JP2012009653A - Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same - Google Patents

Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same Download PDF

Info

Publication number
JP2012009653A
JP2012009653A JP2010144727A JP2010144727A JP2012009653A JP 2012009653 A JP2012009653 A JP 2012009653A JP 2010144727 A JP2010144727 A JP 2010144727A JP 2010144727 A JP2010144727 A JP 2010144727A JP 2012009653 A JP2012009653 A JP 2012009653A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic
electrolytic solution
electrolytic capacitor
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010144727A
Other languages
Japanese (ja)
Other versions
JP5488998B2 (en
Inventor
Makoto Shimizu
真 清水
Takasato Sano
隆聡 佐野
Junichi Kiyosawa
潤一 清澤
Ryuji Ishitobi
竜司 石飛
Hokuto Yokotsuji
北斗 横辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Nichicon Corp
Original Assignee
Mie University NUC
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC, Nichicon Corp filed Critical Mie University NUC
Priority to JP2010144727A priority Critical patent/JP5488998B2/en
Publication of JP2012009653A publication Critical patent/JP2012009653A/en
Application granted granted Critical
Publication of JP5488998B2 publication Critical patent/JP5488998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic solution for driving an electrolytic capacitor, capable of maintaining a high withstand voltage even when an electrolyte concentration is increased.SOLUTION: The electrolytic solution for driving an electrolytic capacitor comprises an electrolyte dissolved in a solvent. The electrolyte is selected from the group consisting of specific higher dibasic acids including an alkyl side chain coordinated at a predetermined position and salts of the specific higher dibasic acids. The electrolyte is preferably a tetradecanedioic acid derivative including an alkyl group with 4-10 carbon atoms coordinated at 3-position, or a tetradecanedioic acid unsaturated derivative.

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称する)の改良に関するものであり、特に電解質として特定の高級二塩基酸を用いることにより、耐電圧を高めながら電解質濃度も高めることができる電解コンデンサの駆動用電解液に関する。   The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution). In particular, by using a specific higher dibasic acid as an electrolyte, the electrolyte concentration is increased while increasing the withstand voltage. It is related with the electrolyte solution for the drive of the electrolytic capacitor which can be performed.

電解コンデンサは一般的な電子部品の1つであり、様々な電子部品、電気製品において、主に電源回路用やデジタル回路のノイズフィルタ用として、広く使用されている。   An electrolytic capacitor is one of common electronic components, and is widely used in various electronic components and electrical products, mainly for power supply circuits and digital circuit noise filters.

一般に、電解コンデンサは、金属箔を電気化学的にエッチング処理して表面積を拡大させた後、その表面を陽極酸化して酸化皮膜を形成した陽極箔と、金属箔を電気化学的にエッチング処理した陰極箔との間にセパレータを挿入し巻回して得られたコンデンサ素子に電解液を含浸し、外装ケースに収納した後、該ケースの開口部を弾性ゴムにより封口し、封口部位を絞り加工することにより構成される。   In general, an electrolytic capacitor is obtained by electrochemically etching a metal foil and an anode foil having an oxide film formed by anodizing the surface after the metal foil has been electrochemically etched to increase the surface area. A capacitor element obtained by inserting and winding a separator between the cathode foil is impregnated with an electrolytic solution, and then stored in an exterior case, and then the opening of the case is sealed with elastic rubber, and the sealed portion is drawn. It is constituted by.

このような電解コンデンサにおいて、電解液はこの陽極箔表面に接し、陰極箔からの電子を伝達する実質的な陰極として機能する。また、電解液には絶縁性の酸化皮膜の劣化や損傷を修復する機能(化成性)も要求され、これが電解コンデンサの漏れ電流、寿命特性に影響を及ぼす。   In such an electrolytic capacitor, the electrolytic solution is in contact with the surface of the anode foil and functions as a substantial cathode that transmits electrons from the cathode foil. In addition, the electrolytic solution is also required to have a function (chemical conversion) for repairing deterioration and damage of the insulating oxide film, which affects the leakage current and life characteristics of the electrolytic capacitor.

また、安全性に対する要求の高まりから、定格電圧を超える電圧が印加されるような過酷な条件下においても、ショートや発火を起こさないように高耐電圧を有する電解コンデンサを実現できる電解液が求められている。
従来、高圧用の電解コンデンサには、エチレングリコールを主成分とする溶媒に、高級二塩基酸またはその塩を溶解してなる電解液が用いられてきた(例えば、特許文献1及び特許文献2参照)。このような電解液では、耐電圧を高めるための手法として、電解質濃度を下げる方法が採られている。
In addition, due to the increasing demand for safety, there is a need for an electrolyte that can realize an electrolytic capacitor with a high withstand voltage so as not to cause a short circuit or ignition under severe conditions where a voltage exceeding the rated voltage is applied. It has been.
Conventionally, an electrolytic solution in which a higher dibasic acid or a salt thereof is dissolved in a solvent containing ethylene glycol as a main component has been used for an electrolytic capacitor for high voltage (see, for example, Patent Document 1 and Patent Document 2). ). In such an electrolytic solution, a method of decreasing the electrolyte concentration is employed as a method for increasing the withstand voltage.

特開2000−315629号公報JP 2000-315629 A 特開2006−108158号公報JP 2006-108158 A

しかしながら、電解質濃度を低くし過ぎると、電解液を長期間高温で放置した際に、電解液の化成性が低下するという問題がある。このような問題は、コンデンサを高温下におくと、熱劣化に伴い電解質が減少するので、電解質濃度が元から低い場合、特に電解質減少の影響を受けやすいことから、発生すると考えられる。
したがって、耐電圧を高めながら電解質濃度も高めることができる電解コンデンサの駆動用電解液の開発が望まれている。
However, if the electrolyte concentration is too low, there is a problem that the chemical conversion property of the electrolytic solution is lowered when the electrolytic solution is left at a high temperature for a long period of time. Such a problem is considered to occur because if the capacitor is kept at a high temperature, the electrolyte decreases due to thermal degradation, and therefore, when the electrolyte concentration is low from the beginning, it is particularly susceptible to the decrease in electrolyte.
Accordingly, development of an electrolytic solution for driving an electrolytic capacitor that can increase the electrolyte concentration while increasing the withstand voltage is desired.

本発明者らは、前記課題を解決するために鋭意検討した結果、特定の高級二塩基酸を電解質とすることにより、電解質濃度を高めても、高い耐電圧が維持できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that a high withstand voltage can be maintained even when the concentration of the electrolyte is increased by using a specific higher dibasic acid as an electrolyte. completed.

すなわち本発明は、溶媒に電解質を溶解してなる電解コンデンサの駆動用電解液であって、前記電解質が、式I〜式IVのいずれか1つ以上の化合物、及び当該化合物の塩からなる群から選択されることを特徴とする。

Figure 2012009653
That is, the present invention is an electrolytic solution for driving an electrolytic capacitor obtained by dissolving an electrolyte in a solvent, wherein the electrolyte is a group consisting of any one or more compounds of formulas I to IV and a salt of the compound. It is selected from these.
Figure 2012009653

電解質として、上記の式I〜式IVの化合物、及びこれらの塩からなる群から選択される少なくとも1種の物質を採用することにより、高い耐電圧を維持しながら電解質濃度も高めることができる。
電解質濃度を高めることにより、長期高温放置時に熱劣化に伴う電解質の減少を遅延させることができるため、電解液の化成性を長期にわたり維持することが可能になる。さらに、上記電解質を含む電解液は、高温で放置しても比抵抗が上昇しにくい。
By employing at least one substance selected from the group consisting of the above-mentioned compounds of formulas I to IV and salts thereof as the electrolyte, the electrolyte concentration can be increased while maintaining a high withstand voltage.
By increasing the electrolyte concentration, it is possible to delay the decrease of the electrolyte accompanying thermal degradation when left at a high temperature for a long period of time, so that it is possible to maintain the chemical conversion properties of the electrolyte over a long period of time. Furthermore, the specific resistance of the electrolytic solution containing the above electrolyte hardly increases even when left at high temperature.

前記電解質の濃度は0.080〜0.600mol/kgであることが、高い耐電圧と低い比抵抗を両立する点で好ましい。   The concentration of the electrolyte is preferably 0.080 to 0.600 mol / kg from the viewpoint of achieving both high withstand voltage and low specific resistance.

前記電解液の好ましい溶媒として、エチレングリコールと水の混合溶媒が挙げられる。   A preferable solvent for the electrolytic solution is a mixed solvent of ethylene glycol and water.

前記駆動用電解液を含浸させてなるコンデンサ素子を有する電解コンデンサは、優れた耐電圧特性、長期間安定な化成性・比抵抗特性を示す。   An electrolytic capacitor having a capacitor element impregnated with the driving electrolyte exhibits excellent withstand voltage characteristics and long-term stable chemical conversion / specific resistance characteristics.

本発明によれば、電解質として上記特定の物質を用いることにより、電解質濃度を高めても、高い耐電圧を維持でき、さらに、高温下でも比抵抗変化率が小さい電解コンデンサの駆動用電解液を提供することができる。   According to the present invention, by using the above-mentioned specific substance as an electrolyte, a high withstand voltage can be maintained even when the electrolyte concentration is increased, and an electrolytic solution for driving an electrolytic capacitor having a low specific resistance change rate even at a high temperature is obtained. Can be provided.

本発明に係る電解液は、上記式I〜式IVの化合物、及びこれらの塩からなる群から選択される電解質を含むものであればよく、当該電解質を1種のみ含んでも、2種以上含んでいてもよい。特に、式IIIの化合物またはその塩を含む電解液が好ましい。また、式II〜IVの化合物は、幾何学異性体を有し、溶媒へ溶解し易い特性を示す。
式I〜式IVにおいて、Rは炭素数4〜10のアルキル基(C〜C1021)を示す。より好ましい電解質はRが炭素数5〜8のアルキル基である式I〜式IVの化合物またはその塩であり、特に好ましい電解質はRが炭素数6のアルキル基である式I〜式IVの化合物またはその塩である。
が炭素数1〜3のアルキル基の場合、嵩高さが小さくなり、電解液中の他の成分と反応し易くなるので好ましくない。例えば、本発明に係る好適な溶媒であるエチレングリコールとの間でエステル化反応が生じるおそれがあり、さらにこのエステル化合物と、アンモニアとの間でアミド化反応が生じるおそれがある。一方、Rが炭素数11以上のアルキル基の場合、溶媒への溶解性が著しく低下するため、好ましくない。
式I〜IVの化合物において、Rは、一方のカルボキシ末端から数えて12位の炭素に位置する。
特に好ましい本発明の化合物は、主鎖の炭素数が14、すなわちテトラデカン二酸誘導体、またはテトラデカン二酸不飽和誘導体であり、この場合Rは一方のカルボキシ末端から起算して12位、他方のカルボキシ末端から起算して3位の炭素に配位される。
The electrolyte solution according to the present invention only needs to contain an electrolyte selected from the group consisting of the compounds of the above formulas I to IV and salts thereof, and includes only one kind of the electrolyte or two or more kinds. You may go out. In particular, an electrolytic solution containing a compound of formula III or a salt thereof is preferred. In addition, the compounds of Formulas II to IV have geometric isomers and exhibit properties that are easily dissolved in a solvent.
In Formulas I to IV, R 1 represents an alkyl group having 4 to 10 carbon atoms (C 4 H 9 to C 10 H 21 ). More preferred electrolytes are compounds of formulas I to IV where R 1 is an alkyl group having 5 to 8 carbon atoms or salts thereof, and particularly preferred electrolytes are compounds of formulas I to IV where R 1 is an alkyl group having 6 carbon atoms. Or a salt thereof.
In the case where R 1 is an alkyl group having 1 to 3 carbon atoms, the bulkiness becomes small, and it becomes easy to react with other components in the electrolytic solution, which is not preferable. For example, an esterification reaction may occur between ethylene glycol, which is a suitable solvent according to the present invention, and an amidation reaction may occur between this ester compound and ammonia. On the other hand, when R 1 is an alkyl group having 11 or more carbon atoms, the solubility in a solvent is remarkably lowered, which is not preferable.
In the compounds of formulas I-IV, R 1 is located at the 12th carbon, counting from one carboxy terminus.
A particularly preferred compound of the present invention is a main chain having 14 carbon atoms, that is, a tetradecanedioic acid derivative or a tetradecanedioic acid unsaturated derivative, in which R 1 is the 12th position from one carboxy terminus and the other It is coordinated to the 3rd carbon starting from the carboxy terminus.

式I〜式IVの化合物において、R及びRは水素原子または炭素数が1〜10のアルキル基を示す。
カルボキシル基のα位にアルキル基がある場合は、アルキル基の嵩高さから立体障害が生じ、また、電子供与性基が隣接することにより、溶媒であるエチレングリコールのOH基とのエステル化反応が抑制されるメリットがある。
In the compounds of formulas I to IV, R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
When there is an alkyl group at the α-position of the carboxyl group, steric hindrance occurs due to the bulkiness of the alkyl group, and due to the adjacent electron-donating group, the esterification reaction with the OH group of ethylene glycol, which is the solvent, occurs. There is merit to be suppressed.

式Iの化合物においてnは1〜10の整数を示し、式IIの化合物においてnは0〜10の整数を示す。より好ましくはnが1〜8の式Iの化合物であり、nが0〜8の式IIの化合物であり、特に好ましくは、nが1である式Iの化合物(テトラデカン二酸誘導体)、またはnが0である式IIの化合物(テトラデカン二酸不飽和誘導体)である。 In the compound of the formula I, n 1 represents an integer of 1 to 10, and in the compound of the formula II, n 2 represents an integer of 0 to 10. More preferably, n 1 is a compound of formula I having 1 to 8 and n 2 is a compound of formula II having 0 to 8, particularly preferably a compound of formula I in which n 1 is 1 (tetradecanedioic acid derivative) Or a compound of formula II where n 2 is 0 (tetradecanedioic acid unsaturated derivative).

式I〜式IVの化合物の好ましい塩として、2アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミンなどの一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミンなどの二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミンなどの三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどの四級アンモニウム塩、イミダゾリニウム塩、イミダゾリウム塩等が挙げられる。
特に好ましいのは2アンモニウム塩である。
Preferred salts of the compounds of formulas I to IV include diammonium salts, primary amine salts such as methylamine, ethylamine and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine, trimethylamine and diethyl Examples thereof include tertiary amine salts such as methylamine, ethyldimethylamine and triethylamine, quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium, imidazolinium salts and imidazolium salts.
Particularly preferred is the diammonium salt.

本発明に係る電解液は、重量モル濃度に対する耐電圧が高い。そして、前記電解質を0.080〜0.600mol/kg(3.0〜20.0重量%)とすることで、比抵抗の上昇を抑制しながら、高い耐電圧を実現できる。より好ましい電解質濃度は0.096〜0.474mol/kg(3.5〜15.0重量%)であり、特に好ましい電解質濃度は、0.140〜0.298mol/kg(5.0〜10.0重量%)である。
従来の電解質は、電解質濃度を高めると耐電圧が低下しやすく、電解質濃度を低くする必要があったが、電解質濃度を下げると、比抵抗が上昇するという問題や、長期高温放置時に電解液の化成性を長期間維持できないという問題があった。
本発明に係る電解質は、電解質濃度を高めても耐電圧が低下しにくく、高い耐電圧及び化成性の長期維持を実現することが可能である。
The electrolytic solution according to the present invention has a high withstand voltage with respect to the molar concentration. And by setting the said electrolyte to 0.080-0.600 mol / kg (3.0-20.0 weight%), a high withstand voltage is realizable, suppressing the raise of a specific resistance. A more preferable electrolyte concentration is 0.096 to 0.474 mol / kg (3.5 to 15.0% by weight), and a particularly preferable electrolyte concentration is 0.140 to 0.298 mol / kg (5.0 to 10. 0% by weight).
With conventional electrolytes, the withstand voltage tends to decrease when the electrolyte concentration is increased, and it is necessary to lower the electrolyte concentration. However, when the electrolyte concentration is decreased, the specific resistance increases, and the electrolyte solution is not suitable for long-term high temperature exposure. There was a problem that the chemical conversion could not be maintained for a long time.
In the electrolyte according to the present invention, the withstand voltage is unlikely to decrease even when the electrolyte concentration is increased, and it is possible to achieve high withstand voltage and long-term maintenance of chemical conversion.

本発明で用いる溶媒としては、温度特性に優れた電解液が得られる溶媒であるエチレングリコールが好ましい。エチレングリコールは単独で用いることもできるが、比抵抗を低減するため、水と混合することが好ましい。
電解液中のエチレングリコールの濃度は80〜97重量%が好ましく、83〜95重量%がより好ましい。水が併用される場合、電解液中の水の濃度は0.5〜10.0重量%が好ましく、1.0〜3.0重量%がより好ましい。
その他、使用可能な溶媒として、アルコール類、エーテル類、アミド類、オキサゾリジノン類、ラクトン類、ニトリル類、カーボネート類、スルホン類からなる群より選ばれる1種以上が挙げられる。溶媒の具体例は以下のとおりである。
As the solvent used in the present invention, ethylene glycol which is a solvent capable of obtaining an electrolytic solution having excellent temperature characteristics is preferable. Ethylene glycol can be used alone, but is preferably mixed with water in order to reduce the specific resistance.
The concentration of ethylene glycol in the electrolytic solution is preferably 80 to 97% by weight, more preferably 83 to 95% by weight. When water is used in combination, the concentration of water in the electrolytic solution is preferably 0.5 to 10.0% by weight, and more preferably 1.0 to 3.0% by weight.
Other usable solvents include one or more selected from the group consisting of alcohols, ethers, amides, oxazolidinones, lactones, nitriles, carbonates, and sulfones. Specific examples of the solvent are as follows.

アルコール類としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ジアセトンアルコール、ベンジルアルコール、アミルアルコール、フルフリルアルコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリコール、グリセリン、ヘキシトールなどが挙げられる。   Examples of alcohols include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, diacetone alcohol, benzyl alcohol, amyl alcohol, furfuryl alcohol, propylene glycol, diethylene glycol, hexylene glycol, glycerin and hexitol.

また、アルコール類の高分子量体としては、ポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングリコール及びその共重合体(以下、ポリアルキレングリコール)などが挙げられる。   Moreover, as a high molecular weight body of alcohol, polyalkylene glycols, such as polyethylene glycol and polypropylene glycol, and its copolymer (henceforth, polyalkylene glycol) etc. are mentioned.

エーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールフェニルエーテル、テトラヒドロフラン、3−メチルテトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどが挙げられる。   Ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol phenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol Examples include diethyl ether.

アミド類としては、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミドなどが挙げられる。   Examples of amides include N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N- Examples include diethylacetamide and hexamethylphosphoric amide.

オキサゾリジノン類としては、N−メチル−2−オキサゾリジノン、3,5−ジメチル−2−オキサゾリジノンなどが挙げられる。   Examples of oxazolidinones include N-methyl-2-oxazolidinone and 3,5-dimethyl-2-oxazolidinone.

ラクトン類としては、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなどが挙げられる。   Examples of lactones include γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, and δ-valerolactone.

ニトリル類としては、アセトニトリル、アクリロニトリル、アジポニトリル、3−メトキシプロピオニトリルなどが挙げられる。   Examples of nitriles include acetonitrile, acrylonitrile, adiponitrile, 3-methoxypropionitrile and the like.

カーボネート類としては、エチレンカーボネート、プロピレンカーボネートなどが挙げられる。   Examples of carbonates include ethylene carbonate and propylene carbonate.

スルホン類としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホランなどが挙げられる。   Examples of the sulfones include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane.

その他の溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホオキシド、1,3−ジメチル−2−イミダゾリジノン、トルエン、キシレン、パラフィン類などが挙げられる。   Examples of other solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, toluene, xylene, paraffins and the like.

また、必要に応じて電解液に添加剤を含有させることもできる。
添加剤としては、オルトリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸イソプロピル、リン酸ジブチル、リン酸ジオクチルなどのリン酸化合物、ホウ酸及びその錯化合物などのホウ酸化合物、マンニトール、ソルビトール、キシリトール、ペンタエリスリトール、ポリビニルアルコールなどの多価アルコール類、p−ニトロ安息香酸、m−ニトロアセトフェノンなどのニトロ化合物類、コロイダルシリカ、アルミノシリケートやシリコーン化合物(例えば、反応性シリコーンであるヒドロキシ変性シリコーン、アミノ変性シリコーン、カルボキシル変性シリコーン、アルコール変性シリコーン、エポキシ変性シリコーンなど)やシランカップリング剤(例えば、3−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、エチルトリエトキシシランなど)などのケイ素化合物などが挙げられる。
Moreover, an additive can also be contained in electrolyte solution as needed.
Additives include phosphoric acid such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, methyl phosphate, ethyl phosphate, butyl phosphate, isopropyl phosphate, dibutyl phosphate, dioctyl phosphate Compounds, boric acid compounds such as boric acid and its complex compounds, polyhydric alcohols such as mannitol, sorbitol, xylitol, pentaerythritol, polyvinyl alcohol, nitro compounds such as p-nitrobenzoic acid and m-nitroacetophenone, colloidal silica , Aluminosilicates and silicone compounds (for example, reactive silicones such as hydroxy-modified silicones, amino-modified silicones, carboxyl-modified silicones, alcohol-modified silicones, and epoxy-modified silicones) and silane coupling agents (for example, 3-glycids) Shi trimethoxysilane, vinyl trimethoxysilane, ethyl triethoxysilane) and the like, silicon compounds such as.

さらに、必要に応じて電解液に高級二塩基酸であるアジピン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸などの脂肪族カルボン酸、安息香酸などの芳香族カルボン酸、またはその塩を含有させることもできる。   Further, if necessary, the electrolyte solution may be adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid, which are higher dibasic acids. An aliphatic carboxylic acid such as an acid, an aromatic carboxylic acid such as benzoic acid, or a salt thereof can also be contained.

本発明の電解液は、例えば巻回型のアルミニウム電解コンデンサに用いることができる。
本発明に係る電解液を用いたコンデンサは、通常の方法で製造することができ、例えば、エッチング処理及び酸化皮膜形成処理をした陽極箔と、エッチング処理をした陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、該コンデンサ素子を電解液に含浸した後、有底筒状の外装ケースに収納する方法によって製造することができる。
The electrolytic solution of the present invention can be used for, for example, a wound aluminum electrolytic capacitor.
The capacitor using the electrolytic solution according to the present invention can be manufactured by a usual method. For example, an anode foil subjected to etching treatment and oxide film formation treatment and a cathode foil subjected to etching treatment are wound through a separator. It can be manufactured by a method of turning to form a capacitor element, impregnating the capacitor element with an electrolytic solution, and then storing the capacitor element in a bottomed cylindrical outer case.

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited by these Examples.

[電解液の調製]
式IVに係る化合物(R=C13、R=R=H)のアンモニウム塩である、3−ヘキシル−テトラデカン−2,4−ジエン二酸2アンモニウム(以下、電解質Aと称する)または式IIIに係る化合物(R=C13、R=R=H)のアンモニウム塩である、3−ヘキシル−テトラデカン−2,5−ジエン二酸2アンモニウム(以下、電解質Bと称する)を電解質として用いた本発明の実施例による電解液、及び、1,6−デカンジカルボン酸2アンモニウム(以下、電解質Cと称する)またはセバシン酸2アンモニウム(以下、電解質Dと称する)を用いた比較例による電解液を調合した。
実施例、比較例の電解液組成は表1の通りである。
[Preparation of electrolyte]
3-hexyl-tetradecane-2,4-dienedioic acid diammonium salt (hereinafter referred to as electrolyte A), which is an ammonium salt of a compound according to formula IV (R 1 = C 6 H 13 , R 2 = R 3 = H) ) Or a compound according to Formula III (R 1 = C 6 H 13 , R 2 = R 3 = H), which is an ammonium salt of 3-hexyl-tetradecane-2,5-dienedioic acid diammonium (hereinafter, electrolyte B) And an electrolyte according to an embodiment of the present invention, and diammonium 1,6-decanedicarboxylate (hereinafter referred to as electrolyte C) or diammonium sebacate (hereinafter referred to as electrolyte D). An electrolytic solution according to the comparative example used was prepared.
The electrolyte solution compositions of the examples and comparative examples are as shown in Table 1.

[耐電圧の測定]
実施例及び比較例の各電解液について、600Vの耐電圧を有する陽極酸化皮膜を形成した電極箔を105℃電解液に浸漬し、0.1mA/cmでの定電流にて電圧を上昇させ、火花発生電圧(電解液の耐電圧)を測定した。
その結果を表1に示す。
[Measurement of withstand voltage]
About each electrolyte solution of an Example and a comparative example, the electrode foil which formed the anodic oxide film which has a withstand voltage of 600V was immersed in 105 degreeC electrolyte solution, and voltage was raised with the constant current of 0.1 mA / cm < 2 >. The spark generation voltage (withstand voltage of the electrolyte) was measured.
The results are shown in Table 1.

Figure 2012009653
Figure 2012009653

実験の結果、比較例(電解質C、電解質D)の電解液は、電解質濃度がそれぞれ0.093mol/kg(2.4重量%)(比較例1)及び0.086mol/kg(2.0重量%)(比較例3)では480V以上の火花電圧を示したが、電解質濃度をそれぞれ0.141mol/kg(3.6重量%)(比較例2)及び0.140mol/kg(3.2重量%)(比較例4)とした場合は、火花電圧が大幅に低下した。
一方、実施例に係る電解液は、電解質濃度が0.096〜0.097mol/kg(3.5重量%)の場合(実施例1及び実施例5)、火花電圧が480Vを超えた。特に、電解質Bは、490Vを超える高い火花電圧を示した。
同程度の重量モル濃度を基準に比較した場合、比較例2(0.141mol/kg)及び比較例4(0.140mol/kg)では、火花電圧がそれぞれ、461V、470Vであるのに対し、実施例2(0.140mol/kg)及び実施例6(0.141mol/kg)では、火花電圧がそれぞれ、482V、490Vであり、比較例に対し、火花電圧が高い。
また、電解質Aを用いた場合、電解質濃度を0.295mol/kg(実施例3)、0.469mol/kg(実施例4)まで上昇させても、電解質濃度が0.140〜0.141mol/kg(3重量%台)の比較例2、4と同程度の火花電圧を示した。
また、電解質Bを用いた場合、電解質濃度を0.298mol/kg(実施例7)まで上昇させても480Vを超える高い火花電圧を示し、0.474mol/kg(実施例8)まで上昇させても、電解質濃度が0.140mol/kgの比較例4と同程度の火花電圧を保った。
As a result of the experiment, the electrolyte solutions of the comparative examples (electrolyte C and electrolyte D) have an electrolyte concentration of 0.093 mol / kg (2.4 wt%) (comparative example 1) and 0.086 mol / kg (2.0 wt), respectively. %) (Comparative Example 3) showed a spark voltage of 480 V or more, but the electrolyte concentrations were 0.141 mol / kg (3.6 wt%) (Comparative Example 2) and 0.140 mol / kg (3.2 wt.), Respectively. %) (Comparative Example 4), the spark voltage significantly decreased.
On the other hand, in the electrolyte solution according to the example, when the electrolyte concentration was 0.096 to 0.097 mol / kg (3.5% by weight) (Example 1 and Example 5), the spark voltage exceeded 480V. In particular, the electrolyte B exhibited a high spark voltage exceeding 490V.
When compared on the basis of the same weight molar concentration, in Comparative Example 2 (0.141 mol / kg) and Comparative Example 4 (0.140 mol / kg), the spark voltage is 461 V and 470 V, respectively. In Example 2 (0.140 mol / kg) and Example 6 (0.141 mol / kg), the spark voltages are 482 V and 490 V, respectively, and the spark voltage is higher than that of the comparative example.
When electrolyte A is used, even if the electrolyte concentration is increased to 0.295 mol / kg (Example 3) and 0.469 mol / kg (Example 4), the electrolyte concentration is 0.140 to 0.141 mol / kg. A spark voltage comparable to that of Comparative Examples 2 and 4 in kg (on the order of 3% by weight) was exhibited.
When electrolyte B was used, a high spark voltage exceeding 480 V was exhibited even when the electrolyte concentration was increased to 0.298 mol / kg (Example 7), and increased to 0.474 mol / kg (Example 8). In addition, the spark voltage of the same level as that of Comparative Example 4 having an electrolyte concentration of 0.140 mol / kg was maintained.

この実験の結果から、比較例の電解質C、Dは、電解質濃度(重量モル濃度)の上昇により、耐電圧の著しい低下を示すが、本発明の電解質A、Bは、濃度上昇が耐電圧低下に与える影響が小さいことが分かる。
例えば、電解質Cは濃度を0.093→0.141mol/kgに上昇すると、火花電圧は480→461Vに低下し、電解質Dは、濃度を0.086→0.140mol/kgに上昇すると、火花電圧は485→470Vに低下するが、本発明の電解質A、Bは、電解質濃度を0.096→0.140mol/kgまたは0.097→0.141mol/kgに上昇させても耐電圧はほとんど低下せず、電解質の濃度上昇が耐電圧低下に与える影響が比較例に比べて顕著に小さい、優れた電解質であることが分かる。
From the results of this experiment, the electrolytes C and D of the comparative example show a significant decrease in withstand voltage due to an increase in electrolyte concentration (molar concentration), but the electrolytes A and B of the present invention show a decrease in withstand voltage. It can be seen that the effect on the is small.
For example, when the concentration of the electrolyte C is increased from 0.093 to 0.141 mol / kg, the spark voltage is decreased from 480 to 461 V, and when the concentration of the electrolyte D is increased from 0.086 to 0.140 mol / kg, the spark is decreased. Although the voltage decreases from 485 to 470 V, the electrolytes A and B of the present invention have almost no withstand voltage even when the electrolyte concentration is increased from 0.096 to 0.140 mol / kg or from 0.097 to 0.141 mol / kg. It can be seen that this is an excellent electrolyte that does not decrease and the influence of the increase in electrolyte concentration on the decrease in withstand voltage is significantly smaller than in the comparative example.

[高温放置試験における比抵抗変化率の測定]
次に、ほぼ同じ重量モル濃度(約0.140mol/kg)を有する比較例2、比較例4、実施例2、実施例6の電解液をアンプル管に封入して、105℃の雰囲気中に放置し、1000時間後の比抵抗変化率を測定した。
その結果を表2に示す。
[Measurement of resistivity change rate in high temperature storage test]
Next, the electrolytes of Comparative Example 2, Comparative Example 4, Example 2, and Example 6 having approximately the same weight molar concentration (about 0.140 mol / kg) were sealed in an ampoule tube and placed in an atmosphere at 105 ° C. The specific resistance change rate after 1000 hours was measured.
The results are shown in Table 2.

Figure 2012009653
Figure 2012009653

表2に示すように、105℃1000時間の放置試験において、本発明の電解液は、比較例の電解液に比べて、1000時間後の比抵抗の変化率が小さいことが分かる。このことから、本発明の電解液は、比抵抗の上昇を抑制し、電解液比抵抗の長期安定性を向上させることが分かる。
この理由として、次のことが考えられる。一般的に、高級二塩基酸は両端のカルボキシル基距離が離れるほど耐電圧が高くなる傾向を示すが、解離度が低下するため比抵抗が上昇していく。しかし、本実施例では3位(他方のカルボキシ末端からは12位)にアルキル側鎖を配位させることにより当該化合物の構造が非対称となり、分子の電気的偏りが生ずることによって解離度の低下が抑制され、カルボキシル基距離が長くなっても比抵抗の上昇を抑制できると考えられる。
さらに、重量%で比べると、実施例の電解液は比較例の電解液に比べて高い電解質濃度を有するため、長期高温放置時に熱劣化に伴う電解質の減少が遅延され、これも比抵抗の変化率低下の要因となっていると考えられる。
As shown in Table 2, in the standing test at 105 ° C. for 1000 hours, it can be seen that the rate of change in specific resistance after 1000 hours is smaller in the electrolytic solution of the present invention than in the comparative example. From this, it can be seen that the electrolytic solution of the present invention suppresses an increase in specific resistance and improves the long-term stability of the electrolytic solution specific resistance.
The reason for this is considered as follows. Generally, higher dibasic acids tend to have higher withstand voltage as the distance between the carboxyl groups at both ends increases, but the specific resistance increases because the degree of dissociation decreases. However, in this example, by coordinating the alkyl side chain to the 3-position (12-position from the other carboxy terminus), the structure of the compound becomes asymmetric, and the electrical bias of the molecule causes a decrease in the degree of dissociation. It is considered that even if the carboxyl group distance is increased, the increase in specific resistance can be suppressed.
Furthermore, when compared by weight%, the electrolyte solution of the example has a higher electrolyte concentration than the electrolyte solution of the comparative example, so that the decrease in the electrolyte due to thermal degradation is delayed when left at high temperature for a long time, which also changes the specific resistance. This is considered to be a factor of the rate decline.

なお、本発明は、上記実施例に限られるものではなく、上記の溶質を単独または複数使用した場合にも、上記同様の効果が得られる。   In addition, this invention is not restricted to the said Example, When the said solute is used individually or in multiple, the same effect as the above is acquired.

Claims (4)

溶媒に電解質を溶解してなる電解コンデンサの駆動用電解液であって、前記電解質が、式I〜式IVのいずれか1つ以上の化合物、及び当該化合物の塩からなる群から選択されることを特徴とする電解コンデンサの駆動用電解液。
Figure 2012009653

An electrolytic solution for driving an electrolytic capacitor obtained by dissolving an electrolyte in a solvent, wherein the electrolyte is selected from the group consisting of any one or more compounds of Formulas I to IV and salts of the compounds Electrolytic solution for driving an electrolytic capacitor characterized by
Figure 2012009653

前記電解質の濃度が0.080〜0.600mol/kgであることを特徴とする、請求項1に記載の電解コンデンサの駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the concentration of the electrolyte is 0.080 to 0.600 mol / kg. 前記溶媒が、エチレングリコールと水との混合溶媒であることを特徴とする、請求項1または2に記載の電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the solvent is a mixed solvent of ethylene glycol and water. 請求項1〜3のいずれか1項に記載の駆動用電解液を含浸させてなるコンデンサ素子を有することを特徴とする電解コンデンサ。   An electrolytic capacitor comprising a capacitor element impregnated with the driving electrolyte solution according to claim 1.
JP2010144727A 2010-06-25 2010-06-25 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same Active JP5488998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144727A JP5488998B2 (en) 2010-06-25 2010-06-25 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144727A JP5488998B2 (en) 2010-06-25 2010-06-25 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2012009653A true JP2012009653A (en) 2012-01-12
JP5488998B2 JP5488998B2 (en) 2014-05-14

Family

ID=45539865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144727A Active JP5488998B2 (en) 2010-06-25 2010-06-25 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP5488998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145835A (en) * 2014-02-05 2019-08-29 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220511A (en) * 1987-03-09 1988-09-13 ニチコン株式会社 Electrolyte for driving electrolytic capacitor
JPH04206707A (en) * 1990-11-30 1992-07-28 Nichicon Corp Driving electrolyte of electrolytic capacitor
JPH10125561A (en) * 1996-10-17 1998-05-15 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JPH10223482A (en) * 1997-02-12 1998-08-21 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JPH11307397A (en) * 1998-04-22 1999-11-05 Hitachi Aic Inc Electrolyte soln. for electrolytic capacitor
JP2003109854A (en) * 2001-09-28 2003-04-11 Nichicon Corp Electrolyte solution for driving electrolytic capacitor
JP2006070020A (en) * 2004-08-03 2006-03-16 Okamura Seiyu Kk Long-chained polybasic acid mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220511A (en) * 1987-03-09 1988-09-13 ニチコン株式会社 Electrolyte for driving electrolytic capacitor
JPH04206707A (en) * 1990-11-30 1992-07-28 Nichicon Corp Driving electrolyte of electrolytic capacitor
JPH10125561A (en) * 1996-10-17 1998-05-15 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JPH10223482A (en) * 1997-02-12 1998-08-21 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JPH11307397A (en) * 1998-04-22 1999-11-05 Hitachi Aic Inc Electrolyte soln. for electrolytic capacitor
JP2003109854A (en) * 2001-09-28 2003-04-11 Nichicon Corp Electrolyte solution for driving electrolytic capacitor
JP2006070020A (en) * 2004-08-03 2006-03-16 Okamura Seiyu Kk Long-chained polybasic acid mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145835A (en) * 2014-02-05 2019-08-29 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP5488998B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP2007080888A (en) Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP5488998B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4792145B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP6399466B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6131136B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2016192465A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor employing the same
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
JP6566305B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4724336B2 (en) Electrolytic solution for electrolytic capacitor drive
JP6201172B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2011003813A (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same
JP5207485B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2005005336A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor using the same
JP2021086870A (en) Electrolyte solution for driving electrolytic capacitor, and electrolytic capacitor arranged to use the same
JP6829160B2 (en) Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it
JP4536436B2 (en) Electrolytic solution and electrolytic capacitor using the same
JP6459432B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2008300684A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP6459540B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP3885836B2 (en) Electrolytic solution for electrolytic capacitors
JP4919434B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP5064364B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2010171305A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same
JP4081617B2 (en) Electrolytic solution for electrolytic capacitors
JP4081616B2 (en) Electrolytic solution for electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5488998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250