JP3761303B2 - Electrolytic capacitor inspection method - Google Patents

Electrolytic capacitor inspection method Download PDF

Info

Publication number
JP3761303B2
JP3761303B2 JP27547497A JP27547497A JP3761303B2 JP 3761303 B2 JP3761303 B2 JP 3761303B2 JP 27547497 A JP27547497 A JP 27547497A JP 27547497 A JP27547497 A JP 27547497A JP 3761303 B2 JP3761303 B2 JP 3761303B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
voltage
foil
anode foil
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27547497A
Other languages
Japanese (ja)
Other versions
JPH11111580A (en
Inventor
輝巳 藤山
憲樹 潮
哲哉 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27547497A priority Critical patent/JP3761303B2/en
Publication of JPH11111580A publication Critical patent/JPH11111580A/en
Application granted granted Critical
Publication of JP3761303B2 publication Critical patent/JP3761303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器に利用される電解コンデンサの検査方法に関するものである。
【0002】
【従来の技術】
一般にこの種の電解コンデンサは、陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底円筒状のケースと、このケースの開口部を封口する封口部材とを備えており、そしてこの電解コンデンサは、組み立てを完了した後、陽極箔の表面に形成した酸化皮膜の欠損部を修復するために、電圧を印加した状態で高温に保たれた恒温槽内を通すことによりエージングを行うようにしている。
【0003】
図4は従来の電解コンデンサにおけるエージング温度と印加電圧のタイミングを示したもので、従来はこの図4に示すように、規定のエージング温度で規定のエージング電圧を電解コンデンサに印加して領域1に示すエージングを行った後、常温で電荷を放電する領域2に示す常温放電を行い、その後、電解コンデンサの特性検査を行うようにしていた。
【0004】
一方、電解コンデンサの特性として、常温で充電した電解コンデンサを10〜15分の間、一対のリード端子間をショートさせて放電を行い、その後、一対のリード端子間のショートを開放した場合、時間の経過とともに再び電解コンデンサの両端に電圧が発生することがわかっている。これは、急速な放電は駆動用電解液中の電子の移動により行われるが、充電時に陽極箔と陰極箔からなる電極側に移動した駆動用電解液中のイオンの移動が比較的遅いために発生するものと考えられる。
【0005】
上記現象により、電荷を放電した後の電解コンデンサの駆動用電解液は、陰イオンが陽極箔の近辺に集中的に分布し、かつ陽イオンが陰極箔の近辺に集中的に分布しているものである。
【0006】
【発明が解決しようとする課題】
上記現象により陽極箔の近辺に集中的に分布している駆動用電解液中の陰イオンは陽極箔の表面に形成した酸化皮膜や酸化皮膜の欠損部を覆うように配置され、そして駆動用電解液中の陽イオンと反発するため、半導体であるFETの電位障壁と同様の働きをして、電解コンデンサの絶縁性を強化するように働くものである。このため、このような電解コンデンサの特性検査を、図4に示すような常温で電荷を放電する領域2に示す常温放電を行った後の検査工程において行った場合、この電解コンデンサは耐電圧が高く、かつ漏れ電流が低いという検査結果が現われるものであり、したがって、本来は不良レベルである電解コンデンサが良品となってその特性検査をパスしてしまうという不具合を有するものであった。
【0007】
本発明は上記従来の問題点を解決するもので、耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって特性検査をパスしてしまうという不具合をなくすることができる電解コンデンサの検査方法を提供することを目的とするものである。
【0008】
上記課題解決するために本発明の電解コンデンサの検査方法は、陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底筒状のケースと、このケースの開口部を封口する封口部材とを備えた電解コンデンサに高温雰囲気中で電圧を印加することによりエージングを行った後、規定の時間だけ高温状態で前記一対のリード端子間をショートさせて放電を行い、その後、電解コンデンサの耐電圧や漏れ電流等の特性検査を行うようにしたもので、この検査方法によれば、耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって耐電圧や漏れ電流等の特性検査をパスしてしまうという不具合をなくすることができるものである。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底筒状のケースと、このケースの開口部を封口する封口部材とを備えた電解コンデンサに高温雰囲気中で電圧を印加することによりエージングを行った後、規定の時間だけ高温状態で前記一対のリード端子間をショートさせて放電を行い、その後、電解コンデンサの耐電圧や漏れ電流等の特性検査を行うようにしたもので、この検査方法によれば、電解コンデンサのエージングを行った後、規定の時間だけ電解コンデンサにおける一対のリード端子間をショートさせて放電を行う場合、高温状態で行うようにしているため、駆動用電解液中のイオンは熱により励起されて移動速度が増すことになり、そしてこれにより、陽極箔の近辺に集中的に分布している陰イオンと陰極箔の近辺に集中的に分布している陽イオンは移動して容易に引き付け合うため、陽極箔から陰イオンはすみやかに引き離されて陽極箔付近の電位障壁を短時間で解除することができ、これにより、次の特性検査においては、駆動用電解液中のイオンが陽極箔や陰極箔からなる電極箔に片寄らない状態で検査を行うことができるため、従来のように耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって耐電圧や漏れ電流等の特性検査をパスしてしまうという不具合をなくすることができるものである。
【0011】
請求項に記載の発明は、陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底筒状のケースと、このケースの開口部を封口する封口部材とを備えた電解コンデンサに高温雰囲気中で電圧を印加することによりエージングを行った後、規定の時間だけ高温状態で陰極箔の耐電圧以下の逆電圧を前記一対のリード端子間に印加し、その後、この逆電圧の電荷を放電し、さらにその後、電解コンデンサの耐電圧や漏れ電流等の特性検査を行うようにしたもので、この検査方法によれば、電解コンデンサのエージングを行った後、規定の時間だけ陰極箔の耐電圧以下の逆電圧を一対のリード端子間に印加するようにしているため、陽極箔は負電圧となり、そしてこの負電圧によるクーロン力(吸引力)によってエージング中に陽極箔の近辺に密集した駆動用電解液中の陰イオンを電気的に反発させることができるため、前記陰イオンは陽極箔からすみやかに引き離されることになり、また前記逆電圧の印加は高温状態で行うようにしているため、駆動用電解液中のイオンは熱により励起されて移動速度が増すことになり、そしてこれにより、陽極箔の近辺に集中的に分布している陰イオンと陰極箔の近辺に集中的に分布している陽イオンは移動して容易に引き付け合うため、短時間で陽極箔付近の電位障壁を解除することができ、その結果、次の特性検査においては、駆動用電解液中のイオンが陽極箔や陰極箔からなる電極箔に片寄らない状態で検査を行うことができるため、従来のように耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって耐電圧や漏れ電流等の特性検査をパスしてしまうという不具合をなくすことができるものである。
【0012】
以下、本発明の実施の形態について添付図面にもとづいて説明する。
(実施の形態1)
図1は本発明の実施の形態1を示す電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示したものである。
【0013】
電解コンデンサは、陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底円筒状のケースと、このケースの開口部を封口する封口部材とを備えているもので、この電解コンデンサを組み立てた後、陽極箔の表面に形成した酸化皮膜の欠損部を修復するために、図1の領域1に示すように、規定のエージング温度で規定のエージング電圧を電解コンデンサに印加するエージングを行い、その後、領域2に示すように、高温の雰囲気内で規定の時間だけ電解コンデンサにおける一対のリード端子間をショートさせて放電を行い、その後、電解コンデンサの特性検査を行うようにしたものである。
【0014】
上記図1に示す本発明の実施の形態1においては、領域2に示すように、規定の時間だけ電解コンデンサにおける一対のリード端子間をショートさせて放電を行う場合、高温雰囲気内という高温状態で行うようにしているため、駆動用電解液中のイオンは熱により励起されて移動速度が増すことになり、そしてこれにより、陽極箔の近辺に集中的に分布している陰イオンと陰極箔の近辺に集中的に分布している陽イオンは移動して容易に引き付け合うため、陽極箔から陰イオンはすみやかに引き離されて陽極箔付近の電位障壁を短時間で解除することができ、これにより、次の特性検査においては駆動用電解液中のイオンが陽極箔や陰極箔からなる電極箔に片寄らない状態で検査を行うことができるため、従来のように耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって特性検査をパスしてしまうという不具合はなくなるものである。
【0015】
上記図1に示す領域2における高温雰囲気内の温度は高いほど駆動用電解液中のイオンの移動速度が速くなるため、より短い時間で陽極箔付近の電位障壁を解除できるが、一般的には電解コンデンサの耐熱温度もしくはエージング温度が好ましく、またその放電時間は、電解コンデンサの電圧や容量によって異なるが、33μF・400V級の電解コンデンサでは、温度が95℃で時間が15分以上の高温放電が好ましいものである。
【0016】
(実施の形態2)
図2は本発明の実施の形態2を示す電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示したものである。
【0017】
上記本発明の実施の形態2は、電解コンデンサを組み立てた後、陽極箔の表面に形成した酸化皮膜の欠損部を修復するために、図2の領域1に示すように、規定のエージング温度で規定のエージング電圧を電解コンデンサに印加するエージングを行い、その後、領域2に示すように、規定の時間だけ陰極箔の耐電圧以下の逆電圧を電解コンデンサにおける一対のリード端子間に印加し、その後、領域3に示すように、領域2における逆電圧の電荷を放電し、さらにその後、電解コンデンサの特性検査を行うようにしたものである。
【0018】
上記図2に示す本発明の実施の形態2においては、領域2に示すように、規定の時間だけ陰極箔の耐電圧以下の逆電圧を一対のリード端子間に印加するようにしているため、陽極箔は負電圧となり、そしてこの負電圧によるクーロン力(吸引力)によってエージング中に陽極箔の近辺に密集した駆動用電解液中の陰イオンを電気的に反発させることができるため、前記陰イオンは陽極箔からすみやかに引き離されて陽極箔付近の電位障壁を短時間で解除することができ、これにより、次の特性検査においては、駆動用電解液中の陰イオンが陽極箔に片寄らない状態で検査を行うことができるめ、従来のように耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって特性検査をパスしてしまうという不具合はなくなるものである。
【0019】
上記図2に示す領域2における逆電圧の電圧は高いほどより短い時間で陽極箔付近の電位障壁を解除できるが、陰極箔の耐電圧以下にする必要があり、一般的には1V以下が好ましい。また逆電圧の印加時間は、電解コンデンサの電圧や容量によって異なるが、33μF・400V級の電解コンデンサでは、約10分以上の印加時間が好ましいものである。
【0020】
(実施の形態3)
図3は本発明の実施の形態3を示す電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示したものである。
【0021】
上記本発明の実施の形態3は、電解コンデンサを組み立てた後、陽極箔の表面に形成した酸化皮膜の欠損部を修復するために、図3の領域1に示すように、規定のエージング温度で規定のエージング電圧を電解コンデンサに印加するエージングを行い、その後、領域2に示すように、高温の雰囲気内で規定の時間だけ陰極箔の耐電圧以下の逆電圧を電解コンデンサにおける一対のリード端子間に印加し、その後、領域3に示すように、領域2における逆電圧の電荷を放電し、さらにその後、電解コンデンサの特性検査を行うようにしたものである。
【0022】
上記図3に示す本発明の実施の形態3においては、領域2に示すように、規定の時間だけ陰極箔の耐電圧以下の逆電圧を一対のリード端子間に印加するようにしているため、陽極箔は負電圧となり、そしてこの負電圧によるクーロン力(吸引力)によってエージング中に陽極箔の近辺に密集した駆動用電解液中の陰イオンを電気的に反発させることができるとともに、前記逆電圧の印加は高温雰囲気内という高温状態で行うようにしているため、駆動用電解液中のイオンは熱により励起されて移動速度が増すことになり、そしてこれにより、陽極箔の近辺に集中的に分布している陰イオンと陰極箔の近辺に集中的に分布している陽イオンは移動して容易に引き付け合うため、前記陰イオンは陽極箔からすみやかに引き離されることになり、これにより、陽極箔付近の電位障壁の解除は、本発明の実施の形態2よりもさらに短時間に行わせることができるものである。
【0023】
このような状態とすることにより、次の特性検査においては、駆動用電解液中のイオンが陽極箔や陰極箔からなる電極箔に片寄らない状態で検査を行うことができるため、従来のように耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって特性検査をパスしてしまうという不具合はなくなるものである。
【0024】
上記図3に示す領域2における高温雰囲気内の温度は高いほど駆動用電解液中のイオンの移動速度が速くなるため、より短い時間で陽極箔付近の電位障壁を解除できるが、一般的には電解コンデンサの耐熱温度もしくはエージング温度が好ましい。また逆電圧の電圧は高いほどより短い時間で陽極箔付近の電位障壁を解除できるが、陰極箔の耐電圧以下にする必要があり、一般的には1V以下が好ましい。そしてこの逆電圧の印加時間は、電解コンデンサの電圧や容量によって異なるが、33μF・400V級の電解コンデンサでは、温度が95℃で逆電圧を1Vとした場合、5分以上の時間が好ましいものである。
【0025】
上記した本発明の実施の形態1〜3における領域2および領域3の処理を施すことにより、この処理を施した電解コンデンサに、次の特性検査として、電解コンデンサの耐電圧まで急速充電する検査を実施した場合、耐電圧不良品があった際には、その耐電圧不良品は精度よく排除することができるものである。
【0026】
以上のように本発明の電解コンデンサの検査方法は、陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底筒状のケースと、このケースの開口部を封口する封口部材とを備えた電解コンデンサに高温雰囲気中で電圧を印加することによりエージングを行った後、規定の時間だけ高温状態で前記一対のリード端子間をショートさせて放電を行い、その後、電解コンデンサの耐電圧や漏れ電流等の特性検査を行うようにしたもので、この検査方法によれば、電解コンデンサのエージングを行った後、規定の時間だけ電解コンデンサにおける一対のリード端子間をショートさせて放電を行う場合、高温状態で行うようにしているため、駆動用電解液中のイオンは熱により励起されて移動速度が増すことになり、そしてこれにより、陽極箔の近辺に集中的に分布している陰イオンと陰極箔の近辺に集中的に分布している陽イオンは移動して容易に引き付け合うため、陽極箔から陰イオンはすみやかに引き離されて陽極箔付近の電位障壁を短時間で解除することができ、これにより、次の特性検査においては、駆動用電解液中のイオンが陽極箔や陰極箔からなる電極箔に片寄らない状態で検査を行うことができるため、従来のように耐電圧や漏れ電流等が不良レベルである電解コンデンサが良品となって耐電圧や漏れ電流等の特性検査をパスしてしまうという不具合をなくすることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示す電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示す図
【図2】本発明の実施の形態2を示す電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示す図
【図3】本発明の実施の形態3を示す電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示す図
【図4】従来の電解コンデンサの検査方法におけるエージング温度と印加電圧のタイミングを示す図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for inspecting an electrolytic capacitor used in various electronic devices.
[0002]
[Prior art]
In general, this type of electrolytic capacitor has a capacitor element formed by winding an anode foil and a cathode foil with a separator interposed therebetween, a pair of lead terminals connected to the anode foil and the cathode foil, A driving electrolytic solution impregnated in the capacitor element; a bottomed cylindrical case for housing the capacitor element; and a sealing member for sealing the opening of the case; and the electrolytic capacitor is assembled. After the completion, in order to repair the defective portion of the oxide film formed on the surface of the anode foil, aging is performed by passing through a thermostatic chamber kept at a high temperature while a voltage is applied.
[0003]
FIG. 4 shows the timing of the aging temperature and applied voltage in a conventional electrolytic capacitor. Conventionally, as shown in FIG. 4, a specified aging voltage is applied to the electrolytic capacitor at a specified aging temperature and the region 1 is applied. After performing the aging shown, the room temperature discharge shown in the region 2 where electric charges are discharged at room temperature was performed, and then the characteristics of the electrolytic capacitor were inspected.
[0004]
On the other hand, as a characteristic of the electrolytic capacitor, when the electrolytic capacitor charged at room temperature is discharged for 10 to 15 minutes by short-circuiting between the pair of lead terminals, and then the short-circuit between the pair of lead terminals is opened, It is known that a voltage is generated again at both ends of the electrolytic capacitor as time passes. This is because rapid discharge is performed by the movement of electrons in the driving electrolyte, but the movement of ions in the driving electrolyte moved to the electrode side consisting of the anode foil and the cathode foil during charging is relatively slow. It is thought to occur.
[0005]
Due to the above phenomenon, the electrolytic solution for driving the electrolytic capacitor after discharging the electric charge has anions concentratedly distributed in the vicinity of the anode foil and positive ions concentrated in the vicinity of the cathode foil. It is.
[0006]
[Problems to be solved by the invention]
Due to the above phenomenon, the negative ions in the driving electrolyte concentrated in the vicinity of the anode foil are arranged so as to cover the oxide film formed on the surface of the anode foil and the defective part of the oxide film, and the driving electrolysis Since it repels cations in the liquid, it works in the same way as the potential barrier of FET, which is a semiconductor, to strengthen the insulation of the electrolytic capacitor. For this reason, when such a characteristic inspection of an electrolytic capacitor is performed in an inspection process after performing a room temperature discharge shown in the region 2 where electric charge is discharged at a room temperature as shown in FIG. The inspection result that the leakage current is high and the leakage current appears, and therefore, the electrolytic capacitor which is originally in a defective level becomes a non-defective product and passes the characteristic inspection.
[0007]
The present invention solves the above-mentioned conventional problems, and it is possible to eliminate the problem that an electrolytic capacitor having a defective level of withstand voltage, leakage current or the like becomes a non-defective product and passes the characteristic inspection. The purpose is to provide an inspection method.
[0008]
In order to solve the above problems , an electrolytic capacitor inspection method according to the present invention includes a capacitor element configured by winding an anode foil and a cathode foil with a separator interposed therebetween, and is connected to the anode foil and the cathode foil. An electrolysis comprising a pair of lead terminals formed, a driving electrolyte impregnated in the capacitor element, a bottomed cylindrical case that houses the capacitor element, and a sealing member that seals the opening of the case After aging by applying a voltage to the capacitor in a high temperature atmosphere, the pair of lead terminals are short-circuited at a high temperature for a specified time to discharge, and then the withstand voltage, leakage current, etc. of the electrolytic capacitor the characteristic test which was to perform the, according to this inspection method, the withstand voltage becomes electrolytic capacitor withstand voltage and leakage current or the like is defective level is as good or leakage In which it is possible to eliminate a problem that the characteristic test of the flow, such as would pass.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided a capacitor element formed by winding an anode foil and a cathode foil with a separator interposed therebetween, and a pair of leads connected to the anode foil and the cathode foil. An electrolytic capacitor having a terminal, a driving electrolytic solution impregnated in the capacitor element, a bottomed cylindrical case for storing the capacitor element, and a sealing member for sealing an opening of the case in a high temperature atmosphere Aging is performed by applying a voltage at, and then discharging is performed by short-circuiting the pair of lead terminals at a high temperature for a specified time, and then characteristics of the electrolytic capacitor such as withstand voltage and leakage current are inspected. According to this inspection method, after aging the electrolytic capacitor, the pair of lead terminals in the electrolytic capacitor is short-circuited for a specified time. When discharge is performed at a high temperature, the ions in the driving electrolyte are excited by heat to increase the movement speed, and as a result, are concentrated in the vicinity of the anode foil. The anions that are concentrated and the cations that are concentrated in the vicinity of the cathode foil move and attract each other easily, so the anions are quickly pulled away from the anode foil, and the potential barrier near the anode foil is quickly In this way, in the next characteristic inspection, since the ions in the driving electrolyte solution can be inspected without being offset by the electrode foil made of the anode foil or the cathode foil, In addition, it is possible to eliminate the inconvenience that an electrolytic capacitor having a defective level of withstand voltage, leakage current, etc. becomes a non-defective product and passes a characteristic test of withstand voltage, leakage current, etc.
[0011]
The invention according to claim 2 is a capacitor element configured by winding an anode foil and a cathode foil with a separator interposed therebetween, a pair of lead terminals connected to the anode foil and the cathode foil, A voltage is applied in a high temperature atmosphere to an electrolytic capacitor having a driving electrolyte impregnated in the capacitor element, a bottomed cylindrical case for storing the capacitor element, and a sealing member for sealing the opening of the case. After aging by applying, a reverse voltage equal to or lower than the withstand voltage of the cathode foil is applied between the pair of lead terminals at a high temperature for a specified time, and then the charge of the reverse voltage is discharged. , which was to perform the characteristic test such as a withstand voltage and leakage current of the electrolytic capacitor, according to this test method, after the aging of the electrolytic capacitor, resistance time only cathode foil provisions Since the reverse voltage below the pressure is applied between the pair of lead terminals, the anode foil becomes a negative voltage, and the coulomb force (suction force) due to this negative voltage causes the drive to be concentrated near the anode foil during aging Since the anions in the electrolytic solution can be electrically repelled, the anions are quickly separated from the anode foil, and the application of the reverse voltage is performed at a high temperature, The ions in the driving electrolyte are excited by heat and the movement speed increases, and as a result, the anions that are concentrated in the vicinity of the anode foil and the ions in the vicinity of the cathode foil are concentrated. and are cations order to attract each other easily moved, in a short time can break the potential barrier in the vicinity of the anode foil, resulting in the following characteristics test, ions of the driving electrolytic solution positive It is possible to perform the inspection in a state not biased to the electrode foil made of foil or cathode foil, the conventional electrolytic capacitor withstand voltage and leakage current or the like is poor level as that of such withstand voltage and leakage current becomes good It is possible to eliminate the problem of passing the characteristic inspection.
[0012]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(Embodiment 1)
FIG. 1 shows the aging temperature and applied voltage timing in the electrolytic capacitor inspection method according to the first embodiment of the present invention.
[0013]
The electrolytic capacitor is formed by winding an anode foil and a cathode foil with a separator interposed therebetween, a pair of lead terminals connected to the anode foil and the cathode foil, and impregnating the capacitor element A driving electrolytic solution, a bottomed cylindrical case that houses the capacitor element, and a sealing member that seals the opening of the case. After assembling the electrolytic capacitor, the anode foil In order to repair the defective portion of the oxide film formed on the surface of the substrate, aging is performed by applying a specified aging voltage to the electrolytic capacitor at a specified aging temperature as shown in region 1 of FIG. As shown, discharge is performed by short-circuiting between a pair of lead terminals in the electrolytic capacitor for a specified time in a high-temperature atmosphere. It is obtained to perform the sex test.
[0014]
In the first embodiment of the present invention shown in FIG. 1, as shown in region 2, when discharging is performed by shorting a pair of lead terminals in an electrolytic capacitor for a specified time, in a high temperature state in a high temperature atmosphere. As a result, the ions in the driving electrolyte are excited by heat to increase the movement speed, and this causes the negative ions and the cathode foils concentrated in the vicinity of the anode foil to be concentrated. Since cations concentrated in the vicinity move and attract each other easily, the anions are quickly separated from the anode foil, and the potential barrier near the anode foil can be released in a short time. In the next characteristic inspection, since the ions in the driving electrolyte solution can be inspected without being offset by the electrode foil made of the anode foil or the cathode foil, the withstand voltage, leakage current, etc. A good level of electrolytic capacitor is made not trouble that would pass the become good characteristic test.
[0015]
The higher the temperature in the high-temperature atmosphere in the region 2 shown in FIG. 1, the faster the moving speed of ions in the driving electrolyte solution, so the potential barrier near the anode foil can be released in a shorter time. The heat-resistant temperature or aging temperature of the electrolytic capacitor is preferable, and the discharge time varies depending on the voltage and capacity of the electrolytic capacitor. However, in the case of a 33 μF / 400 V class electrolytic capacitor, the temperature is 95 ° C. and the time is 15 minutes or more. It is preferable.
[0016]
(Embodiment 2)
FIG. 2 shows the aging temperature and applied voltage timing in the electrolytic capacitor inspection method according to the second embodiment of the present invention.
[0017]
In the second embodiment of the present invention, after assembling the electrolytic capacitor, in order to repair the defective portion of the oxide film formed on the surface of the anode foil, as shown in region 1 of FIG. Aging is performed by applying a specified aging voltage to the electrolytic capacitor, and then, as shown in region 2, a reverse voltage equal to or lower than the withstand voltage of the cathode foil is applied between the pair of lead terminals in the electrolytic capacitor for a specified time, and thereafter As shown in region 3, the reverse voltage charge in region 2 is discharged, and then the characteristics of the electrolytic capacitor are inspected.
[0018]
In the second embodiment of the present invention shown in FIG. 2, as shown in region 2, a reverse voltage equal to or lower than the withstand voltage of the cathode foil is applied between the pair of lead terminals for a specified time. The anode foil has a negative voltage, and the negative ions in the driving electrolyte densely packed in the vicinity of the anode foil during aging can be electrically repelled by the Coulomb force (suction force) due to the negative voltage. Ions are quickly pulled away from the anode foil, and the potential barrier near the anode foil can be released in a short time. This prevents the anions in the driving electrolyte from shifting to the anode foil in the next characteristic inspection. Since the inspection can be performed in the state, the problem that the electrolytic capacitor having a defective level of withstand voltage, leakage current and the like becomes a non-defective product and passes the characteristic inspection as in the past is eliminated.
[0019]
As the reverse voltage in the region 2 shown in FIG. 2 is higher, the potential barrier in the vicinity of the anode foil can be released in a shorter time. However, it is necessary to make the voltage lower than the withstand voltage of the cathode foil, and generally 1 V or less is preferable. . Although the application time of the reverse voltage varies depending on the voltage and capacity of the electrolytic capacitor, the application time of about 10 minutes or more is preferable for the 33 μF · 400 V class electrolytic capacitor.
[0020]
(Embodiment 3)
FIG. 3 shows the aging temperature and applied voltage timing in the electrolytic capacitor inspection method according to the third embodiment of the present invention.
[0021]
In the third embodiment of the present invention, after assembling the electrolytic capacitor, in order to repair the defective portion of the oxide film formed on the surface of the anode foil, as shown in region 1 of FIG. Aging is performed by applying a specified aging voltage to the electrolytic capacitor, and then, as shown in region 2, a reverse voltage equal to or lower than the withstand voltage of the cathode foil is applied between the pair of lead terminals in the electrolytic capacitor in a high temperature atmosphere for a specified time. Then, as shown in region 3, the charge of the reverse voltage in region 2 is discharged, and then the characteristics of the electrolytic capacitor are inspected.
[0022]
In Embodiment 3 of the present invention shown in FIG. 3, as shown in region 2, a reverse voltage equal to or lower than the withstand voltage of the cathode foil is applied between the pair of lead terminals for a specified time. The anode foil has a negative voltage, and the negative ions in the driving electrolyte densely packed in the vicinity of the anode foil during aging can be electrically repelled by the Coulomb force (suction force) due to the negative voltage, and the reverse Since the voltage is applied in a high temperature state in a high temperature atmosphere, the ions in the driving electrolyte are excited by heat and the moving speed increases, and as a result, the ions are concentrated in the vicinity of the anode foil. Since the anions distributed in the region and the cations concentrated in the vicinity of the cathode foil move and attract each other easily, the anions are immediately separated from the anode foil. Accordingly, release of the potential barrier in the vicinity of the anode foil is one that can be performed in a shorter time than the second embodiment of the present invention.
[0023]
In such a state, in the next characteristic inspection, since the ions in the driving electrolyte solution can be inspected without being biased to the electrode foil made of the anode foil or the cathode foil, An inconvenience that an electrolytic capacitor having a defective withstand voltage, leakage current or the like becomes a non-defective product and passes the characteristic inspection is eliminated.
[0024]
The higher the temperature in the high-temperature atmosphere in the region 2 shown in FIG. 3, the higher the moving speed of ions in the driving electrolyte solution, so that the potential barrier near the anode foil can be released in a shorter time. The heat resistance temperature or aging temperature of the electrolytic capacitor is preferable. Further, the higher the reverse voltage, the shorter the potential barrier in the vicinity of the anode foil can be released in a shorter time. However, the voltage needs to be lower than the withstand voltage of the cathode foil, and generally 1 V or lower is preferable. The application time of the reverse voltage varies depending on the voltage and capacity of the electrolytic capacitor. However, in the case of a 33 μF / 400 V class electrolytic capacitor, when the temperature is 95 ° C. and the reverse voltage is 1 V, a time of 5 minutes or more is preferable. is there.
[0025]
By performing the processing of the region 2 and the region 3 in the first to third embodiments of the present invention described above, the electrolytic capacitor subjected to this processing is subjected to a quick charge test to the withstand voltage of the electrolytic capacitor as the next characteristic test. When implemented, when there is a withstand voltage failure product, the withstand voltage failure product can be accurately eliminated.
[0026]
As described above, the method for inspecting an electrolytic capacitor of the present invention includes a capacitor element configured by winding an anode foil and a cathode foil with a separator interposed therebetween, and a pair connected to the anode foil and the cathode foil. The electrolytic capacitor includes a lead terminal, a driving electrolytic solution impregnated in the capacitor element, a bottomed cylindrical case that houses the capacitor element, and a sealing member that seals the opening of the case. After aging by applying a voltage in the atmosphere, discharge is performed by shorting between the pair of lead terminals at a high temperature for a specified time, and then characteristics of the electrolytic capacitor such as withstand voltage and leakage current are inspected According to this inspection method, after aging of the electrolytic capacitor, the pair of lead ends of the electrolytic capacitor is allowed for a specified time. When the discharge is performed with a short circuit, the ions in the driving electrolyte are excited by heat and the movement speed is increased, so that the ions move in the vicinity of the anode foil. Since the concentrated anions and the positive ions concentrated in the vicinity of the cathode foil move and attract each other easily, the anions are quickly separated from the anode foil, and the potential near the anode foil is The barrier can be released in a short time, so that in the next characteristic inspection, the ions in the driving electrolyte solution can be inspected without being offset by the electrode foil made of the anode foil or the cathode foil. , those capable of conventional electrolytic capacitor withstand voltage and leakage current or the like is poor level as that eliminate the defect that becomes good would pass the characteristic test such as withstand voltage and leakage current
[Brief description of the drawings]
FIG. 1 is a diagram showing the timing of aging temperature and applied voltage in an electrolytic capacitor inspection method according to a first embodiment of the present invention. FIG. 2 is an aging temperature in an electrolytic capacitor inspection method according to a second embodiment of the present invention. FIG. 3 is a diagram showing the aging temperature and applied voltage timing in the electrolytic capacitor inspection method according to Embodiment 3 of the present invention. FIG. 4 is a diagram showing the aging in the conventional electrolytic capacitor inspection method. Diagram showing temperature and applied voltage timing

Claims (2)

陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底筒状のケースと、このケースの開口部を封口する封口部材とを備えた電解コンデンサに高温雰囲気中で電圧を印加することによりエージングを行った後、規定の時間だけエージングを行った温度よりも高温で前記一対のリード端子間をショートさせて放電を行い、その後、電解コンデンサの耐電圧や漏れ電流等の特性検査を行うようにした電解コンデンサの検査方法。A capacitor element configured by winding an anode foil and a cathode foil with a separator interposed therebetween, a pair of lead terminals connected to the anode foil and the cathode foil, and a driving element impregnated in the capacitor element After aging by applying a voltage in a high-temperature atmosphere to an electrolytic capacitor comprising an electrolytic solution, a bottomed cylindrical case that houses the capacitor element, and a sealing member that seals the opening of the case An electrolytic capacitor in which the pair of lead terminals are short-circuited at a temperature higher than the temperature at which aging is performed for a specified time, and then the electrolytic capacitor is tested for characteristics such as withstand voltage and leakage current . Inspection method. 陽極箔と陰極箔をその間にセパレータを介在させて巻回することにより構成されたコンデンサ素子と、前記陽極箔と陰極箔に接続された一対のリード端子と、前記コンデンサ素子に含浸される駆動用電解液と、前記コンデンサ素子を収納する有底筒状のケースと、このケースの開口部を封口する封口部材とを備えた電解コンデンサに高温雰囲気中で電圧を印加することによりエージングを行った後、規定の時間だけエージングを行った温度で陰極箔の耐電圧以下の逆電圧を前記一対のリード端子間に印加し、その後、この逆電圧の電荷を放電し、さらにその後、電解コンデンサの耐電圧や漏れ電流等の特性検査を行うようにした電解コンデンサの検査方法。A capacitor element constituted by winding an anode foil and a cathode foil with a separator interposed therebetween, a pair of lead terminals connected to the anode foil and the cathode foil, and a driving element impregnated in the capacitor element After performing aging by applying a voltage in a high-temperature atmosphere to an electrolytic capacitor comprising an electrolytic solution, a bottomed cylindrical case that houses the capacitor element, and a sealing member that seals the opening of the case A reverse voltage equal to or lower than the withstand voltage of the cathode foil is applied between the pair of lead terminals at a temperature after aging for a specified time, and then the charge of the reverse voltage is discharged. Electrolytic capacitor inspection method that performs characteristic inspection such as leakage current.
JP27547497A 1997-10-08 1997-10-08 Electrolytic capacitor inspection method Expired - Fee Related JP3761303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27547497A JP3761303B2 (en) 1997-10-08 1997-10-08 Electrolytic capacitor inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27547497A JP3761303B2 (en) 1997-10-08 1997-10-08 Electrolytic capacitor inspection method

Publications (2)

Publication Number Publication Date
JPH11111580A JPH11111580A (en) 1999-04-23
JP3761303B2 true JP3761303B2 (en) 2006-03-29

Family

ID=17556045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27547497A Expired - Fee Related JP3761303B2 (en) 1997-10-08 1997-10-08 Electrolytic capacitor inspection method

Country Status (1)

Country Link
JP (1) JP3761303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535864B (en) * 2014-12-29 2017-10-03 中国振华(集团)新云电子元器件有限责任公司 A kind of non-solid tantalum capacitor ageing method
CN111681876B (en) * 2020-06-17 2022-07-26 肇庆绿宝石电子科技股份有限公司 Ultrahigh voltage aluminum electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11111580A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
US5781403A (en) Electric double layer capacitor having hydrophobic powdery activated charcoal
US20040233613A1 (en) Electric double layer capacitor and electric double layer capacitor stacked body
JP3070486B2 (en) Electric double layer capacitor
CN114402406A (en) Capacitor with a capacitor element
JP3761303B2 (en) Electrolytic capacitor inspection method
JP3325101B2 (en) Lithium battery abnormality detection method
JP4738703B2 (en) Electrolytic capacitor manufacturing method
JP2662080B2 (en) Aging method of aluminum electrolytic capacitor
JP2001035753A (en) Aluminum electrolytic capacitor
KR102266350B1 (en) Method for evaluating life cycle of aluminum polymer capacitor
KR20230126591A (en) Activation methods of secondary battery and manufacturing methods of secondary batteries including the same
JPH0367473A (en) Inspection method for sealed lead-acid battery
JPH11354101A (en) Sealed battery and its manufacture
JP3498521B2 (en) Method for producing electrolytic capacitor and method for treating capacitor element
JP3240911B2 (en) Spiral lithium battery, method of manufacturing the same, and liquid injection device
JPH05315191A (en) Electrical double-layer capacitor
KR200174464Y1 (en) A device for charging electrolytic condenser
JP2007234827A (en) Electric double layer capacitor and its method for manufacturing
JPH0645200A (en) Solid-state electrolytic capacitor
JP2006229011A (en) Electronic component
JPH0513103A (en) High temperature type secondary battery and battery module
JP2554138B2 (en) Electrolytic capacitor
JPH06251999A (en) Aluminum electrolytic capacitor and manufacture thereof
JPS58207620A (en) Electrolytic condenser
JP2000323358A (en) Aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040618

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees