JP6642491B2 - 立体画像データ作成システムおよび立体画像データ作成プログラム - Google Patents

立体画像データ作成システムおよび立体画像データ作成プログラム Download PDF

Info

Publication number
JP6642491B2
JP6642491B2 JP2017044591A JP2017044591A JP6642491B2 JP 6642491 B2 JP6642491 B2 JP 6642491B2 JP 2017044591 A JP2017044591 A JP 2017044591A JP 2017044591 A JP2017044591 A JP 2017044591A JP 6642491 B2 JP6642491 B2 JP 6642491B2
Authority
JP
Japan
Prior art keywords
image data
grayscale
stereoscopic image
density level
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017044591A
Other languages
English (en)
Other versions
JP2018144452A (ja
Inventor
木村 哲
哲 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2017044591A priority Critical patent/JP6642491B2/ja
Priority to US15/891,772 priority patent/US10406732B2/en
Priority to CN201810186019.8A priority patent/CN108569043B/zh
Publication of JP2018144452A publication Critical patent/JP2018144452A/ja
Application granted granted Critical
Publication of JP6642491B2 publication Critical patent/JP6642491B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/44Typewriters or selective printing mechanisms having dual functions or combined with, or coupled to, apparatus performing other functions
    • B41J3/445Printers integrated in other types of apparatus, e.g. printers integrated in cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/021Adaptations for printing on specific media
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/028Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by thermal printers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/393Enlarging or reducing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • H04N1/4072Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on the contents of the original
    • H04N1/4074Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on the contents of the original using histograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/022Foaming unrestricted by cavity walls, e.g. without using moulds or using only internal cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3484Stopping the foaming reaction until the material is heated or re-heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0047Agents changing thermal characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Or Creating Images (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Printing Methods (AREA)

Description

本発明は、熱膨張性シートに絵柄データや濃淡画像データを印刷したのちに光を照射して、立体画像を作成する立体画像データ作成システムおよび立体画像データ作成プログラムに関する。
従来、吸収した熱量に応じて膨張する膨張層を一方の面上に有する媒体(例えば、熱膨張性シート)上に、電磁波を熱に変換する電磁波熱変換層を印刷により形成し、膨張層のうち媒体に電磁波熱変換層が形成された部位を電磁波の照射によって膨張させて盛り上げることにより、立体画像を形成する方法が知られている(例えば、特許文献1,2参照)。
特開昭64−28660号公報 特開2001−150812号公報
立体画像用として作成される立体画像コンテンツは、絵柄データと濃淡画像データの組合せで構成される。表現力の高い立体画像コンテンツを作成するには、立体画像の形成に精通したデザイナーが絵柄に合わせて最適な発泡凹凸量となるよう、濃淡画像データを調節して印刷・形成することを繰り返す必要があった。
また、従来の立体画像コンテンツは、予め印刷・形成する平面方向のサイズを決め、そのサイズを前提として濃淡画像データが作成されていた。つまり、一度作った立体画像コンテンツはサイズ固定であり、作成後に立体画像コンテンツが編集されて使用されることを想定していなかった。
作成済みの立体画像コンテンツを編集・再利用して、新しい立体画像コンテンツを作成する際には、元の立体画像コンテンツの全体または一部に対して、平面方向のサイズを任意に拡大または縮小可能とさせたい。そのような場合、単純に絵柄データおよび発泡データの平面方向のサイズを拡大、縮小させただけでは、発泡凹凸量は変化しない。よって、立体画像コンテンツを拡大して使用した場合には、絵画面積に対する発泡高さが小さくなり、迫力がなくなってしまう。逆に、立体画像コンテンツを縮小して使用した場合には、絵画面積に対する発泡高さが大きくなり、バランスが悪く見栄えがよくない。
そこで、本発明は、立体画像データ作成システムおよび立体画像データ作成プログラムについて、立体画像コンテンツによる発泡高さを適切に調整可能とすることを課題とする。
本発明は、上記目的を達成するため、
平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う編集手段と、
前記編集手段により前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段と、
を備え、 前記変換手段は、前記濃淡画像データ中に存在する濃度レベルが立体画像を形成できる濃度レベル範囲の一部にだけ分布している場合、前記濃淡画像データ全体が立体画像を形成できる濃度レベル範囲全体に分布するよう変換することを特徴とする立体画像データ作成システムである。
本発明によれば、立体画像コンテンツによる発泡高さを適切に調整可能となる。
立体画像形成システムの概略を示す構成図である。 立体画像コンテンツのデータ構造を示す図である。 立体画像の編集画面例を示す図である。 立体画像をA3サイズにリサイズしたときの編集画面例を示す図である。 第1の実施形態における立体画像のリサイズ処理を示すフローチャートである。 立体画像の印刷処理と発泡処理を示すフローチャートである。 印刷前の媒体の断面図である。 表面用濃淡画像データ印刷後における媒体の断面図である。 裏面用濃淡画像データ印刷後における媒体の断面図である。 絵柄データ印刷後における媒体の断面図である。 表面の発泡工程後における媒体の断面図である。 裏面の発泡工程後における媒体の断面図である。 第1の実施形態における立体画像の拡大リサイズ時の変換関数を示すグラフと立体画像の濃度ヒストグラムである。 リサイズ前の立体画像を示す斜視図である。 拡大リサイズ後の立体画像を示す斜視図である。 第1の実施形態における立体画像の縮小リサイズ時の変換関数を示すグラフと立体画像の濃度ヒストグラムである。 リサイズ前の立体画像を示す斜視図である。 縮小リサイズ後の立体画像を示す斜視図である。 第2の実施形態における立体画像の高さ強調処理を示すフローチャートである。 立体画像の高さ強調処理時の変換関数を示すグラフと立体画像の濃度ヒストグラムの一例を示すグラフである。 例示した立体画像コンテンツによって形成される立体画像の断面図である。 例示した立体画像コンテンツを高さ強調処理した後に形成される立体画像の断面図である。 立体画像の高さ調整処理時の変換関数を示すグラフと立体画像の濃度ヒストグラムの他の例を示すグラフである。 他の例の立体画像コンテンツによって形成される立体画像の断面図である。 他の例の立体画像コンテンツを高さ強調処理した後に形成される立体画像の断面図である。 第3の実施形態における形成結果が好ましくなる範囲への線形変換処理を示すフローチャートである。 線形変換処理時の変換関数を示すグラフと立体画像の濃度ヒストグラムの一例である。 例示した立体画像コンテンツによって形成される立体画像の断面図である。 例示した立体画像コンテンツを線形変換処理した後に形成される立体画像の断面図である。 線形変換処理時の変換関数を示すグラフと立体画像の濃度ヒストグラムの他の例である。 他の例の立体画像コンテンツによって形成される立体画像の断面図である。 他の例の立体画像コンテンツを線形変換処理した後に形成される立体画像の断面図である。 第4の実施形態における濃度レベル範囲の所定位置における濃度レベル変化をより顕著にする非線形変換処理を示すフローチャートである。 非線形変換処理時の変換関数を示すグラフと立体画像の濃度ヒストグラムの一例である。 例示した立体画像コンテンツによって形成される立体画像の断面図である。 例示した立体画像コンテンツを非線形変換処理した後に形成される立体画像の断面図である。
以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
図1は、立体画像形成システム1の概略を示す構成図である。
立体画像形成システム1(立体画像データ作成システム)は、コンピュータ3に、タッチパネルディスプレイ2と、印刷装置41と、発泡装置42とが接続されて構成される。立体画像形成システム1は、後記する熱膨張性シートに濃淡画像としてカーボンブラックを印刷したのち、この熱膨張性シートに向けて近赤外光や可視光を照射する。これにより、立体画像形成システム1は、この熱膨張性シートのカーボンブラックが印刷された領域を膨張させて、立体画像を形成させることができる。本実施形態において熱膨張性シートは、用紙または媒体に含まれる概念である。
コンピュータ3は、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、RAM(Random Access Memory)33、記憶部34を備え、印刷装置41や発泡装置42を制御する。記憶部34には、熱膨張性シートに立体画像を形成するための立体画像コンテンツ5と、熱膨張性シートから立体画像を作成するための立体画像作成プログラム341が格納されている。CPU31は、立体画像作成プログラム341を実行することにより、立体画像コンテンツ5の編集や、印刷装置41の制御、発泡装置42の制御を行う。
タッチパネルディスプレイ2は、タッチパネルに液晶表示パネルが張り合わされて構成され、この立体画像形成システム1の操作に用いられる。これらコンピュータ3とタッチパネルディスプレイ2は、印刷装置41または発泡装置42の操作手順を案内表示させる表示ユニットとして機能する。
印刷装置41は、インクジェット方式の印刷装置であり、媒体である熱膨張性シートの表面または/および裏面に、カーボンブラック(所定の印刷材)のインクによる濃淡画像を印刷する。なお、印刷装置41は、インクジェット方式の印刷装置に限定されず、レーザ方式の印刷装置でもよく、所定の印刷材はトナーと現像剤の組合せであってもよい。
発泡装置42は、熱膨張性シートを搬送しながら、この熱膨張性シートに可視光および近赤外光を照射し、カーボンブラックによる濃淡画像(電磁波熱変換層)が形成されている部分に熱を発生させるものである。この発泡装置42は、例えば不図示のハロゲンヒータと搬送部を備え、熱膨張性シートの片面に光エネルギを照射する。
印刷装置41への媒体の挿入手順において、タッチパネルディスプレイ2には、印刷装置41への媒体の挿入操作のガイド画面が表示される。このガイド画面には、媒体に対応する画像と立体画像形成システム1に対応する画像が案内表示される。
発泡装置42への媒体の挿入手順において、タッチパネルディスプレイ2には、発泡装置42への媒体の挿入操作のガイド画面が表示される。このガイド画面には、媒体に対応する画像と立体画像形成システム1に対応する画像が、印刷装置41への媒体の挿入操作のガイド画面に対して表示位置関係が反転するように案内表示される。
本実施形態では、立体画像形成システム1で使用可能な用紙サイズ種類に応じた立体画像コンテンツ5を予め作成しておく。これら立体画像コンテンツ5は、記憶部34に格納されるか、またはネットワーク経由でアクセス可能なサーバ(不図示)にアップロードされていてもよい。
立体画像形成システム1において、ユーザは、タッチパネルディスプレイ2上で、使用可能な用紙サイズを選択可能である。また、ユーザは予め用意されている複数の立体画像コンテンツ5をタッチパネルディスプレイ2上に表示でき、その中から任意の立体画像コンテンツ5を選択できる。ユーザに選択された立体画像コンテンツ5は、ユーザに選択された用紙サイズを表す紙面エリア上の任意の位置にコピーまたは貼付けられる。但し、A4の用紙サイズの紙面エリアに対しては、A4サイズ用の立体画像コンテンツ5からのみ選択可能となっている。
更には、紙面エリア上にコピー貼付けされた立体画像コンテンツ5は、貼付け後に任意のサイズに拡大・縮小することもできる。このようにして出来上がった新たな立体画像コンテンツ5は、印刷用データに変換されて印刷装置41に出力される。
この立体画像コンテンツ5をリサイズする際、CPU31は、絵画データを構成する絵柄データについて、元データからのサイズ変更情報に基づいてリサイズする。濃淡画像データについては、元データからのサイズ変更情報に基づいて平面方向のリサイズを行うと共に、サイズ変更比率に基づいて濃淡を変更する。サイズ変更と濃淡の変更との関係は、後記する図13〜図15、図16〜図18などで詳細に説明する。その後CPU31は、立体画像コンテンツ5を印刷用データに変換して印刷装置41にて用紙に印刷を行い、濃淡画像を形成する。CPU31は、濃淡画像が印刷された用紙を発泡装置42で発泡させることで所望の結果を得ることができる。
なお、上記選択、決定され、紙面エリア上の貼付けられた立体画像コンテンツ5の任意の一部分を更に選択拡大して紙面上に印刷表示させる等の仕様も可能である。その際の印刷用データは、選択されたエリアと更なる拡大表示エリアとのサイズ比率に応じて濃淡画像データを変更することで作成される。
更にCPU31は、平面方向のリサイズを行うことなく、濃淡を変更してもよい。このような濃淡の変更に関しては、後記する図19〜図36などで詳細に説明する。その後CPU31は、立体画像コンテンツ5を印刷用データに変換して印刷装置41にて用紙に印刷を行い、濃淡画像を形成する。CPU31は、濃淡画像が印刷された用紙を発泡装置42で発泡させることで所望の結果を得ることができる。
図2は、立体画像コンテンツ5のデータ構造を示す図である。
立体絵画用として作成される立体画像コンテンツ5は、表面用濃淡画像データ51、裏面用濃淡画像データ52、絵柄データ53を含んで構成される。
表面用濃淡画像データ51は、用紙を発泡させるために用紙の表面に印刷される濃淡画像データである。裏面用濃淡画像データ52は、用紙を発泡させるために用紙の裏面に印刷される濃淡画像データである。絵柄データ53は、絵柄に係るものであり、用紙の表面に印刷されるカラーデータである。
図3は、立体画像コンテンツ5の編集画面6の一例を示す図である。
編集画面6は、左側にコンテンツ表示領域7aを備え、右側にはコンテンツ表示領域7aに表示されるコンテンツを編集する各種操作要素を表示している。このコンテンツ表示領域7aは、A4サイズであり、凸領域71〜73を含んでいる。この編集画面6は、平面方向の座標毎に熱膨張性シートの発泡高さ(膨張高さ)を規定する濃淡レベルが設定されている濃淡画像データを含む所定サイズの立体画像コンテンツ5(立体画像データ)の編集を行う編集手段として機能する。
編集画面6の右側1列目には、「編集」が表示され、その右側には、保存ボタン60、A5指定ボタン611、A4指定ボタン612、A3指定ボタン613が表示されている。
保存ボタン60は、コンテンツ表示領域7aに表示されているコンテンツを記憶部34(図1参照)に保存するボタンである。
A5指定ボタン611は、コンテンツ表示領域7aに表示されているコンテンツの平面方向のサイズをA5サイズに指定するボタンである。A4指定ボタン612は、コンテンツ表示領域7aに表示されているコンテンツの平面方向のサイズをA4サイズに指定するボタンである。A3指定ボタン613は、コンテンツ表示領域7aに表示されているコンテンツの平面方向のサイズをA3サイズに指定するボタンである。ここでは、A4指定ボタン612が強調表示されており、A4サイズが指定されていることを示している。
編集画面6の右側2列目は、タイトル領域62である。タイトル領域62には、コンテンツのタイトル“fuku001”が表示されている。
編集画面6の右側3列目は、オブジェクト選択ボタン群63である。オブジェクト選択ボタン群63は、左側から順に線選択ボタン、円選択ボタン、矩形選択ボタン、文字選択ボタン、点字選択ボタン、スタンプ選択ボタンを含んでいる。
線選択ボタンは、編集対象として線を選択するボタンである。円選択ボタンは、編集対象として円を選択するボタンである。矩形選択ボタンは、編集対象として矩形を選択するボタンである。文字選択ボタンは、編集対象として文字列を選択するボタンである。点字選択ボタンは、編集対象として点字を選択するボタンである。スタンプ選択ボタンは、編集対象として各種記号を選択するボタンである。オブジェクト選択ボタン群63は、択一的に選択されて、選択結果が強調表示される。オブジェクト選択ボタン群63の下の領域には、選択したオブジェクトの属性を設定する領域が表示される。
ここでは、矩形選択ボタンが強調表示されており、ユーザによって選択されていることを示している。更にその下の領域には、矩形を構成する線を設定する線属性領域64と、矩形を塗りつぶす際の属性を設定する塗りつぶし領域65とが表示されている。
線属性領域64は、色選択メニューと、線の種類メニューと、線の太さを細くするボタンおよび太くするボタンと、発泡高さを設定する「なし」、「低」、「中」、「高」のボタンを有している。
発泡高さ「なし」ボタンがタップされると、濃淡画像データ中の線の濃度レベルは0%となる。発泡高さ「低」ボタンがタップされると、濃淡画像データ中の線の濃度レベルは30%となる。発泡高さ「中」ボタンがタップされると、濃淡画像データ中の線の濃度レベルは60%となる。発泡高さ「高」ボタンがタップされると、濃淡画像データ中の線の濃度レベルは90%となる。
塗りつぶし領域65は、「なし」、「単色」、「パターン」ラジオボタンを有している。「なし」ラジオボタンが選択されると、線で区切られた内側の領域を塗りつぶさない。「単色」ラジオボタンが選択されると、線で区切られた内側の領域を単色で塗りつぶす。「パターン」ラジオボタンが選択されると、CPU31は、線で区切られた内側の領域をディザパターン等で塗りつぶす。ここでは、「なし」ラジオボタンが選択されている。
塗りつぶし領域65の下側には、編集ボタン群66が配置されている。編集ボタン群66は、「元に」、「前面」、「背面」、「切取」、「コピー」、「貼付」、「削除」ボタンを有している。
「元に」ボタンは、直前の編集動作を取り消して元に戻すボタンである。「前面」ボタンは、当該オブジェクトを他のオブジェクトよりも優先表示させるボタンである。「背面」ボタンは、他のオブジェクトを当該オブジェクトよりも優先表示させるボタンである。
「切取」ボタンは、当該オブジェクトをコンテンツから切り取って消去し、一時的な記憶領域(例えば、クリップボードなど)に格納するボタンである。「コピー」ボタンは、当該オブジェクトを一時的な記憶領域に格納するボタンである。「貼付」ボタンは、一時的な記憶領域に格納されたオブジェクトを貼り付けるボタンである。「削除」ボタンは、当該オブジェクトを削除するボタンである。
編集ボタン群66の下側には、発泡高さ強調に関するボタンが配置されている。発泡高さ強調に関するボタンは、線形強調ボタン671、非線形強調ボタン672である。
ユーザが線形強調ボタン671をタップすると、CPU31は、コンテンツの発泡高さを線形で強調する。非線形強調ボタン672をタップすると、CPU31は、コンテンツの発泡高さを非線形で強調する。
図4は、立体画像をA3サイズにリサイズしたときの編集画面6の一例を示す図である。
編集画面6において、A3指定ボタン613が強調表示されており、A3サイズが指定されていることを示している。コンテンツ表示領域7bに表示されているコンテンツは、図3に示したA4サイズからA3サイズにリサイズされている。リサイズに伴う拡大率は、およそ140%である。この処理について、後記する図5で詳細に説明する。
図5は、第1の実施形態における立体画像のリサイズ処理を示すフローチャートである。
最初、CPU31は、裏面用濃淡画像データ52を平面方向にリサイズし(ステップS10)、更に裏面用濃淡画像データ52を立体画像が形成できる範囲で変換する(ステップS11)。CPU31は、平面方向の拡大・縮小率を参照して裏面用濃淡画像データ52の濃度レベルを調整して、出来上がる立体画像が高さ方向にリサイズされるようにする。更にCPU31は、濃度レベルが飽和するなどにより、高さ方向に立体画像が形成できないときには、飽和した値でリミットする。この処理については、後記する図13から図18で詳細に説明する。
次にCPU31は、表面用濃淡画像データ51を平面方向にリサイズし(ステップS12)、更に表面用濃淡画像データ51を立体画像が形成できる範囲で変換する(ステップS13)。CPU31は、平面方向の拡大・縮小率を参照して表面用濃淡画像データ51の濃度レベルを調整して、出来上がる立体画像が高さ方向にリサイズされるようにする。更にCPU31は、表面用濃淡画像データ51の濃度レベルの飽和、裏面用濃淡画像データ52の濃度レベルの飽和、表面用濃淡画像データ51と裏面用濃淡画像データ52とを合わせたときの発泡高さの飽和などにより、高さ方向に立体画像が形成できないときには、飽和した値でリミットする。
最後にCPU31は、絵柄データ53を平面方向にリサイズし(ステップS14)、図5のリサイズ処理を終了する。
このようにCPU31は、表面用濃淡画像データ51と裏面用濃淡画像データ52の平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段として機能する。
図6は、立体画像の印刷処理と発泡処理を示すフローチャートである。
最初、CPU31は、表面用濃淡画像データ51を印刷装置41に出力し、用紙8A(図7参照)の表面に印刷させる(ステップS20)。これにより、図8に示す用紙8Bが形成される。
次にCPU31は、裏面用濃淡画像データ52を印刷装置41に出力し、用紙8B(図8参照)の裏面に印刷させる(ステップS21)。これにより、図9に示す用紙8Cが形成される。
更にCPU31は、絵柄データ53を印刷装置41に出力し、用紙8C(図9参照)の表面に印刷させる(ステップS22)。これにより、図10に示す用紙8Dが形成される。
ユーザが用紙8Dの表面を上にして発泡装置42に設置し(ステップS23)、発泡装置42が用紙8Dの表面側に光を照射して発泡させる(ステップS24)。これにより、図11に示す用紙8Eが形成される。
更にユーザが用紙8Eの裏面を上にして発泡装置42に設置し(ステップS25)、発泡装置42が用紙8Eの裏面側に光を照射して発泡させる(ステップS26)。これにより、図12に示す用紙8Fが形成される。この用紙8Fは、立体画像である。
以下、図7から図12を参照して、印刷処理と発泡処理について説明する。
図7は、印刷前の媒体の断面図である。
用紙8Aは、基材81と発泡樹脂層82とインク受容層83とが順に積層されている。この用紙8Aは、立体画像形成システム1における工程を経ていない媒体の例である。
基材81は、紙、キャンバス地などの布、プラスチックなどのパネル材などからなり、材質は特に限定されるものではない。
発泡樹脂層82には、基材81上に設けられた熱可塑性樹脂であるバインダ内に熱発泡剤(熱膨張性マイクロカプセル)が分散配置されている。これにより、発泡樹脂層82は、吸収した熱量に応じて発泡膨張する。
インク受容層83は、発泡樹脂層82の上面全体を覆うように、例えば、10μmの厚さに形成されている。インク受容層83は、インクジェット方式プリンタのインク、レーザ方式プリンタのトナー、ボールペンや万年筆のインク、鉛筆の黒鉛などを受容し、表面に定着させるために好適な材料で構成される。
図8は、表面用濃淡画像データ51の印刷後における媒体の断面図である。
用紙8Bは、図7に示す用紙8Aの表面(インク受容層83側)に対して電磁波熱変換層84が印刷されている。この用紙8Bは、立体画像形成システム1において、表面用濃淡画像データ51の印刷工程を経た媒体の例である。
電磁波熱変換層84は、例えばカーボンブラックを含むインクで印刷された層であり、可視光や近赤外光(電磁波)を熱に変換する。
図9は、裏面用濃淡画像データ52の印刷後における媒体の断面図である。
用紙8Cは、図8に示す用紙8Bの裏面(基材81側)に電磁波熱変換層86が印刷されている。この用紙8Cは、立体画像形成システム1において、表面用濃淡画像データ51の印刷工程と、裏面用濃淡画像データ52の印刷工程を経た媒体の例である。
電磁波熱変換層86は、例えばカーボンブラックを含むインクで印刷された層であり、可視光や近赤外光(電磁波)を熱に変換する。
図10は、絵柄データ53の印刷後における媒体の断面図である。
用紙8Dは、図9に示す用紙8Cの表面(インク受容層83側)にカラーインク層85a,85bが印刷されている。この用紙8Dは、立体画像形成システム1において、表面用濃淡画像データ51の印刷工程と、裏面用濃淡画像データ52の印刷工程と、絵柄データ53の印刷工程を経た媒体の例である。
用紙8Dは、発泡樹脂層82を加熱により膨張させる前の状態なので、この発泡樹脂層82の厚さは一様である。用紙8Dは、発泡装置42の用紙ガイドに、電磁波熱変換層84が印刷されたインク受容層83を上に向けてセットされる。そののち用紙8Dは、搬送路で可視光や近赤外光(電磁波)を照射されることで発泡樹脂層82が加熱により膨張し、図11に示した用紙8Eが形成される。
図11は、表面の発泡工程後における媒体の断面図である。
用紙8Eは、立体画像形成システム1において、表面発泡工程を経た媒体の例である。
電磁波熱変換層84は、発泡装置42による第1回目の搬送において、図の上側から光の照射を受けて熱に変換する、この電磁波熱変換層84は、用紙8Eに細かな立体パターンを形成するために設けられている。この電磁波熱変換層84の直下の発泡樹脂層82は、熱を受けて発泡膨張する。インク受容層83、電磁波熱変換層84、カラーインク層85bは、それぞれ伸縮性を有し、発泡樹脂層82の発泡膨張に追従して変形する。このようにして図11に示した用紙8Eが形成される。
用紙8Eは更に、発泡装置42の用紙ガイドに、電磁波熱変換層86が印刷された基材81を上に向けてセットされたのち、搬送路で可視光や近赤外光(電磁波)を照射される。これにより発泡樹脂層82が加熱されて膨張し、図12に示した用紙8Fが形成される。
図12は、裏面の発泡工程後における媒体の断面図である。
用紙8Eは、立体画像形成システム1において、裏面発泡工程を経た媒体の例である。
電磁波熱変換層86は、発泡装置42による第2回目の搬送において、図の下側から光の照射を受けて熱に変換する、この電磁波熱変換層86は、粗い立体パターンを形成するために設けられている。この電磁波熱変換層86の近傍の発泡樹脂層82は、熱を受けて発泡膨張する。インク受容層83、電磁波熱変換層84、カラーインク層85aは、それぞれ伸縮性を有し、発泡樹脂層82の発泡膨張に追従して変形する。このようにして、立体画像を含む用紙8Fが形成される。
以下、図13から図15を参照して、立体画像コンテンツ5の拡大リサイズについて説明する。
図13は、第1の実施形態における立体画像コンテンツ5の拡大リサイズ時の濃度変換関数を示すグラフと立体画像の濃度ヒストグラムである。ここでは、A4サイズからA3サイズへの拡大時の変換関数が表示されている。
立体画像コンテンツ5は、平面方向のリサイズにより、約140%に拡大される。よって、高さ方向にも140%拡大することにより、平面方向と高さ方向とがバランスするように発泡高さを適切に調整することができる。
変換関数のグラフの下には、立体画像の濃度ヒストグラムが表示されている。この濃度ヒストグラムが示すように、発泡高さ「なし」と、発泡高さ「低」と、発泡高さ「中」と、発泡高さ「高」とに、それぞれ画素が分布している。
発泡高さ「高」は、濃度レベル90%に相当する。濃度レベル90%を140%に拡大すると、100%を超えてしまい、濃度レベルが立体画像を形成できる濃度レベル範囲に収らなくなる。よって、CPU31は、濃度レベルを100%でリミットして、濃淡画像データ全体が立体画像を形成できる濃度レベル範囲に収まるように変換する。
図14は、リサイズ前の立体画像9aを示す斜視図である。
立体画像9aは、A4サイズである。図14では、立体画像9aの全体のうち、一部を切り出して斜視図として示している。
立体画像9aには、中央部の凸領域91と、右側の凸領域92と、左側の凸領域93とが形成されている。発泡高さが飽和する高さを100%としたとき、凸領域91の発泡高さh2は90%、凸領域92の発泡高さh2は60%、凸領域93の発泡高さh3は30%である。
図15は、拡大リサイズ後の立体画像9bを示す斜視図である。
立体画像9bは、A3サイズである。図15では、立体画像9bの全体のうち、一部を切り出して斜視図として示している。
立体画像9bには、中央部の凸領域91と、右側の凸領域92と、左側の凸領域93とが形成されている。発泡高さが飽和する高さを100%としたとき、凸領域91の発泡高さh4は100%、凸領域92の発泡高さh5は84%、凸領域93の発泡高さh6は42%である。
このように、平面方向と高さ方向に拡大することにより、平面方向と高さ方向とがバランスするように発泡高さを適切に調整することができる。
以下、図16から図18を参照して、立体画像コンテンツ5の縮小リサイズについて説明する。
図16は、第1の実施形態における立体画像コンテンツ5の縮小リサイズ時の濃度変換関数と立体画像コンテンツ5の濃度ヒストグラムを示すグラフである。ここでは、A4サイズからA5サイズへの縮小時の濃度変換関数が表示されている。
立体画像コンテンツ5は、平面方向のリサイズにより、70%に縮小される。よって、高さ方向にも70%縮小することにより、平面方向と高さ方向とがバランスするように発泡高さを適切に調整することができる。
変換関数のグラフの下には、立体画像の濃度ヒストグラムが表示されている。この濃度ヒストグラムが示すように、発泡高さ「なし」と、発泡高さ「低」と、発泡高さ「中」と、発泡高さ「高」とに、それぞれ画素が分布している。
拡大リサイズの場合と異なり、縮小リサイズの場合、濃度レベルは、立体画像を形成できる濃度レベル範囲に必ず収まる。
図17は、リサイズ前の立体画像9aを示す斜視図であり、図14に示した立体画像9aと同様である。
図18は、縮小リサイズ後の立体画像9cを示す斜視図である。
立体画像9cは、A5サイズである。図18では、立体画像9cの全体のうち、一部を切り出して斜視図として示している。
立体画像9cには、中央部の凸領域91と、右側の凸領域92と、左側の凸領域93とが形成されている。発泡高さが飽和する高さを100%としたとき、凸領域91の発泡高さh7は63%、凸領域92の発泡高さh8は42%、凸領域93の発泡高さh9は21%である。
このように、平面方向と高さ方向に縮小することにより、平面方向と高さ方向とがバランスするように発泡高さを適切に調整することができる。
なお、本発明は、拡大リサイズに伴って濃度レベルを変換した場合に限定されない。理由の如何に依らず、作成・変換・編集・取込したデータが、立体画像を形成できる濃度レベル範囲に収まっていない場合に濃淡変換する場合や、濃淡変換により発泡高さを強調する場合も含まれる。以下、リサイズを伴わない濃淡変換の実施形態について説明する。
図13〜図18に示す実施形態では、立体画像コンテンツ5を拡大・縮小等サイズ変更する場合において、このサイズ変更情報に基づき、平面方向にリサイズし、かつ発泡高さがリサイズされるように濃淡を変更している。これによりユーザは、立体画像コンテンツ5を作り直す手間が省け、サイズが変更されても違和感がなくなり、凹凸を生かした表現が可能となる。
次に、図19から図21を参照しつつ、濃淡画像データの濃度ヒストグラムが濃度範囲全体に分布するように変換する第2の実施形態について説明する。なお、第2の実施形態において、濃淡画像データは、10%単位で指定可能であるものとする。
以下、図19から図21を参照して、立体画像の高さ強調処理について説明する。
立体画像の発泡高さは、「低」「中」「高」という離散的な設定だけでなく、グラデーションなども含む多様な階調表現が可能である。また、理想的には、濃度レベル0%から100%に対応して、発泡高さ0%から100%までの立体画像を形成できる。立体画像の形成において、濃度レベル範囲を0%から100%まで使い切ることにより、形成される発泡高さの範囲を広げて、メリハリある立体画像を得ることができる。
図19は、第2の実施形態における立体画像の高さ強調処理を示すフローチャートである。
最初、CPU31は、裏面用濃淡画像データ52と表面用濃淡画像データ51の濃度ヒストグラムを取得する(ステップS30)。この濃度ヒストグラムの例を、後記する図20と図23に示す。
次にCPU31は、取得した濃度ヒストグラムが濃度領域の一部にだけ分布するか否かを判断する。CPU31は、濃度ヒストグラムが濃度領域の一部にだけ分布するならば(ステップS31→Yes)、濃度ヒストグラムが濃度レベル範囲全体に分布するように、裏面用濃淡画像データ52と表面用濃淡画像データ51を変換する(ステップS32)。このときの濃度ヒストグラムと、変換に係る変換関数を図20と図23に示す。更にCPU31は、ステップS32の処理が終了すると、図19の高さ強調処理を終了する。
CPU31は、濃度ヒストグラムが濃度レベル領域の全体に分布するならば(ステップS31→No)、図19の高さ強調処理を終了する。
このようにCPU31は、表面用濃淡画像データ51と裏面用濃淡画像データ52に対して、平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段として機能する。
図20は、立体画像の高さ強調処理時の濃度変換関数と立体画像の濃度ヒストグラムの一例を示すグラフである。
この例において、立体画像の濃度ヒストグラムは、0%以上50%以下に分布している。濃度レベル50%のデータは、横軸の濃度レベル50〜60%の棒グラフで示されている。濃度ヒストグラムは、濃度レベル範囲全体(0%〜100%)のうち一部にだけ分布しているので、濃度レベル範囲全体に分布するような線形の変換関数に基づき、濃度レベルを変換する。これにより、立体画像の形成への充分な考慮のない人が作成した立体画像コンテンツ5でも、メリハリある立体画像を得ることができる。
図21は、例示した立体画像コンテンツによって形成される立体画像9dの断面図である。
立体画像9dのうち最も高い凸領域97dは、発泡前表面90からの高さh10であり、発泡高さの飽和量HSに対して約50%である。つまり、発泡高さ範囲である高さ0からHSまでのうち、一部しか使われていない。
図22は、例示した立体画像コンテンツを高さ強調処理した後に形成される立体画像9eの断面図である。
立体画像9eのうち最も高い凸領域97eは、発泡前表面90から、発泡高さの飽和量HSと略等しい高さを有している。つまり、発泡高さ範囲である高さ0からHSまでの全体を使っている。第2の実施形態の立体画像形成システム1によれば、このようにメリハリのある立体画像を得ることができる。
図23は、立体画像の高さ調整処理時の変換関数と立体画像の濃度ヒストグラムの他の例を示すグラフである。
この例において、立体画像の濃度ヒストグラムは、30%以上100%以下の間に分布している。なお、0%以上30%未満は、すべて0%であるものとする。
濃度ヒストグラムは、濃度レベル範囲全体(0%〜100%)のうち一部にだけ分布しているので、濃度レベル範囲全体に分布するような線形の変換関数に基づき、濃度レベルを変換する。このとき、濃度レベル30%は、変換関数により濃度レベル0%に変換される。
濃度レベル40%以上50%未満は、濃度レベル14.3%に変換される。濃度レベル50%以上60%未満は、濃度レベル28.6%に変換される。濃度レベル60%以上70%未満は、濃度レベル42.9%に変換される。濃度レベル70%以上80%未満は、濃度レベル57.1%に変換される。濃度レベル80%以上90%未満は、濃度レベル71.4%に変換される。濃度レベル90%以上100%未満は、濃度レベル85.7%に変換される。濃度レベル100%は、濃度レベル100%に変換される。このよう高さ調整すると、CPU31は、濃度ヒストグラムを濃度レベル範囲全体に分布させることができる。
これにより、立体画像の形成への充分な考慮のない人が作成した立体画像コンテンツ5でも、メリハリある立体画像を得ることができる。
図24は、他の例の立体画像コンテンツによって形成される立体画像9fの断面図である。
立体画像9fのうち最も高い凸領域の発泡前表面90からの高さは、発泡高さの飽和量HSと略等しい高さを有している。立体画像9fのうち最も低い領域は、平面94であり、発泡前表面90からの高さはh10である。この立体画像9fは、発泡高さ範囲である高さ0からHSまでのうち、一部しか使われていない。
図25は、他の例の立体画像コンテンツを高さ強調処理した後に形成される立体画像9gの断面図である。
立体画像9gのうち最も高い凸領域は、発泡前表面90から、発泡高さの飽和量HSと略等しい高さを有している。つまり、立体画像9gは、発泡高さ範囲である高さ0からHSまでの全体を使っている。第2の実施形態の立体画像形成システム1によれば、このようにメリハリのある立体画像を得ることができる。
以下、図26から図32を参照して、形成結果が好ましくなる範囲への線形変換処理を行う第3の実施形態について説明する。
立体画像形成システム1は、濃度レベル0%から100%まで立体画像を形成できることが理想的である。しかし、現実には、濃度レベルが低すぎると発泡が安定しなかったり凹凸として認識できない場合がある。また、濃度レベルが高すぎると過発泡となったり発泡樹脂層が割れたりする課題がある。
経験的にいうと、表面用濃淡画像データ51の場合、濃度レベル20%から80%において形成結果が好ましくなる。裏面用濃淡画像データ52の場合、濃度レベル30%から90%において形成結果が好ましくなる。よって、この範囲に濃度レベルを調整することが考えられる。
図26は、第3の実施形態における形成結果が好ましくなる範囲への線形変換処理を示すフローチャートである。
最初、CPU31は、裏面用濃淡画像データ52と表面用濃淡画像データ51の濃度ヒストグラムを取得する(ステップS40)。この濃度ヒストグラムの例を、後記する図27に示す。
CPU31は、表面用濃淡画像データ51から濃度レベル0%のデータを除外して、表面用の変換対象データを作成する(ステップS41)。濃度レベル0%のデータに係る領域は、発泡させず、発泡高さが不安定にならないため、変換対象データから除外できる。この変換対象データは、RAM33(図1参照)に一時的に格納される。
CPU31は、ヒストグラムの上限と下限を、表面の濃度レベル範囲の上限と下限に対応づける表面用の線形変換関数を算出する(ステップS42)。これにより、後記する図27や図30に示す表面用の線形変換関数を得ることができる。
CPU31は、表面用の線形変換関数で表面用の変換対象データを変換し(ステップS44)、変換した変換対象データを表面用濃淡画像データ51に反映させる(ステップS45)。
次に、CPU31は、裏面用濃淡画像データ52から濃度レベル0%のデータを除外して、裏面用の変換対象データを作成する(ステップS46)。この変換対象データは、RAM33(図1参照)に一時的に格納される。CPU31は、ヒストグラムの上限と下限を、裏面の濃度レベル範囲の上限と下限に対応づける裏面用の線形変換関数を算出する(ステップS47)。これにより、後記する図27や図30に示す裏面用の線形変換関数を得ることができる。
CPU31は、裏面用の線形変換関数で裏面用の変換対象データを変換し(ステップS48)、変換した変換対象データを裏面用濃淡画像データ52に反映させて(ステップS49)、図26の処理を終了する。
なお、立体画像形成システム1は、立体画像の発泡高さについて連続して滑らかな階調を表現したい場合に、濃度レベル0%のデータを変換対象データに含めてもよい。
このようにCPU31は、表面用濃淡画像データ51と裏面用濃淡画像データ52に対して、濃度レベルの分布に応じた変換を行う変換手段として機能する。
図27は、線形変換処理時の変換関数のグラフと立体画像の濃度ヒストグラムの一例である。
図27に示した立体画像は、グラデーション表現されたコンピュータグラフィックなどである。この立体画像の濃度ヒストグラムは、濃度0%から100%までの全域に亘って存在している。変換の対象となるのは、そのうち濃度10%から100%までの領域である。
線形変換処理時の変換関数のグラフにおいて、表面用変換関数は実線で、裏面用変換関数は破線で示されている。
表面用変換関数は、ハッチングで示した濃度レベル10%から100%までを、濃度レベル20%から80%までに変換している。これにより、形成結果が好ましくなる。つまり、発泡が安定して凹凸として認識でき、かつ過発泡とならず割れが発生しなくなる。
裏面用変換関数は、ハッチングで示した濃度レベル10%から100%までを、濃度レベル30%から90%までに変換している。これにより、形成結果が好ましくなる。つまり、発泡が安定して凹凸として認識でき、かつ過発泡とならず割れが発生しなくなる。
更に、濃度レベル0%のデータを変換対象データから除外して、未発泡領域として残すことで、発泡高さの下限値は0となる。これに対して、濃度レベル0%のデータを変換対象データに含めたときには、発泡高さの下限値は、立体画像の形成結果が好ましくなる所定の濃度レベル範囲の下限によって発泡させた高さとなる。よって、濃度レベル0%のデータを変換対象データから除外することで、発泡高さの範囲の下限を拡げることができる。
図28は、例示した立体画像コンテンツによって形成される立体画像9hの断面図である。
立体画像9hのうち凸領域の頂点である領域98hは、立体画像の形成結果が好ましくなる上限濃度レベルを超えた濃度レベル領域であるため、過発泡による割れが発生している。なお、高さHUは、立体画像の形成結果が好ましくなる上限濃度レベルで発泡させたときの高さである。
凸領域の裾野の領域99a〜99dは、立体画像の形成結果が好ましくなる下限濃度レベルに満たない濃度レベル領域であるため、発泡が安定せず、凹凸として認識することが困難である。なお、高さHLは、立体画像の形成結果が好ましくなる上限濃度レベルで発泡させたときの高さである。
図29は、例示した立体画像コンテンツを線形変換処理した後に形成される立体画像9iの断面図である。
立体画像9iの凸領域の頂点は、高さHU以下であり、過発泡とならず割れが発生しなくなる。凸領域は急峻に立ち上がり、高さHLの領域は殆どなく、よって発泡が安定して凹凸として認識できる。このように、立体画像形成システム1は、好ましい立体画像9iを形成することができる。
図30は、線形変換処理時の変換関数のグラフと立体画像の濃度ヒストグラムの他の例である。
立体画像は、例えば手作業で描いた絵であり、立体画像の濃度ヒストグラムは、濃度0%を超えて濃度30%未満までを含まない。
線形変換処理時の変換関数のグラフにおいて、表面用変換関数は実線で、裏面用変換関数は破線で示されている。
表面用変換関数は、濃度レベル30%から100%までを、濃度レベル20%から80%までに変換している。これにより、形成結果が好ましくなる。つまり、発泡が安定して凹凸として認識でき、かつ過発泡とならず割れが発生しなくなる。
裏面用変換関数は、濃度レベル30%から100%までを、濃度レベル30%から90%までに変換している。これにより、形成結果が好ましくなる。つまり、発泡が安定して凹凸として認識でき、かつ過発泡とならず割れが発生しなくなる。
図31は、他の例の立体画像コンテンツによって形成される立体画像9jの断面図である。
立体画像9jのうち凸領域の頂点である領域98jは、立体画像の形成結果が好ましくなる上限濃度レベルを超えた濃度レベル領域であるため、過発泡による割れが発生している。また、この例では、凸領域は急峻に立ち上がっているため、高さHLの領域は殆どなく、よって発泡が安定して凹凸として認識できる。このように、立体画像形成システム1は、好ましい立体画像9jを形成することができる。
図32は、他の例の立体画像コンテンツを線形変換処理した後に形成される立体画像9kの断面図である。
立体画像9kの凸領域の頂点は、高さHU以下であり、過発泡とならず割れが発生しなくなる。このように、立体画像形成システム1は、好ましい立体画像9iを形成することができる。
以下、図33から図36を参照して、形成結果が好ましくなる範囲への非線形変換処理を行う第4の実施形態について説明する。
図33は、第4の実施形態における濃度レベル範囲の中間位置における濃度レベル変化をより顕著にする非線形変換処理を示すフローチャートである。
最初、CPU31は、裏面用濃淡画像データ52と表面用濃淡画像データ51の濃度ヒストグラムを取得する(ステップS50)。この濃度ヒストグラムの例を、後記する図34に示す。CPU31は、表面用濃淡画像データ51から濃度レベル0%のデータを除外して、表面用の変換対象データを作成する(ステップS51)。この変換対象データは、RAM33(図1参照)に一時的に格納される。
CPU31は、ヒストグラムの上限と下限を、表面の濃度レベル範囲の上限と下限に対応づける表面用の線形変換関数を算出する(ステップS52)。CPU31は、この表面用の線形変換関数から、中間位置における濃度レベル変化が顕著になる非線形変換関数を算出する(ステップS53)。このような非線形変換関数は、概略S字型のカーブとなる。これにより、後記する図34に示す表面用の非線形変換関数を得ることができる。
CPU31は、表面用の非線形変換関数で表面用の変換対象データを変換し(ステップS54)、変換した変換対象データを表面用濃淡画像データ51に反映させる(ステップS55)。
次に、CPU31は、裏面用濃淡画像データ52から濃度レベル0%のデータを除外して、裏面用の変換対象データを作成する(ステップS56)。この変換対象データは、RAM33(図1参照)に一時的に格納される。CPU31は、ヒストグラムの上限と下限を、裏面の濃度レベル範囲の上限と下限に対応づける裏面用の線形変換関数を算出する(ステップS57)。CPU31は、この裏面用の線形変換関数から、濃度レベル範囲の中間位置における濃度レベル変化が顕著になる非線形変換関数を算出する(ステップS58)。このような非線形変換関数は、概略S字型のカーブとなる。これにより、後記する図34に示す裏面用の非線形変換関数を得ることができる。
CPU31は、裏面用の線形変換関数で裏面用の変換対象データを変換し(ステップS59)、変換した変換対象データを裏面用濃淡画像データ52に反映させて(ステップS60)、図33の処理を終了する。
このようにCPU31は、表面用濃淡画像データ51と裏面用濃淡画像データ52に対して、濃度レベルの分布に応じた変換を行う変換手段として機能する。
図34は、非線形変換処理時の変換関数と立体画像の濃度ヒストグラムの一例を示すグラフである。
図34における立体画像は、写真などである。この立体画像の濃度ヒストグラムは、濃度レベル30%から80%までの領域に存在しており、かつ中間濃度レベルが大きな山となる正規分布のような形になっている。
非線形変換処理時の変換関数のグラフにおいて、表面用変換関数は実線で、裏面用変換関数は破線で示されている。
表面用変換関数は、濃度レベル30%から80%までを、濃度レベル20%から80%までに非線形に変換している。これにより、形成結果が好ましくなると共に、画素数の多い中間の発泡高さの差が明確となり、立体画像にメリハリ出る。そのため、全体としてよりコントラストがよく、全体の高さの差がよく分かる立体画像になる。
裏面用変換関数は、濃度レベル30%から80%までを、濃度レベル30%から90%までに非線形に変換している。これにより、形成結果が好ましくなると共に、データ量の多い中間の発泡高さの差が明確となり、立体画像にメリハリ出る。そのため、全体としてよりコントラストがよく、全体の高さの差がよく分かる立体画像になる。
なお、非線形変換関数によって濃度レベル変化を顕著とする位置は、濃度レベル範囲の中間位置に限られず、任意の位置(所定位置)であってもよい。これにより、任意の位置の高さの差がよく分かる立体画像を形成することができる。
図35は、例示した立体画像コンテンツによって形成される立体画像9m断面図である。
立体画像9mは、発泡高さh12の平面95を中心に、この平面95から高さL1の凸部と、深さL2の凹部とが形成されている。
図36は、例示した立体画像コンテンツを非線形変換処理した後に形成される立体画像9n断面図である。
立体画像9nは、発泡高さh12の平面95を中心に、この平面95から高さL3の凸部と、深さL4の凹部とが形成されている。高さL3は元の高さL1よりも高く、深さL4は元の深さL4よりも深い。このように、立体画像形成システム1は、画素数の多い中間の発泡高さの差が明確となる立体画像9n形成できる。
(変形例)
本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で、変更実施が可能であり、例えば、次の(a)〜(c)のようなものがある。
(a) 濃淡画像データ中に存在する濃度レベルが、立体画像形成できる濃度レベル範囲に収まっていない場合とは、拡大リサイズに伴って濃度変換した場合が含まれる。しかし、理由の如何に依らず、作成・変換・編集・取込したデータが、立体画像形成できる濃度レベル範囲に収まっていない場合であってもよい。
(b) 上記実施形態において形成結果が好ましくなる所定の濃度レベル範囲は、発泡が安定して凹凸として認識でき、かつ過発泡とならず割れが発生しなくなる範囲である。しかし、これに限定されず、例えば濃度レベルと発泡高さとの関係が線形性を保っている範囲であってもよい。
(c) 上記実施形態の立体画像コンテンツ5は、いずれも表面用濃淡画像データ51、裏面用濃淡画像データ52、絵柄データ53を含んでいる。しかし、これに限られず、表面用濃淡画像データ51単体、裏面用濃淡画像データ52単体、表面用濃淡画像データ51と絵柄データ53の組合せ、裏面用濃淡画像データ52と絵柄データ53の組合せであってもよく、限定されない。
以下に、この出願の願書に最初に添付した特許請求の範囲に記載した発明を付記する。付記に記載した請求項の項番は、この出願の願書に最初に添付した特許請求の範囲の通りである。
〔付記〕
《請求項1》
平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う編集手段と、
前記編集手段により前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段と、
を備えることを特徴とする立体画像データ作成システム。
《請求項2》
前記変換手段は、前記濃淡画像データ中に存在する濃度レベルが立体画像を形成できる濃度レベル範囲に収まっていない場合、前記濃淡画像データ全体が立体画像を形成できる濃度レベル範囲に収まるように変換する、
ことを特徴とする請求項1に記載の立体画像データ作成システム。
《請求項3》
前記変換手段は、前記濃淡画像データ中に存在する濃度レベルが立体画像を形成できる濃度レベル範囲の一部にだけ分布している場合、前記濃淡画像データ全体が立体画像を形成できる濃度レベル範囲全体に分布するよう変換する、
ことを特徴とする請求項1に記載の立体画像データ作成システム。
《請求項4》
前記変換手段は、前記濃淡画像データの濃度分布が、形成結果が好ましくなる所定の濃度レベル範囲に分布するように変換する、
ことを特徴とする請求項1に記載の立体画像データ作成システム。
《請求項5》
前記変換手段は、立体画像を形成できる濃度レベル範囲の上限と下限が、立体画像の形成結果が好ましくなる所定の濃度レベル範囲のそれぞれ上限と下限になるよう線形変換する、
ことを特徴とする請求項4に記載の立体画像データ作成システム。
《請求項6》
前記変換手段は、濃度レベル範囲の所定位置における濃度レベル変化がより顕著になるよう変換する、
ことを特徴とする請求項4に記載の立体画像データ作成システム。
《請求項7》
前記変換手段は、前記濃淡画像データ中に存在する濃度レベルのうち、濃度レベル0を超えたデータを変換対象とし、濃度レベル0のデータを変換対象から除外する、
ことを特徴とする請求項1に記載の立体画像データ作成システム。
《請求項8》
平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う手順、
前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する手順、
をコンピュータに実行させるための立体画像データ作成プログラム。
1 立体画像形成システム (立体画像データ作成システム)
2 タッチパネルディスプレイ
3 コンピュータ
31 CPU (変換手段)
32 ROM
33 RAM
34 記憶部
341 立体画像形成プログラム
41 印刷装置
42 発泡装置
5 立体画像コンテンツ
51 表面用濃淡画像データ
52 裏面用濃淡画像データ
53 絵柄データ
6 編集画面
60 保存ボタン
611 A5指定ボタン
612 A4指定ボタン
613 A3指定ボタン
62 タイトル領域
63 オブジェクト選択ボタン群
64 線属性領域
65 塗りつぶし領域
66 編集ボタン群
671 線形強調ボタン
672 非線形強調ボタン
7a,7b コンテンツ表示領域
71〜73 凸領域
8A〜8F 用紙
9a〜9n 立体画像
91〜93 凸領域

Claims (9)

  1. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う編集手段と、
    前記編集手段により前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段と、
    を備え
    前記変換手段は、前記濃淡画像データ中に存在する濃度レベルが立体画像を形成できる濃度レベル範囲の一部にだけ分布している場合、前記濃淡画像データ全体が立体画像を形成できる濃度レベル範囲全体に分布するよう変換する
    ことを特徴とする立体画像データ作成システム。
  2. 前記変換手段は、前記濃淡画像データ中に存在する濃度レベルが立体画像を形成できる濃度レベル範囲に収まっていない場合、前記濃淡画像データ全体が立体画像を形成できる濃度レベル範囲に収まるように変換する、
    ことを特徴とする請求項1に記載の立体画像データ作成システム。
  3. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う編集手段と、
    前記編集手段により前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段と、
    を備え、
    前記変換手段は、立体画像を形成できる濃度レベル範囲の上限と下限が、立体画像の形成結果が好ましくなる所定の濃度レベル範囲のそれぞれ上限と下限になるよう線形変換する、
    ことを特徴とする立体画像データ作成システム。
  4. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う編集手段と、
    前記編集手段により前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段と、
    を備え、
    前記変換手段は、濃度レベル範囲の所定位置における濃度レベル変化がより顕著になるよう変換する、
    ことを特徴とする立体画像データ作成システム。
  5. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う編集手段と、
    前記編集手段により前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、変更前後の画像領域の比率に対応させて濃淡レベルを変換する変換手段と、
    を備え、
    前記変換手段は、前記濃淡画像データ中に存在する濃度レベルのうち、濃度レベル0を超えたデータを変換対象とし、濃度レベル0のデータを変換対象から除外する、
    ことを特徴とする立体画像データ作成システム。
  6. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う手順、
    前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、
    変更前後の画像領域の比率に対応させて濃淡レベルを変換する手順、
    備え、
    前記変換手順は、前記濃淡画像データ中に存在する濃度レベルが立体画像を形成できる濃度レベル範囲の一部にだけ分布している場合、前記濃淡画像データ全体が立体画像を形成できる濃度レベル範囲全体に分布するよう変換する、
    ことを特徴とするコンピュータに実行させるための立体画像データ作成プログラム。
  7. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う手順、
    前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、
    変更前後の画像領域の比率に対応させて濃淡レベルを変換する手順、
    を備え、
    前記変換手順は、立体画像を形成できる濃度レベル範囲の上限と下限が、立体画像の形成結果が好ましくなる所定の濃度レベル範囲のそれぞれ上限と下限になるよう線形変換する、
    ことを特徴とするコンピュータに実行させるための立体画像データ作成プログラム。
  8. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う手順、
    前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、
    変更前後の画像領域の比率に対応させて濃淡レベルを変換する手順、
    を備え、
    前記変換手順は、濃度レベル範囲の所定位置における濃度レベル変化がより顕著になるよう変換する、
    ことを特徴とするコンピュータに実行させるための立体画像データ作成プログラム。
  9. 平面方向の座標毎に熱膨張性シートの膨張高さを規定する濃淡レベルが設定されている濃淡画像データの編集を行う手順、
    前記濃淡画像データに含まれる画像領域に対する平面方向のサイズが変更された際に、
    変更前後の画像領域の比率に対応させて濃淡レベルを変換する手順、
    を備え、
    前記変換手順は、前記濃淡画像データ中に存在する濃度レベルのうち、濃度レベル0を超えたデータを変換対象とし、濃度レベル0のデータを変換対象から除外する、
    ことを特徴とするコンピュータに実行させるための立体画像データ作成プログラム。
JP2017044591A 2017-03-09 2017-03-09 立体画像データ作成システムおよび立体画像データ作成プログラム Expired - Fee Related JP6642491B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017044591A JP6642491B2 (ja) 2017-03-09 2017-03-09 立体画像データ作成システムおよび立体画像データ作成プログラム
US15/891,772 US10406732B2 (en) 2017-03-09 2018-02-08 Three-dimensional image data generation system, three-dimensional image data generation method, and computer-readable recording medium
CN201810186019.8A CN108569043B (zh) 2017-03-09 2018-03-07 立体图像数据作成系统、立体图像数据作成方法以及计算机可读的记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044591A JP6642491B2 (ja) 2017-03-09 2017-03-09 立体画像データ作成システムおよび立体画像データ作成プログラム

Publications (2)

Publication Number Publication Date
JP2018144452A JP2018144452A (ja) 2018-09-20
JP6642491B2 true JP6642491B2 (ja) 2020-02-05

Family

ID=63446254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044591A Expired - Fee Related JP6642491B2 (ja) 2017-03-09 2017-03-09 立体画像データ作成システムおよび立体画像データ作成プログラム

Country Status (3)

Country Link
US (1) US10406732B2 (ja)
JP (1) JP6642491B2 (ja)
CN (1) CN108569043B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528759B2 (ja) * 2016-12-22 2019-06-12 カシオ計算機株式会社 立体画像形成システム及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921011C2 (de) * 1979-05-23 1981-04-23 Matsumoto Yushi-Seiyaku Co., Ltd., Yao, Osaka Verfahren zum Erzeugen eines Reliefs
JPS6134169U (ja) * 1984-07-31 1986-03-01 篤司 佐藤 景勝地立体地理模型
JPS6428660A (en) 1987-07-24 1989-01-31 Minolta Camera Kk Stereoscopic image forming method
JP2001150812A (ja) * 1999-11-25 2001-06-05 Minolta Co Ltd 発泡造形システム、発泡造形方法、印刷済みの発泡シートおよび発泡造形物
JP2001150789A (ja) 1999-11-25 2001-06-05 Minolta Co Ltd 発泡造形方法、発砲造形システム、そのためのデータ処理装置および発泡造形物
JP4259913B2 (ja) 2003-05-08 2009-04-30 シャープ株式会社 立体画像処理装置、立体画像処理プログラムおよびそのプログラムを記録した記録媒体
JP2005032144A (ja) * 2003-07-10 2005-02-03 Fuji Xerox Co Ltd 印刷処理システム及びこれに用いる印刷指示装置
JP5396162B2 (ja) * 2009-06-02 2014-01-22 富士フイルム株式会社 画像形成装置、プログラム、及び方法
JP5729293B2 (ja) * 2011-12-26 2015-06-03 カシオ計算機株式会社 立体画像形成方法及び立体画像形成装置
JP5672289B2 (ja) * 2012-10-18 2015-02-18 カシオ計算機株式会社 立体画像形成装置及び立体画像形成方法
JP6075335B2 (ja) * 2014-06-30 2017-02-08 カシオ計算機株式会社 濃度値補正方法、プログラム、立体形成方法及び立体形成装置

Also Published As

Publication number Publication date
JP2018144452A (ja) 2018-09-20
CN108569043B (zh) 2020-08-04
US10406732B2 (en) 2019-09-10
US20180257273A1 (en) 2018-09-13
CN108569043A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
JP6536547B2 (ja) 立体画像形成システム及びプログラム
JP6721086B2 (ja) 造形物の製造方法
US10603823B2 (en) Display device, three-dimensional image forming system, and computer-readable storage medium
JP7192496B2 (ja) 画像処理装置および画像処理プログラム
JP6642491B2 (ja) 立体画像データ作成システムおよび立体画像データ作成プログラム
JP6528759B2 (ja) 立体画像形成システム及びプログラム
JP6888317B2 (ja) 立体画像データ作成システム、画像編集方法、造形物の製造方法およびプログラム
JP6500884B2 (ja) 立体画像データ生成方法、立体画像データ生成装置および立体画像データ生成プログラム
JP6852334B2 (ja) 立体造形物製造システム、プレビュー画像表示方法およびプログラム
CN105488424B (zh) 一种信息显示保护方法及信息发送方法
JP6958576B2 (ja) 触図印刷物の製造方法及びプログラム
JP6816748B2 (ja) 表示装置、立体画像表示方法、及び表示プログラム
JP6862884B2 (ja) 立体画像データ作成システムおよび立体画像データ作成プログラム
JP7015018B2 (ja) 立体構造物、及び、立体構造物の製造方法
JP2019166839A (ja) 立体画像形成システム及びプログラム
JP6844638B2 (ja) 表示装置および表示プログラム
JP7017172B2 (ja) 立体造形物製造システム、画像生成方法及びプログラム
JP6737367B2 (ja) データ編集装置およびプログラム
JP6733435B2 (ja) 立体造形物製造システム、プログラム及び印刷方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6642491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees