 or more and colloidal silica are blended in a mixed solvent containing ethylene glycol and diethylene glycol, and the blending ratio of the diethylene glycol is 5 to 50% by weight. It is characterized by that.

また、本発明は、上記の特徴を有する電解液において、前記高級カルボン酸の配合割合が1〜12.5重量%であることを特徴とするものである。   Moreover, the present invention is characterized in that, in the electrolytic solution having the above characteristics, the blending ratio of the higher carboxylic acid is 1 to 12.5% by weight.

さらに、前記コロイダルシリカの配合割合が0.5〜10重量%であることを特徴とする。   Furthermore, the compounding ratio of the colloidal silica is 0.5 to 10% by weight.

また、本発明は、上記の特徴を有する電解液において、前記高級カルボン酸が、7−ビニル−9−ヘキサデセン−1,16−ジカルボン酸、1,16−ヘキサデカンジカルボン酸、1,18−オクタデカンジカルボン酸および、3−ドデシルアジピン酸から成るグループより選ばれたものであることを特徴とするものである。   Further, the present invention provides the electrolytic solution having the above-described characteristics, wherein the higher carboxylic acid is 7-vinyl-9-hexadecene-1,16-dicarboxylic acid, 1,16-hexadecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid. It is selected from the group consisting of acids and 3-dodecyladipic acid.

さらに本発明は、上記の電解液が含浸されているコンデンサ素子を有する電解コンデンサであることを特徴とする。   Furthermore, the present invention is an electrolytic capacitor having a capacitor element impregnated with the above electrolytic solution.

本発明によれば、電解液中に特定量のジエチレングリコールを配合することによって、コロイダルシリカのゲル化・凝集が抑制でき、電解液の粘度上昇が抑制されて素子への含浸性が改善され、低温領域で凍結せず、良好な低温特性を有した電解コンデンサを実現することができる。   According to the present invention, by blending a specific amount of diethylene glycol in the electrolytic solution, the gelation / aggregation of colloidal silica can be suppressed, the increase in the viscosity of the electrolytic solution is suppressed, the impregnation into the device is improved, and the low temperature An electrolytic capacitor having good low temperature characteristics without freezing in the region can be realized.

本発明の電解液中には、高耐電圧化を図るための耐電圧向上剤としてコロイダルシリカが配合されており、高分子量のカルボン酸として、分子量300以上の高級カルボン酸が配合されている。そして、この電解液には、高分子量のカルボン酸とコロイダルシリカのゲル化・凝集を抑制するために、特定量のジエチレングリコールが配合されている。
本発明の電解液におけるジエチレングリコールの配合割合は5〜50重量%であり、5〜25重量%の範囲では、低温特性が一層向上するので好ましい。
また、本発明では、電解液を構成する溶媒は、ジエチレングリコールとエチレングリコールとの混合溶媒であることが好ましい。
In the electrolytic solution of the present invention, colloidal silica is blended as a withstand voltage improver for increasing the withstand voltage, and a higher carboxylic acid having a molecular weight of 300 or more is blended as a high molecular weight carboxylic acid. And in this electrolyte solution, in order to suppress gelatinization and aggregation of high molecular weight carboxylic acid and colloidal silica, a specific amount of diethylene glycol is blended.
The blending ratio of diethylene glycol in the electrolytic solution of the present invention is 5 to 50% by weight, and the range of 5 to 25% by weight is preferable because the low temperature characteristics are further improved.
Moreover, in this invention, it is preferable that the solvent which comprises electrolyte solution is a mixed solvent of diethylene glycol and ethylene glycol.

また、本発明の電解液における高級カルボン酸の配合割合(溶質濃度)は1〜12.5重量%で、3〜10重量%が好ましく、溶質濃度が上記範囲より小さくなるにつれて、電解液の低温領域での比抵抗が上昇して大きくなる傾向があり、上記範囲より大きくなるにつれて製品の耐電圧特性が低下する傾向がある。
また、本発明の電解液におけるコロイダルシリカの配合割合(濃度)は0.5〜10重量%で、1〜5重量%が好ましく、コロイダルシリカ濃度が上記範囲より小さくなると製品の耐電圧特性が低くなる傾向があり、当該濃度が上記範囲より大きくなると、耐電圧特性の向上効果が小さく、低温領域での比抵抗が大きくなる傾向がある。
本発明では、コロイダルシリカとして、市販されている粒径10〜20nm程度のものを用いることができる。
Further, the blending ratio (solute concentration) of the higher carboxylic acid in the electrolytic solution of the present invention is 1 to 12.5% by weight, preferably 3 to 10% by weight. As the solute concentration becomes smaller than the above range, the lower the temperature of the electrolytic solution. The specific resistance in the region tends to increase and increase, and the withstand voltage characteristic of the product tends to decrease as the specific resistance increases.
Further, the blending ratio (concentration) of colloidal silica in the electrolytic solution of the present invention is 0.5 to 10% by weight, preferably 1 to 5% by weight. When the colloidal silica concentration is smaller than the above range, the withstand voltage characteristic of the product is low. When the concentration is larger than the above range, the effect of improving the withstand voltage characteristic is small, and the specific resistance in the low temperature region tends to be large.
In the present invention, commercially available colloidal silica having a particle size of about 10 to 20 nm can be used.

なお、本発明において、低温(−40℃)で凍結せず、比抵抗の上昇を抑制するのに適した高級カルボン酸としては、分子量300〜400のジカルボン酸が好ましく、例えば、7−ビニル−9−ヘキサデセン−1,16−ジカルボン酸、1,16−ヘキサデカンジカルボン酸、1,18−オクタデカンジカルボン酸、3−ドデシルアジピン酸などが好適に用いられるが、これらに限定されるものではない。   In the present invention, dicarboxylic acids having a molecular weight of 300 to 400 are preferred as higher carboxylic acids suitable for suppressing an increase in specific resistance without freezing at low temperatures (−40 ° C.), such as 7-vinyl- 9-hexadecene-1,16-dicarboxylic acid, 1,16-hexadecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid, 3-dodecyladipic acid, and the like are preferably used, but are not limited thereto.

本発明の電解液は、例えば巻回型のアルミニウム電解コンデンサに用いることができる。
本発明に係る電解液を用いた電解コンデンサは、通常の方法で製造することができ、例えば、エッチング処理および酸化皮膜形成処理をした陽極箔と、エッチング処理または表面に炭素やチタン化合物を含有する処理をした陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、該コンデンサ素子に本発明の電解液を含浸させた後、有底筒状の外装ケースに収納する方法により製造できる。
The electrolytic solution of the present invention can be used for, for example, a wound aluminum electrolytic capacitor.
The electrolytic capacitor using the electrolytic solution according to the present invention can be manufactured by a normal method, and includes, for example, an anode foil that has been subjected to an etching treatment and an oxide film formation treatment, and an etching treatment or a surface containing carbon or a titanium compound. It can be manufactured by winding a treated cathode foil through a separator to form a capacitor element, impregnating the capacitor element with the electrolytic solution of the present invention, and then storing the capacitor element in a bottomed cylindrical outer case.

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれに限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to this.

[電解液の調製]
溶質として、7−ビニル−9−ヘキサデセン−1,16−ジカルボン酸(VHXD、分子量:338)、1,18−オクタデカンジカルボン酸(分子量:342)、セバシン酸(分子量:202.3)を、耐電圧向上剤として市販のコロイダルシリカ(粒径10〜20nm)を準備し、下記の表1に示す組成を有した電解液(実施例1〜5および従来例1〜3)をそれぞれ調合した後、−40℃における比抵抗を測定した。
また、調製後の各電解液について、コロイダルシリカのゲル化・凝集の有無を目視により評価した。下記の表1において、○:ゲル化・凝集は認められない、×:ゲル化・凝集が認められる、を示す。
さらに、粘度測定装置として、市販の回転式粘度計(アントンパール社製、型番:MCR−301)を用い、30℃における各電解液の粘度を測定した。
[Preparation of electrolyte]
As solutes, 7-vinyl-9-hexadecene-1,16-dicarboxylic acid (VHXD, molecular weight: 338), 1,18-octadecanedicarboxylic acid (molecular weight: 342), sebacic acid (molecular weight: 202.3), After preparing commercially available colloidal silica (particle size 10 to 20 nm) as a voltage improver and preparing electrolyte solutions (Examples 1 to 5 and Conventional Examples 1 to 3) having the compositions shown in Table 1 below, The specific resistance at −40 ° C. was measured.
Moreover, about each electrolyte solution after preparation, the presence or absence of gelatinization and aggregation of colloidal silica was evaluated visually. In Table 1 below, ○: gelation / aggregation is not observed, and x: gelation / aggregation is observed.
Furthermore, the viscosity of each electrolyte solution at 30 ° C. was measured using a commercially available rotary viscometer (manufactured by Anton Paar, model number: MCR-301) as a viscosity measuring device.

[電解コンデンサの作製]
表1に示す各電解液を用いた電解コンデンサの評価をするにあたり、下記に示すような手順で電解コンデンサを製造した。
エッチング処理および酸化皮膜形成処理をした陽極箔とエッチング処理をした陰極箔にそれぞれ化成皮膜を形成した陽極引き出しリードと陰極引き出しリードとを接続した後、セパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に、表1の組成を有した各電解コンデンサ用電解液を含浸した後、アルミニウムよりなる有底筒状の外装ケースに収納した。その後、陽極引き出しリードと陰極引き出しリードとをフェノール樹脂板に取り付けられた外部端子を有する封口端子板に接続し、外装ケースの開口部には、上記封口端子板を装着し、絞り加工により密閉して、カテゴリ上限温度:105℃、定格電圧600V(化成電圧975V)、静電容量は100μF、サイズφ35×50L(mm)の電解コンデンサを作製した。
[Production of electrolytic capacitors]
In evaluating electrolytic capacitors using the electrolytic solutions shown in Table 1, electrolytic capacitors were produced according to the procedure shown below.
After connecting the anode lead and the cathode lead with the chemical conversion film formed on the etched and oxidized anode foil and the etched cathode foil, respectively, the capacitor lead is formed by winding the separator through a separator. The capacitor element was impregnated with an electrolytic solution for each electrolytic capacitor having the composition shown in Table 1, and then stored in a bottomed cylindrical outer case made of aluminum. Thereafter, the anode lead lead and the cathode lead are connected to a sealed terminal plate having external terminals attached to a phenolic resin plate, and the above-mentioned sealed terminal plate is attached to the opening of the outer case and sealed by drawing. Thus, an electrolytic capacitor having an upper category temperature of 105 ° C., a rated voltage of 600 V (formation voltage of 975 V), a capacitance of 100 μF, and a size of φ35 × 50 L (mm) was produced.

[耐電圧の評価]
従来例1、3、および実施例1〜13の各電解液についての耐電圧の評価は、電解コンデンサに9.3mAの定電流を105℃にて印加したときに時間−電圧の上昇カーブを測定し、初めにスパークまたはシンチレーションが観測された電圧を測定し、これを耐電圧とした。上記の測定結果を表1に示す。
[Evaluation of withstand voltage]
The withstand voltage of each of the electrolytes of Conventional Examples 1 and 3 and Examples 1 to 13 was evaluated by measuring a time-voltage rise curve when a constant current of 9.3 mA was applied to the electrolytic capacitor at 105 ° C. First, the voltage at which spark or scintillation was observed was measured and used as the withstand voltage. The measurement results are shown in Table 1.

Figure 2018174233
Figure 2018174233

上記表1における従来例1(溶質に分子量202.3のセバシン酸を使用した電解液)と実施例1〜5(本発明に係る電解液)の比較から、実施例1〜5の電解液は、従来例1の電解液に対して、30℃における粘度を大きく変化させることなく耐電圧特性が向上していることがわかる。
また、従来例2(溶質に分子量338のVHXDを使用し、ジエチレングリコールを含まない電解液)と実施例1〜5の比較から、従来例2の電解液の場合にはコロイダルシリカの凝集・ゲル化の発生が認められたが、実施例1〜5の電解液の場合には、コロイダルシリカの凝集・ゲル化は認められなかった。
さらに、従来例3(ジエチレングリコールの代わりにポリエーテルポリオールが配合された電解液)と実施例1〜5の比較から、実施例1〜5の電解液の30℃における粘度は、従来例3の電解液の粘度よりも小さく、素子への含浸性が改善されていることがわかった。そして、ポリエーテルポリオールが配合された従来例3の電解液は−40℃で凍結したのに対し、ジエチレングリコールが配合された実施例1〜5の電解液は−40℃でも凍結せず、低温特性が良好であることが確認された。
From comparison of Conventional Example 1 (electrolytic solution using sebacic acid having a molecular weight of 202.3 as a solute) and Examples 1 to 5 (electrolytic solution according to the present invention) in Table 1 above, the electrolytic solutions of Examples 1 to 5 are It can be seen that the withstand voltage characteristic is improved without greatly changing the viscosity at 30 ° C. with respect to the electrolytic solution of Conventional Example 1.
In addition, from the comparison between Conventional Example 2 (electrolytic solution using VHXD having a molecular weight of 338 as a solute and not containing diethylene glycol) and Examples 1 to 5, in the case of the electrolytic solution of Conventional Example 2, colloidal silica is aggregated and gelled In the case of the electrolytic solutions of Examples 1 to 5, the colloidal silica was not aggregated or gelled.
Furthermore, from the comparison of Conventional Example 3 (electrolytic solution in which polyether polyol is blended in place of diethylene glycol) and Examples 1 to 5, the viscosity of the electrolytic solutions of Examples 1 to 5 at 30 ° C. It was found that the impregnation property into the device was improved because the viscosity was smaller than the liquid viscosity. And while the electrolytic solution of Conventional Example 3 blended with polyether polyol was frozen at −40 ° C., the electrolytic solutions of Examples 1 to 5 blended with diethylene glycol were not frozen even at −40 ° C. Was confirmed to be good.

上記表1の結果から、エチレングリコールと併含されるジエチレングリコールの配合割合が5〜50重量%(実施例1〜5)の場合には、分子量300以上の溶質を用いてもゲル化・凝集が発生せず、30℃での電解液の粘度が低く、素子に電解液を含浸する際の含浸性も改善されており、特にジエチレングリコールの配合割合が5〜25重量%の場合には低温特性(−40℃における比抵抗)が良好であることが確認された。   From the results in Table 1 above, when the blending ratio of diethylene glycol combined with ethylene glycol is 5 to 50% by weight (Examples 1 to 5), gelation / aggregation occurs even when a solute having a molecular weight of 300 or more is used. It does not occur, the viscosity of the electrolytic solution at 30 ° C. is low, and the impregnation property when the element is impregnated with the electrolytic solution is improved. Especially when the blending ratio of diethylene glycol is 5 to 25% by weight, the low temperature characteristics ( It was confirmed that the specific resistance at −40 ° C. was good.

[高級カルボン酸(VHXD)の溶質濃度の範囲について]
次に、VHXDの溶質濃度の最適範囲を調べるために、当該濃度を変動させ、下記の表2に示す組成を有した電解液(実施例3、6〜9)をそれぞれ調合した後、ゲル化・凝集の有無を目視にて評価し、−40℃および30℃における比抵抗を測定し、先に記載した手順で電解コンデンサを製造して耐電圧を測定した。
[About solute concentration range of higher carboxylic acid (VHXD)]
Next, in order to investigate the optimum range of the solute concentration of VHXD, the concentration was varied, and each of the electrolyte solutions (Examples 3 and 6-9) having the composition shown in Table 2 below was prepared, and then gelled. The presence or absence of aggregation was visually evaluated, the specific resistance at −40 ° C. and 30 ° C. was measured, the electrolytic capacitor was manufactured according to the procedure described above, and the withstand voltage was measured.

Figure 2018174233
Figure 2018174233

上記の実験結果から、溶質濃度が小さくなると電解液の比抵抗が大きくなる傾向が見られた。また、溶質濃度が大きくなると耐電圧特性が低下する傾向があることが確認された。
上記表2の実験結果から、高級カルボン酸の特に好ましい溶質濃度は3〜10重量%であることがわかった。
From the above experimental results, it was found that the specific resistance of the electrolytic solution increased as the solute concentration decreased. Further, it was confirmed that the withstand voltage characteristic tends to decrease as the solute concentration increases.
From the experimental results in Table 2 above, it was found that the particularly preferred solute concentration of the higher carboxylic acid is 3 to 10% by weight.

[コロイダルシリカの配合割合の範囲について]
さらに、コロイダルシリカの最適な配合割合の範囲を調べるために、当該割合を変動させ、下記の表3に示す組成を有した電解液(実施例3、10〜13)をそれぞれ調合した後、ゲル化・凝集の有無を目視にて評価し、−40℃および30℃における比抵抗を測定し、先に記載した手順で電解コンデンサを製造して耐電圧を測定した。
[About the range of blending ratio of colloidal silica]
Furthermore, in order to investigate the range of the optimal mixing | blending ratio of colloidal silica, the said ratio was fluctuate | varied, and after preparing each electrolyte solution (Example 3, 10-13) which has a composition shown in Table 3 below, gel The presence or absence of crystallization / aggregation was visually evaluated, the specific resistance at −40 ° C. and 30 ° C. was measured, the electrolytic capacitor was manufactured by the procedure described above, and the withstand voltage was measured.

Figure 2018174233
Figure 2018174233

上記の測定結果から、コロイダルシリカの配合割合が低いほど耐電圧特性が低下する傾向があり、他方、コロイダルシリカの配合割合が10重量%以上では、耐電圧特性の向上効果があまり大きくならず、比抵抗上昇によるデメリットの方が大きくなることがわかる。
上記表3の実験結果から、コロイダルシリカの配合割合が1〜5重量%の範囲において、特に良好な比抵抗特性と耐電圧特性の向上効果が得られることがわかった。
From the above measurement results, the withstand voltage characteristics tend to decrease as the blending ratio of the colloidal silica is low. It can be seen that the disadvantage due to the increase in specific resistance is greater.
From the experimental results shown in Table 3, it was found that particularly good specific resistance characteristics and withstand voltage characteristics can be improved when the blending ratio of colloidal silica is in the range of 1 to 5% by weight.

上記の実験結果から、エチレングリコールとジエチレングリコールを含む混合溶媒中に、高級カルボン酸(分子量300以上)の溶質と、耐電圧向上剤としてのコロイダルシリカが配合された本発明の電解液を用いることによって、ゲル化・凝集の発生を抑制でき、製品耐電圧を顕著に向上させることができ、低温領域(−40℃)で凍結せず、比抵抗の上昇も小さくすることができ、特性が良好となることが確認された。   From the above experimental results, by using the electrolytic solution of the present invention in which a solute of higher carboxylic acid (molecular weight of 300 or more) and colloidal silica as a withstand voltage improver are mixed in a mixed solvent containing ethylene glycol and diethylene glycol. It is possible to suppress the occurrence of gelation / aggregation, remarkably improve the withstand voltage of the product, freezing in the low temperature region (−40 ° C.), reducing the increase in specific resistance, and having good characteristics. It was confirmed that

なお、上記の実施例においては、分子量300以上の高級カルボン酸として、分子量が338の、7−ビニル−9−ヘキサデセン−1,16−ジカルボン酸と、分子量が342の、1,18−オクタデカンジカルボン酸を使用したが、本発明は、実施例に限定されるものではなく、先に記載した他の高級カルボン酸を配合した電解液を用いても、実施例と同等にその効果が確認できた。   In the above examples, as higher carboxylic acids having a molecular weight of 300 or more, 7-vinyl-9-hexadecene-1,16-dicarboxylic acid having a molecular weight of 338 and 1,18-octadecanedicarboxylic acid having a molecular weight of 342 are used. Although an acid was used, the present invention is not limited to the examples, and even when using an electrolytic solution containing the other higher carboxylic acids described above, the effect could be confirmed as in the examples. .

本発明の電解液を使用することでゲル化・凝集が抑制でき、電解液の粘度上昇が抑制されることにより素子への含浸性が改善され、低温領域で凍結せず、良好な低温特性を有した電解コンデンサ、特にアルミニウム電解コンデンサを製造することができ、上記の優れた特性を有する本発明の電解コンデンサは、各種の電子機器、電気製品に利用可能である。   By using the electrolytic solution of the present invention, gelation / aggregation can be suppressed, and the increase in the viscosity of the electrolytic solution is suppressed, so that the impregnation property to the element is improved, freezing in a low temperature region, and good low temperature characteristics are achieved. The electrolytic capacitor having the above-described excellent characteristics can be used for various electronic devices and electrical products.

Claims (5)

エチレングリコールとジエチレングリコールを含む混合溶媒中に、分子量300以上の高級カルボン酸と、コロイダルシリカが配合されており、前記ジエチレングリコールの配合割合が5〜50重量%であることを特徴とする電解コンデンサの駆動用電解液。   Driving an electrolytic capacitor characterized in that a higher carboxylic acid having a molecular weight of 300 or more and colloidal silica are blended in a mixed solvent containing ethylene glycol and diethylene glycol, and the blending ratio of the diethylene glycol is 5 to 50% by weight. Electrolyte. 前記高級カルボン酸の配合割合が1〜12.5重量%であることを特徴とする請求項1に記載の電解コンデンサの駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the blending ratio of the higher carboxylic acid is 1 to 12.5 wt%. 前記コロイダルシリカの配合割合が0.5〜10重量%であることを特徴とする請求項1または2に記載の電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor according to claim 1 or 2, wherein a blending ratio of the colloidal silica is 0.5 to 10% by weight. 前記高級カルボン酸が、7−ビニル−9−ヘキサデセン−1,16−ジカルボン酸、1,16−ヘキサデカンジカルボン酸、1,18−オクタデカンジカルボン酸および、3−ドデシルアジピン酸から成るグループより選ばれたものであることを特徴とする請求項1〜3のいずれか1項に記載の電解コンデンサの駆動用電解液。   The higher carboxylic acid was selected from the group consisting of 7-vinyl-9-hexadecene-1,16-dicarboxylic acid, 1,16-hexadecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid, and 3-dodecyladipic acid. The electrolytic solution for driving an electrolytic capacitor according to any one of claims 1 to 3, wherein the electrolytic solution is for driving an electrolytic capacitor. 請求項1〜4のいずれか1項に記載の電解液が含浸されているコンデンサ素子を有する電解コンデンサ。   The electrolytic capacitor which has a capacitor | condenser element impregnated with the electrolyte solution of any one of Claims 1-4.
JP2017071613A 2017-03-31 2017-03-31 Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it Active JP6802105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071613A JP6802105B2 (en) 2017-03-31 2017-03-31 Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071613A JP6802105B2 (en) 2017-03-31 2017-03-31 Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it

Publications (2)

Publication Number Publication Date
JP2018174233A true JP2018174233A (en) 2018-11-08
JP6802105B2 JP6802105B2 (en) 2020-12-16

Family

ID=64108796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071613A Active JP6802105B2 (en) 2017-03-31 2017-03-31 Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it

Country Status (1)

Country Link
JP (1) JP6802105B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093767A (en) * 2019-01-29 2020-08-06 삼화전기주식회사 Method of manufacturing solid electrolytic capacitor and electrolyte for solid electrolytic capacitor
JP2021064768A (en) * 2019-10-17 2021-04-22 冠坤電子企業股▲フン▼有限公司 Conductive polymer hybrid type electrolytic capacitor
CN112837940A (en) * 2020-10-21 2021-05-25 东莞冠坤电子有限公司 Conductive polymer mixed electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093767A (en) * 2019-01-29 2020-08-06 삼화전기주식회사 Method of manufacturing solid electrolytic capacitor and electrolyte for solid electrolytic capacitor
WO2020159062A1 (en) * 2019-01-29 2020-08-06 삼화전기주식회사 Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser
KR102222650B1 (en) * 2019-01-29 2021-03-04 삼화전기주식회사 Method of manufacturing solid electrolytic capacitor and electrolyte for solid electrolytic capacitor
JP2021064768A (en) * 2019-10-17 2021-04-22 冠坤電子企業股▲フン▼有限公司 Conductive polymer hybrid type electrolytic capacitor
US11177080B2 (en) 2019-10-17 2021-11-16 Kuan Kun Electronic Enterprise Co., Ltd. Conductive polymer hybrid type electrolytic capacitor
CN112837940A (en) * 2020-10-21 2021-05-25 东莞冠坤电子有限公司 Conductive polymer mixed electrolytic capacitor
CN112837940B (en) * 2020-10-21 2023-02-21 东莞冠坤电子有限公司 Conductive polymer mixed electrolytic capacitor

Also Published As

Publication number Publication date
JP6802105B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP2019080076A (en) Solid electrolytic capacitor and method for manufacturing the same
JP5340929B2 (en) Solid electrolytic capacitor
JP2021184493A (en) Electrolytic capacitor
JP6802105B2 (en) Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it
CN107851519A (en) Electrolytic capacitor
TW201526047A (en) Composite electrode and electrolytic capacitor
CN103578769A (en) Electrolyte mixture, electrolytic capacitor and composition for synthesizing conductive polymer
KR101960548B1 (en) Electrolyte for electrolytic capacitor
JPH0344021A (en) Electrolytic capacitor
JP2021009901A (en) Electrolytic capacitor and manufacturing method thereof
RU2358348C1 (en) Working electrolyte for condenser, procedure for its preparation and aluminium elecrolytic condenser with such electrolyte
JP2010090324A (en) Dopant solution for conductive polymer, dopant solution also serving as oxidizer for conductive polymer, conductive composition, solid electrolytic capacitor and method for manufacturing the same
JP3473288B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
CN107946076A (en) It is a kind of that there is high flash over voltage, the aluminum electrolytic capacitor electrolyte of heat-resisting ability
JP3473291B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP3487911B2 (en) Electrolyte for driving electrolytic capacitors
JP5063172B2 (en) Electrolyte for electric double layer capacitor
RU2713639C1 (en) Working electrolyte for condenser, method of its preparation and aluminum electrolytic capacitor with such electrolyte
JP4366170B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4354244B2 (en) Electrolytic solution for electrolytic capacitor drive
JPS602767B2 (en) Electrolyte for electrolytic capacitors
JP2624710B2 (en) Electrolytic capacitor
JP2017028230A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor
JP4804063B2 (en) Electrolytic solution for electrolytic capacitors
JPS628004B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201126

R150 Certificate of patent or registration of utility model

Ref document number: 6802105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250