JP6645109B2 - 液体吐出装置および駆動回路 - Google Patents

液体吐出装置および駆動回路 Download PDF

Info

Publication number
JP6645109B2
JP6645109B2 JP2015200825A JP2015200825A JP6645109B2 JP 6645109 B2 JP6645109 B2 JP 6645109B2 JP 2015200825 A JP2015200825 A JP 2015200825A JP 2015200825 A JP2015200825 A JP 2015200825A JP 6645109 B2 JP6645109 B2 JP 6645109B2
Authority
JP
Japan
Prior art keywords
signal
modulation
circuit board
core
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015200825A
Other languages
English (en)
Other versions
JP2017071171A (ja
Inventor
大 野澤
大 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015200825A priority Critical patent/JP6645109B2/ja
Priority to US15/277,127 priority patent/US10179449B2/en
Publication of JP2017071171A publication Critical patent/JP2017071171A/ja
Priority to US16/208,970 priority patent/US10493755B2/en
Application granted granted Critical
Publication of JP6645109B2 publication Critical patent/JP6645109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04593Dot-size modulation by changing the size of the drop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04596Non-ejecting pulses

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Description

本発明は、液体吐出装置および駆動回路に関する。
インクを吐出して画像や文書を印刷するインクジェットプリンターには、圧電素子(例えばピエゾ素子)を用いたものが知られている。圧電素子は、ヘッドユニットにおいて複数のノズルのそれぞれに対応して設けられ、それぞれが駆動信号にしたがって駆動されることにより、ノズルから所定のタイミングで所定量のインク(液体)が吐出されて、ドットが形成される。圧電素子は、電気的にみればコンデンサーのような容量性負荷であるので、各ノズルの圧電素子を動作させるためには十分な電流を供給する必要がある。
このため、源信号を増幅回路によって増幅し、駆動信号としてヘッドユニットに供給して、圧電素子を駆動する構成となっている。増幅回路としては、増幅前の源信号をAB級などで電流増幅する方式が挙げられるが、エネルギー効率が悪いので、近年では、D級増幅について提案されている(特許文献1参照)。このD級増幅は、端的にいえば、源信号をパルス幅変調やパルス密度変調するとともに、当該変調信号にしたがって電源電圧間において直列に挿入されたハイサイドトランジスターおよびローサイドトランジスターをスイッチングし、このスイッチングによる増幅変調信号を、インダクター(コイル)とコンデンサーとを含むローパスフィルター(復調部)で復調することで、入力信号を増幅する、というものである。
特開2010−114711号公報
ところで、D級増幅により増幅した駆動信号で圧電素子にインクを吐出させるためには、変調信号の周波数をある程度高くする必要がある。しかしながら、比較的高い周波数の変調信号にしたがってハイサイドトランジスターおよびローサイドトランジスターをスイッチングさせると、ノイズ等の影響によって動作が不安定となる、という問題が指摘されている。
そこで、本発明のいくつかの態様の目的の一つは、圧電素子に印加する駆動信号をD級増幅する液体吐出装置において、動作の安定化を図るための技術を提供することにある。
上記目的の一つを達成するために、本発明の一態様に係る液体吐出装置は、駆動信号の元となる源信号をパルス変調した変調信号を生成する変調回路と、前記変調信号を増幅して増幅変調信号を生成する増幅部と、インダクターおよびコンデンサーを含み、前記増幅変調信号を平滑化して駆動信号を生成する復調部と、前記変調回路と前記増幅部と前記復調部とが実装され、表面に複数の配線パターンが形成された回路基板と、前記駆動信号が印加されることで変形する圧電素子と、内部に液滴が充填されて、前記圧電素子の変形により内部容積が変化するキャビティと、前記キャビティの内部容積の変化に応じて前記キャビティ内の液体を吐出するために設けられたノズルと、を備え、前記インダクターは、巻線とコアとが一体に成形され、前記巻線が巻回される前記コアの軸方向が前記回路基板に交差するように実装され、前記回路基板上では、前記コアの軸方向と交差する領域で前記配線パターンを非形成とする、ことを特徴とする。
コアの軸方向を回路基板と交差するようにインダクターを実装する場合に、回路基板上のうち、コアの軸方向と交差する領域に配線パターンが設けられていると、当該配線パターンには、漏れ磁束による渦電流が発生して、発振周波数の不安定化や消費電力の悪化などの不都合を招く。このため、回路基板上では、コアの軸方向と交差する領域で配線パターンを非形成にすると、このような不都合を回避することができる。
上記一態様によれば、漏れ磁束による信号への干渉を低減し、回路内の発振周波数の安定性を向上させられことができ、精度良く駆動信号が生成でき、液体の誤吐出を低減できる。また、回路内における消費電力も低減できる。
なお、このような効果については、回路基板上で、コアの軸方向と交差する領域に形成された配線パターンを、他の領域に形成された他の配線パターンと電気的に非導通とする構成でも可能である。
また、源信号とは、圧電素子の変位を規定する駆動信号の源となる信号、すなわち、変調前の信号であって、駆動信号の波形の基準となる信号(規定する信号を含み、アナログ、デジタルを問わない)。変調信号とは、源信号をパルス変調(例えばパルス幅変調、パルス密度変調等)して得られるデジタル信号である。
上記一態様に係る液体吐出装置において、前記回路基板は、前記インダクターの一方の電極と電気的に接続される第1端子と、前記インダクターの他方の電極と電気的に接続される第2端子と、を有し、前記第1端子と前記第2端子との間には配線パターンが形成されない構成が好ましい。すなわち、前記第1端子と前記第2端子との間で配線パターンが形成されないようにすれば良い。
上記一態様に係る液体吐出装置において、前記第1端子に接続される配線パターン、または、前記第2端子に接続される配線パターンの少なくとも一方には、スルーホールが形成される構成としても良い。
インダクターは増幅変調信号を復調する復調部の一部であるため、比較的大電流が流れて、発熱しやすい。このようにスルーホールを設けることにより、インダクターで発生した熱を、スルーホールを介して別の配線パターンに逃がすことができるので、放熱効率を高めることができる。
上記一態様に係る液体吐出装置において、前記コアと前記回路基板との間には、前記コアおよび前記回路基板以外の部品が設けられない構成が好ましい。前記コアと前記回路基板との間には、他の部品が設けられないので、回路の小型化を図ることができる。
ところで、上記一態様に係る液体吐出装置では、増幅変調信号を平滑化して駆動信号を生成し、駆動信号が印加されることによって圧電素子が変位して、ノズルから液体を吐出させる。ここで、液体吐出装置が例えば小ドットを吐出するための駆動信号の波形を周波数スペクトル解析すると、50kHz以上の周波数成分が含まれていることが判っている。このような50kHz以上の周波数成分を含む駆動信号を生成するためには、変調信号の周波数を1MHz以上とする必要がある。
ここで、仮に変調信号の周波数を1MHzよりも低くしてしまうと、再現される駆動信号の波形のエッジが鈍って丸くなってしまう。換言すれば、角が取れて波形が鈍ってしまう。駆動信号の波形が鈍ると、波形の立ち上がり、立ち下がりエッジに応じて動作する圧電素子の変位が緩慢になり、吐出時の尾引きや、吐出不良などを発生させて、印刷の品質を低下させてしまう。
一方で、変調信号の周波数を8MHzよりも高くすれば、駆動信号の波形の分解能は高まる。ただし、トランジスターにおけるスイッチング周波数が上昇することによって、スイッチング損失が大きくなり、AB級アンプなどのリニア増幅と比べて、優位性を有する省電力性、省発熱性が損なわれてしまう。
このため、上記一態様に係る液体吐出装置において、前記変調信号の周波数は、1MHz以上8MHz以下であることが好ましい。
なお、本発明は、種々の態様で実現することが可能であり、例えばヘッドユニットの単体など、様々な態様で実現することができる。
印刷装置の概略構成を示す図である。 印刷装置の構成を示すブロック図である。 ヘッドユニットにおける吐出部の構成を示す図である。 ヘッドユニットにおけるノズル配列を示す図である。 上記ノズル配列により形成されるドットを説明するための図である。 ヘッドユニットにおける選択制御部の動作を説明するための図である。 ヘッドユニットにおける選択制御部の構成を示す図である。 ヘッドユニットにおけるデコーダーのデコード内容を示す図である。 ヘッドユニットにおける選択部の構成を示す図である。 選択部により選択される駆動信号を示す図である。 印刷装置における駆動回路の構成を示す図である。 駆動回路の動作を説明するための図である。 駆動回路が実装される回路基板の配線パターンを示す平面図である。 回路基板に実装された素子の配置を示す図である。 フェライトコア型の構造を示す簡易断面図である。 メタルアロイ型の構造を示す簡易断面図である。 インダクターの外観構成を示す図である。 インダクターにおける巻線等の構成を示す図である。 スルーホールを含む回路基板の構造を示す断面図である。 他の実施形態に係る回路基板の配線パターンを示す図である。 比較例に係る回路基板の配線パターンを示す平面図である。 比較例に係る回路基板に実装された素子の配置を示す図である。
以下、図面を参照して本発明を実施するための形態について説明する。
この実施形態に係る印刷装置は、外部のホストコンピューターから供給された画像データに応じてインクを吐出させることによって、紙などの媒体にインクドット群を形成し、これにより、当該画像データに応じた画像(文字、図形等を含む)を印刷するインクジェットプリンター(液体吐出装置)である。
図1は、印刷装置の内部の概略構成を示す斜視図である。
この図に示されるように、印刷装置1は、移動体2を、主走査方向に移動(往復動)させる移動機構3を備える。
移動機構3は、移動体2の駆動源となるキャリッジモーター31と、両端が固定されたキャリッジガイド軸32と、キャリッジガイド軸32とほぼ平行に延在し、キャリッジモーター31により駆動されるタイミングベルト33と、を有している。
移動体2のキャリッジ24は、キャリッジガイド軸32に往復動自在に支持されるとともに、タイミングベルト33の一部に固定されている。そのため、キャリッジモーター31によりタイミングベルト33を正逆走行させると、移動体2がキャリッジガイド軸32に案内されて往復動する。
また、移動体2のうち、媒体Pと対向する部分にはヘッドユニット20が設けられる。このヘッドユニット20は、後述するように、多数のノズルからインク滴(液滴)を吐出させるためのものであり、フレキシブルケーブル190を介して各種の制御信号等が供給される構成となっている。
印刷装置1は、媒体Pを、副走査方向にプラテン40上で搬送させる搬送機構4を備える。搬送機構4は、駆動源である搬送モーター41と、搬送モーター41により回転して、媒体Pを副走査方向に搬送する搬送ローラー42と、を備える。
媒体Pが搬送機構4によって搬送されたタイミングで、ヘッドユニット20が当該媒体Pにインク滴を吐出することによって、媒体Pの表面に画像が形成される。
図2は、印刷装置の電気的な構成を示すブロック図である。
この図に示されるように、印刷装置1では、制御ユニット10とヘッドユニット20とがフレキシブルケーブル190を介して接続される。
制御ユニット10は、制御部100と、キャリッジモーター31と、キャリッジモータードライバー35と、搬送モーター41と、搬送モータードライバー45と、2つの駆動回路50−a、50−bと、ヘッドユニット20と、を有する。このうち、制御部100は、ホストコンピューターから画像データが供給されたときに、各部を制御するための各種の制御信号等を出力する。
詳細には、第1に、制御部100は、キャリッジモータードライバー35に対して制御信号Ctr1を供給し、キャリッジモータードライバー35は、当該制御信号Ctr1にしたがってキャリッジモーター31を駆動する。これにより、キャリッジ24における主走査方向の移動が制御される。
第2に、制御部100は、搬送モータードライバー45に対して制御信号Ctr2を供給し、搬送モータードライバー45は、当該制御信号Ctr2にしたがって搬送モーター41を駆動する。これにより、搬送機構4による副走査方向の移動が制御される。
第3に、制御部100は、2つの駆動回路50−a、50−bのうち、一方の駆動回路50−aにデジタルのデータdAを供給し、他方の駆動回路50−bにデジタルのデータdBを供給する。ここで、データdAは、ヘッドユニット20に供給する駆動信号のうち、駆動信号COM−Aの波形を規定し、データdBは、駆動信号COM−Bの波形を規定する。
なお、詳細については後述するが、駆動回路50−aは、データdAをアナログ変換した後に、D級増幅した駆動信号COM−Aをヘッドユニット20に供給する。同様に、駆動回路50−bは、データdBをアナログ変換した後に、D級増幅した駆動信号COM−Bをヘッドユニット20に供給する。また、駆動回路50−a、50−bについては、入力するデータ、および、出力する駆動信号が異なるのみであり、後述するように回路的な構成は同一である。このため、駆動回路50−a、50−bについて特に区別する必要がない場合(例えば後述する図10を説明する場合)には、「−(ハイフン)」以下を省略し、単に符号を「50」として説明する。
第4に、制御部100は、ヘッドユニット20に、クロック信号Sck、データ信号Data、制御信号LAT、CHを供給する。
ヘッドユニット20には、選択制御部210と、選択部230および圧電素子(ピエゾ素子)60の複数組とが設けられる。
選択制御部210は、選択部230のそれぞれに対して駆動信号COM−A、COM−Bのいずれかを選択すべきか(または、いずれも非選択とすべきか)を、制御部100から供給される制御信号等によって指示し、選択部230は、選択制御部210の指示にしたがって、駆動信号COM−A、COM−Bを選択し、圧電素子60の一端にそれぞれに駆動信号として供給する。なお、図では、圧電素子60の一端に印加される駆動信号の電圧をVoutと表記している。
圧電素子60のそれぞれにおける他端は、この例では、電圧VBSが共通に印加されている。
圧電素子60は、ヘッドユニット20における複数のノズルのそれぞれに対応して設けられる。そして、圧電素子60は、選択部230により選択された駆動信号の電圧Voutと電圧VBSとの差に応じて変位してインクを吐出させる。そこで次に、圧電素子60への駆動によってインクを吐出させる吐出部の構成について簡単に説明する。
図3は、ヘッドユニット20において、ノズル1個分に対応した吐出部の概略構成を示す図である。
図に示されるように、ヘッドユニット20における吐出部は、圧電素子60と振動板621とキャビティ(圧力室)631とリザーバー641とノズル651とを含む。このうち、振動板621は、図において上面に設けられた圧電素子60によって変位(屈曲振動)し、インクが充填されるキャビティ631の内部容積を拡大/縮小させるダイヤフラムとして機能する。ノズル651は、ノズルプレート632に設けられるとともに、キャビティ631に連通する開孔部である。
この図で示される圧電素子60は、圧電体601を一対の電極611、612で挟んだ構造である。この構造の圧電体601にあっては、電極611、612により印加された電圧に応じて、電極611、612、振動板621とともに図において中央部分が両端部分に対して上下方向に撓む。具体的には、圧電素子60は、駆動信号の電圧Voutが高くなると、上方向に撓む一方、電圧Voutが低くなると、下方向に撓む構成となっている。この構成において、上方向に撓めば、キャビティ631の内部容積が拡大するので、インクがリザーバー641から引き込まれる一方、下方向に撓めば、キャビティ631の内部容積が縮小するので、縮小の程度によっては、インクがノズル651から吐出される。
なお、圧電素子60は、図示した構造に限られず、圧電素子60を変形させてインクのような液体を吐出させることができる型であれば良い。また、圧電素子60は、屈曲振動に限られず、いわゆる縦振動を用いる構成でも良い。
また、圧電素子60は、ヘッドユニット20においてキャビティ631とノズル651とに対応して設けられ、当該圧電素子60は、図1において、選択部230にも対応して設けられる。このため、圧電素子60、キャビティ631、ノズル651および選択部230のセットは、ノズル651毎に設けられる吐出部を構成することになる。
図4Aは、ノズル651の配列の一例を示す図である。
この図に示されるように、ノズル651は、例えば2列で次のように配列している。詳細には、1列分でみたとき、複数個のノズル651が副走査方向に沿ってピッチPvで配置する一方、2列同士では、主走査方向にピッチPhだけ離間して、かつ、副走査方向にピッチPvの半分だけシフトした関係となっている。
なお、ノズル651は、カラー印刷する場合には、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)などの各色に対応したパターンが例えば主走査方向に沿って設けられるが、以下の説明では、簡略化するために、単色で階調を表現する場合について説明する。
図4Bは、図4Aに示したノズル配列による画像形成の基本解像度を説明するための図である。なお、この図は、説明を簡易化するために、ノズル651からインク滴を1回吐出させて、1つのドットを形成する方法(第1方法)の例であり、黒塗りの丸印がインク滴の着弾により形成されるドットを示している。
ヘッドユニット20が、主走査方向に速度vで移動するとき、同図に示されるように、インク滴の着弾によって形成されるドットの(主走査方向の)間隔Dと、当該速度vとは、次のような関係にある。
すなわち、1回のインク滴の吐出で1ドットが形成される場合、ドット間隔Dは、速度vを、インクの吐出周波数fで除した値(=v/f)、換言すれば、インク滴が繰り返し吐出される周期(1/f)においてヘッドユニット20が移動する距離で示される。
なお、図4Bの例では、ピッチPhがドット間隔Dに対して係数nで比例する関係にして、2列のノズル651から吐出されるインク滴が、媒体Pにおいて同一列で揃うように着弾させている。このため、図4(B)に示されるように、副走査方向のドット間隔が、主走査方向のドット間隔の半分となっている。ドットの配列は、図示の例に限られないことは言うまでもない。
ところで、高速印刷を実現するためには、単純には、ヘッドユニット20が主走査方向に移動する速度vを高めれば良い。ただし、単に速度vを高めるだけでは、ドットの間隔Dが長くなってしまう。このため、ある程度の解像度を確保した上で、高速印刷を実現するためには、インクの吐出周波数fを高めて、単位時間当たりに形成されるドット数を増やす必要がある。
また、印刷速度とは別に、解像度を高めるためには、単位面積当たりで形成されるドット数を増やせば良い。ただし、ドット数を増やす場合に、インクを少量にしないと、隣り合うドット同士が結合してしまうだけでなく、インクの吐出周波数fを高めないと、印刷速度が低下する。
このように、高速印刷および高解像度印刷を実現するためには、インクの吐出周波数fを高める必要があるのは、上述した通りである。
一方、媒体Pにドットを形成する方法としては、インク滴を1回吐出させて、1つのドットを形成する方法のほかに、単位期間にインク滴を2回以上吐出可能として、単位期間において吐出された1以上のインク滴を着弾させ、当該着弾した1以上のインク滴を結合させることで、1つのドットを形成する方法(第2方法)や、これら2以上のインク滴を結合させることなく、2以上のドットを形成する方法(第3方法)がある。以降の説明では、ドットを上記第2方法によって形成する場合について説明する。
本実施形態では、第2方法について、次のような例を想定して説明する。すなわち、本実施形態において、1つのドットについては、インクを最多で2回吐出させることで、大ドット、中ドット、小ドットおよび非記録の4階調を表現させる。この4階調を表現するために、本実施形態では、2種類の駆動信号COM−A、COM−Bを用意して、それぞれにおいて、1周期に前半パターンと後半パターンとを持たせている。1周期のうち、前半・後半において駆動信号COM−A、COM−Bを、表現すべき階調に応じた選択して(または選択しないで)、圧電素子60に供給する構成となっている。
そこで、駆動信号COM−A、COM−Bについて説明し、この後、駆動信号COM−A、COM−Bを選択するための構成について説明する。なお、駆動信号COM−A、COM−Bについては、それぞれ駆動回路50によって生成されるが、駆動回路50については、便宜的に、駆動信号COM−A、COM−Bを選択するための構成の後に説明する。
図5は、駆動信号COM−A、COM−Bの波形等を示す図である。
図に示されるように、駆動信号COM−Aは、印刷周期Taのうち、制御信号LATが出力されて(立ち上がって)から制御信号CHが出力されるまでの期間T1に配置された台形波形Adp1と、印刷周期Taのうち、制御信号CHが出力されてから次の制御信号LATが出力されるまでの期間T2に配置された台形波形Adp2とを連続させた波形となっている。
本実施形態において台形波形Adp1、Adp2とは、互いにほぼ同一の波形であり、仮にそれぞれが圧電素子60の一端に供給されたとしたならば、当該圧電素子60に対応するノズル651から所定量、具体的には中程度の量のインクをそれぞれ吐出させる波形である。
駆動信号COM−Bは、期間T1に配置された台形波形Bdp1と、期間T2に配置された台形波形Bdp2とを連続させた波形となっている。本実施形態において台形波形Bdp1、Bdp2とは、互いに異なる波形である。このうち、台形波形Bdp1は、ノズル651の開孔部付近のインクを微振動させてインクの粘度の増大を防止するための波形である。このため、仮に台形波形Bdp1が圧電素子60の一端に供給されたとしても、当該圧電素子60に対応するノズル651からインク滴が吐出されない。また、台形波形Bdp2は、台形波形Adp1(Adp2)とは異なる波形となっている。仮に台形波形Bdp2が圧電素子60の一端に供給されたとしたならば、当該圧電素子60に対応するノズル651から上記所定量よりも少ない量のインクを吐出させる波形である。
なお、台形波形Adp1、Adp2、Bdp1、Bdp2の開始タイミングでの電圧と、終了タイミングでの電圧とは、いずれも電圧Vcで共通である。すなわち、台形波形Adp1、Adp2、Bdp1、Bdp2は、それぞれ電圧Vcで開始し、電圧Vcで終了する波形となっている。
図6は、図2における選択制御部210の構成を示す図である。
この図に示されるように、選択制御部210には、クロック信号Sck、データ信号Data、制御信号LAT、CHが制御ユニット10から供給される。選択制御部210では、シフトレジスタ(S/R)212とラッチ回路214とデコーダー216との組が、圧電素子60(ノズル651)のそれぞれに対応して設けられている。
データ信号Dataは、画像の1ドットを形成するにあたって、当該ドットのサイズを規定する。本実施形態では、非記録、小ドット、中ドットおよび大ドットの4階調を表現するために、データ信号Dataは、上位ビット(MSB)および下位ビット(LSB)の2ビットで構成される。
データ信号Dataは、クロック信号Sckに同期してノズルごとに、ヘッドユニット20の主走査に合わせて制御部100からシリアルで供給される。シリアルで供給されたデータ信号Dataを、ノズルに対応して2ビット分、一旦保持するための構成がシフトレジスタ212である。
詳細には、圧電素子60(ノズル)に対応した段数のシフトレジスタ212が互いに縦続接続されるとともに、シリアルで供給されたデータ信号Dataが、クロック信号Sckにしたがって順次後段に転送される構成となっている。
なお、圧電素子60の個数をm(mは複数)としたときに、シフトレジスタ212を区別するために、データ信号Dataが供給される上流側から順番に1段、2段、…、m段と表記している。
ラッチ回路214は、シフトレジスタ212で保持されたデータ信号Dataを制御信号LATの立ち上がりでラッチする。
デコーダー216は、ラッチ回路214によってラッチされた2ビットのデータ信号Dataをデコードして、制御信号LATと制御信号CHとで規定される期間T1、T2ごとに、選択信号Sa、Sbを出力して、選択部230での選択を規定する。
図7は、デコーダー216におけるデコード内容を示す図である。
この図において、ラッチされた2ビットの印刷データDataについては(MSB、LSB)と表記している。デコーダー216は、例えばラッチされた印刷データDataが(0、1)であれば、選択信号Sa、Sbの論理レベルを、期間T1ではそれぞれH、Lレベルとし、期間T2ではそれぞれL、Hレベルとして、出力するということを意味している。
なお、選択信号Sa、Sbの論理レベルについては、クロック信号Sck、印刷データData、制御信号LAT、CHの論理レベルよりも、レベルシフター(図示省略)によって、高振幅論理にレベルシフトされる。
図8は、図2における圧電素子60(ノズル651)の1個分に対応する選択部230の構成を示す図である。
この図に示されるように、選択部230は、インバーター(NOT回路)232a、232bと、トランスファーゲート234a、234bとを有する。
デコーダー216からの選択信号Saは、トランスファーゲート234aにおいて丸印が付されていない正制御端に供給される一方で、インバーター232aによって論理反転されて、トランスファーゲート234aにおいて丸印が付された負制御端に供給される。同様に、選択信号Sbは、トランスファーゲート234bの正制御端に供給される一方で、インバーター232bによって論理反転されて、トランスファーゲート234bの負制御端に供給される。
トランスファーゲート234aの入力端には、駆動信号COM−Aが供給され、トランスファーゲート234bの入力端には、駆動信号COM−Bが供給される。トランスファーゲート234a、234bの出力端同士は、共通接続されるとともに、対応する圧電素子60の一端に接続される。
トランスファーゲート234aは、選択信号SaがHレベルであれば、入力端および出力端の間を導通(オン)させ、選択信号SaがLレベルであれば、入力端と出力端との間を非導通(オフ)させる。トランスファーゲート234bについても同様に選択信号Sbに応じて、入力端および出力端の間をオンオフさせる。
次に、選択制御部210と選択部230との動作について図5を参照して説明する。
データ信号Dataが、制御部100からノズル毎に、クロック信号Sckに同期してシリアルで供給されて、ノズルに対応するシフトレジスタ212において順次転送される。そして、制御部100がクロック信号Sckの供給を停止させると、シフトレジスタ212のそれぞれには、ノズルに対応したデータ信号Dataが保持された状態になる。なお、データ信号Dataは、シフトレジスタ212における最終m段、…、2段、1段のノズルに対応した順番で供給される。
ここで、制御信号LATが立ち上がると、ラッチ回路214のそれぞれは、シフトレジスタ212に保持されたデータ信号Dataを一斉にラッチする。図5において、L1、L2、…、Lmは、データ信号Dataが、1段、2段、…、m段のシフトレジスタ212に対応するラッチ回路214によってラッチされたデータ信号Dataを示している。
デコーダー216は、ラッチされたデータ信号Dataで規定されるドットのサイズに応じて、期間T1、T2のそれぞれにおいて、選択信号Sa、Saの論理レベルを図7に示されるような内容で出力する。
すなわち、第1に、デコーダー216は、当該データ信号Dataが(1、1)であって、大ドットのサイズを規定する場合、選択信号Sa、Sbを、期間T1においてH、Lレベルとし、期間T2においてもH、Lレベルとする。第2に、デコーダー216は、当該データ信号Dataが(0、1)であって、中ドットのサイズを規定する場合、選択信号Sa、Sbを、期間T1においてH、Lレベルとし、期間T2においてL、Hレベルとする。第3に、デコーダー216は、当該データ信号Dataが(1、0)であって、小ドットのサイズを規定する場合、選択信号Sa、Sbを、期間T1においてL、Lレベルとし、期間T2においてL、Hレベルとする。第4に、デコーダー216は、当該データ信号Dataが(0、0)であって、非記録を規定する場合、選択信号Sa、Sbを、期間T1においてL、Hレベルとし、期間T2においてL、Lレベルとする。
図9は、データ信号Dataに応じて選択されて、圧電素子60の一端に供給される駆動信号の電圧波形を示す図である。
データ信号Dataが(1、1)であるとき、選択信号Sa、Sbは、期間T1においてH、Lレベルとなるので、トランスファーゲート234aがオンし、トランスファーゲート234bがオフする。このため、期間T1において駆動信号COM−Aの台形波形Adp1が選択される。選択信号Sa、Sbは期間T2においてもH、Lレベルとなるので、選択部230は、駆動信号COM−Aの台形波形Adp2を選択する。
このように期間T1において台形波形Adp1が選択され、期間T2において台形波形Adp2が選択されて、駆動信号として圧電素子60の一端に供給されると、当該圧電素子60に対応したノズル651から、中程度の量のインクが2回にわけて吐出される。このため、媒体Pにはそれぞれのインクが着弾し合体して、結果的に、データ信号Dataで規定される通りの大ドットが形成されることになる。
データ信号Dataが(0、1)であるとき、選択信号Sa、Sbは、期間T1においてH、Lレベルとなるので、トランスファーゲート234aがオンし、トランスファーゲート234bはオフする。このため、期間T1において駆動信号COM−Aの台形波形Adp1が選択される。次に、選択信号Sa、Sbは期間T2においてL、Hレベルとなるので、駆動信号COM−Bの台形波形Bdp2が選択される。
したがって、ノズルから、中程度および小程度の量のインクが2回にわけて吐出される。このため、媒体Pには、それぞれのインクが着弾して合体して、結果的に、データ信号Dataで規定された通りの中ドットが形成されることになる。
データ信号Dataが(1、0)であるとき、選択信号Sa、Sbは、期間T1においてともにLレベルとなるので、トランスファーゲート234a、234bがオフする。このため、期間T1において台形波形Adp1、Bdp1のいずれも選択されない。トランスファーゲート234a、234bがともにオフする場合、当該トランスファーゲート234a、234bの出力端同士の接続点から圧電素子60の一端までの経路は、電気的にどの部分にも接続されないハイ・インピーダンス状態になる。ただし、圧電素子60は、自己が有する容量性によって、トランスファーゲートがオフする直前の電圧(Vc−VBS)を保持する。
次に、選択信号Sa、Sbは期間T2においてL、Hレベルとなるので、駆動信号COM−Bの台形波形Bdp2が選択される。このため、ノズル651から、期間T2においてのみ小程度の量のインクが吐出されるので、媒体Pには、データ信号Dataで規定された通りの小ドットが形成されることになる。
データ信号Dataが(0、0)であるとき、選択信号Sa、Sbは、期間T1においてL、Hレベルとなるので、トランスファーゲート234aがオフし、トランスファーゲート234bがオンする。このため、期間T1において駆動信号COM−Bの台形波形Bdp1が選択される。次に、選択信号Sa、Sbは期間T2においてともにLレベルとなるので、台形波形Adp2、Bdp2のいずれも選択されない。
このため、期間T1においてノズル651の開孔部付近のインクが微振動するのみであり、インクは吐出されないので、結果的に、ドットが形成されない、すなわち、データ信号Dataで規定された通りの非記録になる。
このように、選択部230は、選択制御部210による指示にしたがって駆動信号COM−A、COM−Bを選択し(または選択しないで)、圧電素子60の一端に供給する。このため、各圧電素子60は、データ信号Dataで規定されるドットのサイズに応じて駆動されることになる。
なお、図5に示した駆動信号COM−A、COM−Bはあくまでも一例である。実際には、ヘッドユニット20の移動速度や媒体Pの性質などに応じて、予め用意された様々な波形の組み合わせが用いられる。
また、ここでは、圧電素子60が、電圧の上昇に伴って上方向に撓む例で説明したが、電極611、612に供給する電圧を逆転させると、圧電素子60は、電圧の上昇に伴って下方向に撓むことになる。このため、圧電素子60が、電圧の上昇に伴って下方向に撓む構成では、図に例示した駆動信号COM−A、COM−Bが、電圧Vcを基準に反転した波形となる。
このように本実施形態において、媒体Pに対して1ドットは単位期間である周期Taを単位として形成される。このため、周期Taにおいて(最多で)2回のインク滴の吐出により1ドットを形成する本実施形態では、インクの吐出周波数fは2/Taとなり、ドット間隔Dは、ヘッドユニットの移動速度vを、インクの吐出周波数f(=2/Ta)で除した値となる。
一般に、単位期間Tにおいてインク滴がQ(Qは2以上の整数)回吐出可能であって、当該Q回のインク滴の吐出で1ドットが形成される場合、インクの吐出周波数fはQ/Tと表すことができる。
本実施形態のように、媒体Pに異なるサイズのドットを形成する場合の方が、1回のインク滴の吐出で1ドットを形成する場合と比較して、1ドットを形成するために要する時間(周期)が同じでも、1回のインク滴を1回吐出するため時間を短くする必要がある。
なお、2以上のインク滴を結合させないで2以上のドットを形成する第3方法については、特段の説明は要しないであろう。
続いて、駆動回路50−a、50−bについて説明する。このうち、一方の駆動回路50−aについて概略すると、次のようにして駆動信号COM−Aを生成する。すなわち、駆動回路50−aは、
第1に、制御部100から供給されるデータdAをアナログ変換し、第2に、出力の駆動信号COM−Aを帰還するとともに、当該駆動信号COM−Aに基づく信号(減衰信号)と目標信号との偏差を、当該駆動信号COM−Aの高周波成分で補正して、当該補正した信号にしたがって変調信号を生成し、第3に、当該変調信号にしたがってトランジスターをスイッチングすることによって増幅変調信号を生成し、第4に、当該増幅変調信号をローパスフィルターで平滑化(復調)して、当該平滑化した信号を駆動信号COM−Aとして出力する。
他方の駆動回路50−bについても同様な構成であり、データdBから駆動信号COM−Bを出力する点についてのみ異なる。そこで以下の図10においては、駆動回路50−a、50−bについて区別しないで、駆動回路50として説明する。
ただし、入力されるデータや出力される駆動信号については、dA(dB)、COM−A(COM−B)などのように表記して、駆動回路50−aの場合には、データdAを入力して駆動信号COM−Aを出力し、駆動回路50−bの場合には、データdBを入力して駆動信号COM−Bを出力する、ということを表すことにする。
図10は、駆動回路50の回路構成を示す図である。
この図に示されるように、駆動回路50は、LSI500や、Nチャネル型のトランジスターM1、M2のほか、抵抗やコンデンサーなどの各種の素子(部品)から構成される。
LSI(Large Scale Integration)500は、制御部100からピンD0〜D9を介して入力した10ビットのデータdA(dB)に基づいて、例えばNチャンネル型のFET(Field Effect Transistor)のトランジスターM1、M2のそれぞれにゲート信号を出力するものである。このようなゲート信号を出力するため、LSI500は、DAC(Digital to Analog Converter)502と、加算器504、510と、減衰器508、遅延器512と、コンパレーター520と、ゲートドライバー530と、を含む。
DAC502は、駆動信号COM−A(COM−B)の波形を規定するデータdA(dB)を、アナログ信号Aaに変換し、加算器504の入力端(+)に供給する。なお、このアナログ信号Aaの電圧振幅は、例えば0〜2ボルト程度であり、この電圧を約20倍に増幅したものが、駆動信号COM−A(COM−B)となる。つまり、アナログ信号Aaは、駆動信号COM−Aの増幅前の目標となる源信号である。
加算器504の入力端(−)には、ピンVfbを介して入力した端子Outの電圧、すなわち、駆動信号COM−A(COM−B)が供給される。
加算器504は、入力端(−)の電圧を積分・減衰した上で、入力端(+)の電圧と演算する。詳細には、加算器504は、入力端(+)の電圧から、入力端(−)の積分・減衰電圧を差し引いた偏差を求め、当該偏差を示す信号Abを加算器510の入力端の一方に供給する。
なお、DAC502からコンパレーター520までに至る回路の電源電圧は、例えば低振幅の3.3ボルトである。アナログ信号Aaの電圧が最大でも2ボルト程度であるのに対し、駆動信号COM−Aの電圧が最大で40ボルトを超える場合があるので、偏差を求めるにあたって両電圧の振幅範囲を合わせるため、駆動信号COM−A(COM−B)の電圧を減衰させている。
減衰器508は、ピンIfbを介して入力した駆動信号COM−A(COM−B)の高周波成分を減衰して、加算器510の入力端の他方に供給する。減衰器508による減衰は、加算器504における入力端(−)と同様に、駆動信号COM−A(COM−B)を帰還するにあたって、電圧振幅を合わせるためである。加算器510は、入力端の一方における電圧と他方における電圧とを加算した電圧の信号Asを、遅延器512に供給する。
加算器510から出力される信号Asの電圧は、目標を示すアナログ信号Aaの電圧からピンVfbに供給された信号の減衰電圧を差し引いた偏差に、ピンIfbに供給された信号の減衰電圧を加算した電圧である。このため、加算器510による信号Asの電圧は、目標であるアナログ信号Aaの電圧から、出力である駆動信号COM−A(COM−B)の減衰電圧を指し引いた偏差を、当該駆動信号COM−A(COM−B)の高周波成分で補正した信号ということができる。
遅延器512は、信号Asを後述する時間だけ遅延させた信号Adを、コンパレーター520に供給する。
コンパレーター520は、遅延器512によって遅延させた信号Adに基づいて、次のようにパルス変調した変調信号Msを出力する。詳細には、コンパレーター520は、信号Adが電圧上昇時であれば、電圧閾値Vth1以上になったときにHレベルとなり、信号Adが電圧下降時であれば、電圧閾値Vth2を下回ったときにLレベルとなる変調信号Msを出力する。なお、後述するように、電圧閾値は、
Vth1>Vth2
という関係に設定されている。
コンパレーター520による変調信号Msは、ゲートドライバー530に供給される。ゲートドライバー530は、変調信号Msを高論理振幅に変換して、トランジスターM1のゲート電極にピンHdrおよび抵抗R1を介して供給する一方、変調信号Msの論理レベルを反転した信号を高論理振幅に変換して、トランジスターM2のゲート電極にピンLdrおよび抵抗R2を介して供給する。
このため、トランジスターM1、M2のゲート電極に供給されるゲート信号の論理レベルは互いに排他的な関係となる。
なお、ゲートドライバー530が出力する2つのゲート信号の論理レベルは、実際には、同時にHレベルとはならないように(すなわち、Nチャネル型のトランジスターM1、M2が同時にオンしないように)、タイミング制御しても良い。このため、ここでいう排他的とは、厳密にいえば、同時にHレベルになることがない(トランジスターM1、M2でいえば、同時にオンすることがない)、という意味である。
ところで、ここでいう変調信号は、狭義には変調信号Msであるが、信号Aaに応じてパルス変調して、トランジスターM1、M2を駆動する信号である、と考えれば、トランジスターM1へのゲート信号や、トランジスターM2へのゲート信号も変調信号に含まれる。すなわち、信号Aaに応じてパルス変調した変調信号には、変調信号Msのみならず、当該変調信号Msの論理レベルを反転させたものや、タイミング制御されたものが含まれる。
なお、コンパレーター520が変調信号Msを出力するので、当該コンパレーター520に至るまでの回路、すなわち、DAC502と、加算器504、510と、減衰器508と、遅延器512と、コンパレーター520とが変調信号Msを生成する変調回路ということができる。
また、図10に示した構成では、デジタルのデータdA(dB)をDAC502によってアナログの信号Aaに変換したが、DAC502を介することなく、例えば制御部100による指示にしたがって外部回路から信号Aaの供給を受けても良い。デジタルのデータdA(dB)にしても、アナログの信号Aaにしても、駆動信号COM−A(COM−B)の波形を生成するにあたっての目標値を規定しているので、源信号であることには変わりはない。
トランジスターM1、M2のうち、高位側のトランジスターM1(ハイサイドトランジスター)において、ドレイン電極には、電圧Vh(例えば42ボルト)が印加される。低位側のトランジスターM2(ローサイドトランジスター)については、ソース電極が、グラウンドに接地されている。
トランジスターM1、M2のそれぞれは、この例ではNチャンネル型としているので、ゲート信号がHレベルであればオンする。このため、トランジスターM1のソース電極とトランジスターM2のドレイン電極との接続点Sd、すなわちインダクターL1の一端では、変調信号Msを増幅した増幅変調信号が現れることになる。このため、トランジスター対としてのトランジスターM1、M2が、変調信号Msを増幅した増幅変調信号を生成する増幅部ということになる。
インダクターL1の他端は、この駆動回路50で出力となる端子Outであり、当該端子Outから駆動信号COM−A(COM−B)が、ヘッドユニット20に、フレキシブルケーブル190(図1および図2参照)を介して供給される。
また、端子Outは、コンデンサーC1の一端と、コンデンサーC7の一端と、抵抗R4の一端と、にそれぞれ接続されている。このうち、コンデンサーC1の他端は、グラウンドに接地されている。このため、インダクターL1とコンデンサーC1とでLPF(Low Pass Filter)550が構成されて、トランジスターM1、M2の接続点に現れる増幅変調信号を平滑化して復調する復調部として機能する。
抵抗R4の他端は、ピンVfbおよび抵抗R23の一端に接続され、当該抵抗R23の他端には電圧Vhが印加される。これにより、ピンVfbには、端子Outからの駆動信号COM−A(COM−B)がプルアップされて帰還されることになる。
抵抗R4、R23は、LSI500に対して外付けとなっているが、LSI500に内蔵された構成であっても良い。
コンデンサーC7の他端は、抵抗R18の一端と抵抗R10の一端とに接続される。このうち、抵抗R18の他端はグラウンドに接地される。このため、コンデンサーC7と抵抗R18とは、端子Outからの駆動信号COM−A(COM−B)のうち、カットオフ周波数以上の高周波成分を通過させるHPF(High Pass Filter)として機能する。なお、HPFのカットオフ周波数は、例えば約9MHzに設定される。
また、抵抗R10の他端は、コンデンサーC5の一端とコンデンサーC8の一端とに接続される。このうち、コンデンサーC8の他端はグラウンドに接地される。このため、抵抗R10とコンデンサーC8とは、上記HPFを通過した信号成分のうち、カットオフ周波数以下の低周波成分を通過させるLPFとして機能する。なお、LPFのカットオフ周波数は、例えば約160MHzに設定される。
上記HPFのカットオフ周波数は、上記LPFのカットオフ周波数よりも低く設定されるので、HPFとLPFとは、駆動信号COM−A(COM−B)のうち、所定の周波数域の周波数成分を通過させるBPF(Band Pass Filter)560として機能する。
コンデンサーC5の他端は、LSI500のピンIfbに接続される。これにより、ピンIfbには、上記BPFを通過した駆動信号COM−A(COM−B)の高周波数成分のうち、直流成分がカットされて帰還されることになる。
なお、この駆動回路50では、帰還経路として、ピンVfbを介した経路とピンIfbを介した経路との2経路を有する。このうち、自励発振の周波数を規定する経路として支配的となるのは、ピンIfbを介した経路である。このため、帰還回路という場合、ピンIfbを介する経路に関与する回路を意味し、具体的には、LPF550、BPF560をいう。
端子Outから出力される駆動信号COM−A(COM−B)は、トランジスターM1、M2の接続点Sdにおける増幅変調信号を、LPF550によって平滑化した信号である。この駆動信号COM−A(COM−B)は、ピンVfbを介して、加算器504に帰還されて、目標である信号Aaとの偏差である信号Abとして出力される。
ここで説明の便宜上、ピンIfbを介した帰還と、遅延器512による遅延とを除外した構成を想定したとき、駆動信号COM−A(COM−B)は、ピンVfbを介して積分・減衰された上で、加算器504に帰還されるので、変調信号Msは、当該帰還経路、すなわちLPF550と加算器504とを経由する経路の伝達関数で定まる周波数で自励発振することになる。
ただし、ピンVfbを介した帰還経路の遅延量が大であるために、当該ピンVfbを介した帰還のみでは、自励発振の周波数を、駆動信号COM−A(COM−B)の波形精度を十分に確保できるほど高くすることができない。
そこで、本実施形態では、ピンVfbを介した経路とは別に、ピンIfbを介して、駆動信号COM−A(COM−B)の高周波成分を帰還する経路を設けることによって、回路全体でみたときの遅延を小さくしている。このため、信号Abに、駆動信号COM−A(COM−B)の高周波成分を加算した信号Asの周波数は、ピンIfbを介した経路が存在しない場合と比較して高くなり(すなわち、自励発振の周波数が高くなり)、駆動信号COM−A(COM−B)においてリプル成分を少なくして、波形の精度を高めている。
図11は、アナログ信号Aaの波形に対して、信号Asと変調信号Msとの理想的な関係を示す図である。
この図に示されるように、信号Asは三角波であり、その発振周波数は、アナログ信号Aaの電圧(入力電圧)に応じて変動する。具体的には、入力電圧が中間値である場合に最も高くなり、入力電圧が中間値から高くなるにつれて、または、低くなるにつれて、低くなる。なお、信号As(Ad)が自励発振信号である。
また、信号Asにおいて三角波の傾斜は、入力電圧が中間値付近であれば、上り(電圧の上昇)と下り(電圧の下降)とでほぼ等しくなる。このため、信号Asをコンパレーター520によって電圧閾値Vth1、Vth2と比較した結果である変調信号Msのデューティー比は、ほぼ50%となる。入力電圧が中間値から高くなると、信号Asの下りの傾斜が緩くなる。このため、変調信号MsがHレベルとなる期間が相対的に長くなって、デューティー比が大きくなる。一方、入力電圧が中間値から低くなるにつれて、信号Asの上りの傾斜が緩くなる。このため、変調信号MsがLレベルとなる期間が相対的に短くなって、デューティー比が小さくなる。
このため、変調信号Msは、次のようなパルス密度変調信号となる。すなわち、変調信号Msのデューティー比は、入力電圧の中間値でほぼ50%であり、入力電圧が中間値よりも高くなるにつれて大きくなり、入力電圧が中間値よりも低くなるにつれて小さくなる。
ゲートドライバー530は、上述したように変調信号Msに基づいてトランジスターM1、M2をオン/オフさせる。すなわち、ゲートドライバー530は、変調信号MsがHレベルであれば、トランジスターM1をオンさせるとともに、トランジスターM2をオフさせる一方、変調信号MsがLレベルであれば、トランジスターM1をオフさせるとともに、トランジスターM2をオンさせる。
したがって、トランジスターM1、M2の接続点Sdにおける増幅変調信号をインダクターL1およびコンデンサーC1で平滑化した駆動信号COM−A(COM−B)の電圧は、変調信号Msのデューティー比が大きくなるにつれて高くなり、デューティー比が小さくなるにつれて低くなる。このため、結果的に、駆動信号COM−A(COM−B)は、アナログ信号Aaの電圧を拡大した信号となるように制御されて、出力されることになる。
この駆動回路50は、パルス密度変調を用いているので、変調周波数が固定のパルス幅変調と比較して、デューティー比の変化幅を大きく取れる、という利点がある。
すなわち、回路全体で扱うことができる最小の正パルス幅と負パルス幅はその回路特性で制約されるので、周波数固定のパルス幅変調では、デューティー比の変化幅として所定の範囲(例えば10%から90%までの範囲)しか確保できない。これに対し、パルス密度変調では、入力電圧が中間値から離れるにつれて、発振周波数が低くなるため、入力電圧が高い領域においては、デューティー比をより大きくすることができ、また、入力電圧が低い領域においては、デューティー比をより小さくすることができる。このため、自励発振型パルス密度変調では、デューティー比の変化幅として、より広い範囲(例えば5%から95%までの範囲)を確保することができるのである。
また、駆動回路50は、自励発振であり、他励発振のように高い周波数の搬送波を生成する回路が不要である。このため、高電圧を扱う回路以外の、すなわちLSI500が担う機能の集積化が容易である、という利点がある。
駆動回路50は、LSIや、コンデンサー、抵抗などの各種の素子が回路基板に実装された構成である。そこで次に、駆動回路50を構成する素子が、どのような回路基板において、どのように配置、実装されるかについて説明する。
図12は、回路基板を平面視したときに、当該回路基板の配線パターンを示す図であり、図13は、当該回路基板に実装される素子の配置を、図12に示した配線パターンとの関係で示す図である。
図13に示されるように、回路基板には、駆動回路50を構成するLSI500、トランジスターM1、M2、インダクターL1、コンデンサーC1、C5、C7、C8、抵抗R4、R10、R18、R23が実装される。
図12および図13において、LSI500のピンHdrから出力されるゲート信号は、トランジスターM1のゲート電極に抵抗R1(図12、図13では省略)を介して供給される。ピンLdrから出力されるゲート信号についても、同様であり、トランジスターM2のゲート電極に抵抗R2(図12、図13では省略)を介して供給される。
コンデンサーC1の他端に接続される端子X1、トランジスターM2のソース電極に接続される端子X2、抵抗R18の他端に接続される端子X3、および、コンデンサーC8の他端に接続される端子X4は、それぞれグラウンドパターンに接続される構成となっている。
また、インダクターL1の他端に接続される端子X5と、コンデンサーC1の一端に接続される端子X6とを含むパターン(出力、端子Out)には、スルーホールN1が設けられている。一方、コンデンサーC7の一端に接続される端子X7と、抵抗R4の一端に接続される端子X8とを含むパターンには、スルーホールN2が設けられている。
図10の回路図では、端子Outから2系統に分かれて、LSI500のピンVfb、Ifbに帰還されているが、実際には、図12に示されるように、端子Outを含むパターンに設けられたスルーホールN1から、内挿の配線パターン(図示省略)と、スルーホールN2と、を順次介して、抵抗R4の一端とコンデンサーC7の一端とに分岐する構成となっている。このうち、抵抗R4側の経路がピンVfbに帰還され、コンデンサーC7側の経路がピンIfbに帰還される。
ここでいう内挿の配線パターンとは、図12に示した配線パターン、すなわち各種の素子が接続される配線パターンを第1層としたときに、当該第1層以外で構成される配線パターンをいう。
トランジスターM1のドレイン電極に接続される端子X10を含むパターンには、スルーホールN3が設けられている。また、抵抗R23の他端に接続される端子X11を含むパターンには、スルーホールN4が設けられている。これらのスルーホールN3、N4には、図示省略した内挿パターンに接続されて、それぞれ電圧Vhが印加される。
トランジスターM1のソース電極に接続される端子X12と、トランジスターM2のドレイン電極に接続される端子X13とを含むパターン(図10の接続点Sd)には、スルーホールN6が設けられている。インダクターL1の一端に接続される端子X14を含むパターンには、スルーホールN7が設けられている。スルーホールN6と、スルーホールN7とは、内挿の配線パターン(図示省略)を介して、互いに電気的に接続されている。
図17は、スルーホールN7の周辺における回路基板の構造を示す部分断面図である。
回路基板90は、例えば第1層から第4層までの配線パターンと、ガラスエポキシなどの絶縁性樹脂とを積層した構造となっている。
この図に示されるように、スルーホールN7では、第1層の配線パターンが貫通孔を介し、第3層の配線パターンからなる配線パターンであって、スルーホールN6に至るまでの配線パターンの一端に接続される。なお、この例では、第2層および第4層には、スルーホールN7を介して接続される配線パターンが存在しないので、第2層および第4の、例えばグラウンドの配線パターンは、スルーホールN1の貫通部分と接触しないようにパターニングされている。
インダクターL1は、接続点Sdと端子Outとの間に電気的に挿入されるので、比較的大電流が流れて発熱しやすい。このため、第1層の配線パターンに接続されるだけでは放熱が不十分となる可能性がある。
本実施形態では、回路基板において、インダクターL1の一方の端子に接続される端子X14を含む配線パターンは、スルーホールN7を介して他の第3層の配線パターンに接続されるので、インダクターL1で発生した熱を効率良く逃がすことができる。
断面図等は省略するが、インダクターL1の他方の端子に接続される端子X5を含む第配線パターンについても、スルーホールN1を介して他の層の配線パターンに接続されるので、同様にインダクターL1で発生した熱を効率良く逃がすことができる。
なお、端子X14を含む配線パターンに設けられるスルーホールN7は、図12では1箇所であるが複数箇所にわたって設けても良いのはもちろんである。
次に、インダクターL1について説明する。
一般に、インダクター(コイル)は、電線を円筒形に巻回し、円筒の中に何も入れない空芯型と、コアに巻線を巻回したコア型とに大別できる。このうち、空芯型は低歪みであるが損失が大きいために、増幅変調信号を復調する復調部には適さない。このため、駆動回路50における復調部にはコア型が用いられる。
コア型におけるコア材としては、Mn−Zn系フェライト(以下、単にMn−Zn系とする)、Ni−Zn系フェライト(以下、単にNi−Zn系とする)、ダストコア系の3種類が一般的である。ダストコア系とは、コア材として高圧プレスで成型された磁性粉を用いたものである。コア材の選択によって巻線の抵抗成分であるRsが異なる。Rsは巻線の抵抗成分であり、鉄損(コアの損失)に寄与する抵抗成分と銅損(線材の損失)に寄与する抵抗成分とを含む。ここで、抵抗成分としては巻線の直流抵抗(例えば2mΩ程度)もあるが、Rsに比べて十分(例えば2桁)小さい。
Ni−Zn系のコア材を用いたインダクター(以下、単にNi−Zn系ともいう)は、Mn−Zn系のコア材を用いたインダクター(以下、単にMn−Zn系ともいう)やダストコア系のコア材を用いたインダクター(以下、単にダストコア系ともいう)に比べて飽和磁束密度が低い傾向がある。この傾向は、つまり、所望のインダクタンス値を得るのに、他の種類のインダクターに比べて例えば巻数を増やす必要があることを意味する。このため、飽和磁束密度の観点から、Ni−Zn系を小型化の要求が強い印刷装置1に適用することは不適切であり、Mn−Zn系またはダストコア系が好ましいといえる。
Mn−Zn系またはダストコア系のうち、本実施形態では以下の理由によりダストコア系を用いている。
まず、一般のフェライトコア型(例えばMn−Zn系、Ni−Zn系)は、図14Aに示されるように、断面E型形状のコアCEに巻線WRが巻回された後、当該コアCEをI型のコアCIで蓋をした構造である。この構造では、コアCIをコアCEに接着材等で固定する必要がある。
そこで、本実施形態では、インダクターL1として、ダストコア系であって、メタルアロイの磁性粒子を用いたメタルアロイ型を用いる。メタルアロイ型では、図14Bに示されるように、磁性粒子とバインダとの混合物で作られるコアCRと巻線WRとが一体成形される。すなわち、メタルアロイ型は、金型に空芯コイル(巻線WR)を挿入し、計量されたコア材を入れ、高圧プレスで形成される。
コアCRは、フェライトコア型のようにE型のコアCEとI型のコアCIとに分かれておらず、コア間接着が不要である。また、メタルアロイ型は、コア材の選択の幅が広く、比較的小型で、大きな電流を流すことができる。
図15は、回路基板に実装されるインダクターL1の形状を示す図である。
この図に示されるように、インダクターL1の形状はおおよそ直方体であり、回路基板に実装される面の対向する二片の一方に一端に対応する接続端子T11が設けられ、当該二片の他方に他端に対応する接続端子T12が、それぞれ設けられている。
図16は、インダクターL1における巻線等の状態を示す図である。
この図に示されるように、インダクターL1では、巻線WRが、例えば端子T11から、図において上方から平面視したときに反時計回りで上方向かって巻回された後、上端から下側に向かって端子T12に導かれる。すなわち、巻線WRが巻回されるコア(図16では省略)の軸方向は、回路基板とほぼ垂直する位置関係にある。このため、インダクターL1が回路基板に実装されたときに、当該回路基板と対向する実装面L1mでは、漏れ磁束によって多くの磁力線が交差する。
なお、インダクターL1として、コアの軸方向が回路基板表面とほぼ平行方向になるようなタイプを用いると、漏れ磁束に起因するノイズが他の部品に影響を及ぼして、駆動信号の波形精度が低下する。このため、インダクターL1として、当該タイプを用いるのは適切ではない、という事情がある。
図19は、比較例に係る回路基板の配線パターンを示す図であり、図20は、その回路基板に実装される素子の配置を示す図である。
回路基板において、端子X14、X5(インダクターL1の端子T11、T12)の間において、比較例に示されるような配線パターンが存在すると、当該配線パターンにはインダクターL1の漏れ磁束によって渦電流が発生し、駆動回路50でみたときの出力損失となって消費電力の増大を招くだけでなく、当該配線パターンの電位を変動させる。特に、回路基板における端子X5は、駆動回路50の出力であるとともに、2つの帰還経路でもあるので、この渦電流による電位変動は、自励発振の不安定化につながる。
そこで、本実施形態においては、図12および図13に示されるように、回路基板において、インダクターL1が実装される領域のうち、インダクターL1の一端に接続される端子X14と、他端に接続される端子X5との間に配線パターンを設けないようにしている。
このように、端子X14と端子X5との間に配線パターンを設けないようにすることによって、インダクターL1からの漏れ磁束による渦電流の発生が抑えられるので、無駄に電力が消費されることもない。また、自励発振が安定化されるので、駆動信号COM−A(COM−B)を精度良く生成でき、インクの誤吐出を低減することができる。
なお、インダクターL1は、回路基板90にリフローはんだ付け等により実装される。
このため、インダクターL1を構成するコアCRと、回路基板80との間には、結果的に他の素子が設けられることはない。
本発明は、上述した実施形態に限定されるものではなく、例えば次に述べるような各種の変形、応用が可能である。なお、次に述べる変形、応用の態様は、任意に選択された一または複数を適宜に組み合わせることもできる。
実施形態では、端子X14と端子X5との間に配線パターンを設けないようにしたが、図18に示されるように、端子X14と端子X5との間に配線パターンPt1を設けても良い。ただし、この配線パターンPt1は、図10で示した回路を構成する配線パターンと非接続であって、電気的に隔絶された島状パターンである。
このような配線パターンPt1を設けても、インダクターL1からの漏れ磁束による影響を抑えることができる。
実施形態において、駆動回路50は、変調信号Msの生成にあたって、増幅変調信号をLPF550で平滑化した駆動信号COM−A(COM−B)を帰還する構成としたが、変調信号Ms自体を帰還しても良い。例えば、特に図示しないが、変調信号Msと入力信号Asとの誤差を算出するとともに、当該誤差を遅延させた信号と、目標である信号Aaとを加算または減算させて、コンパレーター520の入力とする構成としても良い。
なお、トランジスターM1、M2との接続点Sdに現れる増幅変調信号は、変調信号Msと論理振幅が異なるだけであるので、例えば増幅変調信号を減衰した上で、変調信号Msと同様に帰還する構成とすれば良い。
また、図2に示した実施形態では、説明の便宜のために、ノズルの個数を比較的少数として、2個の駆動回路50−a、50−bでそれぞれ駆動信号COM−A、COM−Bを出力する構成としたが、さらに駆動信号COM−C、COM−D、…を出力する駆動回路を設けても良いし、駆動信号COM−Aの1種類とする代わりに印刷周期Taにおいて多数の波形を設けて、これらの波形を選択して出力する構成としても良い。すなわち、駆動回路50の個数は「2」に限られない。
印刷装置1については、複数のノズル651を有するヘッドユニットを、主走査方向に往復動させながらインクを吐出する形式ではなく、ノズルを副走査方向に対して直交または斜めとなる方向に配列させたヘッドユニットを複数個備えて、ヘッドユニットを筐体に対して固定させた、いわゆるラインプリンタであっても良い。
実施形態では、駆動回路50の駆動対象として、インクを吐出する圧電素子60を例にとって説明したが、駆動対象としては、圧電素子60に限られず、例えば超音波モーターや、タッチパネル、平面スピーカー、液晶などのディスプレイなどの容量性負荷であっても良い。すなわち、駆動回路50は、このような容量性負荷を駆動するものであれば良い。
1…印刷装置(液体吐出装置)、10…制御ユニット、20…ヘッドユニット、50…駆動回路、60…圧電素子、90…回路基板、520…コンパレーター、L1…インダクター、C1…コンデンサー、M1、M2…トランジスター、631…キャビティ、651…ノズル。

Claims (7)

  1. 駆動信号の元となる源信号をパルス変調した変調信号を生成する変調回路と、
    前記変調信号を増幅して増幅変調信号を生成する増幅部と、
    インダクターおよびコンデンサーを含み、前記増幅変調信号を平滑化して駆動信号を生成する復調部と、
    前記変調回路と前記増幅部と前記復調部とが実装され、表面に複数の配線パターンが形成された回路基板と、
    前記駆動信号が印加されることで変形する圧電素子と、
    内部に液滴が充填されて、前記圧電素子の変形により内部容積が変化するキャビティと、
    前記キャビティの内部容積の変化に応じて前記キャビティ内の液体を吐出するために設けられたノズルと、
    を備え、
    前記変調回路は、前記源信号と、帰還された前記駆動信号と、に基づいて前記変調信号を生成し、
    前記インダクターは、巻線とコアとが一体に成形され、前記巻線が巻回される前記コアの軸方向が前記回路基板に交差するように実装され、
    前記回路基板上では、前記コアの軸方向と交差する領域で前記配線パターン非形成である
    ことを特徴とする液体吐出装置。
  2. 駆動信号の元となる源信号をパルス変調した変調信号を生成する変調回路と、
    前記変調信号を増幅して増幅変調信号を生成する増幅部と、
    インダクターおよびコンデンサーを含み、前記増幅変調信号を平滑化して駆動信号を生成する復調部と、
    前記変調回路と前記増幅部と前記復調部とが実装され、表面に複数の配線パターンが形成された回路基板と、
    前記駆動信号が印加されることで変形する圧電素子と、
    内部に液滴が充填されて、前記圧電素子の変形により内部容積が変化するキャビティと、
    前記キャビティの内部容積の変化に応じて前記キャビティ内の液体を吐出するために設けられたノズルと、
    を備え、
    前記変調回路は、前記源信号と、帰還された前記駆動信号と、に基づいて前記変調信号を生成し、
    前記インダクターは、巻線とコアとが一体に成形され、前記巻線が巻回される前記コアの軸方向が前記回路基板に交差するように実装され、
    前記回路基板上では、前記コアの軸方向と交差する領域に形成された配線パターン、他の領域に形成された他の配線パターンと電気的に非導通である
    ことを特徴とする液体吐出装置。
  3. 前記回路基板は、
    前記インダクターの一方の電極と電気的に接続される第1端子と、前記インダクターの他方の電極と電気的に接続される第2端子と、
    を有し、
    前記第1端子と前記第2端子との間には配線パターンが形成されない
    ことを特徴とする請求項1に記載の液体吐出装置。
  4. 前記第1端子に接続される配線パターン、または、前記第2端子に接続される配線パターンの少なくとも一方には、スルーホールが形成される
    ことを特徴とする請求項3に記載の液体吐出装置。
  5. 前記コアと前記回路基板との間には、前記コアおよび前記回路基板以外の部品が設けられない
    ことを特徴とする請求項1乃至4のいずれかに記載の液体吐出装置。
  6. 駆動信号の元となる源信号をパルス変調した変調信号を生成する変調回路と、
    前記変調信号を増幅して増幅変調信号を生成する増幅部と、
    インダクターおよびコンデンサーを含み、前記増幅変調信号を平滑化して駆動信号を生成する復調部と、
    前記変調回路と前記増幅部と前記復調部とが実装され、表面に複数の配線パターンが形成された回路基板と、
    を備え、
    前記変調回路は、前記源信号と、帰還された前記駆動信号と、に基づいて前記変調信号を生成し、
    前記インダクターは、巻線とコアとが一体に成形され、前記巻線が巻回される前記コアの軸方向が前記回路基板に交差するように実装され、
    前記回路基板上では、前記コアの軸方向と交差する領域で前記配線パターンが非形成である、
    ことを特徴とする駆動回路。
  7. 駆動信号の元となる源信号をパルス変調した変調信号を生成する変調回路と、
    前記変調信号を増幅して増幅変調信号を生成する増幅部と、
    インダクターおよびコンデンサーを含み、前記増幅変調信号を平滑化して駆動信号を生成する復調部と、
    前記変調回路と前記増幅部と前記復調部とが実装され、表面に複数の配線パターンが形成された回路基板と、
    を備え、
    前記変調回路は、前記源信号と、帰還された前記駆動信号と、に基づいて前記変調信号を生成し、
    前記インダクターは、巻線とコアとが一体に成形され、前記巻線が巻回される前記コアの軸方向が前記回路基板に交差するように実装され、
    前記回路基板上では、前記コアの軸方向と交差する領域に形成された配線パターンが、他の領域に形成された他の配線パターンと電気的に非導通である、
    ことを特徴とする駆動回路。
JP2015200825A 2015-10-09 2015-10-09 液体吐出装置および駆動回路 Active JP6645109B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015200825A JP6645109B2 (ja) 2015-10-09 2015-10-09 液体吐出装置および駆動回路
US15/277,127 US10179449B2 (en) 2015-10-09 2016-09-27 Liquid ejecting apparatus and head unit
US16/208,970 US10493755B2 (en) 2015-10-09 2018-12-04 Driving circuit for capacitive load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200825A JP6645109B2 (ja) 2015-10-09 2015-10-09 液体吐出装置および駆動回路

Publications (2)

Publication Number Publication Date
JP2017071171A JP2017071171A (ja) 2017-04-13
JP6645109B2 true JP6645109B2 (ja) 2020-02-12

Family

ID=58499455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200825A Active JP6645109B2 (ja) 2015-10-09 2015-10-09 液体吐出装置および駆動回路

Country Status (2)

Country Link
US (2) US10179449B2 (ja)
JP (1) JP6645109B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645109B2 (ja) * 2015-10-09 2020-02-12 セイコーエプソン株式会社 液体吐出装置および駆動回路
US10855299B2 (en) * 2018-09-07 2020-12-01 Mediatek Singapore Pte. Ltd. Resistive DAC with summing junction switches, current output reference, and output routing methods
JP7215148B2 (ja) 2018-12-25 2023-01-31 セイコーエプソン株式会社 液体吐出装置、回路基板
JP7427962B2 (ja) * 2019-12-26 2024-02-06 セイコーエプソン株式会社 液体吐出装置、及び駆動回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005762B2 (ja) 1999-06-30 2007-11-14 株式会社東芝 集積回路装置及びその製造方法
JP2001308538A (ja) * 2000-04-26 2001-11-02 Matsushita Electric Ind Co Ltd インダクタ内蔵多層配線板
JP3666411B2 (ja) * 2001-05-07 2005-06-29 ソニー株式会社 高周波モジュール装置
TW508047U (en) * 2002-01-21 2002-10-21 Ferrico Corp Improved electronic component base
JP4183173B2 (ja) * 2003-03-26 2008-11-19 京セラ株式会社 振動子搭載用基板及び発振子
JP4849545B2 (ja) 2006-02-02 2012-01-11 Necトーキン株式会社 非晶質軟磁性合金、非晶質軟磁性合金部材、非晶質軟磁性合金薄帯、非晶質軟磁性合金粉末、及びそれを用いた磁芯ならびにインダクタンス部品
JP2010034102A (ja) * 2008-07-25 2010-02-12 Toko Inc 複合磁性粘土材とそれを用いた磁性コアおよび磁性素子
JP4715896B2 (ja) * 2008-09-30 2011-07-06 ブラザー工業株式会社 インクジェットヘッド用復調装置及びインクジェットヘッド用データ転送ユニット
JP2010114711A (ja) 2008-11-07 2010-05-20 Seiko Epson Corp 電力増幅装置
US9287034B2 (en) * 2012-02-27 2016-03-15 Ibiden Co., Ltd. Printed wiring board, inductor component, and method for manufacturing inductor component
JP6098802B2 (ja) * 2013-03-25 2017-03-22 セイコーエプソン株式会社 液体噴射装置及び印刷装置
KR102078645B1 (ko) * 2013-06-03 2020-02-19 삼성전자 주식회사 인덕터 및 이를 포함하는 디스플레이장치
JP2015101056A (ja) 2013-11-27 2015-06-04 セイコーエプソン株式会社 液体吐出装置
JP6394004B2 (ja) 2014-03-03 2018-09-26 セイコーエプソン株式会社 液体吐出装置および液体吐出装置の制御方法
JP6645109B2 (ja) * 2015-10-09 2020-02-12 セイコーエプソン株式会社 液体吐出装置および駆動回路

Also Published As

Publication number Publication date
US10179449B2 (en) 2019-01-15
US20190105896A1 (en) 2019-04-11
US10493755B2 (en) 2019-12-03
JP2017071171A (ja) 2017-04-13
US20170100929A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US9656461B2 (en) Liquid ejecting apparatus, head unit, and method of controlling liquid ejecting apparatus
JP6520574B2 (ja) 液体吐出装置およびヘッドユニット
JP6287341B2 (ja) 液体吐出装置および液体吐出装置の制御方法
JP6572645B2 (ja) 液体吐出装置
JP6291910B2 (ja) 液体吐出装置および液体吐出装置の制御方法
US10493755B2 (en) Driving circuit for capacitive load
JP6394004B2 (ja) 液体吐出装置および液体吐出装置の制御方法
US9586396B2 (en) Drive circuit for driving a capacitive load
JP6488587B2 (ja) 液体吐出装置およびヘッドユニット
JP6468379B2 (ja) 液体吐出装置、駆動回路および液体吐出装置の制御方法
JP6365101B2 (ja) 液体吐出装置およびヘッドユニット
JP6583508B2 (ja) 容量性負荷を駆動する駆動回路および液体吐出装置
JP6973586B2 (ja) 駆動回路
JP2018158586A (ja) 駆動回路
JP2017189872A (ja) 液体吐出装置および駆動回路
JP6507936B2 (ja) 液体吐出装置
JP7427962B2 (ja) 液体吐出装置、及び駆動回路
US11820138B2 (en) Liquid discharge apparatus
US20220242112A1 (en) Liquid discharge apparatus
US20220242115A1 (en) Liquid discharge apparatus
JP2018034312A (ja) 液体吐出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6645109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150