WO2020159062A1 - Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser - Google Patents

Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser Download PDF

Info

Publication number
WO2020159062A1
WO2020159062A1 PCT/KR2019/016823 KR2019016823W WO2020159062A1 WO 2020159062 A1 WO2020159062 A1 WO 2020159062A1 KR 2019016823 W KR2019016823 W KR 2019016823W WO 2020159062 A1 WO2020159062 A1 WO 2020159062A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolytic
electrolytic capacitor
aging
electrolyte
organic
Prior art date
Application number
PCT/KR2019/016823
Other languages
French (fr)
Korean (ko)
Inventor
박종온
김태윤
주은균
권영진
Original Assignee
삼화전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화전기주식회사 filed Critical 삼화전기주식회사
Publication of WO2020159062A1 publication Critical patent/WO2020159062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes

Definitions

  • the present invention relates to a method for manufacturing a solid electrolytic capacitor, and in particular, by adding silica gel (SiO 2 ) to the electrolyte, the voltage is maintained even in an environment in which a Pb free solder is melted at a temperature of 200°C or higher, that is, in a high temperature environment. It relates to a method of manufacturing a solid electrolytic capacitor capable of increasing and reducing leakage current.
  • silica gel SiO 2
  • the solid electrolytic capacitor is manufactured using a conductive polymer and an electrolyte, and can realize high capacity and high voltage, which are advantages of using the electrolyte, while realizing low impedance characteristics characteristic of the solid electrolyte, and related technology is disclosed in Japanese Patent Publication No. 5879517 Is open.
  • Japanese Patent Publication No. 5879517 relates to a manufacturing method of an electrolytic capacitor and an electrolytic capacitor, and the manufacturing method of an electrolytic capacitor of Japanese Patent Publication No. 5879517 includes a process of forming a capacitor element and impregnating an electrolytic solution into the capacitor element. do.
  • the process of forming the condenser element forms a condenser element having an anode foil having a dielectric layer on the surface and a solid electrolyte layer in contact with the dielectric layer, and the process of impregnating the electrolytic solution in the condenser element impregnates the condenser element with the electrolyte when the condenser element is formed.
  • a first solvent composed of polyethylene glycol having an average molecular weight of 300 to 1000 or a derivative thereof is used.
  • a withstand voltage may be lowered due to deterioration or crystallization of the electrolyte layer when a Pb free solder having a temperature of 200°C or higher is applied. There is this.
  • the purpose of the present invention is to solve the above-mentioned problems, by adding silica gel (SiO 2 ) to the electrolyte solution, the lead-free (Pb free) solder melting temperature at 200 ° C. It is to provide a method of manufacturing a solid electrolytic capacitor capable of increasing and reducing leakage current.
  • Another object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor capable of improving the ignition voltage characteristics by adding silica gel (SiO 2 ) to the electrolytic solution even when a solid polymer layer is formed.
  • Another object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor capable of reducing a leakage current by connecting a lead terminal in a state where an anode foil or a cathode foil is processed in a curved state.
  • a method for manufacturing a solid electrolytic capacitor comprises the steps of winding an anode foil, an electrolytic cell, and a cathode foil into a cylindrical winding element; When the winding element is wound, impregnating the winding element with a polymer dispersion; Drying the winding element impregnated with the polymer dispersion liquid when the winding element is impregnated with the polymer dispersion liquid; When the winding element is dried, impregnating the winding element with an electrolyte; Assembling the coiling element into a case when the coiling element is impregnated with an electrolyte; And aging by applying an aging voltage to the winding element in which the case is assembled. In the aging step of aging the winding element, the minimum aging voltage when the aging step starts and the aging step ends. The maximum aging voltage of is formed differently.
  • the aging step includes a plurality of sub-aging steps applied sequentially, and the aging voltage applied in any one of the sub-aging steps may be greater than the aging voltage of the subsequent sub-aging step.
  • the time performed in the sub-aging step may be the same as each other.
  • the magnitude of the aging voltage of any one of the sub-aging steps may be formed in a range of 5% to 90% of the magnitude of the aging voltage of the subsequent sub-aging step.
  • the maximum aging voltage may be formed in a range of 60 to 90% of the ignition voltage of the winding element.
  • the minimum aging voltage may be formed in a range of 5% to 50% of the maximum aging voltage.
  • the electrolyte solution includes an organic solvent, a solute, an additive, and silica gel (SiO 2 ),
  • the organic solvent comprises ethylene glycol (ethylene glycol) and gamma butyrolactone, the relative weight ratio of the ethylene glycol and the gamma butyrolactone contained in the organic solvent is 5:5 to 6:4 Range.
  • the solute at least one of an organic-inorganic complex acid salt and an organic acid salt is used, the additive is one or more of a nitro compound and a sugar, and the organic solvent is the total weight of the electrolyte solution for the solid electrolytic capacitor (wt(weight )%) can contain 76 to 95.4wt% sugar.
  • the solute contains 3 to 8 wt% per total weight (wt%) of the electrolytic solution for the solid electrolytic capacitor, the solute is used at least one of an organic-inorganic complex salt and an organic acid salt, the organic-inorganic complex salt is Borodisalicylic acid salt is used, and the organic acid salt may be one or more of ammonium phthalate and ammonium azelate.
  • the additive contains 1 to 6 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor, and the additive is one or more of a nitro compound and a sugar, and the nitro compound is P-nitrophenol ( One or more of p-nitro phenol and p-nitro benzoic acid may be used, and mannitol may be used as the sugar.
  • the silica gel may contain 0.6 to 10 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor.
  • the electrolyte solution for a solid electrolytic capacitor according to another aspect of the embodiment of the present invention includes an organic solvent, a solute, an additive, and silica gel (SiO 2 ), and the organic solvent includes ethylene glycol and gammabutyrolactone.
  • the organic solvent includes ethylene glycol and gammabutyrolactone.
  • the electrolyte solution includes an organic solvent, a solute, an additive, and silica gel (SiO 2 ), and the organic solvent includes ethylene glycol and gamma butyrolactone, and the organic solvent
  • the relative weight ratio of the ethylene glycol and the gamma-butyrolactone included may be formed in the range of 5:5 to 6:4.
  • the solute at least one of an organic-inorganic complex acid salt and an organic acid salt is used, the additive is one or more of a nitro compound and a sugar, and the organic solvent is the total weight of the electrolyte solution for the solid electrolytic capacitor (wt(weight )%) can contain 76 to 95.4wt% sugar.
  • the solute contains 3 to 8 wt% per total weight (wt%) of the electrolytic solution for the solid electrolytic capacitor, the solute is used at least one of an organic-inorganic complex salt and an organic acid salt, the organic-inorganic complex salt is Borodisalicylic acid salt is used, and the organic acid salt may be one or more of ammonium phthalate and ammonium azelate.
  • the additive contains 1 to 6 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor, and the additive is one or more of a nitro compound and a sugar, and the nitro compound is P-nitrophenol ( One or more of p-nitro phenol and p-nitro benzoic acid may be used, and mannitol may be used as the sugar.
  • the silica gel may contain 0.6 to 10 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor.
  • the method of manufacturing a solid electrolytic capacitor of the present invention is an environment in which a Pb free solder is melted at a temperature of 200°C or higher by adding silica gel (SiO2) to the electrolyte by adding silica gel (SiO2) to the electrolyte, that is, Even in a high temperature environment, the withstand voltage can be increased and the leakage current can be reduced, and even when a solid polymer layer is formed, silica gel (SiO2) is added to the electrolyte to improve the formation voltage characteristics, and the anode There is an advantage in that the leakage current can be reduced by connecting the lead terminal in a state where the foil or cathode foil is processed in a curved state.
  • FIG. 1 is a flow chart showing a method of manufacturing a solid electrolytic capacitor of the present invention.
  • FIG. 2 is a perspective view of the winding element manufactured in the step of winding the anode foil, electrolytic cell and cathode foil shown in FIG. 1.
  • FIG. 3 is an enlarged cross-sectional view of the portion A1 shown in FIG. 2.
  • FIG. 4 is a cross-sectional view showing a state in which the winding element shown in FIG. 2 is assembled to a case.
  • 5 to 7 are graphs showing the electrical test results of the solid electrolytic capacitor to which the electrolytic solution of the present invention is applied, respectively.
  • the method of manufacturing the solid electrolytic capacitor of the present invention first wound the anode foil 111, the electrolyte sheet 112, and the cathode foil 113 into a cylindrical winding element 110 (S10).
  • the winding element 110 When the winding element 110 is wound, the winding element 110 is impregnated into the polymer dispersion (S20).
  • the winding element 110 impregnated with the polymer dispersion is dried (S30).
  • the winding element 110 When the winding element 110 is dried, the winding element 110 is impregnated into the electrolyte 10 (S40).
  • the winding element 110 When the winding element 110 is impregnated into the electrolyte 10, the winding element 110 is assembled to the case 120 (S50).
  • the wound element 110 in which the case 120 is assembled is aged to restore the damaged oxide films 111a and 113a (S60).
  • the method for manufacturing a solid electrolytic capacitor of the present invention first, as shown in Figures 1 to 3, the anode foil 111, the electrolytic cell 112, and the cathode foil 113 are wound with a cylindrical winding element 110 (S10).
  • a cylindrical winding element 110 S10
  • the anode foil 111 and the cathode foil having oxide films 111a and 113a formed on the surfaces, respectively
  • an electrolyte 112 is disposed between the anode foil 111 and the cathode foil 113.
  • the thickness T1 of the oxide film 111a formed on the anode foil 111 is formed to be 0.1 nm to 5 ⁇ m
  • the thickness T2 of the oxide film 113a formed on the cathode foil 113 is 0.1 nm to It is formed to be l0 nm. That is, the thickness T1 of the oxide film 111a formed on the anode foil 111 is formed to be greater than the thickness T2 of the oxide film 113a formed on the cathode foil 113.
  • the anode foil 111 and the cathode foil 113 are respectively not curved, but after being processed into a curved surface to some extent, the anode foil 111 and cathode foil 113 are respectively cylindrical.
  • the adhesion between the lead electrode 121 and the anode foil 111 or the lead electrode 122 and the cathode foil 113 is improved.
  • ESR Equivalent Series Resistance
  • the lead-out electrodes 121 and 122 are processed by bending the one side connected to the anode foil 111 or the cathode foil 113 to bend the same as the bending of the anode foil 111 or the cathode foil 113. Then, by connecting the drawing electrodes 121 and 122 to the anode foil 111 or the cathode foil 113, the anode foil 111 or the cathode foil 113 is wound in a cylindrical shape to be withdrawn from the anode foil 111 or the cathode foil 113. It is possible to improve the adhesion between the electrodes 121, 122.
  • the extraction electrodes 121 and 122 are in contact with the anode foil 111 and the cathode foil 113, and when the one side connected to the anode foil 111 and the cathode foil 113 are connected in a flat state, the anode foil 111 When the anode foil 111 and the cathode foil 113 are wound in a cylindrical shape, the area in contact with the anode foil 111 or the cathode foil 113 becomes small, and thus, between the anode foil 111 or the cathode foil 113 and the extraction electrodes 121 and 122.
  • the leakage current is reduced by preventing the adhesion from being deteriorated, and the external electrodes 123 and 124 are connected to the extraction electrodes 121 and 122 respectively connected to the anode foil 111 and the cathode foil 113.
  • the electrolytic cell 112 is provided between the anode foil 111 and the cathode foil 113, each of which has oxide films 111a and 113a formed on the surface.
  • the winding element 110 is assembled by winding the anode foil 111, the electrolytic cell 12, and the cathode foil 113, and the assembly of the winding element 110 uses a known winding equipment (not shown).
  • the winding element 110 When the winding element 110 is wound, as shown in FIG. 1, the winding element 110 is impregnated into the polymer dispersion (S20).
  • the coiling element 110 when the coiling element 110 is wound, the coiling element 110 has a temperature of 20 to 70°C, a vacuum of 500 to 760mmHg, and a high temperature vacuum for 3 to 30 minutes in a polymer impregnation tank (not shown) in which a polymer dispersion is stored. Impregnate under.
  • the polymer dispersion is stored in a polymer force bath, and the polymer dispersion is formed including a solvent and a solute.
  • the polymer dispersion is formed by mixing one or more of pure (H2O), EG (ethylene glycol), glycol-based solvent, and dispersant, and polyethylene dioxythiophene (PEDOT), and pure (H20) and EG are used as solvents, and PEDOT Is used as the solute of the dispersion.
  • the winding element 110 impregnated with the polymer dispersion is dried as shown in FIG. 1 (S30).
  • the drying method of the winding element 110 impregnated with the polymer dispersion is dried by drying the winding element 110 impregnated with the polymer dispersion in a dryer (not shown) having a temperature of 100 to 200°C for 30 to 150 minutes.
  • the PEDOT layers 111b and 113 are formed on the surfaces of the cathode foil 113, respectively.
  • the surfaces of the anode foil 111 and the cathode foil 113 are respectively PEDOT layers 111b, 113) is impregnated with the wound element 110 is formed in the electrolyte (10) (S40).
  • the impregnation method of the electrolytic solution 10 is an electrolytic solution having a winding element 110 having PEDOT layers 111b and 113 formed on the surfaces of the anode foil 111 and the cathode foil 113, respectively, at a temperature of 20 to 70°C and a vacuum degree of 400 to 740mmHg. Impregnate in an impregnation bath (not shown) for 20 to 150 seconds.
  • the electrolyte solution 10 is stored in a known electrolyte impregnation tank (not shown), and wound the anode foil 111, the electrolyte sheet 112 and the cathode foil 113, and the anode foil 111 and the cathode foil 113 It is carried out to restore damage to the oxide films 111a and 113a that may be generated in the process of forming the PEDOT layers 111b and 113 on the surface.
  • the impregnated electrolyte solution 10 for restoring the damage of the oxide films 111a and 113a is 76 to 95.4 wt (weight)% of organic solvent, 3 to 8 wt% of solute, 1 to 6 wt% of additive and silica gel (SiO 2 ) 0.6 To 10 wt%.
  • organic solvent contained in the electrolyte 10 ethylene glycol and gamma butyrolactone are used, and one or more of organic/inorganic complex salts and organic acid salts are used, and the additive is a nitro compound or sugar. One or more are used.
  • solutes and additives included in the electrolyte solution at least one of organic and inorganic complex salts and organic acid salts is used, and contains 3 to 8 wt% per total weight (wt%) of the electrolyte solution for solid electrolytic capacitors 10 .
  • organic and inorganic complex salts and organic acid salts are used as the solute.
  • a borodisal icylicacid salt is used, and as the organic acid salt, at least one of ammonium phthalate and ammonium azelate is used.
  • the solute contains 3 wt% per total weight of the electrolyte 10
  • borodisalicylate 3 wt% is used.
  • such a solute contains 8 wt% per total weight of the electrolyte 10
  • 5 wt% of borodisalicylate is used, 1 wt% of phthalate is used, and 2 wt% of azelarate is used.
  • the additive contains 1 to 6 wt% per total weight (wt%) of the electrolytic solution for solid electrolytic capacitors 10, and at least one of a nitro compound and a sugar is used.
  • a nitro compound and a sugar is used.
  • One or more of p-nitrophenol and p-nitro benzoic acid is used as the nitro compound
  • mannitol is used as the sugar.
  • 1 wt% per total weight (wt%) of the electrolyte solution 10 is included, P-nitropanel 1 wt% is used, and 6 wt% per total weight (wt%) of the electrolyte solution 10 is included.
  • 1-% by weight of p-nitrophenol 4% by weight of p-nitrobenzoic acid is used, and 1% by weight of mannitol is used.
  • Silica gel (SiO 2 ) serves as an additive, and by adding silica gel (SiO 2 ) to the electrolyte solution 10, a polymer layer that is solid in the anode foil 111 or the cathode foil 113, that is, polyethylene dioxythiophene (PEDOT) Even when the layers 111b and 113b are formed, the withstand voltage of the electrolytic solution 10 can be increased, the leakage current can be reduced, and the chemical conversion voltage characteristics can be improved.
  • PEDOT polyethylene dioxythiophene
  • Silica gel (SiO 2 ) contains 0.6 to 10 wt% per total weight (wt%) of the electrolytic solution 10 for a solid electrolytic capacitor.
  • the winding element 110 When the winding element 110 is impregnated into the electrolyte 10, the winding element 110 is assembled to the case 120 as in FIGS. 1 and 4 (S50).
  • the winding element 110 connects the external electrodes 123 and 124 to the withdrawing electrodes 121 and 122 connected in the curved state generated when the anode foil 111 and the cathode foil 113 are respectively wound in a cylindrical shape before being assembled to the case 120. Connect each.
  • the external electrodes 123 and 124 are respectively connected to the extraction electrodes 121 and 122, and are inserted through the insulating pad 125 so that each part of the external electrodes 123 and 124 is exposed to the outside. That is, in the case 120, as shown in FIG.
  • the take-out electrodes 121 and 122 are disposed inside while the winding element 110 is disposed inside, and one side of each of the external electrodes 123 and 124 connected to each is inside. It is sealed by the insulating pad 125 so that each other side is exposed to the outside in a state arranged in.
  • the wound element 110 assembled with the case 120 is aged to restore damaged oxide films 111a and 113a (S60).
  • the case 120 is impregnated with the wound element 110 assembled into the electrolyte 10, and then aging treated using an edge treatment device (not shown) to be damaged.
  • an edge treatment device not shown
  • Table 1 shows an example of an electrolytic solution 10 to be used for the electrical test of the solid electrolytic capacitor prepared by the method of manufacturing the solid electrolytic capacitor of the present invention described above.
  • Comparative Example 4 is a case in which the silica gel (SiO 2 ) is included in the electrolytic solution 10 in excess of the upper limit.
  • Composition unit of electrolyte (wt%) Organic solvent solute additive Silica gel Ethylene glycol Gamma-butyrolactone Organic and inorganic complex salt Organic acid salt Nitro compounds Party Borodisalicylate Phthalic acid Azelaic acid P-nitrophenol P-nitrobenzoic acid Mannitol Comparative Example 1 56.0 40 3 - - One - - - Comparative Example 2 38.0 55 - 5 - - 2 - - Comparative Example 3 63.0 23 5 One 2 One 4 One - Example 1 55.4 40 3 - - One - - 0.6 Example 2 37.4 55 - 5 - - 2 - 0.6 Example 3 62.4 23 5 One 2 One 4 One 0.6 Example 4 53.5 40 3 - - One - - 2.5 Example 5 35.5 55 - 5 - - 2 - 2.5 Example 6 60.5 23 5 One 2 One 4 One 2.5 Example 7 53.0 23 5 One 2 One 4 One 10 Comparative Example 4 50.5 23 5 One 2 One 4 One 12.5
  • the electrolyte 10 according to Comparative Example 1 is used as an organic solvent, 56.0wt% of ethylene glycol and 40w t% of gamma-butyrolactone, and an organic complex salt used as a solute.
  • Electrolytic solution 10 according to Comparative Example 2 as shown in Table 1, 38.0wt% of ethylene glycol and 55wt% of gamma-butyrolactone were used as organic solvents, and 5wt% of phthalate was used as an organic acid salt used as a solute. As a nitro compound used, P-nitrobenzoic acid 2 wt% was used.
  • Electrolytic solution 10 according to Comparative Example 3 as shown in Table 1, 63.0wt% of ethylene glycol and 23wt% of gamma-butyrolactone are used as organic solvents, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , Phthalate 1wt% and azelarate 2wt% were used as organic acid salts, and 1-wt% of p-nitrophenol and 4wt% of p-nitrobenzoic acid were used as nitro compounds used as additives, and 1wt% of mannitol was used as sugar It was prepared.
  • Electrolytic solution 10 according to Example 1 is used as an organic solvent, as shown in Table 1, 55.4wt% of ethylene glycol and 40wt% of gamma-butyrolactone, and 3wt% of borodisalicylate is used as an organic complex used as a solute.
  • As a nitro compound used as an additive 1 wt% of pi-nitrophenol was used, and 0.6 wt% of silica gel (SiO 2 ) was used.
  • Electrolytic solution 10 according to Example 2 is used as an organic solvent, as shown in Table 1, 37.4wt% of ethylene glycol and 55wt% of gamma-butyrolactone, and 5wt% of phthalate was used as an organic acid salt used as a solute.
  • As a nitro compound used 2 wt% of pi-nitrobenzoic acid was used, and 0.6 wt% of silica gel (SiO 2 ) was used.
  • Electrolytic solution 10 according to Example 3 is used as an organic solvent, as shown in Table 1, 62.4wt% of ethylene glycol and 23wt% of gamma-butyrolactone, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , 1 wt% of phthalate and 2 wt% of azelaate were used as organic acid salt, 1 wt% of p-nitrophenol and 4wt% of pi-nitrobenzoic acid were used as nitro compounds used as additives, and 1wt% of mannitol was used as sugar. , Silica gel (SiO 2 ) 0.6wt% was used was prepared.
  • Electrolytic solution 10 according to Example 4 is used as an organic solvent, as shown in Table 1, 53.5 wt% of ethylene glycol and 40 wt% of gamma butyrolactone, and 3 wt% of borodisalicylate is used as an organic complex used as a solute.
  • As a nitro compound used as an additive 1 wt% of P-nitrophenol was used, and 2.5 wt% of silica gel (SiO2) was used.
  • the electrolyte solution 10 according to Example 5 used 35.5 wt% of ethylene glycol and 55 wt% of gamma butyrolactone as an organic solvent, and 5 wt% of phthalate was used as an organic acid salt used as a solute.
  • a nitro compound used 2 wt% of pi-nitrobenzoic acid was used, 1 wt% of mannitol was used as a sugar, and 2.5 wt% of silica gel (SiO 2 ) was used.
  • Electrolytic solution 10 according to Example 6 is used as an organic solvent, as shown in Table 1, 60.5wt% of ethylene glycol and 23wt% of gamma-butyrolactone, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , Phthalate 1wt% and azelarate 2wt% were used as the organic acid salt. As a nitro compound used as an additive, pi-nitrophenol 1wt% and pi-nitrobenzoic acid 4wt% were used, and mannitol 1wt% was used as a sugar. , Silica gel (SiO 2 ) 2.5wt% was used.
  • the electrolyte 10 according to Example 7 is used as an organic solvent as shown in Table 1, 53.0wt% of ethylene glycol and 23wt% of gamma butyrolactone, and 5wt% of borodisalicylate is used as an organic complex used as a solute.
  • Phthalate 1wt% and azelarate 2wt% were used as organic acid salts
  • 1-wt% pi-nitrophenol and 4wt% pi-nitrobenzoic acid were used as nitro compounds used as additives
  • 1wt% mannitol as sugar.
  • 10% by weight of silica gel (SiO 2 ) was used.
  • Solid electrolyte capacitors were prepared for electrical testing of the solid electrolyte capacitors to which the electrolytes 10 according to Comparative Examples 1 to 4 and Examples 1 to 7 shown in Table 1 were applied.
  • the manufacturing method of the solid electrolytic capacitors to which the electrolytic solutions 10 according to Comparative Examples 1 to 4 and Examples 1 to 7 were applied is the same as the above-described method, and thus the description is omitted.
  • Table 2 shows the characteristics of the electrolytic solution 10 prepared according to Comparative Examples 1 to 4 and Examples 1 to 7 and the method described above using the electrolytic solution 10 prepared according to Comparative Examples 1 to 4 and Examples 1 to 7 It is a table showing the results of testing the product characteristics of the solid electrolytic capacitor manufactured.
  • the pH (potential of hydrogen) of the electrolytic solution 10 was measured from 3.28 to 4.59 as a whole.
  • the electrolyte solution 10 according to Example 6 was measured to be 3.28
  • Comparative Example 2 and Example 2 were respectively measured to be 4.59.
  • the specific resistance of the electrolytic solution 10 was measured from 353 to 1235, in particular Example 5 was measured to be 353 and Example 7 was measured to be 1325.
  • the chemical conversion voltage of the electrolytic solution 10 was measured as 165V in Comparative Example 1, as shown in Table 2 and FIG. 5, 227V in Example 1, and 273V in Example 4. That is, as the electrolyte solution 10 reduced the content of ethylene glycol and increased the content of silica gel (SiO 2 ), the ignition voltage increased as shown in FIG. 5.
  • the electrolyte solution 10 according to Comparative Example 1, Example 1 and Example 4 was prepared to reduce the content of ethylene glycol and increase the content of silica gel (SiO 2 ), respectively.
  • Example 1 For example, in Comparative Example 1, Example 1, and Example 4, respectively, as shown in Table 1, 40 wt% of gamma-butyrolactone is used as an organic solvent, and 3 wt of borodisalicylate as an organic complex used as a solute. % Is used, and 1 wt% of P-nitrophenol is used as a nitro compound used as an additive.
  • Example 2 Comparative Example 1, 56 wt% of ethylene glycol was added as an organic solvent, and in Example 1, 55.4 wt% of ethylene glycol and 0.6 wt% of silica gel (SiO 2 ) were added, and in Example 4, 53.5 wt% of ethylene glycol and silica The difference is that 2.5 wt% of the gel (SiO 2 ) is added.
  • the chemical conversion voltage of the electrolytic solution 10 was measured as 122 V in Comparative Example 2, as shown in Table 2 and FIG. 6, and 354 V in Example 2 and 210 V in Example 5. That is, the electrolyte solution 10 reduced the content of ethylene glycol, and when it contained silica gel (SiO 2 ), the ignition voltage increased as shown in FIG. 6.
  • Example 2 and Example 5 respectively, as shown in Table 1, the content of ethylene glycol was reduced and the content of silica gel (SiO 2 ) was increased.
  • the electrolyte 10 according to Comparative Example 2, Example 2, and Example 5 is 55 wt% of gamma-butyrolactone as an organic solvent as shown in Table 1, and 5 wt of phthalate as an organic acid salt used as a solute. % was used, and as a nitro compound used as an additive, 2 wt% of p-nitrobenzoic acid was used identically to each other.
  • Comparative Example 2 38 wt% of ethylene glycol was used as the organic solvent, and in Example 2, 37.4 wt% of ethylene glycol was used as the organic solvent, and 0.6 wt% of silica gel (SiO 2 ) was used, and Example 5 was an organic solvent.
  • silica gel (SiO 2 ) 2.5wt% is used to produce a difference.
  • the chemical conversion voltage of the electrolyte solution 10 was measured as 182V in Comparative Example 2, as shown in Table 2 and FIG. 7, Example 3 was measured at 235V, Example 6 was measured at 299V, and Example 7 was measured at 313V. Became.
  • the electrolytic solution 10 according to Comparative Examples 3, 3, 6 and 7 was prepared to reduce the content of ethylene glycol and increase the content of silica gel (SiO 2 ).
  • the electrolyte 10 according to Comparative Example 3, Example 3, Example 6, and Example 7, respectively, is used as an organic solvent, 23 wt% of gamma butyrolactone, and used as a solute As a complex acid salt, 5 wt% of borodisalicylate is used, 1 wt% of phthalate and 2 wt% of azelarate are used as organic acid salt, and nitro compounds used as additives include 1 wt% of pi-nitrophenol and 4wt% of pi-nitrobenzoic acid. It was used, and 1 wt% of mannitol was used as a sugar to prepare the same.
  • Example 3 63 wt% of ethylene glycol was used as an organic solvent, and in Example 3, 62.4 wt% of ethylene glycol and 0.6 wt% of silica gel (SiO 2 ) were used as an organic solvent, and Example 6 As an organic solvent, 60.5 wt% of ethylene glycol and 2.5 wt% of silica gel (SiO 2 ) were used, and Example 7 was prepared by using 53 wt% of ethylene glycol and 10 wt% of silica gel (SiO 2 ) as organic solvents. There is a difference.
  • the leakage currents of the solid electrolytic capacitors each prepared using the electrolyte 10 according to Comparative Example 1, Example 1 and Example 4 were measured as 6.1 ⁇ A in Comparative Example 1, as shown in Table 2 and FIG. was measured at 3.3 ⁇ A, and Example 4 was measured at 2 2 ⁇ A.
  • each of the solid electrolytic capacitors prepared by using the electrolytic solution 10 according to Comparative Example 1, Example 1, and Practical Example 4 reduces the content of ethylene glycol and gamma butyrolactone in the electrolytic solution 10 and reduces silica gel (SiO 2 It can be seen that as the content of) increases, the leakage current decreases as shown in FIG. 5.
  • the leakage currents of the solid electrolytic capacitors respectively manufactured using the electrolytes 10 according to Comparative Examples 2, 2, and 5 were measured as 5.9 ⁇ A in Comparative Example 2, as shown in Table 2 and FIG. Was measured at 3.5 ⁇ A, and Example 5 was measured at 1.8 ⁇ A.
  • each of the solid electrolytic capacitors prepared by using the electrolytic solutions 10 according to Comparative Examples 2, 2, and 5 reduces the content of ethylene glycol in the electrolytic solution 10 and increases the content of silica gel (SiO 2 ).
  • SiO 2 silica gel
  • the leakage current decreased.
  • the detailed configuration of the electrolytic solution 10 according to Comparative Example 2, Example 2 and Example 5 is the same as described above, and description thereof will be omitted.
  • the leakage currents of the solid electrolyte capacitors respectively prepared using the electrolytes 10 according to Comparative Examples 3, 3, 6 and 7 were measured as 5.5 ⁇ A in Comparative Example 3 as shown in Table 2 and FIG. 7. , Example 3 was measured at 3.3 ⁇ A, Example 6 was measured at 2.0 ⁇ A, and Example 7 was measured at 2.3 ⁇ A.
  • the solid electrolytic capacitors respectively manufactured using the electrolytes 10 according to Comparative Examples 3, 3, 6, and 7 reduce the content of ethylene glycol and increase the content of silica gel (SiO 2 ). The leakage current decreased as in.
  • the detailed configuration of the electrolytic solution 10 according to Comparative Example 3, Example 3, Example 6, and Example 7 is the same as described above, and description thereof will be omitted.
  • the wound elements 110 in which the case 120 is assembled are aged to restore the damaged oxide films 111a and 113a (S60).
  • the aging processing step (S60) a plurality of sub-aging steps are sequentially performed, and the aging voltage (minimum aging voltage) of the first sub-aging step of each sub-aging step is the aging voltage of the last sub-aging step ( Less than the maximum aging voltage).
  • the maximum aging voltage may be formed in a range of 60 to 90% of the ignition voltage of the winding element, and the minimum aging voltage may be formed in a range of 5% to 50% of the maximum aging voltage. .
  • the aging voltages may be formed differently for each sub-aging step, and the magnitude of the aging voltage in any one of the sub-aging steps is 5% to 5% of the magnitude of the aging voltage in the subsequent sub-aging step. It is formed in the range of 90%.
  • Table 3 shows an embodiment of the aging treatment step (S60) in the method for manufacturing a solid electrolytic capacitor of the present invention described above.
  • Comparative Example 5 shown in Table 1 is applied to the same voltage (e.g., 38V) for a predetermined aging time (e.g. 120 minutes) to the cochle electrolytic capacitor during the aging process, wherein ethylene glycol and gamma-butyrolactone
  • the relative weight ratio of is 3:7, and the applied aging voltage may be set in a range of 60% to 90% of the ignition voltage of the metal foil of the winding element.
  • the aging voltage in Comparative Example 5 is formed at 38V, which is approximately 84% of 45V, which is the image voltage of the metal foil.
  • Example 8 to 10 the voltage was gradually increased from 8V to 38V while the predetermined aging time of the solid electrolytic capacitor was passed through a total of six sub-aging steps of the first sub-aging step to the sixth sub-aging step. It was boosted and approved. At this time, in Examples 8 to 10, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolytic solution of the solid electrolytic capacitor is set differently, and the time of each sub-aging step is exemplarily 20 minutes.
  • the aging voltage in the first sub-aging step is 8V
  • the aging voltage in the second sub-aging step is 15V
  • the aging voltage in the third sub-aging step is 22V
  • the aging voltage in the fourth sub-aging step is 29V
  • the fifth The aging voltage in the sub-aging step is 38V
  • the aging voltage in the sixth sub-aging step is 38V.
  • the applied voltage in the first sub-aging step may be referred to as a minimum aging voltage
  • the applied voltage in the fifth sub-aging step and the sixth sub-aging step may be referred to as a maximum aging voltage.
  • the minimum aging voltage may be set in a range of 5% to 50% of the maximum aging voltage, and the difference in aging voltage between each step may be increased in proportion to each step, or may be increased irrespective of the proportionality rate.
  • the aging temperature may be formed in a range of approximately 50 degrees to 100 degrees, the aging temperature in Comparative Example 5 and Examples 8 to 10 is set to 85 degrees.
  • Example 8 the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is set to 3:7, and in Example 9, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is 5:5. Is set to In addition, in Example 10, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is set to 6:4, and in Example 11, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is 7 It is set to :3. Meanwhile, the electrolytes of Examples 8 to 11 include solutes, additives, and silica gel, as in Examples 1 to 7.
  • the aging voltage is applied differently step by step, and when the weight ratio of ethylene glycol and gamma-butyrolactone in the electrolyte of the solid electrolytic capacitor is 5:5 to 6:4, ESR, leakage current (L /C) and loss was reduced and capacity increased.
  • each sub-aging step in the aging step S60 is described as being performed for the same time, but a configuration in which each sub-aging step is performed for different times may also be included in the configuration of this embodiment.
  • the first sub-aging step and the second sub-aging step may be performed for 30 minutes, respectively, and the third sub-aging step to the sixth sub-aging step may be performed for 15 minutes, respectively.
  • each sub-aging step may be set to two or more.
  • the damaged oxide film ( 111a, 113a) can be more stably restored and generated.
  • the method for manufacturing a solid electrolytic capacitor of the present invention is a voltage withstand even in an environment in which a Pb free solder is melted at a temperature of 200°C or higher by adding silica gel (SiO 2 ) to the electrolyte, that is, a high temperature environment.
  • silica gel SiO 2
  • Leakage current can be reduced by connecting the withdrawal terminal in the processed state.
  • An embodiment according to the present invention relates to a method for manufacturing a solid electrolytic capacitor and an electrolyte for a solid electrolytic capacitor, and has the possibility of repeatability and industrial use in an electrolytic capacitor device or the like.

Abstract

The present invention relates to a method for manufacturing a solid electrolytic condenser, and an electrolytic solution for a solid electrolytic condenser. The method for manufacturing a solid electrolytic condenser, according to the present invention, comprises the steps of: winding an anode foil, a separator and a cathode foil on a cylindrical winding device; impregnating a polymer dispersion solution into the winding device when the winding device is wound; drying the winding device, having been impregnated with the polymer dispersion solution, when the polymer dispersion solution is impregnated into the winding device; impregnating an electrolytic solution into the winding device when the winding device is dried; assembling the winding device on a case when the electrolytic solution is impregnated into the winding device; and performing aging by applying an aging voltage to the winding device assembled on the case, wherein, in the aging step of aging the winding device, the minimum aging voltage at which the aging step starts is different from the maximum aging voltage at which the aging step ends.

Description

고체 전해 콘덴서 제조방법 및 고체전해 콘덴서용 전해액Solid electrolytic capacitor manufacturing method and electrolyte for solid electrolytic capacitors
본 발명은 고체 전해 콘덴서 제조방법에 관한 것으로, 특히 전해액에 실리카겔(SiO2)을 첨가함으로써 온도가 200°C 이상에서 녹는 납프리(Pb free) 솔더가 적용되는 환경 즉, 고온환경에서도 내 전압을 높일 수 있으며 누설전류를 감소시킬 수 있는 고체 전해 콘덴서 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a solid electrolytic capacitor, and in particular, by adding silica gel (SiO 2 ) to the electrolyte, the voltage is maintained even in an environment in which a Pb free solder is melted at a temperature of 200°C or higher, that is, in a high temperature environment. It relates to a method of manufacturing a solid electrolytic capacitor capable of increasing and reducing leakage current.
고체 전해 콘덴서는 전도성 고분자와 전해액을 이용하여 제조하여 전해액을 사용하는 장점인 대 용량 및 고전압을 구현할 수 있으면서도 고체 전해질의 특징인 저임피던스 특성을 구현할 수 있으며, 관련 기술이 일본등록특허공보 제5879517호에 공개되어 있다.The solid electrolytic capacitor is manufactured using a conductive polymer and an electrolyte, and can realize high capacity and high voltage, which are advantages of using the electrolyte, while realizing low impedance characteristics characteristic of the solid electrolyte, and related technology is disclosed in Japanese Patent Publication No. 5879517 Is open.
일본등록특허공보 제5879517호는 전해 콘덴서의 제조 방법 및 전해 콘덴서에 관한 것으로, 일본등록특허공보 제5879517호의 전해 콘덴서의 제조 방법은 콘덴서 소자를 형성하는 공정과 콘덴서 소자에 전해액을 함침시키는 공정을 구비한다. 콘덴서 소자를 형성하는 공정은 표면에 유전체층을 가지는 양극박과 유전체층에 접촉한 고체 전해질층을 가지는 콘덴서 소자를 형성하며, 콘덴서 소자에 전해액을 함침시키는 공정은 콘덴서 소자가 형성되면 콘덴서 소자를 전해액에 함침시키는 것으로 전해액은 평균 분자량이 300 내지 1000인 폴리에틸렌글리콜(polyethylene glycol)이나 그 유도체로 구성되는 제1용매를 사용한다.Japanese Patent Publication No. 5879517 relates to a manufacturing method of an electrolytic capacitor and an electrolytic capacitor, and the manufacturing method of an electrolytic capacitor of Japanese Patent Publication No. 5879517 includes a process of forming a capacitor element and impregnating an electrolytic solution into the capacitor element. do. The process of forming the condenser element forms a condenser element having an anode foil having a dielectric layer on the surface and a solid electrolyte layer in contact with the dielectric layer, and the process of impregnating the electrolytic solution in the condenser element impregnates the condenser element with the electrolyte when the condenser element is formed. As the electrolyte, a first solvent composed of polyethylene glycol having an average molecular weight of 300 to 1000 or a derivative thereof is used.
일본등록특허공보 제5879517호와 같이 종래의 고체 전해 콘덴서는 온도가 200° C 이상에서 녹는 납프리(Pb free) 솔더가 적용되는 경우에 전해질층의 열화나 결정화에 의해 내전압이 저하될 수 있는 문제점이 있다.As in Japanese Patent Registration No. 5879517, in the case of a conventional solid electrolytic capacitor, a withstand voltage may be lowered due to deterioration or crystallization of the electrolyte layer when a Pb free solder having a temperature of 200°C or higher is applied. There is this.
본 발명의 목적은 전술한 문제점을 해결하기 위한 것으로, 전해액에 실리카겔(SiO2)을 첨가함으로써 온도가 200°C 이상에서 녹는 납프리(Pb free) 솔더가 적용되는 환경 즉, 고온 환경에서도 내전압을 높일 수 있으며 누설전류를 감소시킬 수 있는 고체 전해 콘덴서 제조방법을 제공함에 있다.The purpose of the present invention is to solve the above-mentioned problems, by adding silica gel (SiO 2 ) to the electrolyte solution, the lead-free (Pb free) solder melting temperature at 200 ° C. It is to provide a method of manufacturing a solid electrolytic capacitor capable of increasing and reducing leakage current.
본 발명의 다른 목적은 고체인 고분자층이 형성되는 경우에도 전해액에 실리카겔(SiO2)을 첨가함으로써 화성전압 특성을 개선시킬 수 있는 고체 전해 콘덴서 제조방법을 제공함에 있다.Another object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor capable of improving the ignition voltage characteristics by adding silica gel (SiO 2 ) to the electrolytic solution even when a solid polymer layer is formed.
본 발명의 또 다른 목적은 양극박이나 음극박을 곡면상태로 가공된 상태에서 인출단자를 연결함으로써 누설전류를 줄 일 수 있는 고체 전해 콘덴서 제조방법을 제공함에 있다.Another object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor capable of reducing a leakage current by connecting a lead terminal in a state where an anode foil or a cathode foil is processed in a curved state.
본 발명의 실시예의 일 측면에 따른 고체 전해 콘덴서 제조방법은 양극박, 전해지 및 음극박을 원통형의 권취소자로 권취하는 단계; 상기 권취소자가 권취되면 권취소자를 고분자 분산액에 함침시키는 단계; 상기 권취소자가 고분자 분산액에 함침되면 고분자 분산액에 함침된 권취소자를 건조하는 단계; 상기 권취소자가 건조되면 권취소자를 전해액에 함침시키는 단계; 상기 권취소자가 전해액에 함침되면 권취소자를 케이스에 조립하는 단계; 및 상기 케이스가 조립된 권취소자에 에이징 전압을 가하여 에이징 하는 단계;를 포함하고, 상기 권취소자를 에이징 하는 에이징 단계에서, 상기 에이징 단계가 개시될 때의 최소 에이징 전압과 상기 에이징 단계가 종료될 때의 최대 에이징 전압은 서로 다르게 형성된다.A method for manufacturing a solid electrolytic capacitor according to an aspect of an embodiment of the present invention comprises the steps of winding an anode foil, an electrolytic cell, and a cathode foil into a cylindrical winding element; When the winding element is wound, impregnating the winding element with a polymer dispersion; Drying the winding element impregnated with the polymer dispersion liquid when the winding element is impregnated with the polymer dispersion liquid; When the winding element is dried, impregnating the winding element with an electrolyte; Assembling the coiling element into a case when the coiling element is impregnated with an electrolyte; And aging by applying an aging voltage to the winding element in which the case is assembled. In the aging step of aging the winding element, the minimum aging voltage when the aging step starts and the aging step ends. The maximum aging voltage of is formed differently.
또한, 상기 에이징 단계는, 순차적으로 적용되는 복수의 서브 에이징 단계들을 포함하고, 어느 하나의 상기 서브 에이징 단계에서 인가되는 상기 에이징 전압은, 이에 후속하는 서브 에이징 단계의 상기 에이징 전압보다 클 수 있다.Further, the aging step includes a plurality of sub-aging steps applied sequentially, and the aging voltage applied in any one of the sub-aging steps may be greater than the aging voltage of the subsequent sub-aging step.
또한, 상기 서브 에이징 단계의 수행되는 시간은 서로 동일 할 수 있다.In addition, the time performed in the sub-aging step may be the same as each other.
또한, 어느 하나의 상기 서브 에이징 단계의 상기 에이징 전압의 크기는, 이에 후속하는 상기 서브 에이징 단계의 상기 에이징 전압의 크기의 5 % 내지 90%의 범위로 형성될 수 있다.In addition, the magnitude of the aging voltage of any one of the sub-aging steps may be formed in a range of 5% to 90% of the magnitude of the aging voltage of the subsequent sub-aging step.
또한, 상기 최대 에이징 전압은, 상기 권취소자의 화성 전압의 60 내지 90 %의 범위로 형성될 수 있다.In addition, the maximum aging voltage may be formed in a range of 60 to 90% of the ignition voltage of the winding element.
또한, 상기 최소 에이징 전압은, 상기 최대 에이징 전압의 5 % 내지 50 %의 범위로 형성될 수 있다.Further, the minimum aging voltage may be formed in a range of 5% to 50% of the maximum aging voltage.
또한, 상기 전해액은, 유기용매, 용질, 첨가제 및 실리카 겔(SiO2)을 포함하며,In addition, the electrolyte solution includes an organic solvent, a solute, an additive, and silica gel (SiO 2 ),
상기 유기 용매는 에틸렌 글리콜(ethylene glycol)과 감마부티로락톤(gamma butyrolactone)을 포함하고, 상기 유기 용매에 포함되는 상기 에틸렌 글리콜과 상기 감마부티로락톤의 상대적인 중량비는 5:5 내지 6:4의 범위로 형성될 수 있다.The organic solvent comprises ethylene glycol (ethylene glycol) and gamma butyrolactone, the relative weight ratio of the ethylene glycol and the gamma butyrolactone contained in the organic solvent is 5:5 to 6:4 Range.
또한, 상기 용질은 유무기 복합산염과 유기산염 중 하나 이상이 사용되며, 상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며, 상기 유기 용매는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt(weight)%) 당 76 내지 95.4wt%을 함유할 수 있다.In addition, as the solute, at least one of an organic-inorganic complex acid salt and an organic acid salt is used, the additive is one or more of a nitro compound and a sugar, and the organic solvent is the total weight of the electrolyte solution for the solid electrolytic capacitor (wt(weight )%) can contain 76 to 95.4wt% sugar.
또한, 상기 용질은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%)당 3 내지 8wt%을 함유하고, 상기 용질은 유무기 복합산염 및 유기산염 중 하나 이상이 사용되며, 상기 유무기 복합산염은 보로디살리실산(borodisalicylic acid)염이 사용되고, 상기 유기산염은 프탈산염(ammonium phthalate)과 아젤라산염(ammonium azelate) 중 하나 이상이 사용될 수 있다.In addition, the solute contains 3 to 8 wt% per total weight (wt%) of the electrolytic solution for the solid electrolytic capacitor, the solute is used at least one of an organic-inorganic complex salt and an organic acid salt, the organic-inorganic complex salt is Borodisalicylic acid salt is used, and the organic acid salt may be one or more of ammonium phthalate and ammonium azelate.
또한, 상기 첨가제는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 1 내지 6wt%를 함유하고, 상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며, 상기 니트로화합물은 피-니트로페놀(p-nitro phenol)과 피-니트로벤조산(p-nitro benzoic acid) 중 하나 이상이 사용되고 상기 당은 마니톨(mannitol)이 사용될 수 있다.In addition, the additive contains 1 to 6 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor, and the additive is one or more of a nitro compound and a sugar, and the nitro compound is P-nitrophenol ( One or more of p-nitro phenol and p-nitro benzoic acid may be used, and mannitol may be used as the sugar.
또한, 상기 실리카 겔(SiO2)은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 0.6 내지 10wt%을 함유할 수 있다.In addition, the silica gel (SiO 2 ) may contain 0.6 to 10 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor.
본 발명의 실시예의 다른 측면에 따른 고체 전해 콘덴서용 전해액은, 유기 용매, 용질, 첨가제 및 실리카 겔(SiO2)을 포함하며, 상기 유기 용매는 에틸렌 글리콜(ethylene glycol)과 감마부티로락톤(gammabutyrolactone) 중 하나 이상이 사용되며, 0상기 유기 용매에 포함되는 상기 에틸렌 글리콜과 상기 감마부티로락톤의 상대적인 중량비는 5:5 내지 6:4의 범위로 형성될 수 있다.The electrolyte solution for a solid electrolytic capacitor according to another aspect of the embodiment of the present invention includes an organic solvent, a solute, an additive, and silica gel (SiO 2 ), and the organic solvent includes ethylene glycol and gammabutyrolactone. ) Is used, 0, the relative weight ratio of the ethylene glycol and the gamma-butyrolactone contained in the organic solvent may be formed in the range of 5:5 to 6:4.
또한, 상기 전해액은, 유기용매, 용질, 첨가제 및 실리카 겔(SiO2)을 포함하며, 상기 유기 용매는 에틸렌 글리콜(ethylene glycol)과 감마부티로락톤(gamma butyrolactone)을 포함하고, 상기 유기 용매에 포함되는 상기 에틸렌 글리콜과 상기 감마부티로락톤의 상대적인 중량비는 5:5 내지 6:4의 범위로 형성될 수 있다.In addition, the electrolyte solution includes an organic solvent, a solute, an additive, and silica gel (SiO 2 ), and the organic solvent includes ethylene glycol and gamma butyrolactone, and the organic solvent The relative weight ratio of the ethylene glycol and the gamma-butyrolactone included may be formed in the range of 5:5 to 6:4.
또한, 상기 용질은 유무기 복합산염과 유기산염 중 하나 이상이 사용되며, 상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며, 상기 유기 용매는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt(weight)%) 당 76 내지 95.4wt%을 함유할 수 있다.In addition, as the solute, at least one of an organic-inorganic complex acid salt and an organic acid salt is used, the additive is one or more of a nitro compound and a sugar, and the organic solvent is the total weight of the electrolyte solution for the solid electrolytic capacitor (wt(weight )%) can contain 76 to 95.4wt% sugar.
또한, 상기 용질은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%)당 3 내지 8wt%을 함유하고, 상기 용질은 유무기 복합산염 및 유기산염 중 하나 이상이 사용되며, 상기 유무기 복합산염은 보로디살리실산(borodisalicylic acid)염이 사용되고, 상기 유기산염은 프탈산염(ammonium phthalate)과 아젤라산염(ammonium azelate) 중 하나 이상이 사용될 수 있다.In addition, the solute contains 3 to 8 wt% per total weight (wt%) of the electrolytic solution for the solid electrolytic capacitor, the solute is used at least one of an organic-inorganic complex salt and an organic acid salt, the organic-inorganic complex salt is Borodisalicylic acid salt is used, and the organic acid salt may be one or more of ammonium phthalate and ammonium azelate.
또한, 상기 첨가제는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 1 내지 6wt%를 함유하고, 상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며, 상기 니트로화합물은 피-니트로페놀(p-nitro phenol)과 피-니트로벤조산(p-nitro benzoic acid) 중 하나 이상이 사용되고 상기 당은 마니톨(mannitol)이 사용될 수 있다.In addition, the additive contains 1 to 6 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor, and the additive is one or more of a nitro compound and a sugar, and the nitro compound is P-nitrophenol ( One or more of p-nitro phenol and p-nitro benzoic acid may be used, and mannitol may be used as the sugar.
또한, 상기 실리카 겔(SiO2)은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 0.6 내지 10wt%을 함유할 수 있다.In addition, the silica gel (SiO 2 ) may contain 0.6 to 10 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor.
본 발명의 고체 전해 콘덴서 제조방법은 전해액에 실리카 겔(SiO2)을 첨가함으로써 전해액에 실리카 겔(SiO2)을 첨가함으로써 온도가 200°C 이상에서 녹는 납프리(Pb free) 솔더가 적용되는 환경 즉, 고온 환경에서도 내전압을 높일 수 있으며 누설전류를 감소시킬 수 있는 이점이 있고, 고체인 고분자층이 형성되는 경우에도 전해액에 실리카겔(SiO2)을 첨가함으로써 화성전압 특성을 개선시킬 수 있는 이점이 있으며, 양극박이나 음극박을 곡면상태로 가공된 상태에서 인출단자를 연결함으로써 누설전류를 줄일 수 있는 이점이 있다.The method of manufacturing a solid electrolytic capacitor of the present invention is an environment in which a Pb free solder is melted at a temperature of 200°C or higher by adding silica gel (SiO2) to the electrolyte by adding silica gel (SiO2) to the electrolyte, that is, Even in a high temperature environment, the withstand voltage can be increased and the leakage current can be reduced, and even when a solid polymer layer is formed, silica gel (SiO2) is added to the electrolyte to improve the formation voltage characteristics, and the anode There is an advantage in that the leakage current can be reduced by connecting the lead terminal in a state where the foil or cathode foil is processed in a curved state.
도 1은 본 발명의 고체 전해 콘덴서 제조방법을 나타낸 흐름도이다.1 is a flow chart showing a method of manufacturing a solid electrolytic capacitor of the present invention.
도 2는 도 1에 도시된 양극박, 전해지 및 음극박을 권취하는 단계에서 제조된 권취소자의 사시도이다.FIG. 2 is a perspective view of the winding element manufactured in the step of winding the anode foil, electrolytic cell and cathode foil shown in FIG. 1.
도 3은 도 2에 도시된 A1 부분의 확대 단면도이다.3 is an enlarged cross-sectional view of the portion A1 shown in FIG. 2.
도 4는 도 2에 도시된 권취소자를 케이스에 조립한 상태를 도시한 단면도이다.4 is a cross-sectional view showing a state in which the winding element shown in FIG. 2 is assembled to a case.
도 5 내지 도 7은 각각 본 발명의 전해액이 적용된 고체 전해 콘덴서의 전기적인 시험 결과를 나타낸 그래프이다.5 to 7 are graphs showing the electrical test results of the solid electrolytic capacitor to which the electrolytic solution of the present invention is applied, respectively.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention, and methods for achieving them will be clarified with reference to embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the present embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains. It is provided to completely inform the person having the scope of the invention, and the present invention is only defined by the scope of the claims.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various components, it goes without saying that these components are not limited by these terms. These terms are only used to distinguish one component from another component. Therefore, it goes without saying that the first component mentioned below may be the second component within the technical spirit of the present invention.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.The same reference numerals refer to the same components throughout the specification.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.Each of the features of the various embodiments of the present invention may be partially or entirely combined or combined with each other, and technically various interlocking and driving may be possible as those skilled in the art can fully understand, and each of the embodiments may be implemented independently of each other. It can also be implemented together in an associative relationship.
한편, 본 발명의 명세서에서 구체적으로 언급되지 않은 본 발명의 기술적 특징에 의해 기대될 수 있는 잠정적인 효과는 본 명세서에 기재된 것과 같이 취급되며, 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공된 것인바, 도면에 도시된 내용은 실제 발명의 구현모습에 비해 과장되어 표현될 수 있으며, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 구성의 상세한 설명은 생략하거나 간략하게 기재한다.On the other hand, the potential effects that can be expected by the technical features of the present invention, which are not specifically mentioned in the specification of the present invention, are treated as described in the present specification, and this embodiment is applied to those skilled in the art. It is provided to describe the present invention more fully, and the contents shown in the drawings may be exaggeratedly expressed as compared to the actual implementation of the invention, and a detailed description of a configuration determined to unnecessarily obscure the subject matter of the present invention Omitted or briefly described.
이하에서는 첨부되는 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 3에서와 같이 본 발명의 고체 전해 콘덴서 제조방법은 먼저 양극박(111), 전해지(112) 및 음극박(113)을 원통형의 권취소자(110)로 권취한다(S10). 1 to 3, the method of manufacturing the solid electrolytic capacitor of the present invention first wound the anode foil 111, the electrolyte sheet 112, and the cathode foil 113 into a cylindrical winding element 110 (S10).
권취소자(110)가 권취되면 권취소자(110)를 고분자 분산액에 함침시킨다(S20). When the winding element 110 is wound, the winding element 110 is impregnated into the polymer dispersion (S20).
권취소자(110)가 고분자 분산액에 함침되면 고분자 분산액에 함침된 권취소자(110)를 건조한다(S30). When the winding element 110 is impregnated with the polymer dispersion, the winding element 110 impregnated with the polymer dispersion is dried (S30).
권취소자(110) 가 건조되면 권취소자(110)를 전해액(10)에 함침시킨다(S40). When the winding element 110 is dried, the winding element 110 is impregnated into the electrolyte 10 (S40).
권취소자(110)가 전해액(10)에 함침되면 권취소자(110)를 케이스(120)에 조립한다(S50). When the winding element 110 is impregnated into the electrolyte 10, the winding element 110 is assembled to the case 120 (S50).
케이스(120)가 조립된 권취소자(110)를 에이징 처리하여 손상된 산화피막(111a, 113a)을 복원시킨다(S60).The wound element 110 in which the case 120 is assembled is aged to restore the damaged oxide films 111a and 113a (S60).
전술한 구성을 갖는 본 발명의 고체 전해 콘덴서 제조방법을 상세히 설명하면 다음과 같다.The method of manufacturing the solid electrolytic capacitor of the present invention having the above-described configuration will be described in detail as follows.
본 발명의 고체 전해 콘덴서 제조방법은 먼저, 도 1 내지 도 3에서와 같이 양극박(111), 전해지(112) 및 음극박(113)을 원통형의 권취소자(110)로 권취한다(S10). 양극박(111), 전해지(112) 및 음극박(113)을 원통형의 권취소자(110)로 권취하기 위해 먼저,표면에 각각 산화피막(111a,113a)이 형성된 양극박(111)과 음극박(113)에 각각 인출전극(121,122)을 연결한 후 양극박(111)과 음극박(113) 사이에 전해지(112)를 배치한다. 여기서, 양극박(111)에 형성된 산화피막(111a)의 두께(T1)는 0.1nm 내지 5μm 가 되도록 형성되며, 음극박(113)에 형성된 산화피막(113a)의 두께(T2)는 0.1 nm 내지 l0 nm가 되도록 형성된다. 즉, 양극박(111)에 형성된 산화피막(111a)의 두께(T1)는 음극박(113)에 형성된 산화피막(113a)의 두께(T2)보다 크도록 형성된다.The method for manufacturing a solid electrolytic capacitor of the present invention, first, as shown in Figures 1 to 3, the anode foil 111, the electrolytic cell 112, and the cathode foil 113 are wound with a cylindrical winding element 110 (S10). In order to wind the anode foil 111, the electrolytic paper 112, and the cathode foil 113 into the cylindrical winding element 110, first, the anode foil 111 and the cathode foil having oxide films 111a and 113a formed on the surfaces, respectively After connecting the extraction electrodes 121 and 122 to 113, an electrolyte 112 is disposed between the anode foil 111 and the cathode foil 113. Here, the thickness T1 of the oxide film 111a formed on the anode foil 111 is formed to be 0.1 nm to 5 μm, and the thickness T2 of the oxide film 113a formed on the cathode foil 113 is 0.1 nm to It is formed to be l0 nm. That is, the thickness T1 of the oxide film 111a formed on the anode foil 111 is formed to be greater than the thickness T2 of the oxide film 113a formed on the cathode foil 113.
인출전극(121,122)은 각각 양극박(111)과 음극박(113)이 평평한 상태가 아니라 어느 정도 곡면으로 가공한 후 도 2에서와 같이 양극박(111)과 음극박(113)을 각각 원통형으로 권취 시 발생되는 곡면 상태에서 양극박(111)과 음극박(113)을 전기적으로 연결함으로써 인출전극(121)과 양극박(111)이나 인출전극(122)과 음극박(113) 사이의 접착력을 향상시켜 ESR(Equivalent Series Resistance) 특성을 개선시킴으로써 누설전류를 줄일 수 있게 된다. 예를 들어, 인출전극(121,122)는 양극박(111)이나 음극박(113)과 접착되어 연결되는 일측을 양극박(111)이나 음극박(113)의 곡전의 휘어짐과 동일하게 휘어지게 가공한 후 양극박(111)이나 음극박(113)에 인출전극(121,122)을 연결함으로써 양극박(111)이나 음극박(113)을 원통형으로 권취함으로써 양극박(111)이나 음극박(113)과 인출전극(121,122) 사이의 접착력을 개선시킬 수 있게 된다.As for the lead-out electrodes 121 and 122, the anode foil 111 and the cathode foil 113 are respectively not curved, but after being processed into a curved surface to some extent, the anode foil 111 and cathode foil 113 are respectively cylindrical. By electrically connecting the anode foil 111 and the cathode foil 113 in a curved state that occurs during winding, the adhesion between the lead electrode 121 and the anode foil 111 or the lead electrode 122 and the cathode foil 113 is improved. By improving the ESR (Equivalent Series Resistance) characteristics, leakage current can be reduced. For example, the lead-out electrodes 121 and 122 are processed by bending the one side connected to the anode foil 111 or the cathode foil 113 to bend the same as the bending of the anode foil 111 or the cathode foil 113. Then, by connecting the drawing electrodes 121 and 122 to the anode foil 111 or the cathode foil 113, the anode foil 111 or the cathode foil 113 is wound in a cylindrical shape to be withdrawn from the anode foil 111 or the cathode foil 113. It is possible to improve the adhesion between the electrodes 121, 122.
인출전극(121,122)은 양극박(111)과 음극박(113)과 접촉되어 연결되는 일측이 평평한 상태에서 양극박(111)과 음극박(113)에 연결되는 경우에 양극박(111)과 음극박(113)이 각각 원통형으로 권취되는 경우에 양극박(111)이나 음극박(113)과 접하는 면적이 작아져 양극박(111)이나 음극박(113)과 인출전극(121,122) 사이의 접착력을 저하시킬 수 있는 것을 방지하여 누설전류를 줄이며, 양극박(111)과 음극박(113)에 각각 연결되는 인출전극(121,122)은 각각 외부전극(123,124)이 연결된다. 인출전극(121,122)이 양극박(111)과 음극박(113)에 각각 연결되면 표면에 각각 산화피막(111a,113a)이 형성된 양극박(111)과 음극박(113) 사이에 전해지(112)를 배치한 후 양극박(111) 과 음극박(113) 사이에 전해지(112) 가 배치되면 양극박(111), 전해지(112) 및 음극박(113)을 원통형의 권취소자(110)로 권취한다. 권취소자(110)는 양극박(111), 전해지(12) 및 음극박(113)을 권취하여 조립되며, 이러한 권취소자(110)의 조립은 공지된 권취 장비(도시 않음)을 이용한다.The extraction electrodes 121 and 122 are in contact with the anode foil 111 and the cathode foil 113, and when the one side connected to the anode foil 111 and the cathode foil 113 are connected in a flat state, the anode foil 111 When the anode foil 111 and the cathode foil 113 are wound in a cylindrical shape, the area in contact with the anode foil 111 or the cathode foil 113 becomes small, and thus, between the anode foil 111 or the cathode foil 113 and the extraction electrodes 121 and 122. The leakage current is reduced by preventing the adhesion from being deteriorated, and the external electrodes 123 and 124 are connected to the extraction electrodes 121 and 122 respectively connected to the anode foil 111 and the cathode foil 113. When the lead-out electrodes 121 and 122 are respectively connected to the anode foil 111 and the cathode foil 113, the electrolytic cell 112 is provided between the anode foil 111 and the cathode foil 113, each of which has oxide films 111a and 113a formed on the surface. After disposing the electrolyte foil 112 between the anode foil 111 and the cathode foil 113, the anode foil 111, the electrolyte foil 112, and the cathode foil 113 are wound with a cylindrical winding element 110. do. The winding element 110 is assembled by winding the anode foil 111, the electrolytic cell 12, and the cathode foil 113, and the assembly of the winding element 110 uses a known winding equipment (not shown).
권취소자(110)가 권취되면 도 1에서와 같이 권취소자(110)를 고분자 분산액에 함침시킨다(S20). 예를 들어, 권취소자(110)가 권취되면 권취소자(110)를 온도가 20 내지 70°C이고 진공도 500 내지 760mmHg이며 고분자 분산액이 저장된 고분자함침조(도시않음)에 3 내지 30 분 동안 고온 진공 하에 함침시킨다. 고분자 분산액은 고분자 힘침조에 저장되며, 고분자 분산액은 용매와 용질을 포함하여 형성된다.When the winding element 110 is wound, as shown in FIG. 1, the winding element 110 is impregnated into the polymer dispersion (S20). For example, when the coiling element 110 is wound, the coiling element 110 has a temperature of 20 to 70°C, a vacuum of 500 to 760mmHg, and a high temperature vacuum for 3 to 30 minutes in a polymer impregnation tank (not shown) in which a polymer dispersion is stored. Impregnate under. The polymer dispersion is stored in a polymer force bath, and the polymer dispersion is formed including a solvent and a solute.
즉, 고분자 분산액은 순수(H2O)와 EG(ethylene glycol), 글리콜계 용매, 분산제 중 하나 이상과 PEDOT(polyethylene dioxythiophene)를 혼합하여 형성되며, 순수(H20)와 EG 등은 용매로 사용되며, PEDOT는 분산액의 용질로 사용된다.That is, the polymer dispersion is formed by mixing one or more of pure (H2O), EG (ethylene glycol), glycol-based solvent, and dispersant, and polyethylene dioxythiophene (PEDOT), and pure (H20) and EG are used as solvents, and PEDOT Is used as the solute of the dispersion.
권취소자(110)가 고분자 분산액에 함침되면 도 1에서와 같이 고분자 분산액에 함침된 권취소자(110)를 건조한다(S30). 고분자 분산액에 함침된 권취소자(110)의 건조방법은 고분자 분산액에 함침된 권취소자(110)를 온도가 100 내지 200°C인 건조기(도시 않음)에서 30 내지 150분 동안 건조시켜 양극박(111)과 음극박(113)의 표면에 각각 PEDOT층(111b, 113)이 형성되도록 한다.When the winding element 110 is impregnated with the polymer dispersion, the winding element 110 impregnated with the polymer dispersion is dried as shown in FIG. 1 (S30). The drying method of the winding element 110 impregnated with the polymer dispersion is dried by drying the winding element 110 impregnated with the polymer dispersion in a dryer (not shown) having a temperature of 100 to 200°C for 30 to 150 minutes. ) And the PEDOT layers 111b and 113 are formed on the surfaces of the cathode foil 113, respectively.
양극박(111)과 음극박(113)의 표면에 각각 PEDOT층(111b, 113)이 형성되면 도 1에서와 같이 양극박(111)과 음극박(113)의 표면에 각각 PEDOT층(111b, 113)이 형성된 권취소자(110)를 전해액(10)에 함침시킨다(S40). 전해액(10)의 함침 방법은 양극박(111)과 음극박(113)의 표면에 각각 PEDOT층(111b, 113)이 형성된 권취소자(110)를 20 내지 70°C이고 진공도 400 내지 740mmHg인 전해액 함침조(도시 않음)에 20 내지 150초동안 함침시킨다.When the PEDOT layers 111b and 113 are formed on the surfaces of the anode foil 111 and the cathode foil 113, respectively, as shown in FIG. 1, the surfaces of the anode foil 111 and the cathode foil 113 are respectively PEDOT layers 111b, 113) is impregnated with the wound element 110 is formed in the electrolyte (10) (S40). The impregnation method of the electrolytic solution 10 is an electrolytic solution having a winding element 110 having PEDOT layers 111b and 113 formed on the surfaces of the anode foil 111 and the cathode foil 113, respectively, at a temperature of 20 to 70°C and a vacuum degree of 400 to 740mmHg. Impregnate in an impregnation bath (not shown) for 20 to 150 seconds.
전해액(10)은 공지된 전해액 함침조(도시 않음)에 저장되며, 양극박(111), 전해지(112) 및 음극박(113)을 권취하며, 양극박(111)과 음극박(113)의 표면에 PEDOT층(111b, 113)을 형성하는 과정에서 발생될 수 있는 산화피막(111a,113a)의 손상의 복원을 위해 실시된다. 산화피막(111a,113a)의 손상의 복원을 위해 함침되는 전해액(10)은 유기 용매 76 내지 95.4wt(weight)%, 용질 3 내지 8wt%, 첨가제 1 내지 6wt% 및 실리카 겔(SiO2) 0.6 내지 10wt%를 포함한다. The electrolyte solution 10 is stored in a known electrolyte impregnation tank (not shown), and wound the anode foil 111, the electrolyte sheet 112 and the cathode foil 113, and the anode foil 111 and the cathode foil 113 It is carried out to restore damage to the oxide films 111a and 113a that may be generated in the process of forming the PEDOT layers 111b and 113 on the surface. The impregnated electrolyte solution 10 for restoring the damage of the oxide films 111a and 113a is 76 to 95.4 wt (weight)% of organic solvent, 3 to 8 wt% of solute, 1 to 6 wt% of additive and silica gel (SiO 2 ) 0.6 To 10 wt%.
전해액(10)에 포함되는 유기 용매는 에틸렌글리콜(ethyleneglycol)과 감마부티로락톤(gamma butyrolactone)이 사용되고, 용질은 유무기 복합산염과 유기산염 중 하나 이상이 사용되며, 첨가제는 니트로화합물과 당 중 하나 이상이 사용된다. As the organic solvent contained in the electrolyte 10, ethylene glycol and gamma butyrolactone are used, and one or more of organic/inorganic complex salts and organic acid salts are used, and the additive is a nitro compound or sugar. One or more are used.
전해액(10)에 포함되는 용질과 첨가제 중 용질은 유무기 복합산염과 유기산염 중 하나 이상이 사용되며, 고체 전해 콘덴서용 전해액(10)의 총 중량(wt%) 당 3 내지 8wt%를 함유한다. 이러한 용질은 유무기 복합산염 및 유기산염중 하나 이상이 사용된다.Among the solutes and additives included in the electrolyte solution 10, at least one of organic and inorganic complex salts and organic acid salts is used, and contains 3 to 8 wt% per total weight (wt%) of the electrolyte solution for solid electrolytic capacitors 10 . One or more of organic and inorganic complex salts and organic acid salts are used as the solute.
용질로 사용되는 유무기 복합산염은 보로디살리실산(borodisal icylicacid) 염이 사용되며, 유기산염은 프탈산염(ammonium phthalate)과 아젤라산염(ammonium azelate) 중 하나 이상이 사용된다. 용질은 전해액(10)의 총 중량당 3wt%가 포함되는 경우에 보로디살리실산염이 3wt%가 사용된다. 이러한 용질은 전해액(10)의 총 중량당 8wt%가 포함되는 경우에는 보로디살리실산염이 5wt%가 사용되고 프탈산염 1wt%가 사용되며 아젤라산염 2wt%가 사용된다.As the organic-inorganic complex salt used as a solute, a borodisal icylicacid salt is used, and as the organic acid salt, at least one of ammonium phthalate and ammonium azelate is used. When the solute contains 3 wt% per total weight of the electrolyte 10, borodisalicylate 3 wt% is used. When such a solute contains 8 wt% per total weight of the electrolyte 10, 5 wt% of borodisalicylate is used, 1 wt% of phthalate is used, and 2 wt% of azelarate is used.
첨가제는 고체 전해 콘덴서용 전해액(10)의 총 중량(wt%)당 1 내지 6wt%를 함유하며, 니트로화합물과 당 중 하나 이상이 사용된다. 니트로화합물은 피-니트로페놀(p-nitro phenol)과 피-니트로벤조산(p-nitro benzoic acid) 중 하나 이상이 사용되며 당은 마니톨(mannitol)이 사용된다. 이러한 첨가제는 전해액(10)의 총 중량(wt%)당 1wt%가 포함되는 경우에 피-니트로페널 1wt%가 사용되며, 전해액(10)의 총 중량(wt%)당 6wt%가 포함되는 경우에는 피-니트로페놀 1wt%가 사용되고 피-니트로벤조산 4wt%가 사용되며 마니톨 1wt%가 사용된다.The additive contains 1 to 6 wt% per total weight (wt%) of the electrolytic solution for solid electrolytic capacitors 10, and at least one of a nitro compound and a sugar is used. One or more of p-nitrophenol and p-nitro benzoic acid is used as the nitro compound, and mannitol is used as the sugar. In the case where 1 wt% per total weight (wt%) of the electrolyte solution 10 is included, P-nitropanel 1 wt% is used, and 6 wt% per total weight (wt%) of the electrolyte solution 10 is included. For 1-% by weight of p-nitrophenol, 4% by weight of p-nitrobenzoic acid is used, and 1% by weight of mannitol is used.
실리카 겔(SiO2)은 첨가제로 역할을 하며, 전해액(10)에 실리카 겔(SiO2)을 첨가함으로써 양극박(111)이나 음극박(113)에 고체인 고분자층 즉,PEDOT(polyethylene dioxythiophene)층(111b,113b)이 형성되는 경우에도 전해액(10)의 내전압을 높일 수 있고, 누설전류를 감소시킬 수 있으며, 화성전압 특성을 개선시킬 수 있게 된다. Silica gel (SiO 2 ) serves as an additive, and by adding silica gel (SiO 2 ) to the electrolyte solution 10, a polymer layer that is solid in the anode foil 111 or the cathode foil 113, that is, polyethylene dioxythiophene (PEDOT) Even when the layers 111b and 113b are formed, the withstand voltage of the electrolytic solution 10 can be increased, the leakage current can be reduced, and the chemical conversion voltage characteristics can be improved.
실리카 겔(SiO2)은 고체 전해 콘덴서용 전해액(10)의 총 중량(wt%) 당 0.6 내지 10wt%를 함유한다.Silica gel (SiO 2 ) contains 0.6 to 10 wt% per total weight (wt%) of the electrolytic solution 10 for a solid electrolytic capacitor.
실리카 겔(SiO2)을 0.6wt% 미만으로 함유하는 경우 첨가 효과가 미미하여 여전히 누설전류가 크게 나타나는 문제가 있으며, 10wt%를 초과하여 함유하는 경우 전해액에서 용질이 용매에 모두 용해되지 못하고 일부가 석출되는 현상이 발생한다.When the silica gel (SiO 2 ) is contained less than 0.6wt%, there is a problem that the leakage current is still large due to an insignificant addition effect, and when it contains more than 10wt%, all of the solutes in the electrolytic solution are not soluble in the solvent and some precipitate. Occurs.
권취소자(110)가 전해액(10)에 함침되면 도 1 및 도 4에서와 같이 권취소자(110)를 케이스(120)에 조립한다(S50). 권취소자(110)는 케이스(120)에 조립하기 전에 양극박(111)과 음극박(113)을 각각 원통형으로 권취 시 발생되는 곡면 상태에서 연결된 인출전극(121,122)에 각각 외부전극(123,124)을 각각 연결한다. 외부전극(123,124)이 각각 인출전극(121,122)에 각각 연결되며, 외부전극(123,124)의 각각의 일부가 각각 외부로 노출되도록 절연패드(125)에 관통되어 삽입된다. 즉, 케이스(120)는 도 4에서와 같이 내측에 권취소자(110)가 배치된 상태에서 인출전극(121,122)이 내측에 배치되며,각각에 연결되는 외부전극(123,124)의 각각의 일측이 내측에 배치된 상태에서 각각의 타측이 외부로 노출되도록 절연패드(125)에 의해 밀봉된다.When the winding element 110 is impregnated into the electrolyte 10, the winding element 110 is assembled to the case 120 as in FIGS. 1 and 4 (S50). The winding element 110 connects the external electrodes 123 and 124 to the withdrawing electrodes 121 and 122 connected in the curved state generated when the anode foil 111 and the cathode foil 113 are respectively wound in a cylindrical shape before being assembled to the case 120. Connect each. The external electrodes 123 and 124 are respectively connected to the extraction electrodes 121 and 122, and are inserted through the insulating pad 125 so that each part of the external electrodes 123 and 124 is exposed to the outside. That is, in the case 120, as shown in FIG. 4, the take-out electrodes 121 and 122 are disposed inside while the winding element 110 is disposed inside, and one side of each of the external electrodes 123 and 124 connected to each is inside. It is sealed by the insulating pad 125 so that each other side is exposed to the outside in a state arranged in.
권취소자(110)가 케이스(120)에 조립되면 도 1에서와 같이 케이스(120)가 조립된 권취소자(110)를 에이징 처리하여 손상된 산화피막(111a, 113a)을 복원시킨다(S60). When the winding element 110 is assembled to the case 120, as shown in FIG. 1, the wound element 110 assembled with the case 120 is aged to restore damaged oxide films 111a and 113a (S60).
즉, 권취소자(110)가 케이스(120)에 조립되면 케이스(120)가 조립된 권취소자(110)를 전해액(10)에 함침시킨 후 에지징 처리장치(도시않음)를 이용해 에이징 처리하여 손상된 산화피막(111a, 113a)을 복원시킴으로써, 이로 인해 제품 특성 및 제품생산성을 개선시킬 수 있게 된다.That is, when the winding element 110 is assembled to the case 120, the case 120 is impregnated with the wound element 110 assembled into the electrolyte 10, and then aging treated using an edge treatment device (not shown) to be damaged. By restoring the oxide films 111a and 113a, it is possible to improve product characteristics and product productivity.
표 1은 전술한 본 발명의 고체 전해 콘덴서의 제조방법으로 제조된 고체 전해 콘덴서의 전기적인 시험을 위해 사용될 전해액(10)의 실시예를 나타낸다. 표 1에 도시된 비교예 1 내지 3은 각각 전해액(10)에 실리카 겔(SiO2)이 적용되지 않은 것이며 실시예 1 내지 7은 각각 전해액(10)에 실리카 겔(SiO2)을 포함하여 제조한 것이다. 단, 비교예 4는 전해액(10)에 실리카 겔(SiO2)을 상한값을 초과하여 포함하는 경우이다.Table 1 shows an example of an electrolytic solution 10 to be used for the electrical test of the solid electrolytic capacitor prepared by the method of manufacturing the solid electrolytic capacitor of the present invention described above. Comparative Examples 1 to 3 shown in Table 1, respectively, the silica gel (SiO 2 ) is not applied to the electrolyte 10, and Examples 1 to 7 are prepared by including the silica gel (SiO 2 ) in the electrolyte 10, respectively. It is done. However, Comparative Example 4 is a case in which the silica gel (SiO 2 ) is included in the electrolytic solution 10 in excess of the upper limit.
전해액의 조성단위 (wt%) Composition unit of electrolyte (wt%)
유기용매 Organic solvent 용질solute 첨가제additive 실리카 겔Silica gel
에틸렌글리콜Ethylene glycol 감마부티로락톤 Gamma-butyrolactone 유무기 복합산염 Organic and inorganic complex salt 유기산염 Organic acid salt 니트로화합물 Nitro compounds Party
보로디살리실산염 Borodisalicylate 프탈산 Phthalic acid 아젤라산 Azelaic acid 피-니트로페놀 P-nitrophenol 피-니트로벤조산 P-nitrobenzoic acid 마니톨 Mannitol
비교예1 Comparative Example 1 56.056.0 4040 33 -- -- 1One -- -- --
비교예2 Comparative Example 2 38.038.0 5555 -- 55 -- -- 22 -- --
비교예3 Comparative Example 3 63.063.0 2323 55 1One 22 1One 44 1One --
실시예1 Example 1 55.455.4 4040 33 -- -- 1One -- -- 0.60.6
실시예2 Example 2 37.437.4 5555 -- 55 -- -- 22 -- 0.60.6
실시예3 Example 3 62.462.4 2323 55 1One 22 1One 44 1One 0.60.6
실시예4 Example 4 53.553.5 4040 33 -- -- 1One -- -- 2.52.5
실시예5 Example 5 35.535.5 5555 -- 55 -- -- 22 -- 2.52.5
실시예6 Example 6 60.560.5 2323 55 1One 22 1One 44 1One 2.52.5
실시예7Example 7 53.053.0 2323 55 1One 22 1One 44 1One 1010
비교예4 Comparative Example 4 50.550.5 2323 55 1One 22 1One 44 1One 12.512.5
표 1에 도시된 다양한 실시예를 상세히 설명하면 먼저, 비교예 1에 따른 전해액(10)은 유기 용매로 에틸렌글리콜 56.0w t%과 감마부티로락톤 40w t%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 3 w t %가 사용되며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%가 사용되어 제조되었다.When explaining the various embodiments shown in Table 1 in detail, first, the electrolyte 10 according to Comparative Example 1 is used as an organic solvent, 56.0wt% of ethylene glycol and 40w t% of gamma-butyrolactone, and an organic complex salt used as a solute. As borodisalicylate 3 wt% was used, and as a nitro compound used as an additive, 1 wt% of pi-nitrophenol was used.
비교예 2에 따른 전해액(10)은 표 1에서와 같이 유기 용매로 에틸렌글리콜 38.0wt%과 감마부티로락톤 55wt%가 사용되고,용질로 사용되는 유기산염으로 프탈산염 5wt%가 사용되었으며,첨가제로 사용되는 니트로화합물로 피-니트로벤조산2wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Comparative Example 2, as shown in Table 1, 38.0wt% of ethylene glycol and 55wt% of gamma-butyrolactone were used as organic solvents, and 5wt% of phthalate was used as an organic acid salt used as a solute. As a nitro compound used, P-nitrobenzoic acid 2 wt% was used.
비교예3에 따른 전해액(10)은 표 1에서와 같이 유기용매로 에틸렌글리콜 63.0wt%과 감마부티로락톤 23wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 5wt%가 사용되며, 유기산염으로 프탈산염 1wt%과 아젤라산염 2wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%과 피-니트로벤조산 4wt%가 사용되었고, 당으로 마니톨 1wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Comparative Example 3, as shown in Table 1, 63.0wt% of ethylene glycol and 23wt% of gamma-butyrolactone are used as organic solvents, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , Phthalate 1wt% and azelarate 2wt% were used as organic acid salts, and 1-wt% of p-nitrophenol and 4wt% of p-nitrobenzoic acid were used as nitro compounds used as additives, and 1wt% of mannitol was used as sugar It was prepared.
실시예 1에 따른 전해액(10)은 표 1에서와 같이 유기 용매로 에틸렌글리콜 55.4wt%과 감마부티로락톤 40wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 3wt%가 사용되며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%가 사용되었고, 실리카겔(SiO2) 0.6wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Example 1 is used as an organic solvent, as shown in Table 1, 55.4wt% of ethylene glycol and 40wt% of gamma-butyrolactone, and 3wt% of borodisalicylate is used as an organic complex used as a solute. , As a nitro compound used as an additive, 1 wt% of pi-nitrophenol was used, and 0.6 wt% of silica gel (SiO 2 ) was used.
실시예 2에 따른 전해액(10)은 표 1에서와 같이 유기 용매로 에틸렌글리콜 37.4wt%과 감마부티로락톤 55wt%이 사용되고, 용질로 사용되는 유기산염으로 프탈산염 5wt%가 사용되었으며,첨가제로 사용되는 니트로화합물로 피-니트로벤조산 2wt%가 사용되었고, 실리카 겔(SiO2) 0.6wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Example 2 is used as an organic solvent, as shown in Table 1, 37.4wt% of ethylene glycol and 55wt% of gamma-butyrolactone, and 5wt% of phthalate was used as an organic acid salt used as a solute. As a nitro compound used, 2 wt% of pi-nitrobenzoic acid was used, and 0.6 wt% of silica gel (SiO 2 ) was used.
실시예 3에 따른 전해액(10) 은 표 1에서와 같이 유기 용매로 에틸렌글리콜 62.4wt%과 감마부티로락톤 23wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 5wt%가 사용 되며, 유기산염으로 프탈산염 1wt%과 아젤라산염 2wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%과 피-니트로벤조산 4wt%가 사용되었고, 당으로 마니톨 1wt%가 사용되며, 실리카겔(SiO2) 0.6wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Example 3 is used as an organic solvent, as shown in Table 1, 62.4wt% of ethylene glycol and 23wt% of gamma-butyrolactone, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , 1 wt% of phthalate and 2 wt% of azelaate were used as organic acid salt, 1 wt% of p-nitrophenol and 4wt% of pi-nitrobenzoic acid were used as nitro compounds used as additives, and 1wt% of mannitol was used as sugar. , Silica gel (SiO 2 ) 0.6wt% was used was prepared.
실시예 4에 따른 전해액(10) 은 표 1에서와 같이 유기 용매로 에틸렌글리콜 53.5wt%과 감마부티로락톤 40wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 3wt%가 사용되며, 첨가제로 사용되는 니트로 화합물로 피-니트로페놀 1wt%가 사용되었으며, 실리카 겔(SiO2) 2.5wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Example 4 is used as an organic solvent, as shown in Table 1, 53.5 wt% of ethylene glycol and 40 wt% of gamma butyrolactone, and 3 wt% of borodisalicylate is used as an organic complex used as a solute. , As a nitro compound used as an additive, 1 wt% of P-nitrophenol was used, and 2.5 wt% of silica gel (SiO2) was used.
실시예 5에 따른 전해액(10) 은 표 1에서와 같이 유기 용매로 에틸렌글리콜 35.5wt%과 감마부티로락톤 55wt%가 사용되고, 용질로 사용되는 유기산염으로 프탈산염 5wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로벤조산 2wt%가 사용되었고, 당으로 마니톨 1wt%가 사용되며, 실리카 겔(SiO2) 2.5wt%가 사용되어 제조되었다.As shown in Table 1, the electrolyte solution 10 according to Example 5 used 35.5 wt% of ethylene glycol and 55 wt% of gamma butyrolactone as an organic solvent, and 5 wt% of phthalate was used as an organic acid salt used as a solute. As a nitro compound used, 2 wt% of pi-nitrobenzoic acid was used, 1 wt% of mannitol was used as a sugar, and 2.5 wt% of silica gel (SiO 2 ) was used.
실시예 6에 따른 전해액(10) 은 표 1에서와 같이 유기 용매로 에틸렌글리콜 60.5wt%과 감마부티로락톤 23wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 5wt%가 사용되며, 유기산염으로 프탈산염 1wt%과 아젤라산염 2wt%가 사용되었으며,첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%과 피-니트로벤조산 4wt%가 사용되었고, 당으로 마니톨 1wt%가 사용되며, 실리카겔(SiO2) 2.5wt%가 사용되어 제조되었다. Electrolytic solution 10 according to Example 6 is used as an organic solvent, as shown in Table 1, 60.5wt% of ethylene glycol and 23wt% of gamma-butyrolactone, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , Phthalate 1wt% and azelarate 2wt% were used as the organic acid salt. As a nitro compound used as an additive, pi-nitrophenol 1wt% and pi-nitrobenzoic acid 4wt% were used, and mannitol 1wt% was used as a sugar. , Silica gel (SiO 2 ) 2.5wt% was used.
실시예 7에 따른 전해액(10)은 표 1에서와 같이 유기 용매로 에틸렌글리콜 53.0wt%과 감마부티로락톤 23wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 5wt%가 사용되며, 유기산염으로 프탈산염 1wt%과 아젤라산염 2wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%과 피-니트로벤조산 4wt% 가 사용되었고, 당으로 마니톨 1wt%가 사용되며, 실리카겔(SiO2) 10wt%가 사용되어 제조되었다.The electrolyte 10 according to Example 7 is used as an organic solvent as shown in Table 1, 53.0wt% of ethylene glycol and 23wt% of gamma butyrolactone, and 5wt% of borodisalicylate is used as an organic complex used as a solute. , Phthalate 1wt% and azelarate 2wt% were used as organic acid salts, and 1-wt% pi-nitrophenol and 4wt% pi-nitrobenzoic acid were used as nitro compounds used as additives, and 1wt% mannitol as sugar. , 10% by weight of silica gel (SiO 2 ) was used.
비교예 4에 따른 전해액(10) 은 표 1에서와 같이 유기 용매로 에틸렌글리콜 50.5wt%과 감마부티로락톤 23wt%가 사용되고, 용질로 사용되는 유기 복합산염으로 보로디살리실산염 5wt%가 사용 되며, 유기산염으로 프탈산염 1wt%과 아젤라산염 2wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%과 피-니트로벤조산 4wt%가 사용되었고, 당으로 마니톨 1wt%가 사용되며, 실리카겔(SiO2) 12.5wt%가 사용되어 제조되었다.As for the electrolyte 10 according to Comparative Example 4, 50.5 wt% of ethylene glycol and 23 wt% of gamma-butyrolactone are used as organic solvents as shown in Table 1, and 5 wt% of borodisalicylate is used as an organic complex salt used as a solute. , 1 wt% of phthalate and 2 wt% of azelaate were used as organic acid salt, 1 wt% of p-nitrophenol and 4wt% of pi-nitrobenzoic acid were used as nitro compounds used as additives, and 1wt% of mannitol was used as sugar. , Silica gel (SiO 2 ) 12.5wt% was used.
표 1에 도시된 비교예 1 내지 4 및 실시예 1 내지 7에 따른 전해액(10)을 적용한 고체전해콘덴서의 전기적인 시험을 위해 고체전해콘덴서를 제조하였다. 이러한 비교예 1 내지 4 및 실시예 1 내지 7에 따른 전해액(10)이 적용된 고체 전해 콘덴서의 제조방법은 전술한 방법과 동일하므로 설명을 생략한다.Solid electrolyte capacitors were prepared for electrical testing of the solid electrolyte capacitors to which the electrolytes 10 according to Comparative Examples 1 to 4 and Examples 1 to 7 shown in Table 1 were applied. The manufacturing method of the solid electrolytic capacitors to which the electrolytic solutions 10 according to Comparative Examples 1 to 4 and Examples 1 to 7 were applied is the same as the above-described method, and thus the description is omitted.
표 2는 비교예 1 내지 4 및 실시예 1 내지 7에 따라 제조된 전해액(10)의 특성과 비교예 1 내지 4 및 실시예 1 내지 7에 따라 제조된 전해액(10)을 이용해 전술 한 방법을 이용해 제조된 고체전해콘덴서의 제품 특성을 시험한 결과를 나타낸 표이다.Table 2 shows the characteristics of the electrolytic solution 10 prepared according to Comparative Examples 1 to 4 and Examples 1 to 7 and the method described above using the electrolytic solution 10 prepared according to Comparative Examples 1 to 4 and Examples 1 to 7 It is a table showing the results of testing the product characteristics of the solid electrolytic capacitor manufactured.
전해액 특성 Electrolyte characteristics 제품 특성 Product Specifications
  pHpH 비저항 (Ω·㎝) Specific resistance (Ω·㎝) 화성전압(V)Mars voltage (V) 용량(㎌)(at 120㎐) Capacity(㎌)(at 120㎐) 손실(%)(at 120㎐) Loss(%)(at 120㎐) ESR(mΩ)(at 100㎑) ESR(mΩ)(at 100㎑) 누설전류(㎂) Leakage current (㎂)
비교예1 Comparative Example 1 3.723.72 944944 165165 100.2100.2 2.682.68 16.216.2 6.16.1
비교예2 Comparative Example 2 4.594.59 356356 122122 100.3100.3 2.672.67 16.316.3 5.95.9
비교예3 Comparative Example 3 3.353.35 12501250 182182 100.2100.2 2.682.68 16.416.4 5.55.5
실시예1 Example 1 3.543.54 943943 227227 100.1100.1 2.692.69 16.416.4 3.33.3
실시예2 Example 2 4.594.59 354354 173173 100.1100.1 2.702.70 16.516.5 3.53.5
실시예3 Example 3 3.293.29 12481248 235235 100.3100.3 2.692.69 16.616.6 3.33.3
실시예4 Example 4 3.573.57 932932 273273 100.2100.2 2.692.69 16.516.5 2.22.2
실시예5 Example 5 4.334.33 353353 210210 100.3100.3 2.712.71 16.416.4 1.81.8
실시예6 Example 6 3.283.28 12531253 299299 100.0100.0 2.702.70 16.616.6 2.02.0
실시예7Example 7 3.53.5 13251325 315315 100.2100.2 2.782.78 16.816.8 2.32.3
비교예4 Comparative Example 4 석 출 Precipitation
표 2에서와 같이 비교예 1 내지 4 및 실시예 1 내지 7에 따라 제조된 전해액(10)의 특성을 시험한 결과, 전해액(10)의 pH(potential of hydrogen)는 전체적으로 3.28에 서 4.59로 측정되었으며, 특히 실시예 6에 따른 전해액(10)은 3.28로 측정되었고 비교예 2와 실시예 2는 각각 4.59로 측정되었다. 전해액(10)의 비저항은 353에서 1235로 측정되었으며,특히 실시예 5는 353으로 측정되었고 실시예 7은 1325로 측정되었다.As shown in Table 2, as a result of testing the properties of the electrolytic solution 10 prepared according to Comparative Examples 1 to 4 and Examples 1 to 7, the pH (potential of hydrogen) of the electrolytic solution 10 was measured from 3.28 to 4.59 as a whole. In particular, the electrolyte solution 10 according to Example 6 was measured to be 3.28, and Comparative Example 2 and Example 2 were respectively measured to be 4.59. The specific resistance of the electrolytic solution 10 was measured from 353 to 1235, in particular Example 5 was measured to be 353 and Example 7 was measured to be 1325.
그러나, 실리카 겔이 과다 첨가된 비교예 4에 따른 전해액(10)은 용질이 용매에 모두 용해되지 못하고 일부가 석출되는 현상이 발생되었다.However, in the electrolytic solution 10 according to Comparative Example 4 in which silica gel was excessively added, a solute was not dissolved in a solvent and a part was precipitated.
전해액(10)의 화성전압은 표 2 및 도 5에서와 같이 비교예 1이 165V로 측정되었고, 실시예 1이 227V로 측정되었으며 실시예 4는 273V로 측정되었다. 즉,전해액(10)은 에틸렌글리콜의 함유량을 줄이고 실리카 겔(SiO2)의 함유량을 증가할수록 도 5 에서와 같이 화성전압이 증가하였다. 여기서, 비교예 1, 실시예 1 및 실시예 4에 따른 전해액(10)은 각각 에틸렌글리콜의 함유량을 줄이고 실리카 겔(SiO2)의 함유량을 증가하도록 제조되었다. 예를 들어, 비교예 1, 실시예 1 및 실시예 4는 각각 표 1에서 와 같이 서로 동일하게 유기용매로 감마부티로락톤 40wt%가 사용되고, 용질로 사용되는 유기복합산염으로 보로디살리실산염 3wt%가 사용되며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%가 사용되었다. 다만 비교예 1은 유기용매로 에틸렌글리콜 56wt%가 첨가되었고, 실시예 1은 에틸렌글리콜 55.4wt%와 실리카겔(SiO2)이 0.6wt%가 첨가되었으며, 실시예 4는 에틸렌글리콜 53.5wt%와 실리카 겔(SiO2)이 2.5wt%가 첨가되는 차이가 있다.The chemical conversion voltage of the electrolytic solution 10 was measured as 165V in Comparative Example 1, as shown in Table 2 and FIG. 5, 227V in Example 1, and 273V in Example 4. That is, as the electrolyte solution 10 reduced the content of ethylene glycol and increased the content of silica gel (SiO 2 ), the ignition voltage increased as shown in FIG. 5. Here, the electrolyte solution 10 according to Comparative Example 1, Example 1 and Example 4 was prepared to reduce the content of ethylene glycol and increase the content of silica gel (SiO 2 ), respectively. For example, in Comparative Example 1, Example 1, and Example 4, respectively, as shown in Table 1, 40 wt% of gamma-butyrolactone is used as an organic solvent, and 3 wt of borodisalicylate as an organic complex used as a solute. % Is used, and 1 wt% of P-nitrophenol is used as a nitro compound used as an additive. However, in Comparative Example 1, 56 wt% of ethylene glycol was added as an organic solvent, and in Example 1, 55.4 wt% of ethylene glycol and 0.6 wt% of silica gel (SiO 2 ) were added, and in Example 4, 53.5 wt% of ethylene glycol and silica The difference is that 2.5 wt% of the gel (SiO 2 ) is added.
전해액(10)의 화성전압은 표 2 및 도 6에서와 같이 비교예 2가 122V로 측정되었고,실시예 2가 354V로 측정되었으며 실시예 5는 210V로 측정되었다. 즉,전해액(10)은 에틸렌글리콜의 함유량을 줄이고 실리카 겔(SiO2)의 함유하는 경우에 도 6에서와 같이 화성전압이 증가하였다. 여기서, 비교예 2, 실시예 2 및 실시예 5는 각각 표 1에서와 같이 에틸렌글리콜의 함유량을 줄이고 실리카 겔(SiO2)의 함유량을 증가하였다. 예를 들어, 비교예 2, 실시예 2 및 실시예 5에 따른 전해액(10)은 각각 표 1에서 와 같이 유기용매로 감마부티로락톤 55wt%이 사용되고, 용질로 사용되는 유기산염으로 프탈산염 5wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로벤조산 2wt%가 서로 동일하게 사용되었다. 다만, 비교예 2는 유기용매로 에틸렌글리콜 38wt%가 사용되었고, 실시예 2는 유기용매로 에틸렌글리콜 37.4wt%가 사용되고 실리카 겔(SiO2) 0.6wt%가 사용되었으며, 실시예 5는 유기 용매로 에틸렌글리콜 33.5wt%가 사용되었고 실리카 겔(SiO2) 2.5wt%가 사용되어 제조되는 차이점이 있다.The chemical conversion voltage of the electrolytic solution 10 was measured as 122 V in Comparative Example 2, as shown in Table 2 and FIG. 6, and 354 V in Example 2 and 210 V in Example 5. That is, the electrolyte solution 10 reduced the content of ethylene glycol, and when it contained silica gel (SiO 2 ), the ignition voltage increased as shown in FIG. 6. Here, in Comparative Example 2, Example 2 and Example 5, respectively, as shown in Table 1, the content of ethylene glycol was reduced and the content of silica gel (SiO 2 ) was increased. For example, the electrolyte 10 according to Comparative Example 2, Example 2, and Example 5 is 55 wt% of gamma-butyrolactone as an organic solvent as shown in Table 1, and 5 wt of phthalate as an organic acid salt used as a solute. % Was used, and as a nitro compound used as an additive, 2 wt% of p-nitrobenzoic acid was used identically to each other. However, in Comparative Example 2, 38 wt% of ethylene glycol was used as the organic solvent, and in Example 2, 37.4 wt% of ethylene glycol was used as the organic solvent, and 0.6 wt% of silica gel (SiO 2 ) was used, and Example 5 was an organic solvent. As ethylene glycol 33.5wt% was used and silica gel (SiO 2 ) 2.5wt% is used to produce a difference.
전해액(10)의 화성전압은 표 2 및 도 7에서와 같이 비교예 2가 182V로 측정되었고, 실시예 3이 235V로 측정되었으며, 실시예 6은 299V로 측정되었으며, 실시예 7은 313V로 측정되었다. 여기서, 비교예 3, 실시예 3, 실시예 6 및 실시예 7에 따른 전해액(10)은 에틸렌글리콜의 함유량을 줄이고 실리카 겔(SiO2)의 함유량을 증가하도록 제조되었다. 즉, 표 2 및 도 7에서와 같이 비교예 3, 실시예 3, 실시예 6 및 실시예 7에 따른 전해액(10)은 각각 유기 용매로 감마부티로락톤 23wt%가 사용되고, 용질로 사용되는 유기복합산염으로 보로디살리실산염 5wt%가 사용되며, 유기산염으로 프탈산염 1wt%과 아젤라산염 2wt%가 사용되었으며, 첨가제로 사용되는 니트로화합물로 피-니트로페놀 1wt%과 피-니트로벤조산 4wt%가 사용되었고, 당으로 마니톨 1wt%가 서로 동일하게 사용되어 제조하였다. 다만, 비교예 3은 유기용매로 에틸렌글리콜 63wt%가 사용되어 제조되었고, 실시예 3은 유기용매로 에틸렌글리콜 62.4wt%와 실리카 겔(SiO2) 0.6wt%가 사용되어 제조되었으며, 실시예 6은 유기 용매로 에틸렌글리콜 60.5wt%와 실리카 겔(SiO2) 2.5wt%가 사용되어 제조되었으며, 실시예 7은 유기 용매로 에틸렌글리콜 53wt%와 실리카 겔(SiO2) 10wt%가 사용되어 제조되는 차이점이 있다.The chemical conversion voltage of the electrolyte solution 10 was measured as 182V in Comparative Example 2, as shown in Table 2 and FIG. 7, Example 3 was measured at 235V, Example 6 was measured at 299V, and Example 7 was measured at 313V. Became. Here, the electrolytic solution 10 according to Comparative Examples 3, 3, 6 and 7 was prepared to reduce the content of ethylene glycol and increase the content of silica gel (SiO 2 ). That is, as shown in Table 2 and 7, the electrolyte 10 according to Comparative Example 3, Example 3, Example 6, and Example 7, respectively, is used as an organic solvent, 23 wt% of gamma butyrolactone, and used as a solute As a complex acid salt, 5 wt% of borodisalicylate is used, 1 wt% of phthalate and 2 wt% of azelarate are used as organic acid salt, and nitro compounds used as additives include 1 wt% of pi-nitrophenol and 4wt% of pi-nitrobenzoic acid. It was used, and 1 wt% of mannitol was used as a sugar to prepare the same. However, in Comparative Example 3, 63 wt% of ethylene glycol was used as an organic solvent, and in Example 3, 62.4 wt% of ethylene glycol and 0.6 wt% of silica gel (SiO 2 ) were used as an organic solvent, and Example 6 As an organic solvent, 60.5 wt% of ethylene glycol and 2.5 wt% of silica gel (SiO 2 ) were used, and Example 7 was prepared by using 53 wt% of ethylene glycol and 10 wt% of silica gel (SiO 2 ) as organic solvents. There is a difference.
표 2에서와 같이 비교예 1 내지 3 및 실시예 1 내지 8에 도시된 전해액(10)을 이용해 각각 제조된 고체 전해콘덴서의 제품 특성을 시험하였다. 비교예 1 내지 3 및 실시예 1 내지 8에 따른 전해액(10)을 이용해 각각 제조된 고체 전해 콘덴서의 용량은 100에서 100.3μF로 측정되었고, 손실은 2.67에서 2.78%로 측정되었으며, ESR은 16.2에서 16.8mΩ로 측정되었다. 실시예 8에 따른 전해액(10)을 이용해 제조된 고체 전해 콘덴서는 석출되는 현상이 발생되었다.As shown in Table 2, the product properties of the solid electrolytic capacitors prepared respectively were tested using the electrolytes 10 shown in Comparative Examples 1 to 3 and Examples 1 to 8. The capacities of the solid electrolytic capacitors each manufactured using the electrolytes 10 according to Comparative Examples 1 to 3 and Examples 1 to 8 were measured at 100 to 100.3 μF, and losses were measured at 2.67 to 2.78%, and ESR at 16.2. It was measured to be 16.8 mΩ. A phenomenon in which the solid electrolytic capacitor prepared using the electrolytic solution 10 according to Example 8 precipitated occurred.
비교예 1, 실시예 1 및 실시예 4에 따른 전해액(10)을 이용해 각각 제조된 고체 전해 콘덴서의 누설 전류는 표 2 및 도 5에서와 같이 비교예 1이 6.1μA로 측정되었고, 실시예 1 은 3.3μA로 측정되었으며, 실시예 4는 2 2μA로 측정되었다. 이와 같이 비교예 1, 실시예 1 및 실 시 예 4에 따른 전해액(10)을 이용해 각각 제조된 고체 전해 콘덴서는 전해액(10)에서 에틸렌글리콜 및 감마부티로락톤의 함유량을 줄이고 실리카 겔(SiO2)의 함유량을 증가할수록 도 5에서와 같이 누설 전류가 감소하는 것을 알 수 있다. The leakage currents of the solid electrolytic capacitors each prepared using the electrolyte 10 according to Comparative Example 1, Example 1 and Example 4 were measured as 6.1 μA in Comparative Example 1, as shown in Table 2 and FIG. Was measured at 3.3 μA, and Example 4 was measured at 2 2 μA. Thus, each of the solid electrolytic capacitors prepared by using the electrolytic solution 10 according to Comparative Example 1, Example 1, and Practical Example 4 reduces the content of ethylene glycol and gamma butyrolactone in the electrolytic solution 10 and reduces silica gel (SiO 2 It can be seen that as the content of) increases, the leakage current decreases as shown in FIG. 5.
여기서, 비교예 1, 실시예 1 및 실시예 4에 따른 전해액(10)의 상세한 구성은 전술한 것과 동일함으로 설명을 생략한다.Here, the detailed configuration of the electrolytic solution 10 according to Comparative Example 1, Example 1 and Example 4 is the same as described above, the description thereof will be omitted.
비교예 2, 실시예 2 및 실시예 5에 따른 전해액(10)을 이용해 각각 제조된 고체 전해 콘덴서의 누설 전류는 표 2 및 도 6 에서와 같이 비교예 2가 5.9μA로 측정되었고, 실시예 2는 3.5μA로 측정되었으며, 실시예 5는 1.8μA로 측정되었다. 이와 같이 비교예 2, 실시예 2 및 실시예 5에 따른 전해액(10)을 이용해 각각 제조된 고체 전해 콘덴서는 전해액(10)에 에틸렌글리콜의 함유량을 줄이고 실리카 겔(SiO2)의 함유량이 증가할수록 도 6에서와 같이 누설전류가 감소하였다. 여기서, 비교예 2, 실시예 2 및 실시예 5에 따른 전해액(10)의 상세한 구성은 전술한 것과 동일함으로 설명을 생략한다.The leakage currents of the solid electrolytic capacitors respectively manufactured using the electrolytes 10 according to Comparative Examples 2, 2, and 5 were measured as 5.9 μA in Comparative Example 2, as shown in Table 2 and FIG. Was measured at 3.5 μA, and Example 5 was measured at 1.8 μA. Thus, each of the solid electrolytic capacitors prepared by using the electrolytic solutions 10 according to Comparative Examples 2, 2, and 5 reduces the content of ethylene glycol in the electrolytic solution 10 and increases the content of silica gel (SiO 2 ). As shown in Fig. 6, the leakage current decreased. Here, the detailed configuration of the electrolytic solution 10 according to Comparative Example 2, Example 2 and Example 5 is the same as described above, and description thereof will be omitted.
비교예 3, 실시예 3, 실시예 6 및 실시예 7에 따른 전해액(10)을 이용해 각각 제조된 고체전해콘덴서의 누설전류는 표 2 및 도 7 에서와 같이 비교예 3이 5.5μA로 측정되었고, 실시예 3은 3.3μA로 측정되었으며, 실시예 6은 2.0 μA로 측정되었으며, 실시예 7은 2.3μA로 측정되었다. 이와 같이 비교예 3, 실시예 3, 실시예 6 및 실시예 7에 따른 전해액(10)을 이용해 각각 제조된 고체 전해 콘덴서는 에틸렌글리콜의 함유량을 줄이고 실리카겔(SiO2)의 함유량을 증가할수록 도 7에서와 같이 누설 전류가 감소하였다. 여기서, 비교예 3, 실시예3, 실시예 6 및 실시예 7에 따른 전해액(10)의 상세한 구성은 전술한 것과 동일함으로 설명을 생략한다.The leakage currents of the solid electrolyte capacitors respectively prepared using the electrolytes 10 according to Comparative Examples 3, 3, 6 and 7 were measured as 5.5 μA in Comparative Example 3 as shown in Table 2 and FIG. 7. , Example 3 was measured at 3.3 μA, Example 6 was measured at 2.0 μA, and Example 7 was measured at 2.3 μA. As described above, the solid electrolytic capacitors respectively manufactured using the electrolytes 10 according to Comparative Examples 3, 3, 6, and 7 reduce the content of ethylene glycol and increase the content of silica gel (SiO 2 ). The leakage current decreased as in. Here, the detailed configuration of the electrolytic solution 10 according to Comparative Example 3, Example 3, Example 6, and Example 7 is the same as described above, and description thereof will be omitted.
이하에서는 본 발명의 실시예들에 따른 에이징 처리 단계(S60)에 대하여 상세하게 설명한다.Hereinafter, the aging process step S60 according to embodiments of the present invention will be described in detail.
에이징 처리 단계(S60)에서는, 케이스(120)가 조립된 권취소자(110)를 에이징 처리하여 손상된 산화피막(111a, 113a)을 복원시킨다(S60). 본 실시예에서 에이징 처리 단계(S60)는 복수의 서브 에이징 단계들이 순차적으로 수행되며, 각 서브 에이징 단계 중 최초의 서브 에이징 단계의 에이징 전압(최소 에이징 전압)은 가장 마지막 서브 에이징 단계의 에이징 전압(최대 에이징 전압)보다 작게 형성된다. 그리고, 상기 최대 에이징 전압은, 상기 권취소자의 화성 전압의 60 내지 90 %의 범위로 형성될 수 있으며, 상기 최소 에이징 전압은, 상기 최대 에이징 전압의 5 % 내지 50 %의 범위로 형성될 수 있다.In the aging treatment step (S60), the wound elements 110 in which the case 120 is assembled are aged to restore the damaged oxide films 111a and 113a (S60). In this embodiment, the aging processing step (S60), a plurality of sub-aging steps are sequentially performed, and the aging voltage (minimum aging voltage) of the first sub-aging step of each sub-aging step is the aging voltage of the last sub-aging step ( Less than the maximum aging voltage). In addition, the maximum aging voltage may be formed in a range of 60 to 90% of the ignition voltage of the winding element, and the minimum aging voltage may be formed in a range of 5% to 50% of the maximum aging voltage. .
보다 상세히, 상기 에이징 전압들은 각 서브 에이징 단계마다 다르게 형성될 수 있으며, 어느 하나의 상기 서브 에이징 단계의 상기 에이징 전압의 크기는, 이에 후속하는 상기 서브 에이징 단계의 상기 에이징 전압의 크기의 5 % 내지 90%의 범위로 형성된다.In more detail, the aging voltages may be formed differently for each sub-aging step, and the magnitude of the aging voltage in any one of the sub-aging steps is 5% to 5% of the magnitude of the aging voltage in the subsequent sub-aging step. It is formed in the range of 90%.
다만, 일부 서브 에이징 단계의 상기 에이징 전압이 동일하게 형성되는 구성 또한 본 발명의 실시예에 포함될 수 있다.However, a configuration in which the aging voltages of some sub-aging steps are identically formed may also be included in embodiments of the present invention.
표 3은, 전술한 본 발명의 고체 전해 콘덴서의 제조 방법에서 에이징 처리 단계(S60)의 실시예를 나타낸다. 표 1에서 도시된 비교예 5는 에이징 과정에서 코체 전해 콘덴서에 기설정된 에이징 시간(예시적으로 120분) 동안 동일한 전압(예시적으로 38V)을 인가한 것이며, 이때, 에틸렌글리콜과 감마부티로락톤의 상대적 중량비는 3:7이며, 인가되는 에이징 전압은 예시적으로 권취소자의 금속박의 화성 전압의 60 % 내지 90 % 범위로 설정될 수 있다. 비교예 5에서의 에이징 전압은 상기 금속박의 화상전압인 45V의 대략 84 %인 38V로 형성된다.Table 3 shows an embodiment of the aging treatment step (S60) in the method for manufacturing a solid electrolytic capacitor of the present invention described above. Comparative Example 5 shown in Table 1 is applied to the same voltage (e.g., 38V) for a predetermined aging time (e.g. 120 minutes) to the cochle electrolytic capacitor during the aging process, wherein ethylene glycol and gamma-butyrolactone The relative weight ratio of is 3:7, and the applied aging voltage may be set in a range of 60% to 90% of the ignition voltage of the metal foil of the winding element. The aging voltage in Comparative Example 5 is formed at 38V, which is approximately 84% of 45V, which is the image voltage of the metal foil.
실시예 8 내지 실시예 10은, 고체 전해 콘덴서에 상기 기설정된 에이징 시간을 예시적으로 제1 서브 에이징 단계 내지 제6 서브 에이징 단계의 총 6개의 서브 에이징 단계 거치면서 전압을 단계적으로 8V에서 38V까지 승압시키며 인가한 것이다. 이때, 실시예 8 내지 실시예 10에서 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비는 서로 다르게 설정되며, 각 서브 에이징 단계의 시간은 예시적으로 20분씩이다. In Examples 8 to 10, the voltage was gradually increased from 8V to 38V while the predetermined aging time of the solid electrolytic capacitor was passed through a total of six sub-aging steps of the first sub-aging step to the sixth sub-aging step. It was boosted and approved. At this time, in Examples 8 to 10, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolytic solution of the solid electrolytic capacitor is set differently, and the time of each sub-aging step is exemplarily 20 minutes.
제1 서브 에이징 단계에서의 에이징 전압은 8V, 제2 서브 에이징 단계에서의 에이징 전압은 15V, 제3 서브 에이징 단계에서의 에이징 전압은 22V, 제4 서브 에이징 단계에서의 에이징 전압은 29V, 제5 서브 에이징 단계에서의 에이징 전압은 38V, 제6 서브 에이징 단계에의 에이징 전압은 38V이다. 제1 서브 에이징 단계에서의 인가전압을 최소 에이징 전압이라고 할 수 있으며, 제5 서브 에이징 단계 및 제6 서브 에이징 단계에서의 인가 전압을 최대 에이징 전압이라고 할 수 있다. 상기 최소 에이징 전압은 상기 최대 에이징 전압의 5 % 내지 50 % 범위로 설정될 수 있으며, 각 단계 간의 에이징 전압의 차이는 단계별로 비례하여 증가되거나, 비례율과 관계없이 증가될 수 있다.The aging voltage in the first sub-aging step is 8V, the aging voltage in the second sub-aging step is 15V, the aging voltage in the third sub-aging step is 22V, the aging voltage in the fourth sub-aging step is 29V, the fifth The aging voltage in the sub-aging step is 38V, and the aging voltage in the sixth sub-aging step is 38V. The applied voltage in the first sub-aging step may be referred to as a minimum aging voltage, and the applied voltage in the fifth sub-aging step and the sixth sub-aging step may be referred to as a maximum aging voltage. The minimum aging voltage may be set in a range of 5% to 50% of the maximum aging voltage, and the difference in aging voltage between each step may be increased in proportion to each step, or may be increased irrespective of the proportionality rate.
그리고, 에이징 온도는 대략 50 도 내지 100 도의 범위로 형성될 수 있으며, 비교예 5 및 실시예 8 내지 실시예 10에서의 상기 에이징 온도는 85 도로 설정된다.And, the aging temperature may be formed in a range of approximately 50 degrees to 100 degrees, the aging temperature in Comparative Example 5 and Examples 8 to 10 is set to 85 degrees.
에이징 전압 인가Aging voltage applied EG : GBL 상대적 중량비EG: GBL relative weight ratio
비교예5Comparative Example 5 동일(38V)(120분)Same (38V) (120 minutes) 3 : 73: 7
실시예8Example 8 다단(8~38V)(20분씩 6단계, 총 120분)Multi-stage (8~38V) (6 steps of 20 minutes, total 120 minutes) 3 : 73: 7
실시예9Example 9 다단(8~38V) (20분씩 6단계, 총 120분)Multi-stage (8~38V) (6 steps of 20 minutes, total 120 minutes) 5 : 55: 5
실시예10Example 10 다단(8~38V) (20분씩 6단계, 총 120분)Multi-stage (8~38V) (6 steps of 20 minutes, total 120 minutes) 6 : 46: 4
실시예10Example 10 다단(8~38V) (20분씩 6단계, 총 120분)Multi-stage (8~38V) (6 steps of 20 minutes, total 120 minutes) 7 : 37: 3
실시예 8에서 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비는 3:7로 설정되며, 실시예 9에서 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비는 5:5로 설정된다. 그리고, 실시예 10에서 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비는 6:4로 설정되며, 실시예 11에서 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비는 7:3으로 설정된다. 한편, 실시예 8 내지 실시예 11의 전해액에는 실시예 1 내지 실시예 7과 마찬가지로 용질, 첨가제 및 실리카 겔을 포함한다.In Example 8, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is set to 3:7, and in Example 9, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is 5:5. Is set to In addition, in Example 10, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is set to 6:4, and in Example 11, the weight ratio of ethylene glycol and gamma butyrolactone in the electrolyte of the solid electrolytic capacitor is 7 It is set to :3. Meanwhile, the electrolytes of Examples 8 to 11 include solutes, additives, and silica gel, as in Examples 1 to 7.
용량(㎌)Capacity (㎌) 손실Loss L/C(㎂)L/C(㎂) ESR(mΩ)ESR(mΩ)
비교예5Comparative Example 5 104.8104.8 0.0380.038 2.72.7 22.222.2
실시예8Example 8 105.5105.5 0.0370.037 2.52.5 19.519.5
실시예9Example 9 105.7105.7 0.0360.036 2.52.5 17.917.9
실시예10Example 10 105.8105.8 0.0360.036 2.52.5 17.817.8
실시예11Example 11 103.4103.4 0.0390.039 2.62.6 18.618.6
표 4에서와 같이, 동일 전압을 에이징 시간 동안 지속적으로 가한 비교예 5에 비하여 다단으로 상기 에이징 전압을 에이징 시간 동안 단계별로 승압시키며 인가한 실시예 8 내지 실시예 11은 용량, 손실, 누설전류 및 ESR 특성이 비교적 우수한 것으로 측정되었다.또한, 실시예 9 및 실시예 10과 같이 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비가 5:5 내지 6:4 인 경우, 비교예 5, 실시예 8, 및 실시예 11에 비하여 ESR 등 제품 특성이 우수한 것으로 측정되었다. As shown in Table 4, compared to Comparative Example 5 in which the same voltage was continuously applied during the aging time, the aging voltage was stepped up step by step during the aging time, and the applied Examples 8 to 11 applied capacity, loss, leakage current and It was measured that the ESR properties were relatively excellent. Further, as in Examples 9 and 10, when the weight ratio of the ethylene glycol and gamma-butyrolactone in the electrolytic solution of the solid electrolytic capacitor was 5:5 to 6:4, Comparative Example 5, It was determined that the product characteristics such as ESR were superior to those of Example 8 and Example 11.
즉, 에이징 단계(S60)에서, 상기 에이징 전압을 단계별로 다르게 인가하며, 고체 전해 콘덴서의 전해액의 에틸렌글리콜과 감마부티로락톤의 중량비가 5:5 내지 6:4 인 경우 ESR, 누설전류(L/C) 및 손실이 감소되고 용량이 증가되었다.That is, in the aging step (S60), the aging voltage is applied differently step by step, and when the weight ratio of ethylene glycol and gamma-butyrolactone in the electrolyte of the solid electrolytic capacitor is 5:5 to 6:4, ESR, leakage current (L /C) and loss was reduced and capacity increased.
한편 본 실시예에서는 에이징 단계(S60)에서 각 서브 에이징 단계가 각각 동일한 시간 동안 수행되는 것으로 설명되고 있으나, 상기 각 서브 에이징 단계가 서로 다른 시간 동안 수행되는 구성 또한 본 실시예의 구성에 포함될 수 있다. 예시적으로, 상기 제1 서브 에이징 단계 및 상기 제2 서브 에이징 단계는 각각 30분씩, 상기 제3 서브 에이징 단계 내지 상기 제6 서브 에이징 단계는 각각 각각 15분씩 수행될 수 있다. 또한, 각 서브 에이징 단계는 2개 이상으로 설정될 수 있다.On the other hand, in this embodiment, each sub-aging step in the aging step S60 is described as being performed for the same time, but a configuration in which each sub-aging step is performed for different times may also be included in the configuration of this embodiment. For example, the first sub-aging step and the second sub-aging step may be performed for 30 minutes, respectively, and the third sub-aging step to the sixth sub-aging step may be performed for 15 minutes, respectively. In addition, each sub-aging step may be set to two or more.
즉, 에이징 처리 단계(S60)에서 에이징 전압을 높은 수준으로 한 번에 인가하지 않고, 상기 최소 에이징 전압에서 상기 최대 에이징 전압 순으로 상기 에이징 전압을 순차적으로 고체 전해 콘덴서에 적용함으로써, 손상된 산화피막(111a, 113a)이 보다 안정적으로 복원 및 생성될 수 있다.That is, in the aging treatment step (S60), by applying the aging voltage sequentially from the minimum aging voltage to the maximum aging voltage in order from the minimum aging voltage to the high aging voltage, the damaged oxide film ( 111a, 113a) can be more stably restored and generated.
이상에서 설명한 바와 같이 본 발명의 고체 전해 콘덴서 제조방법은 전해액에 실리카 겔(SiO2)을 첨가함으로써 온도가 200°C 이상에서 녹는 납프리(Pb free) 솔더가 적용되는 환경 즉, 고온 환경 에서도 내전압을 높일 수 있으며 누설전류를 감소시킬 수 있고, 고체인 고분자층이 형성되는 경우에도 전해액에 실리카 겔(SiO2)을 첨가함으로써 화성전압특성을 개선시킬 수 있으며, 양극박이나 음극박을 곡면상태로 가공된 상태에서 인출단자를 연결함으로써 누설전류를 줄일 수 있다.As described above, the method for manufacturing a solid electrolytic capacitor of the present invention is a voltage withstand even in an environment in which a Pb free solder is melted at a temperature of 200°C or higher by adding silica gel (SiO 2 ) to the electrolyte, that is, a high temperature environment. Can increase the leakage current, reduce the leakage current, and improve the chemical conversion voltage characteristics by adding silica gel (SiO 2 ) to the electrolyte even when a solid polymer layer is formed, and the anode foil or cathode foil is curved. Leakage current can be reduced by connecting the withdrawal terminal in the processed state.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and it is possible to carry out various modifications within the scope of the claims and detailed description of the invention and the accompanying drawings. It is natural to fall within the scope of.
발명의 실시를 위한 형태는 위의 발명의 실시를 위한 최선의 형태에서 함께 기술되었다.Forms for carrying out the invention have been described together in the best mode for carrying out the invention above.
본 발명에 따른 실시예는 고체 전해 콘덴서 제조방법 및 고체전해 콘덴서용 전해액에 관한 것으로, 전해 콘덴서 장치 등에서의 반복 가능성 및 산업상 이용 가능성이 있다.An embodiment according to the present invention relates to a method for manufacturing a solid electrolytic capacitor and an electrolyte for a solid electrolytic capacitor, and has the possibility of repeatability and industrial use in an electrolytic capacitor device or the like.

Claims (17)

  1. 고체 전해 콘덴서 제조 방법에 있어서,In the method of manufacturing a solid electrolytic capacitor,
    양극박, 전해지 및 음극박을 원통형의 권취소자로 권취하는 단계;Winding the anode foil, the electrolytic cell and the cathode foil with a cylindrical winding element;
    상기 권취소자가 권취되면 권취소자를 고분자 분산액에 함침시키는 단계;When the winding element is wound, impregnating the winding element with a polymer dispersion;
    상기 권취소자가 고분자 분산액에 함침되면 고분자 분산액에 함침된 권취소자를 건조하는 단계;Drying the winding element impregnated with the polymer dispersion liquid when the winding element is impregnated with the polymer dispersion liquid;
    상기 권취소자가 건조되면 권취소자를 전해액에 함침시키는 단계;When the winding element is dried, impregnating the winding element with an electrolyte;
    상기 권취소자가 전해액에 함침되면 권취소자를 케이스에 조립하는 단계; 및Assembling the coiling element into a case when the coiling element is impregnated with an electrolyte; And
    상기 케이스가 조립된 권취소자에 에이징 전압을 가하여 에이징 하는 단계;를 포함하고,Including the aging by applying an aging voltage to the winding element is assembled to the case;
    상기 권취소자를 에이징 하는 에이징 단계에서, 상기 에이징 단계가 개시될 때의 최소 에이징 전압과 상기 에이징 단계가 종료될 때의 최대 에이징 전압은 서로 다른 것을 특징으로 하는 고체 전해 콘덴서 제조 방법.In the aging step of aging the winding element, the method of manufacturing a solid electrolytic capacitor, characterized in that the minimum aging voltage when the aging step starts and the maximum aging voltage when the aging step ends.
  2. 제1 항에 있어서,According to claim 1,
    상기 에이징 단계는,The aging step,
    순차적으로 적용되는 복수의 서브 에이징 단계들을 포함하고,It includes a plurality of sub-aging steps applied sequentially,
    어느 하나의 상기 서브 에이징 단계에서 인가되는 상기 에이징 전압은, 이에 후속하는 서브 에이징 단계의 상기 에이징 전압보다 큰 것을 특징으로 하는 코체 전해 콘덴서 제조 방법.The aging voltage applied in any one of the sub-aging step, the method of manufacturing a nose body electrolytic capacitor, characterized in that greater than the aging voltage of the subsequent sub-aging step.
  3. 제2 항에 있어서,According to claim 2,
    상기 서브 에이징 단계의 수행되는 시간은 서로 동일한 것을 특징으로 하는 고체 전해 콘덴서 제조 방법.A method of manufacturing a solid electrolytic capacitor characterized in that the sub-aging steps are performed at the same time.
  4. 제2 항에 있어서,According to claim 2,
    어느 하나의 상기 서브 에이징 단계의 상기 에이징 전압의 크기는, 이에 후속하는 상기 서브 에이징 단계의 상기 에이징 전압의 크기의 5 % 내지 90%의 범위로 형성되는 것을 특징으로 하는 고체 전해 콘덴서 제조 방법.A method of manufacturing a solid electrolytic capacitor, wherein the magnitude of the aging voltage of any one of the sub-aging steps is formed in a range of 5% to 90% of the magnitude of the aging voltage of the subsequent sub-aging step.
  5. 제1 항에 있어서,According to claim 1,
    상기 최대 에이징 전압은, 상기 권취소자의 화성 전압의 60 내지 90 %의 범위로 형성되는 것을 특징으로 하는 고체 전해 콘덴서 제조 방법.The maximum aging voltage, solid electrolytic capacitor manufacturing method characterized in that formed in the range of 60 to 90% of the ignition voltage of the winding element.
  6. 제5 항에 있어서,The method of claim 5,
    상기 최소 에이징 전압은, 상기 최대 에이징 전압의 5 % 내지 50 %의 범위로 형성되는 것을 특징으로 하는 고체 전해 콘덴서 제조 방법.The minimum aging voltage, solid electrolytic capacitor manufacturing method characterized in that formed in the range of 5% to 50% of the maximum aging voltage.
  7. 제1 항에 있어서,According to claim 1,
    상기 전해액은,The electrolyte,
    유기용매, 용질, 첨가제 및 실리카 겔(SiO2)을 포함하며,Contains organic solvents, solutes, additives and silica gel (SiO 2 ),
    상기 유기 용매는 에틸렌 글리콜(ethylene glycol)과 감마부티로락톤(gamma butyrolactone)을 포함하고,The organic solvent includes ethylene glycol (ethylene glycol) and gamma butyrolactone (gamma butyrolactone),
    상기 유기 용매에 포함되는 상기 에틸렌 글리콜과 상기 감마부티로락톤의 상대적인 중량비는 5:5 내지 6:4의 범위로 형성되는 것을 특징으로 하는 고체 전해 콘덴서 제조 방법.The relative weight ratio of the ethylene glycol and the gamma-butyrolactone contained in the organic solvent is a method of manufacturing a solid electrolytic capacitor, characterized in that formed in the range of 5:5 to 6:4.
  8. 제7 항에 있어서,The method of claim 7,
    상기 용질은 유무기 복합산염과 유기산염 중 하나 이상이 사용되며,As the solute, at least one of an organic-inorganic complex acid salt and an organic acid salt is used,
    상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며,As the additive, at least one of a nitro compound and a sugar is used,
    상기 유기 용매는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt(weight)%) 당 76 내지 95.4wt%을 함유하는 고체 전해 콘덴서 제조 방법.The organic solvent is a solid electrolytic capacitor manufacturing method containing 76 to 95.4wt% per total weight (wt (weight)%) of the electrolyte for the solid electrolytic capacitor.
  9. 제7 항에 있어서,The method of claim 7,
    상기 용질은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%)당 3 내지 8wt%을 함유하고,The solute contains 3 to 8 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor,
    상기 용질은 유무기 복합산염 및 유기산염 중 하나 이상이 사용되며, 상기 유무기 복합산염은 보로디살리실산(borodisalicylic acid)염이 사용되고, 상기 유기산염은 프탈산염(ammonium phthalate)과 아젤라산염(ammonium azelate) 중 하나 이상이 사용되는 고체 전해 콘덴서 제조 방법.As the solute, at least one of an organic-inorganic complex acid salt and an organic acid salt is used, and the organic-inorganic complex acid salt is used as a borodisalicylic acid salt, and the organic acid salt is ammonium phthalate and ammonium azelate. ) Is a method of manufacturing a solid electrolytic capacitor is used.
  10. 제7 항에 있어서,The method of claim 7,
    상기 첨가제는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 1 내지 6wt%를 함유하고,The additive contains 1 to 6wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor,
    상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며, 상기 니트로화합물은 피-니트로페놀(p-nitro phenol)과 피-니트로벤조산(p-nitro benzoic acid) 중 하나 이상이 사용되고 상기 당은 마니톨(mannitol)이 사용되는 고체 전해 콘텐서 제조 방법.As the additive, at least one of a nitro compound and a sugar is used, and the nitro compound is at least one of p-nitro phenol and p-nitro benzoic acid, and the sugar is mannitol. A method for preparing a solid electrolytic capacitor in which (mannitol) is used.
  11. 제7 항에 있어서,The method of claim 7,
    상기 실리카 겔(SiO2)은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 0.6 내지 10wt%을 함유하는 고체 전해 콘덴서용 제조방법.The silica gel (SiO 2 ) is a method for producing a solid electrolytic capacitor containing 0.6 to 10 wt% per total weight (wt%) of the electrolytic solution for the solid electrolytic capacitor.
  12. 고체 전해 콘덴서용 전해액에 있어서,In the electrolytic solution for a solid electrolytic capacitor,
    유기 용매, 용질, 첨가제 및 실리카 겔(SiO2)을 포함하며,Contains organic solvents, solutes, additives and silica gel (SiO 2 ),
    상기 유기 용매는 에틸렌 글리콜(ethylene glycol)과 감마부티로락톤(gammabutyrolactone) 중 하나 이상이 사용되며, The organic solvent is one or more of ethylene glycol (ethylene glycol) and gamma butyrolactone (gammabutyrolactone) is used,
    상기 유기 용매에 포함되는 상기 에틸렌 글리콜과 상기 감마부티로락톤의 상대적인 중량비는 5:5 내지 6:4의 범위로 형성되는 것을 특징으로 하는 고체 전해 콘덴서용 전해액.The relative weight ratio of the ethylene glycol and the gamma-butyrolactone contained in the organic solvent is an electrolyte solution for a solid electrolytic capacitor, characterized in that formed in a range of 5:5 to 6:4.
  13. 제12 항에 있어서,The method of claim 12,
    상기 전해액은,The electrolyte,
    유기용매, 용질, 첨가제 및 실리카 겔(SiO2)을 포함하며,Contains organic solvents, solutes, additives and silica gel (SiO 2 ),
    상기 유기 용매는 에틸렌 글리콜(ethylene glycol)과 감마부티로락톤(gamma butyrolactone)을 포함하고,The organic solvent includes ethylene glycol (ethylene glycol) and gamma butyrolactone (gamma butyrolactone),
    상기 유기 용매에 포함되는 상기 에틸렌 글리콜과 상기 감마부티로락톤의 상대적인 중량비는 5:5 내지 6:4의 범위로 형성되는 것을 특징으로 하는 고체 전해 콘덴서용 전해액.The relative weight ratio of the ethylene glycol and the gamma-butyrolactone contained in the organic solvent is an electrolyte solution for a solid electrolytic capacitor, characterized in that formed in a range of 5:5 to 6:4.
  14. 제12 항에 있어서,The method of claim 12,
    상기 용질은 유무기 복합산염과 유기산염 중 하나 이상이 사용되며,As the solute, at least one of an organic-inorganic complex acid salt and an organic acid salt is used,
    상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며,As the additive, at least one of a nitro compound and a sugar is used,
    상기 유기 용매는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt(weight)%) 당 76 내지 95.4wt%을 함유하는 고체 전해 콘덴서용 전해액.The organic solvent is a solid electrolytic capacitor electrolyte containing 76 to 95.4 wt% per total weight (wt (weight)%) of the electrolyte for the solid electrolytic capacitor.
  15. 제12 항에 있어서,The method of claim 12,
    상기 용질은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%)당 3 내지 8wt%을 함유하고,The solute contains 3 to 8 wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor,
    상기 용질은 유무기 복합산염 및 유기산염 중 하나 이상이 사용되며, 상기 유무기 복합산염은 보로디살리실산(borodisalicylic acid)염이 사용되고, 상기 유기산염은 프탈산염(ammonium phthalate)과 아젤라산염(ammonium azelate) 중 하나 이상이 사용되는 고체 전해 콘덴서용 전해액.As the solute, at least one of an organic-inorganic complex acid salt and an organic acid salt is used, and the organic-inorganic complex acid salt is used as a borodisalicylic acid salt, and the organic acid salt is ammonium phthalate and ammonium azelate. ) Is an electrolyte for solid electrolytic capacitors.
  16. 제2 항에 있어서,According to claim 2,
    상기 첨가제는 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 1 내지 6wt%를 함유하고,The additive contains 1 to 6wt% per total weight (wt%) of the electrolyte solution for the solid electrolytic capacitor,
    상기 첨가제는 니트로화합물과 당 중 하나 이상이 사용되며, 상기 니트로화합물은 피-니트로페놀(p-nitro phenol)과 피-니트로벤조산(p-nitro benzoic acid) 중 하나 이상이 사용되고 상기 당은 마니톨(mannitol)이 사용되는 고체 전해 콘덴서용 전해액.As the additive, at least one of a nitro compound and a sugar is used, and the nitro compound is at least one of p-nitro phenol and p-nitro benzoic acid, and the sugar is mannitol. Electrolyte for solid electrolytic capacitors where (mannitol) is used.
  17. 제12 항에 있어서,The method of claim 12,
    상기 실리카 겔(SiO2)은 상기 고체 전해 콘덴서용 전해액의 총 중량(wt%) 당 0.6 내지 10wt%을 함유하는 고체 전해 콘덴서용 전해액.The silica gel (SiO 2 ) is a solid electrolyte electrolytic solution containing 0.6 to 10 wt% per total weight (wt%) of the electrolytic solution for the solid electrolytic capacitor.
PCT/KR2019/016823 2019-01-29 2019-12-03 Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser WO2020159062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0010893 2019-01-29
KR1020190010893A KR102222650B1 (en) 2019-01-29 2019-01-29 Method of manufacturing solid electrolytic capacitor and electrolyte for solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2020159062A1 true WO2020159062A1 (en) 2020-08-06

Family

ID=71841146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016823 WO2020159062A1 (en) 2019-01-29 2019-12-03 Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser

Country Status (2)

Country Link
KR (1) KR102222650B1 (en)
WO (1) WO2020159062A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042136A (en) * 2006-08-10 2008-02-21 Nichicon Corp Manufacturing method of solid-state electrolytic capacitor
JP2008244432A (en) * 2007-02-26 2008-10-09 Kaneka Corp Method of manufacturing conductive-polymer capacitor
KR20150037906A (en) * 2012-07-31 2015-04-08 닛뽄 케미콘 가부시끼가이샤 Solid electrolytic capacitor and method for manufacturing same
KR20180040561A (en) * 2015-08-12 2018-04-20 니폰 케미콘 가부시키가이샤 SOLID ELECTROLYTIC CAPACITOR AND METHOD FOR MANUFACTURING SOLID ELECTROLYTIC CAPACITOR
JP2018174233A (en) * 2017-03-31 2018-11-08 ニチコン株式会社 Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor arranged by use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763181B (en) 2010-02-15 2017-02-15 松下知识产权经营株式会社 Electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042136A (en) * 2006-08-10 2008-02-21 Nichicon Corp Manufacturing method of solid-state electrolytic capacitor
JP2008244432A (en) * 2007-02-26 2008-10-09 Kaneka Corp Method of manufacturing conductive-polymer capacitor
KR20150037906A (en) * 2012-07-31 2015-04-08 닛뽄 케미콘 가부시끼가이샤 Solid electrolytic capacitor and method for manufacturing same
KR20180040561A (en) * 2015-08-12 2018-04-20 니폰 케미콘 가부시키가이샤 SOLID ELECTROLYTIC CAPACITOR AND METHOD FOR MANUFACTURING SOLID ELECTROLYTIC CAPACITOR
JP2018174233A (en) * 2017-03-31 2018-11-08 ニチコン株式会社 Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor arranged by use thereof

Also Published As

Publication number Publication date
KR102222650B1 (en) 2021-03-04
KR20200093767A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
KR100577496B1 (en) Electrolytic capacitor and method for manufacturing same
US6166899A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor having the same
US7232469B2 (en) Electrode for electrolytic capacitor, electrolytic capacitor, and manufacturing method therefor
US6765785B2 (en) Polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor
EP0704871A1 (en) Electrolytic capacitor
WO2020159062A1 (en) Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser
WO2017213377A1 (en) Electrochemical capacitor
KR102141022B1 (en) Method of manufacturing solid electrolytic capacitor
KR102141023B1 (en) Electrolyte for solid electrolytic capacitor
JPH0645199A (en) Solid-state electrolytic capacitor
JPH08255730A (en) Solid electrolytic capacitor
JPH0645200A (en) Solid-state electrolytic capacitor
WO2022124821A1 (en) Method for manufacturing printed battery and printed battery manufactured by same
JPH01114018A (en) Electrolyte for driving electrolytic capacitor
JP3761303B2 (en) Electrolytic capacitor inspection method
JPH1126307A (en) Aluminum electrolytic capacitor
JP4101937B2 (en) Polarized aluminum electrolytic capacitor
JP4136092B2 (en) Polarized aluminum electrolytic capacitor
JP3491501B2 (en) Aluminum electrolytic capacitor
JPH11168037A (en) Polar aluminum electrolytic capacitor
JP2000036440A (en) Polarized aluminum electrolytic capacitor
JP3552485B2 (en) Aluminum electrolytic capacitor
JP2000030985A (en) Polarizable aluminum electrolytic capacitor
JP2801925B2 (en) Electrolyte for driving electrolytic capacitors
KR20030034977A (en) Electrolyte for aluminium electrolysis condenser of low voltage and electrolysis condenser having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912929

Country of ref document: EP

Kind code of ref document: A1